CN113376815B - Wide-view-field high-resolution imaging system based on apochromatic spherical shell type framework - Google Patents
Wide-view-field high-resolution imaging system based on apochromatic spherical shell type framework Download PDFInfo
- Publication number
- CN113376815B CN113376815B CN202110484167.XA CN202110484167A CN113376815B CN 113376815 B CN113376815 B CN 113376815B CN 202110484167 A CN202110484167 A CN 202110484167A CN 113376815 B CN113376815 B CN 113376815B
- Authority
- CN
- China
- Prior art keywords
- lens
- spherical
- spherical lens
- secondary imaging
- main objective
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 108
- 230000004075 alteration Effects 0.000 claims abstract description 55
- 230000003287 optical effect Effects 0.000 claims abstract description 15
- 230000000712 assembly Effects 0.000 claims description 12
- 238000000429 assembly Methods 0.000 claims description 12
- 230000003595 spectral effect Effects 0.000 claims description 12
- 239000011521 glass Substances 0.000 claims description 10
- 238000012937 correction Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 239000006185 dispersion Substances 0.000 claims description 2
- 238000013461 design Methods 0.000 description 8
- 238000012634 optical imaging Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000009434 installation Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 3
- 239000003292 glue Substances 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
技术领域technical field
本发明属于光电探测技术领域,具体涉及一种基于复消色差球壳型架构的宽视场高分辨率成像系统。The invention belongs to the technical field of photoelectric detection, and in particular relates to a wide-field-of-view high-resolution imaging system based on an apochromatic spherical shell structure.
背景技术Background technique
宽视场、高分辨率光学成像系统具有广角成像和高分辨率成像的组合优势,可在大范围区域内执行多目标的跟踪、精确识别和监视,可应用于航天遥感、生态环境监测等活动的监视、海上冰川及其他目标大范围快速搜索跟踪等领域。光学成像系统性能好坏直接决定了获取物空间目标细节信息的优劣程度,Wide-field-of-view, high-resolution optical imaging system has the combined advantages of wide-angle imaging and high-resolution imaging, and can perform multi-target tracking, precise identification and monitoring in a large area, and can be applied to aerospace remote sensing, ecological environment monitoring and other activities Surveillance, large-scale rapid search and tracking of sea glaciers and other targets. The performance of the optical imaging system directly determines the quality of the detailed information of the target in the object space.
目前,宽视场成像技术主要有鱼眼镜头光学成像技术以及多尺度光学成像系统技术等等。采用鱼眼镜头系统结构来实现宽视场凝视型成像技术依旧被广泛使用,该技术没有复杂的扫描机构来扩充视场角,但是能满足全空域包容以及全时域实时的信息获取的功能,其中变焦类型的鱼眼镜头系统具有更大的视场角和更大的相对孔径,通过Front zoomgroup(前变焦组)和Rear zoom group(后变焦组)实现变焦功能,在一定程度上实现了宽范围区域内搜索、识别确定目标类型以及跟踪。鱼眼镜头视场角可覆盖半球型平面,甚至可达到270°,满足了宽视场但是牺牲了分辨率。At present, the wide field of view imaging technology mainly includes fisheye lens optical imaging technology and multi-scale optical imaging system technology and so on. The fisheye lens system structure is used to realize wide-field staring imaging technology is still widely used. This technology does not have a complicated scanning mechanism to expand the field of view, but it can meet the functions of full-space inclusion and real-time information acquisition in all time domains. Among them, the zoom type fisheye lens system has a larger field of view and a larger relative aperture. The zoom function is realized through the Front zoom group (front zoom group) and the rear zoom group (rear zoom group). Search, identify and track target types within range. The field of view of the fisheye lens can cover a hemispherical plane, even up to 270°, which satisfies a wide field of view but sacrifices resolution.
鱼眼镜头光学系统虽然实现了宽视场成像,但是不得不默认设计结果中桶形畸变的合理存在,除了画面中心景物保持不变,其他本应水平或垂直方向的景物都发生了变形,边缘畸变的过大造成像面中心域边缘照度不均匀,在整个像面上的无法形成一致的分辨率图像且图像分辨率较低,无法对感兴趣的目标区域进行精确的识别。变焦结构类型的鱼眼镜头在精确识别时焦距变长从而视场角变小,若要对边缘视场成像区域目标进行精确识别时则需要相对应的旋转扫描机构。所以鱼眼镜头光学系统在宽视场成像以及目标高分辨率精确识别时存在很多缺陷。Although the fisheye optical system achieves wide-field imaging, it has to default to the reasonable existence of barrel distortion in the design results. Except for the central scene of the screen, other scenes that should be horizontal or vertical are deformed, and the edges Excessive distortion results in uneven illumination at the edge of the central region of the image plane, and it is impossible to form a consistent resolution image on the entire image plane and the image resolution is low, making it impossible to accurately identify the target area of interest. The focal length of the zoom structure type fisheye lens becomes longer and the field of view angle becomes smaller during accurate identification. To accurately identify the target in the imaging area of the edge field of view, a corresponding rotating scanning mechanism is required. Therefore, the fisheye lens optical system has many defects in wide field of view imaging and high-resolution accurate identification of targets.
为了弥补鱼眼镜头光学成像系统在宽视场成像时无法兼顾高分辨率这一不足之处,提出了基于共心球透镜的多尺度宽视场高分辨率光学成像技术,前级主物镜采用共心球透镜来实现宽视场,一次像面与主物镜共心,多个相同的次级成像系统通过对前级主物镜的一次像面分区域成像,将多个次级系统的高分辨率子图像拼接实现高分辨率的同时保证了宽视场成像。In order to make up for the inadequacy of the fisheye lens optical imaging system that cannot take into account the high resolution in the wide field of view imaging, a multi-scale wide field of view high-resolution optical imaging technology based on concentric spherical lenses is proposed. The front-stage main objective lens adopts Concentric spherical lens to achieve wide field of view, the primary image plane is concentric with the main objective lens, multiple identical secondary imaging systems image the primary image plane of the previous stage main objective lens in different regions, and combine the high-resolution images of multiple secondary systems The sub-image stitching achieves high resolution while ensuring wide field of view imaging.
基于共心球透镜的多尺度宽视场高分辨率成像系统在获取物空间目标物体细节信息时,如图1所示,由于前级主物镜采用共心对称四层胶合球透镜,虽然校正了色差以及部分轴外像差,但是形成的一次像面包含的轴上球差、二级光谱像差以及组合像差并未得到校正,二级光谱像差的存在将会使得像质较差,引起系统获取的物空间目标细节信息分辨率较低,二级光谱像差如图2所示。同时本该参与到次级系统成像中一次像面也由附近的实际像面所取代,相比于一次像面,实际像面像质更加差,丢失的细节信息更严重,从而与次级成像系统组合成的多尺度光学系统分辨率急剧下降,不能满足高分辨率的要求。因此,基于共心球透镜的多尺度光学成像系统由于前级球透镜形成的一次像面像质较差,造成次级成像系统阵列无法获取到高频细节信息,降低了系统整体的分辨率,目标物体的识别精度较低。When the multi-scale wide-field-of-view high-resolution imaging system based on the concentric spherical lens acquires the detailed information of the target object in the object space, as shown in Figure 1, since the front-stage main objective lens adopts a concentric symmetrical four-layer cemented spherical lens, although the corrected Chromatic aberration and some off-axis aberrations, but the axial spherical aberration, secondary spectral aberration and combined aberration contained in the formed primary image plane have not been corrected. The existence of secondary spectral aberration will make the image quality poor. The resolution of object space target details acquired by the system is low, and the secondary spectral aberration is shown in Figure 2. At the same time, the primary image plane that should have participated in the imaging of the secondary system is also replaced by the nearby actual image plane. The resolution of the multi-scale optical system composed of the system drops sharply, which cannot meet the requirements of high resolution. Therefore, due to the poor image quality of the primary image plane formed by the front-stage ball lens in the multi-scale optical imaging system based on the concentric spherical lens, the secondary imaging system array cannot obtain high-frequency detail information, which reduces the overall resolution of the system. The recognition accuracy of the target object is low.
发明内容Contents of the invention
为了解决现有技术中存在的上述问题,本发明提供了一种基于复消色差球壳型架构的宽视场高分辨率成像系统。本发明要解决的技术问题通过以下技术方案实现:In order to solve the above-mentioned problems in the prior art, the present invention provides a wide-field-of-view high-resolution imaging system based on an apochromatic spherical shell structure. The technical problem to be solved in the present invention is realized through the following technical solutions:
一种基于复消色差球壳型架构的宽视场高分辨率成像系统,包括:主物镜和次级成像透镜子系统;A wide-field-of-view high-resolution imaging system based on an apochromatic spherical shell structure, including: a main objective lens and a secondary imaging lens subsystem;
所述主物镜,包括:沿光轴方向共心依次设置的第一球面透镜、第二球面透镜组件、第三球面透镜组件和第四球面透镜;The main objective lens includes: a first spherical lens, a second spherical lens assembly, a third spherical lens assembly and a fourth spherical lens arranged concentrically along the optical axis in sequence;
所述第一球面透镜的圆弧面和第二球面透镜组件的圆弧面朝向目标物体,所述第三球面透镜组件的圆弧面和第四球面透镜的圆弧面朝向所述主物镜的一次像面;所述第二球面透镜组件和所述第三球面透镜组件位于所述第一球面透镜和所述第四球面透镜围成的空间内;The arc surface of the first spherical lens and the arc surface of the second spherical lens assembly are facing the target object, the arc surface of the third spherical lens assembly and the arc surface of the fourth spherical lens are facing the main objective lens Primary image surface; the second spherical lens assembly and the third spherical lens assembly are located in the space enclosed by the first spherical lens and the fourth spherical lens;
所述第一球面透镜和所述第二球面透镜组件之间具有第一空气间隔,所述第二球面透镜组件和所述第三球面透镜组件相互胶合,所述第三球面透镜组件和所述第四球面透镜之间具有第二空气间隔;There is a first air gap between the first spherical lens and the second spherical lens assembly, the second spherical lens assembly and the third spherical lens assembly are glued to each other, the third spherical lens assembly and the There is a second air gap between the fourth spherical lenses;
所述第一球面透镜、所述第二球面透镜组件、所述第三球面透镜组件和所述第四球面透镜构成共心非对称结构;The first spherical lens, the second spherical lens assembly, the third spherical lens assembly and the fourth spherical lens form a concentric asymmetric structure;
所述次级成像透镜子系统,位于所述主物镜的一次像面背向所述主物镜的一侧,用于校正所述一次像面的场曲像差以及所述次级成像透镜子系统的色差;所述一次像面位于与所述主物镜共心的球面上。The secondary imaging lens subsystem is located on the side of the primary image surface of the primary objective lens facing away from the primary objective lens, and is used to correct the field curvature aberration of the primary image surface and the secondary imaging lens subsystem chromatic aberration; the primary image plane is located on a spherical surface concentric with the main objective lens.
在本发明的一个实施例中,所述第二球面透镜组件,包括:第一内透镜和第一中心透镜;In one embodiment of the present invention, the second spherical lens assembly includes: a first inner lens and a first central lens;
所述第一内透镜和所述第一中心透镜相互胶合;The first inner lens and the first central lens are glued to each other;
所述第三球面透镜组件,包括:第二中心透镜和第二内透镜;The third spherical lens assembly includes: a second central lens and a second inner lens;
所述第二中心透镜和所述第二内透镜相互胶合;The second central lens and the second inner lens are glued to each other;
所述第一中心透镜和所述第二中心透镜胶合。The first center lens and the second center lens are cemented.
在本发明的一个实施例中,所述第一球面透镜,为凹透镜,外表面和内表面均为圆弧面;In one embodiment of the present invention, the first spherical lens is a concave lens, and both the outer surface and the inner surface are arcuate surfaces;
所述第一内透镜,为凹透镜,且外表面和内表面均为圆弧面;The first inner lens is a concave lens, and both the outer surface and the inner surface are arcuate surfaces;
所述第一中心透镜为凸透镜,所述第一中心透镜的圆弧面位于所述第一内透镜的内表面上;The first central lens is a convex lens, and the arc surface of the first central lens is located on the inner surface of the first inner lens;
所述第二中心透镜为凸透镜,所述第二中心透镜的圆弧面位于所述第二内透镜的内表面上;The second central lens is a convex lens, and the arc surface of the second central lens is located on the inner surface of the second inner lens;
所述第二内透镜,为凹透镜,且外表面和内表面均为圆弧面;The second inner lens is a concave lens, and both the outer surface and the inner surface are arcuate surfaces;
所述第四球面透镜,为凹透镜,且外表面和内表面均为圆弧面。The fourth spherical lens is a concave lens, and both the outer surface and the inner surface are arc surfaces.
在本发明的一个实施例中,所述第一球面透镜和所述第四球面透镜之间、所述第一内透镜和所述第二内透镜之间均具有用于安装的安装间隙。In one embodiment of the present invention, there are installation gaps for installation between the first spherical lens and the fourth spherical lens, and between the first inner lens and the second inner lens.
在本发明的一个实施例中,所述一次像面为所述次级成像透镜子系统的待成像像面;所述次级成像透镜子系统,包括:多个次级成像透镜组件;In one embodiment of the present invention, the primary image plane is the image plane to be imaged by the secondary imaging lens subsystem; the secondary imaging lens subsystem includes: a plurality of secondary imaging lens assemblies;
所述多个次级成像透镜组件在与所述一次像面共心的球面上排列成阵列;The multiple secondary imaging lens assemblies are arranged in an array on a spherical surface concentric with the primary image plane;
相邻的两个所述次级成像透镜组件的边缘视场相重叠。The peripheral fields of view of two adjacent secondary imaging lens assemblies overlap.
在本发明的一个实施例中,所述次级成像透镜组件,包括:依次同轴设置的第一凹透镜、第二凹透镜、第三平凸透镜、第四凹透镜、第五双凸透镜、第六平凸透镜和第七凹透镜;In one embodiment of the present invention, the secondary imaging lens assembly includes: a first concave lens, a second concave lens, a third plano-convex lens, a fourth concave lens, a fifth bi-convex lens, and a sixth plano-convex lens arranged coaxially in sequence and the seventh concave lens;
所述第二凹透镜和所述第三平凸透镜相互胶合;The second concave lens and the third plano-convex lens are cemented together;
所述第四凹透镜和所述第五双凸透镜相互胶合。The fourth concave lens and the fifth bi-convex lens are cemented together.
在本发明的一个实施例中,所述第三平凸透镜与第四凹透镜之间设置有光阑。In one embodiment of the present invention, an aperture is provided between the third plano-convex lens and the fourth concave lens.
在本发明的一个实施例中,所述次级成像透镜组件为PETZVAL架构。In one embodiment of the present invention, the secondary imaging lens assembly is a PETZVAL structure.
本发明的有益效果:Beneficial effects of the present invention:
本发明的成像系统是基于复消色差原理,通过共心非对称结构的主物镜实现球差、轴上色差以及它们的组合像差的校正,同时对二级光谱像差也进行校正,提高前级主物镜对物空间目标物体细节的高频信息量获取量,提高了目标物体的细节分辨率,通过次级成像透镜子系统能够校正一次像面的场曲像差以及自身的影响分辨率的色差,进一步提高了成像分辨率和目标区域的识别精度。The imaging system of the present invention is based on the principle of apochromatism, and realizes the correction of spherical aberration, axial chromatic aberration and their combined aberration through the main objective lens of concentric asymmetric structure, and also corrects the secondary spectral aberration at the same time, improving the previous The amount of high-frequency information obtained by the primary objective lens on the details of the target object in the object space improves the detail resolution of the target object, and the field curvature aberration of the primary image surface and its own influence on the resolution can be corrected through the secondary imaging lens subsystem Chromatic aberration further improves the imaging resolution and recognition accuracy of the target area.
本发明可以用于机载侦察领域,实现大范围目标场景的搜索侦察能力,更高的分辨率可获得针对性目标的实时准确的详细细节信息,提高复杂环境下目标的高精度判别率。The invention can be used in the field of airborne reconnaissance to realize the search and reconnaissance capability of a wide range of target scenes, obtain real-time and accurate detailed detailed information of targeted targets with higher resolution, and improve the high-precision discrimination rate of targets in complex environments.
以下将结合附图及实施例对本发明做进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.
附图说明Description of drawings
图1是现有技术中基于共心球透镜的多尺度宽视场高分辨率成像系统;Fig. 1 is a multi-scale wide-field-of-view high-resolution imaging system based on a concentric spherical lens in the prior art;
图2是图1的二级光谱示意图。FIG. 2 is a schematic diagram of the secondary spectrum of FIG. 1 .
图3是本发明实施例提供的一种基于复消色差球壳型架构的宽视场高分辨率成像系统的结构示意图。FIG. 3 is a schematic structural diagram of a wide-field-of-view high-resolution imaging system based on an apochromatic spherical shell structure provided by an embodiment of the present invention.
图4是本发明实施例提供的主物镜的结构示意图;Fig. 4 is a schematic structural view of the main objective lens provided by the embodiment of the present invention;
图5是本发明实施例提供的主物镜轴向像差曲线;Fig. 5 is the axial aberration curve of the main objective lens provided by the embodiment of the present invention;
图6是本发明实施例提供的主物镜成像MTF曲线;Fig. 6 is the main objective lens imaging MTF curve provided by the embodiment of the present invention;
图7是本发明实施例提供的一种基于复消色差球壳型架构的宽视场高分辨率成像系统的结构示意图;7 is a schematic structural diagram of a wide-field-of-view high-resolution imaging system based on an apochromatic spherical shell structure provided by an embodiment of the present invention;
图8是本发明实施例提供的次级成像透镜子系统的结构示意图;FIG. 8 is a schematic structural diagram of a secondary imaging lens subsystem provided by an embodiment of the present invention;
图9是本发明实施例提供的一种基于复消色差球壳型架构的宽视场高分辨率成像系统的成像MTF曲线;9 is an imaging MTF curve of an apochromatic spherical shell-type architecture-based wide-field-of-view high-resolution imaging system provided by an embodiment of the present invention;
图10是本发明实施例提供的一种基于复消色差球壳型架构的宽视场高分辨率成像系统的成像示意图。Fig. 10 is an imaging schematic diagram of a wide-field-of-view high-resolution imaging system based on an apochromatic spherical shell structure provided by an embodiment of the present invention.
附图标记说明:Explanation of reference signs:
11-第一球面透镜;12-第二球面透镜组件;121-第一内透镜;122-第一中心透镜;13-第三球面透镜组件;131-第二中心透镜;132-第二内透镜;14-第四球面透镜;15-一次像面;16-第一空气间隔;17-第二空气间隔;18-安装间隙;20-次级成像透镜子系统;21-次级成像透镜组件;22-第一凹透镜;23-第二凹透镜;24-第三平凸透镜;25-第四凹透镜;26-第五双凸透镜;27-第六平凸透镜;28-第七凹透镜;29-光阑。11-the first spherical lens; 12-the second spherical lens assembly; 121-the first inner lens; 122-the first center lens; 13-the third spherical lens assembly; 131-the second center lens; 132-the second inner lens ; 14-the fourth spherical lens; 15-primary image plane; 16-the first air gap; 17-the second air gap; 18-installation gap; 20-secondary imaging lens subsystem; 21-secondary imaging lens assembly; 22-the first concave lens; 23-the second concave lens; 24-the third plano-convex lens; 25-the fourth concave lens; 26-the fifth double-convex lens; 27-the sixth plano-convex lens; 28-the seventh concave lens;
具体实施方式Detailed ways
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below in conjunction with specific examples, but the embodiments of the present invention are not limited thereto.
实施例一Embodiment one
请参见图3,一种基于复消色差球壳型架构的宽视场高分辨率成像系统,包括:主物镜和次级成像透镜子系统20。主物镜包括:沿光轴方向共心依次设置的第一球面透镜11、第二球面透镜组件12、第三球面透镜组件13和第四球面透镜14。第一球面透镜11的圆弧面和第二球面透镜组件12的圆弧面朝向目标物体,第三球面透镜组件13的圆弧面和第四球面透镜14的圆弧面朝向主物镜的一次像面15;第二球面透镜组件12和第三球面透镜组件13位于第一球面透镜11和第四球面透镜14围成的空间内。第一球面透镜11和第二球面透镜组件12之间具有第一空气间隔16,第二球面透镜组件12和第三球面透镜组件13相互胶合,第三球面透镜组件13和第四球面透镜14之间具有第二空气间隔17。第一球面透镜11、第二球面透镜组件12、第三球面透镜组件13和第四球面透镜14构成非对称结构。本实施例中,如图3所示,用平行于光轴的纵向平面截主物镜,主物镜的左右结构为非对称结构。Please refer to FIG. 3 , a wide-field-of-view high-resolution imaging system based on an apochromatic spherical shell structure, including: a main objective lens and a secondary
次级成像透镜子系统20位于主物镜的一次像面15背向主物镜的一侧,次级成像透镜子系统20主要用于校正一次像面15的场曲像差以及次级成像透镜子系统20的色差;一次像面15位于与主物镜共心的球面上。The secondary
本实施例中,采用基于复消色差球壳型架构的主物镜和基于一次像面15的次级成像透镜子系统20构成的多尺度成像系统。其中,复消色差是指对二级光谱像差的校正。由于共心的主物镜形成的一次像面15是与主物镜共心的球面且各个像点成像一致,只需要对中心视场进行球差、位置色差以及二者组合的像差进行校正,同时对二级光谱像差也进行校正,以达到到物空间目标物体细节信息量的提升。In this embodiment, a multi-scale imaging system composed of a main objective lens based on an apochromatic spherical shell structure and a secondary
根据光学系统设计中像差的理论知识可知,对称性结构可以针对场曲以外的其他与视场有关的像差进行良好地校正,但是轴上的像差如球差和二级光谱像差却增加了一倍。此时,打破结构的对称性,采用非对称结构可以校正二级光谱像差,保留结构的共心性,共心性的目的是为了保证主物镜各个视场形成的球形一次像面15成像质量一致以及光学系统的宽视场范围成像。According to theoretical knowledge of aberrations in optical system design, symmetrical structures can be well corrected for field-dependent aberrations other than field curvature, but axial aberrations such as spherical aberration and second-order spectral aberrations are not. doubled. At this time, the symmetry of the structure is broken, and the secondary spectral aberration can be corrected by using an asymmetric structure, and the concentricity of the structure is preserved. The purpose of the concentricity is to ensure that the imaging quality of the spherical
本实施例中,主物镜打破共心对称球透镜的对称性,对一次像面15的球差、轴向色差以及他们的组合进行校正,同时着重于二级光谱像差的校正,提高了前级主物镜对物空间目标物体细节的高频信息量获取量,提高了目标物体的细节分辨率,通过次级成像透镜子系统20能够校正一次像面15的场曲像差以及自身的影响分辨率的色差,进一步提高了成像分辨率和目标区域的识别精度。In this embodiment, the main objective lens breaks the symmetry of the concentric symmetrical spherical lens, corrects the spherical aberration, axial chromatic aberration and their combination of the
在一种可行的实现方式中,通过改变空气间隔、各个球面透镜的曲率半径、各个球面透镜厚度和/或玻璃材料来实现非对称的结构校正球差,根据玻璃的色散图进行合适的玻璃材料选择来校正二级光谱像差。具体地,可以通过改变空气间隔、各个球面透镜的曲率半径、各个球面透镜厚度、玻璃材料中的一种或多种来实现主物镜的非对称结构。In a feasible implementation, the asymmetric structural correction of spherical aberration is achieved by changing the air gap, the radius of curvature of each spherical lens, the thickness of each spherical lens and/or the glass material, and the appropriate glass material is selected according to the dispersion diagram of the glass Select to correct for secondary spectral aberrations. Specifically, the asymmetric structure of the main objective lens can be realized by changing one or more of the air gap, the curvature radius of each spherical lens, the thickness of each spherical lens, and the glass material.
进一步地,如图4所示,第二球面透镜组件12包括:第一内透镜121和第一中心透镜122。第一内透镜121和第一中心透镜122相互胶合。第三球面透镜组件13包括:第二中心透镜131和第二内透镜132。第二中心透镜131和第二内透镜132相互胶合;第一中心透镜122和第二中心透镜131胶合。Further, as shown in FIG. 4 , the second
进一步地,如图4所示,第一球面透镜11为凹透镜,第一球面透镜11的外表面和内表面均为圆弧面。第一球面透镜11的圆弧面朝向目标物体。第一球面透镜11为弯月形。第一内透镜121为凹透镜,且第一内透镜121的外表面和内表面均为圆弧面。第一内透镜121的圆弧面朝向目标物体,第一内透镜121可以为弯月形。第一内透镜121的圆弧面朝向目标物体。第一中心透镜122为凸透镜,第一中心透镜122的圆弧面位于第一内透镜121的圆弧形内表面上。第一中心透镜122的圆弧面朝向目标物体。Further, as shown in FIG. 4 , the first
第二内透镜132为凹透镜,且第二内透镜132的外表面和内表面均为圆弧面。第二内透镜132的圆弧面朝向一次像面15,第二内透镜132可以为弯月形。第二中心透镜131为凸透镜,第二中心透镜131的圆弧面位于第二内透镜132的圆弧形内表面上。第二中心透镜131的圆弧面朝向一次像面15。第四球面透镜14为凹透镜,且第四球面透镜14的外表面和内表面均为圆弧面。第四球面透镜14为弯月形。第四球面透镜14的圆弧面朝向一次像面15。The second
本实施例中,第一球面透镜11、第一内透镜121和第一中心透镜122为一半球,第四球面透镜14、第二内透镜132和第二中心透镜131为另一半球,第一球面透镜11和第四球面透镜14为最外层。第二内透镜132的外表面为朝向第一球面透镜11的表面,第二内透镜132的内表面背向第一球面透镜11的表面。第一球面透镜11的内表面和第一内透镜121的外表面平行。第二内透镜132的外表面为朝向第四球面透镜14的表面,第二内透镜132的内表面为背向第四球面透镜14的表面。第二内透镜132的外表面和第四球面透镜14的内表面平行。In this embodiment, the first
本实施例中,主物镜采用六片式共心球壳型架构,共心性实现主物镜的宽视场成像,打破球透镜的结构和材料的对称性实现球差、轴上色差以及它们的组合像差的校正。In this embodiment, the main objective lens adopts a six-piece concentric spherical shell structure, and the concentricity realizes the wide-field imaging of the main objective lens, and breaks the symmetry of the structure and material of the spherical lens to realize spherical aberration, axial chromatic aberration and their combination Aberration correction.
如图5所示,本实施例的复消色差球壳型主物镜在0.707孔径处完成了二级光谱像差的校正,图6表明了该主物镜的中心视场的MTF(Modulation Transfer Function,调制传递函数)曲线接近衍射极限,说明本实施例的复消色差球壳型主物镜完成复消色差后高频细节信息获取量更多,分辨率接近衍射极限值。As shown in Figure 5, the apochromatic spherical shell type main objective lens of the present embodiment has completed the correction of secondary spectral aberration at the 0.707 aperture place, and Figure 6 shows the MTF (Modulation Transfer Function, Modulation Transfer Function, of the central field of view of this main objective lens) The modulation transfer function) curve is close to the diffraction limit, indicating that the apochromatic spherical shell-type main objective lens of this embodiment obtains more high-frequency detail information after apochromatization, and the resolution is close to the diffraction limit.
在一种可行的实现方式中,第一中心透镜122和第二中心透镜131均为平凸透镜,以便于将二者进行胶合。In a feasible implementation manner, the first
进一步地,如图4所示,第一球面透镜11和第四球面透镜14之间、第一内透镜121和第二内透镜132之间均具有用于安装的安装间隙18。Further, as shown in FIG. 4 , there are
进一步地,如图7所示,一次像面15为次级成像透镜子系统20的待成像像面;次级成像透镜子系统20包括:多个次级成像透镜组件21。多个次级成像透镜组件21在与一次像面15共心的球面上排列成阵列。相邻的两个次级成像透镜组件21的边缘视场相重叠。本实施例中,多个次级成像透镜组件21依次排列。次级成像透镜子系统20主要承担两个功能:一是对前级主物镜形成曲率共心的一次像面15进行分割成像在各自的探测器上;二是在分割成像过程中校正前级主物镜的残余像差以及校正自身产生的像差。由于复消色差球壳型的主物镜具有共心性,一次像面15的残余像差在各个视场分布相同,因此各个次级成像透镜组件21完全一致,只需要考虑一个次级成像透镜组件21的设计优化即可,这极大降低了次级成像透镜子系统20的设计复杂度、加工和装调成本。Further, as shown in FIG. 7 , the
本实施例中,一次像面15的曲率与次级成像透镜子系统20的待成像像面曲率大小一致,降低了系统总体设计的复杂度,使得参与次级成像透镜子系统20的实际像面与由主物镜产生的一次像面15吻合。In this embodiment, the curvature of the
次级成像透镜组件21为PETZVAL(匹兹伐)架构。次级成像透镜子系统20的设计应该着重于校正一次像面15的场曲像差以及自身的色差,这二者是探测器靶面上像质的好坏关键,直接影响着最终分辨率的高低。PETZVAL类型的光学系统可以对场曲进行良好的校正,由光学知识可知,PETZVAL型光学系统中存在相距一定距离的双胶合物镜,这对自身的色差有良好的校正能力,PETZVAL类型的光学系统作为宽视场高分辨率多尺度成像系统中的次级成像系统初始架构很好地满足设计需求。The secondary
进一步地,如图8所示,次级成像透镜组件21包括:依次同轴设置的第一凹透镜22、第二凹透镜23、第三平凸透镜24、第四凹透镜25、第五双凸透镜26、第六平凸透镜27和第七凹透镜28。第二凹透镜23和第三平凸透镜24相互胶合。第四凹透镜25和第五双凸透镜26相互胶合。一次像面15与第一凹透镜22之间、第一凹透镜22和第二凹透镜23之间、第三平凸透镜24和第四凹透镜25、第五双凸透镜26和第六平凸透镜27之间、第六平凸透镜27和第七凹透镜28之间均具有空气间隔。本实施例中,第三平凸透镜24的弧面和第二凹透镜23的凹弧面胶合在一起。本实施例中,多个次级成像透镜组件21彼此之间存在视场重叠,避免出现视场盲区。Further, as shown in FIG. 8 , the secondary
本实施例的多个次级成像透镜组件21结构均相同,可进行大批量生产,同时每个次级成像透镜组件21相互独立工作,当某个相机出现故障时,具有可替换性。The plurality of secondary
进一步地,如图7所示,第三平凸透镜24与第四凹透镜25之间设置有光阑29。孔径光阑29置于次级成像透镜组件21中从而使各个视场处的照度均匀。Further, as shown in FIG. 7 , an
如图9所示,本发明的宽视场高分辨率成像系统总体MTF曲线接近衍射极限,说明本发明的成像系统分辨率接近衍射极限,且在整个系统成像过程中获取到了足够的物空间目标物体的高频信息,能够实现目标区域高精度分辨识别。本发明的系统通过前级主物镜的复消色差设计,可提高在复杂环境条件下对目标物体高频信息细节的获取量,次级成像透镜子系统20的阵列保证对主物镜的一次像面15进行分割成像,进而获得一致性的图像分辨率,进一步提高物空间细节信息的解读性。本发明的系统在宽视场成像时获取更多的物空间目标物体的高频信息,提高了目标物体的细节分辨率,能够满足宽视场大范围区域搜索时高精度精确识别的需求。As shown in Figure 9, the overall MTF curve of the wide-field-of-view and high-resolution imaging system of the present invention is close to the diffraction limit, indicating that the resolution of the imaging system of the present invention is close to the diffraction limit, and sufficient objects in the object space have been obtained during the imaging process of the entire system. The high-frequency information of the object can realize high-precision resolution and identification of the target area. The system of the present invention can improve the amount of acquisition of high-frequency information details of the target object under complex environmental conditions through the apochromatic design of the front-stage main objective lens, and the array of the secondary
在一种可行的实现方式中,如图10所示,由主物镜形成的一次球形像面经过Petzval架构的次级成像透镜子系统20阵列,消除场曲像差后被分割成一系列子图像,子图像的像质达到光学系统成像质量的衍射极限,利用SURF算法提取图像特征,将子图像处理拼接成一幅宽视场图像,最终实现宽视场高分辨率成像。In a feasible implementation, as shown in FIG. 10 , the primary spherical image surface formed by the main objective lens is divided into a series of sub-images after the secondary
在一种可行的实现方式中,如图4、图8和图9,本发明的主物镜和次级成像透镜子系统20的参数如表1和表2所示:表1为主物镜的透镜参数,表2为次级成像透镜子系统20的透镜参数,Surf:type表示由左至右每个面进行编号,重合的面只编号一次。其中,ob表示目标物体的编号。Radius表示曲率半径。Thicness表示透镜厚度。其中,表中编号①对应的厚度为39.000mm,该厚度为①和②之间的距离,也即是第一球面透镜11的厚度,编号②对应的厚度为第一空气间隔16的大小,以此类推。Glass表示透镜的玻璃牌号(成都光明玻璃的牌号),每个牌号对应有一个折射率和阿贝数。Semi-Diameter表示半口径,半口径就是透镜的每个面至光轴的最大垂直距离。In a feasible implementation, as shown in Fig. 4, Fig. 8 and Fig. 9, the parameters of the main objective lens and the secondary
单位:mmUnit: mm
表1Table 1
单位:mmUnit: mm
表2Table 2
在实际应用中,可以改变空气间隔大小、各个球面透镜的曲率半径大小、各个球面透镜厚度和/或玻璃材来满足成像的需求。In practical applications, the size of the air gap, the size of the radius of curvature of each spherical lens, the thickness of each spherical lens and/or the glass material can be changed to meet the imaging requirements.
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In describing the present invention, it should be understood that the terms "center", "longitudinal", "transverse", "length", "width", "thickness", "upper", "lower", "front", " Orientation indicated by rear, left, right, vertical, horizontal, top, bottom, inside, outside, clockwise, counterclockwise, etc. The positional relationship is based on the orientation or positional relationship shown in the drawings, which is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, Therefore, it should not be construed as limiting the invention.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as "first" and "second" may explicitly or implicitly include one or more of these features. In the description of the present invention, "plurality" means two or more, unless otherwise specifically defined.
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise clearly specified and limited, terms such as "installation", "connection", "connection" and "fixation" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。In the present invention, unless otherwise clearly specified and limited, a first feature being "on" or "under" a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them. Moreover, "above", "above" and "above" the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature. "Below", "beneath" and "under" the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。In the description of this specification, descriptions referring to the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" mean that specific features described in connection with the embodiment or example , structure, material or characteristic is included in at least one embodiment or example of the present invention. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples described in this specification.
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in conjunction with specific preferred embodiments, and it cannot be assumed that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deduction or replacement can be made, which should be regarded as belonging to the protection scope of the present invention.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110484167.XA CN113376815B (en) | 2021-04-30 | 2021-04-30 | Wide-view-field high-resolution imaging system based on apochromatic spherical shell type framework |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110484167.XA CN113376815B (en) | 2021-04-30 | 2021-04-30 | Wide-view-field high-resolution imaging system based on apochromatic spherical shell type framework |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN113376815A CN113376815A (en) | 2021-09-10 |
| CN113376815B true CN113376815B (en) | 2023-02-10 |
Family
ID=77570363
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110484167.XA Active CN113376815B (en) | 2021-04-30 | 2021-04-30 | Wide-view-field high-resolution imaging system based on apochromatic spherical shell type framework |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN113376815B (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103064171A (en) * | 2012-09-29 | 2013-04-24 | 北京空间机电研究所 | Novel high resolution large visual field optical imaging system |
| CN105807405A (en) * | 2016-04-26 | 2016-07-27 | 中国科学院西安光学精密机械研究所 | Multi-spectrum optical system suitable for large dynamic range near-hemispherical view field constant resolution |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2588911B1 (en) * | 2010-04-27 | 2018-06-06 | Duke University | Monocentric lens-based multi-scale optical systems and methods of use |
| US9329365B2 (en) * | 2011-09-23 | 2016-05-03 | Goodrich Corporation | Wide field of view monocentric lens system for infrared aerial reconnaissance camera systems |
-
2021
- 2021-04-30 CN CN202110484167.XA patent/CN113376815B/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103064171A (en) * | 2012-09-29 | 2013-04-24 | 北京空间机电研究所 | Novel high resolution large visual field optical imaging system |
| CN105807405A (en) * | 2016-04-26 | 2016-07-27 | 中国科学院西安光学精密机械研究所 | Multi-spectrum optical system suitable for large dynamic range near-hemispherical view field constant resolution |
Non-Patent Citations (2)
| Title |
|---|
| 基于共心球透镜的多尺度广域高分辨率计算成像系统设计;刘飞,魏雅喆,韩平丽,刘佳维,邵晓鹏;《物理学报》;20190831;084201-1-084201-8 * |
| 基于多尺度成像原理的宽视场高分辨光学系统设计与研制;吴雄雄;《中国优秀博硕士学位论文全文数据库(博士) 基础科学辑》;20190215;第54-58页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN113376815A (en) | 2021-09-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110794552B (en) | Optical lens | |
| CN111239961B (en) | Optical Lenses and Imaging Equipment | |
| CN201837770U (en) | Near infrared wide-angle lens | |
| CN108072966A (en) | Optical lens | |
| US20190361206A1 (en) | Wide angle lens, imaging device, and unmanned aerial vehicle | |
| CN207216123U (en) | A kind of big focal length salt free ligands face medium-wave infrared double-view field camera lens | |
| CN109581636B (en) | Optical imaging lens | |
| CN109557644A (en) | Optical lens and imaging device | |
| WO2022237630A1 (en) | Fixed-focus lens | |
| CN110568584A (en) | A 4K high-resolution panoramic ring optical system | |
| CN110703432A (en) | An Imaging System Based on Double Gaussian-like Structure | |
| CN108663778A (en) | Wide-angle high-definition imaging system with mixed bionic fisheye-compound eye structure | |
| CN112379508A (en) | Optical system, image capturing module and electronic equipment | |
| CN108363190B (en) | Lens system and lens | |
| CN215340562U (en) | A compact wide-field gaze imaging system based on a folded concentric structure | |
| CN212515184U (en) | High-pixel large-aperture wide-angle lens | |
| CN113376815B (en) | Wide-view-field high-resolution imaging system based on apochromatic spherical shell type framework | |
| CN110412729A (en) | Optical lens | |
| CN209433112U (en) | A kind of big target surface line scans lens optical system | |
| CN115248496B (en) | High-definition optical lens and high-performance laser radar | |
| CN109375343B (en) | Vehicle-mounted high-definition looking-around optical system with size of 1.1mm and imaging method thereof | |
| CN108873266B (en) | Wide-angle lens | |
| CN111025616B (en) | Ultrashort conjugate distance microscope lens optical system and microscope | |
| CN110007437B (en) | Lens arrangement structure of optical lens | |
| CN219202039U (en) | Optical lens |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |