[go: up one dir, main page]

CN113387671B - Optimization method for water resistance and stability of all solid waste filling materials in Dashui mines - Google Patents

Optimization method for water resistance and stability of all solid waste filling materials in Dashui mines Download PDF

Info

Publication number
CN113387671B
CN113387671B CN202110732017.6A CN202110732017A CN113387671B CN 113387671 B CN113387671 B CN 113387671B CN 202110732017 A CN202110732017 A CN 202110732017A CN 113387671 B CN113387671 B CN 113387671B
Authority
CN
China
Prior art keywords
solid waste
water resistance
phosphogypsum
slag
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110732017.6A
Other languages
Chinese (zh)
Other versions
CN113387671A (en
Inventor
肖柏林
郭斌
温震江
尹升华
巴蕾
杨晓炳
高谦
李胜辉
陈彦亭
胡亚军
吴凡
杨航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
BGRIMM Technology Group Co Ltd
Hebei Iron and Steel Group Mining Co Ltd
Original Assignee
University of Science and Technology Beijing USTB
BGRIMM Technology Group Co Ltd
Hebei Iron and Steel Group Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB, BGRIMM Technology Group Co Ltd, Hebei Iron and Steel Group Mining Co Ltd filed Critical University of Science and Technology Beijing USTB
Priority to CN202110732017.6A priority Critical patent/CN113387671B/en
Publication of CN113387671A publication Critical patent/CN113387671A/en
Application granted granted Critical
Publication of CN113387671B publication Critical patent/CN113387671B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/142Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing synthetic or waste calcium sulfate cements
    • C04B28/143Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing synthetic or waste calcium sulfate cements the synthetic calcium sulfate being phosphogypsum
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00198Characterisation or quantities of the compositions or their ingredients expressed as mathematical formulae or equations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The invention provides a method for optimizing the proportion of a full-solid waste filling material with water resistance stability in a large water mine, which relates to the technical field of solid waste utilization, can realize the optimized combination and synergistic effect of solid waste resources, prepare the filling material meeting the water resistance requirement, and provide support for safe and reliable low-quality solid waste and large-scale resource utilization; the method comprises the following steps: s1, preparing a plurality of mixed powder with different proportions, including phosphogypsum and blast furnace slag; s2, carrying out a filler strength test and a water resistance test on all the mixed powder to obtain test results of the mixed powder with different proportions; s3, establishing a mathematical model of the strength of the filling body and a mathematical model of the water-resistant stability according to the test result; s4, establishing a full-solid waste filling material proportion optimization model by taking the filling material cost as an optimization target and the two mathematical models as constraint conditions; and S5, solving the model to obtain the optimized proportion of the full-solid waste filling material. The technical scheme provided by the invention is suitable for the mine filling process.

Description

大水矿山抗水稳定性全固废充填材料配比优化方法Optimization method for water resistance and stability of all solid waste filling materials in Dashui mines

技术领域technical field

本发明涉及固废利用技术领域,尤其涉及一种大水矿山抗水稳定性全固废充填材料配比优化方法。The invention relates to the technical field of solid waste utilization, in particular to a method for optimizing the proportion of filling materials for all solid wastes with water resistance and stability in Dashui mines.

背景技术Background technique

随着我国经济高速发展以及对矿产资源持续开发利用,高品位和采矿技术条件好的矿产资源日趋枯竭,面临更多的是深埋、高应力、富水和不良地层条件的资源。充填法采矿安全环保与绿色开采的首要选择。以水泥为胶凝剂的尾砂胶结充填体强度低、流动性差、导致胶凝材料用量大,充填采矿成本高。With the rapid development of my country's economy and the continuous development and utilization of mineral resources, high-grade mineral resources with good mining technology conditions are increasingly depleted, and more resources are faced with deep burial, high stress, rich water and poor formation conditions. The first choice for safety, environmental protection and green mining in backfill mining. The tailings cemented backfill with cement as the gelling agent has low strength and poor fluidity, resulting in a large amount of cementitious material and high backfill mining costs.

随着我国新环保法出台以及严格管理,高活性高炉矿渣成为宝贵的资源,不仅利用成本在逐年提高,而且在我国某些地区还供不应求。而磷石膏、电石渣、钢渣、粉煤灰、铜选尾渣等低品质固废物,由于活性低资源化利用低。因此,低品质固废在充填采矿中利用,不仅可降低充填采矿成本,而且还为低品质固废无害化、减量化和高值化利用探索出一条途径.With the introduction of my country's new environmental protection law and strict management, high-activity blast furnace slag has become a valuable resource, not only the utilization cost is increasing year by year, but also in some areas in my country is still in short supply. However, low-quality solid wastes such as phosphogypsum, carbide slag, steel slag, fly ash, and copper tailings have low resource utilization due to low activity. Therefore, the utilization of low-quality solid waste in backfill mining can not only reduce the cost of backfill mining, but also explore a way for the harmless, reduced and high-value utilization of low-quality solid waste.

研究表明,低品质固废不仅活性差,水化反应慢,导致充填体强度低,而且胶结充填体抗水稳定性差,在大水矿山富水环境中,充填体在水中长期浸泡的力学性能发生劣化,强度降低,由此给充填采矿潜在严重的安全隐患。因此,低品质固废在大水矿山充填采矿中应用,其抗水稳定性是值得关注的问题。Studies have shown that low-quality solid waste not only has poor activity and slow hydration reaction, resulting in low strength of the backfill, but also poor water resistance stability of the cemented backfill. Deterioration and reduction of strength, thereby potentially causing serious safety hazards to backfill mining. Therefore, when low-quality solid waste is used in backfill mining in large water mines, its water resistance stability is a problem worthy of attention.

磷石膏是磷肥工业固体废弃物,随着我国近年来高浓度复合肥工业迅猛发展,每年磷肥化工企业排出大量的磷石膏。由于磷石膏中存在有害的矿物成分导致活性低和抗水性差,因此目前磷石膏利用率不足5%,大部分磷石膏采取堆放处理。不仅占据大量土地,而且严重污染环境,由此抑制磷肥工业的发展。显然,拓展磷石膏、粉煤灰等低品质固废资源化利用途径已刻不容缓。Phosphogypsum is a solid waste of the phosphate fertilizer industry. With the rapid development of the high-concentration compound fertilizer industry in my country in recent years, a large amount of phosphogypsum is discharged from phosphate fertilizer chemical companies every year. Due to the presence of harmful mineral components in phosphogypsum, the activity is low and the water resistance is poor, so the current utilization rate of phosphogypsum is less than 5%, and most of the phosphogypsum is piled up. It not only occupies a large amount of land, but also seriously pollutes the environment, thereby inhibiting the development of the phosphate fertilizer industry. Obviously, it is urgent to expand the resource utilization of low-quality solid waste such as phosphogypsum and fly ash.

磷石膏中由于含有有害的P2O5等化学成分,造成胶结体强度低并伴随浸水膨胀和强度劣化问题,这是磷石膏大宗资源化利用的主要影响因素,为此,人们在不断地探索磷石膏资源化利用的关键技术和应用领域。中国发明专利CN 103133033 A公开了“一种矿山磷石膏胶结充填制浆工艺法”,CN 108191365 A公开了“一种应用磷石膏材料胶结充填金属矿山的方法”,两项发明专利均提出了低品质充填材料制浆工艺,但没有涉及充填体抗水稳定性问题。中国发明专利CN 109133830 A公开了“一种低品质自流平材料的制备方法”,拓展了磷石膏在建筑材料技术领域资源化利用途径。中国发明专利CN 107382239 A公开了“用于稳定含二嗯英焚烧飞灰的全固废充填材料及制备方法”,利用磷石膏制备全固废充填材料,用于稳定固化含二嗯英焚烧飞灰等固废,并没有考虑固化体强度以及抗水稳定性问题。Phosphogypsum contains harmful P 2 O 5 and other chemical components, resulting in low cement strength and accompanying water swelling and strength deterioration. This is the main factor that affects the utilization of phosphogypsum as a bulk resource. For this reason, people are constantly exploring Key technologies and application fields of phosphogypsum resource utilization. Chinese invention patent CN 103133033 A discloses "a method for cementing and filling pulping of phosphogypsum in mines", and CN 108191365 A discloses "a method for cementing and filling metal mines with phosphogypsum materials". Quality filling material pulping process, but does not involve the water resistance stability of the filling body. Chinese invention patent CN 109133830 A discloses "a preparation method of low-quality self-leveling material", which expands the resource utilization approach of phosphogypsum in the technical field of building materials. Chinese invention patent CN 107382239 A discloses "full solid waste filling material and preparation method for stabilizing dioxin-containing incineration fly ash", using phosphogypsum to prepare all-solid waste filling material, which is used to stabilize and solidify dioxin-containing incineration fly ash Solid waste such as ash, and does not consider the strength of the cured body and the stability of water resistance.

综上可见,大水矿山胶结充填体抗水稳定性,不仅影响充填采场稳定与安全,而且对控制围岩变形、顶板冒落以及诱发透水等灾变事故,将起到至关重要的作用。目前提高充填体抗水稳定性的方法,主要是掺加纤维或外加剂以及抗水性能材料,不仅提高充填采矿成本,而且还复杂了回采工艺。In summary, the water resistance stability of the cemented backfill in Dashui Mine will not only affect the stability and safety of the backfill stope, but also play a crucial role in controlling the deformation of surrounding rock, roof caving, and induced flooding and other catastrophic accidents. At present, the method of improving the water resistance stability of the backfill is mainly to add fibers or additives and water-resistant materials, which not only increases the cost of backfill mining, but also complicates the recovery process.

因此,有必要研究一种大水矿山抗水稳定性全固废充填材料配比优化方法来应对现有技术的不足,以解决或减轻上述一个或多个问题。Therefore, it is necessary to study a method for optimizing the proportion of all-solid waste filling materials with water resistance and stability in Dashui mines to deal with the deficiencies of the prior art, so as to solve or alleviate one or more of the above problems.

发明内容SUMMARY OF THE INVENTION

有鉴于此,本发明提供了一种大水矿山抗水稳定性全固废充填材料配比优化方法,能够实现固废资源的优化组合与协同作用,制备满足抗水性要求的全固废充填材料,为低品质固废在大水充填矿山安全、可靠和大宗资源化利用提供支持。In view of this, the present invention provides a method for optimizing the proportion of all-solid waste filling materials with water resistance and stability in Dashui mines, which can realize the optimal combination and synergy of solid waste resources, and prepare all-solid waste filling materials that meet water resistance requirements. , to provide support for the safe, reliable and bulk resource utilization of low-quality solid waste in flooded mines.

本发明提供一种大水矿山抗水稳定性全固废充填材料配比优化方法,其特征在于,所述方法的步骤包括:The invention provides a method for optimizing the proportion of all-solid waste filling materials with water resistance and stability in Dashui mines, characterized in that the steps of the method include:

S1、对固废材料进行干燥和粉磨处理,得到若干不同配比的混合粉体;每种所述混合粉体均包括磷石膏和高炉矿渣;S1. Drying and grinding the solid waste material to obtain mixed powders with different ratios; each of the mixed powders includes phosphogypsum and blast furnace slag;

S2、对S1得到的所有混合粉体进行充填体强度试验和抗水性能试验,得到不同配比的混合粉体的充填体强度试验结果和抗水性能试验结果;S2. Carry out the strength test and water resistance test of the filling body for all the mixed powders obtained in S1, and obtain the results of the filling body strength test and the water resistance performance test results of the mixed powders with different ratios;

S3、根据S2得到的充填体强度试验结果和抗水性能试验结果建立充填体强度数学模型和抗水稳定性数学模型;S3. According to the backfill strength test results and water resistance test results obtained in S2, establish a backfill strength mathematical model and a water resistance stability mathematical model;

S4、以充填材料成本为优化目标,以S3得到的充填体强度数学模型和抗水稳定性数学模型为约束条件,建立全固废充填材料配比优化模型;S4. Taking the cost of the filling material as the optimization objective, and taking the mathematical model of the strength of the backing body and the mathematical model of the water resistance stability obtained in S3 as the constraints, an optimization model for the proportion of all-solid waste filling materials is established;

S5、求解S4得到的全固废充填材料配比优化模型,得到全固废充填材料的优化配比。S5. Solving the optimal proportioning model of the all-solid-waste filling material obtained in S4, and obtaining the optimal proportioning of the all-solid-waste filling material.

如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述磷石膏的参数要求包括:P2O5≤5%、含水率≤3%、MgO≤3%和比表面积≥200m2/kg。According to the above aspect and any possible implementation manner, an implementation manner is further provided, the parameter requirements of the phosphogypsum include: P 2 O 5 ≤5%, moisture content≤3%, MgO≤3% and specific surface area ≥200m 2 /kg.

如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述高炉矿渣的参数要求包括:高炉矿渣微粉细度≤5%或比表面积≥420m2/kg、质量系数≥1.6、活性指数≥0.3和含水率<3%。The above aspects and any possible implementation manners further provide an implementation manner, the parameter requirements of the blast furnace slag include: the fineness of the blast furnace slag fine powder≤5% or the specific surface area≥420m 2 /kg, the quality coefficient≥1.6 , activity index ≥ 0.3 and moisture content < 3%.

如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述混合粉体还包括电石渣、粉煤灰和铜选尾渣中的一种或多种。According to the above aspect and any possible implementation manner, an implementation manner is further provided, wherein the mixed powder further includes one or more of carbide slag, fly ash and copper slag.

如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述电石渣、所述粉煤灰和所述铜选尾渣的参数要求包括:含水率<3%和比表面积≥300m2/kg。According to the above aspect and any possible implementation manner, an implementation manner is further provided. The parameter requirements of the carbide slag, the fly ash and the copper separation tailings include: moisture content <3% and specific surface area ≥300m 2 /kg.

如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述混合粉体包括磷石膏、高炉矿渣和电石渣时各组分质量占比为:磷石膏40%-65%、高炉矿渣15%-40%、电石渣10%-20%;The above aspects and any possible implementations further provide an implementation, when the mixed powder includes phosphogypsum, blast furnace slag and carbide slag, the mass ratio of each component is: 40%-65% of phosphogypsum , blast furnace slag 15%-40%, calcium carbide slag 10%-20%;

所述混合粉体包括磷石膏、高炉矿渣、电石渣和铜选尾渣时各组分质量占比为:磷石膏40%-50%、高炉矿渣25%-35%、电石渣10%-15%、铜选尾渣5%-20%;When the mixed powder includes phosphogypsum, blast furnace slag, carbide slag and copper dressing tailings, the mass proportion of each component is: 40%-50% of phosphogypsum, 25%-35% of blast furnace slag, and 10%-15% of calcium carbide slag. %, copper tailings 5%-20%;

所述混合粉体包括磷石膏、高炉矿渣、电石渣和粉煤灰时各组分质量占比为:磷石膏40%-50%、高炉矿渣25%-35%、电石渣10%-15%、粉煤灰5%-20%。When the mixed powder includes phosphogypsum, blast furnace slag, carbide slag and fly ash, the mass proportion of each component is: 40%-50% of phosphogypsum, 25%-35% of blast furnace slag, and 10%-15% of calcium carbide slag , fly ash 5%-20%.

如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述抗水性能试验及抗水性能试验结果的获得方式包括:制备两组充填体试块,分别置于水中和养护箱中养护;测试两组充填体试块的单轴抗压强度,将两种养护条件下充填体试块的单轴抗压强度之比作为该混合粉体抗水性能试验结果。The above-mentioned aspects and any possible implementations further provide an implementation. The water-resistance test and the method for obtaining the results of the water-resistance test include: preparing two groups of filling body test blocks, placing them in water and Cured in a curing box; test the uniaxial compressive strength of the two groups of filling body test blocks, and use the ratio of the uniaxial compressive strength of the filling body test blocks under the two curing conditions as the water resistance performance test result of the mixed powder.

如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,步骤S3中:The above-mentioned aspect and any possible implementation manner further provide an implementation manner, in step S3:

采用二次多项式对充填体强度试验结果进行回归分析,建立胶结充填体7d和28d强度的数学模型;The second-order polynomial was used to perform regression analysis on the strength test results of the backfill, and the mathematical model of the 7d and 28d strength of the cemented backfill was established;

采用二次多项式对抗水性能试验结果进行回归分析,建立28d充填体的抗水稳定性数学模型。Regression analysis was carried out on the test results of water resistance performance by quadratic polynomial, and the mathematical model of water resistance stability of 28d backfill was established.

如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述胶结充填体7d和28d强度的数学模型为:According to the above aspect and any possible implementation, an implementation is further provided, wherein the mathematical model of the strength of the cemented filling bodies 7d and 28d is:

R7d=f1(x1,x2,…,xn)、R28d=f2(x1,x2,…,xn);R 7d = f 1 (x 1 , x 2 ,..., x n ), R 28d = f 2 (x 1 , x 2 ,..., x n );

其中,R7d、R28d代表充填体7d、28d强度;x1,x2,…,xn代表全固废充填材料配比;f1、f2代表充填体7d、28d强度与固废物掺加量的关系函数;Among them, R 7d and R 28d represent the strength of the filling body 7d and 28d; x 1 , x 2 ,..., x n represent the proportion of all solid waste filling materials; f 1 and f 2 represent the strength of the filling body 7d and 28d mixed with solid waste The relationship function of the addition;

所述抗水稳定性数学模型为:The mathematical model of water resistance stability is:

K28d=f3(x1,x2,…,xn);K 28d = f 3 (x 1 , x 2 , . . . , x n );

其中,K28d代表养护28d充填体抗水稳定性系数,x1,x2,…,xn代表全固废充填材料配比,f3代表28d充填体抗水稳定性系数与固废物掺加量的关系函数。Among them, K 28d represents the water resistance stability coefficient of the 28d filling body, x 1 , x 2 ,…, x n represents the proportion of all solid waste filling materials, f 3 represents the water resistance stability coefficient of the 28d filling body and the addition of solid waste Quantitative relationship function.

如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,步骤S4中所述全固废充填材料配比优化模型包括:The above aspects and any possible implementations further provide an implementation. The all-solid waste filling material ratio optimization model described in step S4 includes:

优化目标:MinCT=Minfc(x1,x2,…,xn);Optimization objective: MinCT = Minf c (x 1 , x 2 ,..., x n );

约束条件:R7d=f1(x1,x2,…,xn)≥[R7d]Constraints: R 7d = f 1 (x 1 , x 2 ,..., x n )≥[R 7d ]

R28d=f2(x1,x2,…,xn)≥[R28d]R 28d =f 2 (x 1 ,x 2 ,...,x n )≥[R 28d ]

K28d=f3(x1,x2,…,xn)≥[K28d];K 28d =f 3 (x 1 , x 2 ,..., x n )≥[K 28d ];

其中,CT代表全固废充填材料成本,fc(x1,x2,…,xn)为充填材料成本函数;Among them, C T represents the cost of all solid waste filling materials, and f c (x 1 , x 2 ,..., x n ) is the cost function of filling materials;

[R7d]、[R28d]代表充填体7d、28d强度的设计值,[K28d]代表28d充填体抗水稳定性系数的设计值。[R 7d ] and [R 28d ] represent the design values of the strength of the filling body 7d and 28d, and [K 28d ] represent the design value of the water resistance stability coefficient of the 28d filling body.

与现有技术相比,上述技术方案中的一个技术方案具有如下优点或有益效果:将低品质固废应用于大水矿山充填法采矿,可以避免大水矿山饱和水浸泡强度劣化潜在的灾变失稳风险,确保低品质固废在大水矿山安全利用,不仅能够提高充填采矿的经济效益和环保效益,促进充填采矿技术应用,而且还为低品质固废的减量化、无害化和资源化利用探索出一条途径。Compared with the prior art, one of the above technical solutions has the following advantages or beneficial effects: applying low-quality solid waste to backfill mining in large water mines can avoid potential catastrophic losses due to the deterioration of saturated water immersion strength in large water mines. Stabilizing risks and ensuring the safe use of low-quality solid waste in Dashui mines can not only improve the economic and environmental benefits of backfill mining, and promote the application of backfill mining technology, but also contribute to the reduction, harmlessness and resources of low-quality solid waste. Chemical utilization to find a way.

当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有技术效果。Of course, any product implementing the present invention does not necessarily need to achieve all the above-mentioned technical effects at the same time.

附图说明Description of drawings

为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the embodiments. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.

图1是本发明一个实施例提供的大水矿山抗水稳定性全固废充填材料配比优化方法的流程图;Fig. 1 is a flow chart of a method for optimizing the proportioning of water-resistant and stable all-solid waste filling materials in Dashui mines provided by an embodiment of the present invention;

图2是本发明一个实施例提供的甘肃瓮福公司磷石膏粒径级配分布曲线;Fig. 2 is the phosphogypsum particle size distribution curve of Gansu Wengfu Company provided by an embodiment of the present invention;

图3是本发明一个实施例提供的邯钢公司的矿渣微粉微粉粒径级配曲线;Fig. 3 is the slag micropowder micropowder particle size gradation curve of Handan Iron and Steel Company provided by an embodiment of the present invention;

图4是本发明一个实施例提供的磷石膏微观表面形貌结构图;4 is a microscopic surface topography structure diagram of phosphogypsum provided by an embodiment of the present invention;

图5是本发明一个实施例提供的磷石膏XRD图谱;Fig. 5 is the phosphogypsum XRD pattern provided by an embodiment of the present invention;

图6是本发明一个实施例提供的铜选尾渣样本;Fig. 6 is a copper selection tailings sample provided by an embodiment of the present invention;

图7是本发明一个实施例提供的铜选尾渣粒径分布曲线;7 is a particle size distribution curve of copper separation tailings provided by an embodiment of the present invention;

图8是本发明一个实施例提供的热电厂粉煤灰XRD衍射图;Fig. 8 is a thermal power plant fly ash XRD diffractogram provided by an embodiment of the present invention;

图9是本发明一个实施例提供的热电厂粉煤灰粒度分布曲线。FIG. 9 is a particle size distribution curve of fly ash in a thermal power plant provided by an embodiment of the present invention.

具体实施方式Detailed ways

为了更好的理解本发明的技术方案,下面结合附图对本发明实施例进行详细描述。In order to better understand the technical solutions of the present invention, the embodiments of the present invention are described in detail below with reference to the accompanying drawings.

应当明确,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。It should be understood that the described embodiments are only some, but not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。The terms used in the embodiments of the present invention are only for the purpose of describing specific embodiments, and are not intended to limit the present invention. As used in the embodiments of the present invention and the appended claims, the singular forms "a," "the," and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise.

针对现有技术的不足,充分利用多种性能和不同特性的低品质固废,协同高活性的高炉矿渣,开发抗水性的全固废充填材料,是提高固废资源利用以及降低充填采矿成本的重要途径。本发明为大水充填矿山提供一种抗水稳定的低品质全固废充填材料配比优化方法。该方法是以磷石膏作为主要的固废物,利用高炉矿渣微粉、电石渣、粉煤灰、铜选尾渣等不同特性进行复合激发与协同作用机理,建立全固废充填材料的配比优化模型,实现固废资源的优化组合与协同作用,由此制备满足抗水性要求的全固废充填材料,为低品质固废在大水充填矿山安全、可靠和大宗资源化利用提供了一种优化设计方法。如图1所示,该方法步骤包括:Aiming at the deficiencies of the existing technology, making full use of low-quality solid waste with various properties and different characteristics, cooperating with high-activity blast furnace slag, and developing water-resistant all-solid waste filling materials are the best way to improve the utilization of solid waste resources and reduce the cost of filling and mining. important way. The invention provides a water-resistant and stable low-quality all-solid waste filling material ratio optimization method for flood-filled mines. This method uses phosphogypsum as the main solid waste, and uses different characteristics of blast furnace slag micropowder, calcium carbide slag, fly ash, copper beneficiation tailings, etc. to conduct composite excitation and synergy mechanism, and establish an optimal model for the proportion of all solid waste filling materials. , to achieve the optimal combination and synergy of solid waste resources, thereby preparing all solid waste filling materials that meet the water resistance requirements, providing an optimal design for the safe, reliable and bulk resource utilization of low-quality solid waste in large water-filled mines method. As shown in Figure 1, the method steps include:

(1)对低品质固废和矿渣微粉进行化学分析和比表测试。首先对利用的固废物进行干燥和破碎成比表面积≥200m2/kg的粉体(该处主要是指磷石膏),高炉矿渣微的比表面积≥420m2/kg或者细度≤5%;根据需要选择电石渣、粉煤灰、铜选尾渣等一种或多种低品质固废,为与高炉矿渣微粉制备充填材料做准备。固废物干燥和粉磨的比表面积大于400m2/kg。(1) Chemical analysis and table comparison test of low-quality solid waste and slag powder. Firstly, the solid waste used is dried and crushed into powder with a specific surface area ≥ 200m 2 /kg (mainly refers to phosphogypsum), and the specific surface area of the blast furnace slag is ≥ 420m 2 /kg or fineness ≤ 5%; according to It is necessary to select one or more low-quality solid wastes such as carbide slag, fly ash, copper tailings, etc., to prepare for the preparation of filling materials with blast furnace slag fine powder. The specific surface area of solid waste drying and grinding is greater than 400m 2 /kg.

磷石膏化学成分中的P2O5≤5%、含水率≤3%、MgO≤3%、比表面积≥200m2/kg;高炉矿渣的质量系数为

Figure BDA0003139485580000071
活性指数
Figure BDA0003139485580000072
Figure BDA0003139485580000073
高炉矿渣微粉细度≤5%或比表面积≥420m2/kg、含水率<3%;In the chemical composition of phosphogypsum, P 2 O 5 ≤ 5%, moisture content ≤ 3%, MgO ≤ 3%, specific surface area ≥ 200m 2 /kg; the quality coefficient of blast furnace slag is
Figure BDA0003139485580000071
activity index
Figure BDA0003139485580000072
Figure BDA0003139485580000073
The fineness of blast furnace slag powder is less than or equal to 5% or the specific surface area is more than or equal to 420m 2 /kg, and the moisture content is less than 3%;

电石渣、粉煤灰、铜选尾砂含水率<3%、比表面积≥300m2/kg。Carbide slag, fly ash and copper tailings have a moisture content of <3% and a specific surface area of ≥300m 2 /kg.

(2)开展不同配比全固废充填材料充填体强度和抗水性能试验。根据步骤(1)所述的不同固废资源,选择全固废充填材料体系和掺量范围。在此基础上,针对选择体系进行全固废充填材料正交试验设计,并按照水泥胶砂强度检验方法B/T17671-1999,开展胶结充填体强度试验和抗水稳定性试验,获得全固废充填材料不同配比的胶结充填体强度和抗水稳定性试验结果;(2) Carry out tests on the strength and water resistance of the backfill with different proportions of solid waste filling materials. According to the different solid waste resources described in step (1), select the whole solid waste filling material system and dosage range. On this basis, the orthogonal test design of all-solid waste filling materials was carried out for the selected system, and the strength test and water resistance stability test of cemented backfill were carried out according to the strength test method of cement mortar B/T17671-1999, and the total solid waste was obtained. The test results of strength and water resistance stability of cemented backfill with different proportions of filling materials;

抗水稳定性试验内容可以包括:不同配比全固废充填材料充填体强度试验设计,制备两组充填体试块,脱模后分别置于水中和养护箱中养护28d,然后测试两组试块的单轴抗压强度;将两种养护条件下试块强度之比,定义为充填体抗水性能指标。根据试验获得全固废充填材料充填体抗水稳定性系数的试验结果。The content of the water resistance stability test can include: the design of the strength test of the filling body with different proportions of solid waste filling materials, preparing two groups of filling body test blocks, and placing them in water and a curing box for 28 days after demoulding, and then testing the two groups of test blocks. The uniaxial compressive strength of the block; the ratio of the strength of the test block under the two curing conditions is defined as the water resistance performance index of the filling. According to the test, the test results of the water resistance stability coefficient of the all-solid waste filling material filling body are obtained.

全固废充填材料体系包括:磷石膏-矿渣微粉-电石渣体系、磷石膏-矿渣微粉-电石渣-铜选尾渣体系以及磷石膏-矿渣微粉-电石渣-粉煤灰体系。All-solid waste filling material systems include: phosphogypsum-slag fine powder-carbide carbide slag system, phosphogypsum-slag fine powder-carbide slag-copper tailings system, and phosphogypsum-slag fine powder-carbide carbide slag-fly ash system.

磷石膏-矿渣微粉-电石渣体系的配比范围为:磷石膏40%-65%、矿渣微粉15%-40%、电石渣10%-20%。磷石膏-矿渣微粉-电石渣-铜选尾渣体系的配比范围为:磷石膏40%-50%、矿渣微粉25%-35%、电石渣10%-15%、铜选尾渣5%-20%。磷石膏-矿渣微粉-电石渣-粉煤灰体系的配比范围为:磷石膏40%-50%、矿渣微粉25%-35%、电石渣10%-15%、粉煤灰5%-20%。The ratio range of the phosphogypsum-slag micropowder-carbide slag system is: 40%-65% of phosphogypsum, 15%-40% of slag micropowder, and 10%-20% of calcium carbide slag. The ratio range of phosphogypsum-slag powder-carbide slag-copper tailings system is: phosphogypsum 40%-50%, slag powder 25%-35%, calcium carbide slag 10%-15%, copper tailings 5% -20%. The ratio range of phosphogypsum-slag powder-carbide slag-fly ash system is: phosphogypsum 40%-50%, slag powder 25%-35%, carbide slag 10%-15%, fly ash 5%-20% %.

(3)建立充填体强度和抗水稳定性数学模型。根据步骤(2)全固废充填材料充填体强度和抗水稳定性试验结果,采用二次多项式对试验数据进行回归分析,建立不同养护龄期条件下(比如7d和28d)充填体强度和抗水稳定性数学模型为:(3) Establish a mathematical model for the strength and water resistance stability of the backfill. According to the test results of the backfill strength and water resistance stability of the all-solid waste filling material in step (2), the test data were regressed by using quadratic polynomial, and the backfill strength and water resistance under different curing age conditions (such as 7d and 28d) were established. The mathematical model of water stability is:

R7d=f1(x1,x2,…,xn)、R28d=f2(x1,x2,…,xn)、K28d=f3(x1,x2,…,xn);R 7d = f 1 (x 1 , x 2 ,..., x n ), R 28d = f 2 (x 1 , x 2 ,..., x n ), K 28d = f 3 (x 1 , x 2 ,..., x n );

其中,R7d、R28d代表充填体7d、28d强度;x1,x2,…,xn代表全固废充填材料配比;K28d代表养护28d充填体抗水稳定性系数;f1、f2代表充填体7d、28d强度与固废物掺加量的关系函数;f3代表养护28d充填体与固废物掺加量的抗水稳定性的关系函数。Among them, R 7d and R 28d represent the strength of the filling body 7d and 28d; x 1 , x 2 ,..., x n represent the proportion of all solid waste filling materials; K 28d represents the water resistance stability coefficient of the curing 28d filling body; f 1 , f 2 represents the relationship function between the strength of the filling body 7d and 28d and the amount of solid waste added; f 3 represents the relationship function of the water resistance stability of the curing 28d filling body and the amount of solid waste added.

(4)建立全固废充填材料配比优化模型。以充填材料成本为优化目标,以胶结充填体强度和抗水稳定性为约束条件,建立全固废充填材料配比优化模型:(4) Establish an optimization model for the proportion of all solid waste filling materials. Taking the cost of the filling material as the optimization goal, and taking the strength and water resistance stability of the cemented filling body as the constraints, an optimization model for the proportion of all-solid waste filling materials is established:

优化目标:MinCT=Minfc(x1,x2,…,xn) (1)Optimization objective: MinC T = Minf c (x 1 , x 2 ,..., x n ) (1)

约束条件:R7d=f1(x1,x2,…,xn)≥[R7d]Constraints: R 7d = f 1 (x 1 , x 2 ,..., x n )≥[R 7d ]

R28d=f2(x1,x2,…,xn)≥[R28d] (2)R 28d =f 2 (x 1 ,x 2 ,...,x n )≥[R 28d ] (2)

K28d=f3(x1,x2,…,xn)≥[K28d]K 28d =f 3 (x 1 ,x 2 ,...,x n )≥[K 28d ]

其中,CT代表全固废充填材料总成本,fc(x1,x2,…,xn)为全固废充填材料成本函数;[R7d]、[R28d]代表胶结充填体7d、28d强度的设计值;f1、f2代表充填体7d、28d强度函数;f3代表养护28d充填体抗水稳定性函数;[K28d]代表28d充填体抗水稳定性系数的设计值。Among them, C T represents the total cost of the solid waste filling material, f c (x 1 , x 2 ,..., x n ) is the cost function of the solid waste filling material; [R 7d ], [R 28d ] represent the cemented filling body 7d , the design value of 28d strength; f 1 , f 2 represent the strength function of the 7d, 28d filling body; f 3 represents the water resistance stability function of the curing 28d filling body; [K 28d ] represents the design value of the water resistance stability coefficient of the 28d filling body .

(5)求解全固废充填材料优化模型。求解步骤(4)全固废充填材料配比优化模型,由此获得充填材料的优化配比。(5) Solve the optimization model of all solid waste filling material. Solve the optimization model for the proportion of the full solid waste filling material in step (4), thereby obtaining the optimal proportion of the filling material.

本发明为低品质固废在大水矿山中的应用,提出了一种抗水稳定性全固废充填材料配比优化方法。通过建立全固废充填材料配比优化模型,进行充填材料配比优化。低品质固废包括磷石膏、电石渣、粉煤灰、铜选尾砂以及高活性高炉矿渣微粉。下面结合三个体系的全固废充填材料予以说明。The invention proposes a method for optimizing the proportion of filling materials for all solid wastes with water resistance and stability for the application of low-quality solid wastes in large water mines. By establishing an optimization model for the proportion of all solid waste filling materials, the proportion of filling materials is optimized. Low-quality solid wastes include phosphogypsum, carbide slag, fly ash, copper tailings, and high-activity blast furnace slag micropowder. The three systems of total solid waste filling materials will be described below.

实施例1:磷石膏-矿渣微粉-电石渣体系Example 1: Phosphogypsum-Slag Micropowder-Carbide Slag System

磷石膏-矿渣微粉-电石渣体系的全固废充填材料配比优化,首先对体系的固废进行干燥和粉磨处理,然后进行化学成分分析与粒径测试。该体系充填材料中的磷石膏化学成分分析结果见表1。粒径级配分布曲线见图2。To optimize the ratio of all solid waste filling materials for the phosphogypsum-slag powder-carbide carbide slag system, the solid waste of the system is first dried and ground, and then the chemical composition analysis and particle size test are carried out. The chemical composition analysis results of phosphogypsum in the filling material of this system are shown in Table 1. The particle size distribution curve is shown in Figure 2.

表1:磷石膏化学成分分析结果Table 1: Analysis results of chemical composition of phosphogypsum

化学成分chemical composition P<sub>2</sub>O<sub>5</sub>P<sub>2</sub>O<sub>5</sub> Fe<sub>2</sub>O<sub>3</sub>Fe<sub>2</sub>O<sub>3</sub> Al<sub>2</sub>O<sub>3</sub>Al<sub>2</sub>O<sub>3</sub> MgOMgO CaOCaO SO<sub>4</sub><sup>2-</sup>SO<sub>4</sub><sup>2-</sup> FF 酸不溶物acid insoluble 含量/%content/% 1.471.47 0.480.48 0.360.36 2.442.44 28.628.6 49.0749.07 0.870.87 10.1710.17

磷石膏-矿渣微粉-电石渣体系中矿渣微粉粉的粒径分布曲线见图3,可见矿渣微粉粉中-45μm的细颗粒含量占81.9%;The particle size distribution curve of the slag micropowder in the phosphogypsum-slag micropowder-carbide carbide slag system is shown in Figure 3. It can be seen that the content of -45μm fine particles in the slag micropowder accounts for 81.9%;

矿渣微粉化学成分见表2,矿渣微粉质量系数

Figure BDA0003139485580000091
活性系数
Figure BDA0003139485580000092
The chemical composition of the slag powder is shown in Table 2, and the quality coefficient of the slag powder is shown in Table 2.
Figure BDA0003139485580000091
activity coefficient
Figure BDA0003139485580000092

表2:高炉矿渣微粉化学成分分析结果Table 2: Analysis results of chemical composition of blast furnace slag micropowder

化学成分chemical composition CaOCaO SiO<sub>2</sub>SiO<sub>2</sub> Al<sub>2</sub>O<sub>3</sub>Al<sub>2</sub>O<sub>3</sub> MgOMgO SO<sub>3</sub>SO<sub>3</sub> Fe<sub>2</sub>O<sub>3</sub>Fe<sub>2</sub>O<sub>3</sub> 含量/%content/% 43.5143.51 30.6830.68 14.0314.03 7.357.35 1.321.32 0.720.72 化学成分chemical composition TiO<sub>2</sub>TiO<sub>2</sub> MnOMnO K<sub>2</sub>OK<sub>2</sub>O Na<sub>2</sub>ONa<sub>2</sub>O P<sub>2</sub>O<sub>5</sub>P<sub>2</sub>O<sub>5</sub> 其他other 含量/%content/% 0.680.68 0.570.57 0.540.54 0.330.33 0.060.06 0.210.21

磷石膏的微观表面形貌结构见图4,XRD图谱见图5。The microscopic surface morphology structure of phosphogypsum is shown in Figure 4, and the XRD pattern is shown in Figure 5.

磷石膏-矿渣微粉-电石渣体系中电石渣是电石水解获取乙炔气后,以氢氧化钙为主要成分的低品质废渣,主要成分CaO、CaS、Ca3N2、Ca3P2、Ca2Si、Ca3As2、Ca(OH)2。CaO的含量达到87%。还含有硫化物、磷化物等有毒有害物质。利用电石渣作为碱激发剂与磷石膏硫酸盐复合激发产生水硬化反应。In the phosphogypsum-slag powder-carbide slag system, calcium carbide slag is a low-quality waste residue with calcium hydroxide as the main component after the hydrolysis of calcium carbide to obtain acetylene gas. The main components are CaO, CaS, Ca 3 N 2 , Ca 3 P 2 , Ca 2 Si, Ca 3 As 2 , Ca(OH) 2 . The content of CaO reaches 87%. Also contains sulfide, phosphide and other toxic and harmful substances. Using calcium carbide slag as an alkali activator and phosphogypsum sulfate compound excitation to produce a water hardening reaction.

磷石膏-矿渣微粉-电石渣体系充填材料配比范围为:磷石膏40%-65%、矿渣微粉15%-40%、电石渣10%-20%;根据充填材料配比范围,开展磷石膏-矿渣微粉-电石渣体系的充填材料胶结充填体强度和抗水稳定性试验,试验结果见表3。The proportions of phosphogypsum-slag powder-carbide carbide slag system filling materials are as follows: phosphogypsum 40%-65%, slag powder 15%-40%, carbide slag 10%-20%; - Test on the strength and water resistance stability of the backfill material of the slag micropowder-carbide carbide slag system. The test results are shown in Table 3.

表3:磷石膏-电石渣-矿渣微粉体系充填体强度和抗水性试验结果Table 3: Test results of strength and water resistance of phosphogypsum-carbide slag-slag micropowder system backfill

Figure BDA0003139485580000093
Figure BDA0003139485580000093

Figure BDA0003139485580000101
Figure BDA0003139485580000101

采用二次多项式回归方法,对磷石膏-电石渣-矿渣微粉体系的胶结充填体强度和抗水稳定性试验数据回归分析,建立充填体7d、28d强度和28d充填体抗水稳定性K28d的数学模型如下:Using the quadratic polynomial regression method, the test data of the cemented backfill strength and water resistance stability of the phosphogypsum-carbide slag-slag micropowder system were regressed, and the 7d and 28d strength of the backfill and the water resistance stability of the 28d backfill K 28d were established. The mathematical model is as follows:

R7d=5.93-0.104x1-0.111x2+0.000517x1x1+0.00110x1x2 (1)R 7d = 5.93-0.104x 1 -0.111x 2 +0.000517x 1 x 1 +0.00110x 1 x 2 (1)

R28d=13.02-0.00175x1x1-0.00907x2x2 (2)R 28d = 13.02-0.00175x 1 x 1 -0.00907x 2 x 2 (2)

K28d=1.08-8.39x1+8.28x2+0.084x1x1-0.081x2x2+0.084x1x3-0.083x2x3 (3)K 28d = 1.08-8.39x 1 +8.28x 2 +0.084x 1 x 1 -0.081x 2 x 2 +0.084x 1 x 3 -0.083x 2 x 3 (3)

fc=43.87+2.39x3-0.0037x2x3 f c = 43.87+2.39x 3 -0.0037x 2 x 3

式中:x1代表磷石膏掺量,%;x2代表电石渣掺量,%;x3代表矿渣微粉掺量,%。建立磷石膏-电石渣-矿渣微粉体系的配比优化模型:In the formula: x 1 represents the content of phosphogypsum, %; x 2 represents the content of carbide slag, %; x 3 represents the content of slag fine powder, %. Establish a ratio optimization model of phosphogypsum-carbide slag-slag micropowder system:

Min fc=Min(43.87+2.39x3-0.0037x2x3) (4)Min f c = Min(43.87+2.39x 3 -0.0037x 2 x 3 ) (4)

Figure BDA0003139485580000113
Figure BDA0003139485580000113

Figure BDA0003139485580000114
Figure BDA0003139485580000114

1.08-8.39x1+8.28x2+0.084x1x1-0.081x2x2+0.084x1x3-0.083x2x3≥0.85 (7)1.08-8.39x 1 +8.28x 2 +0.084x 1 x 1 -0.081x 2 x 2 +0.084x 1 x 3 -0.083x 2 x 3 ≥0.85 (7)

求解由式(4)-(7)磷石膏-电石渣-矿渣微粉体系全固废充填材料配比优化模型,获得全固废充填材料优化配比为:磷石膏掺量48%、电石渣掺量20%、矿渣微粉掺量32%。胶结充填体7d和28d强度分别为0.93MPa和5.25MPa。养护28d的充填体抗水稳定性系数为0.86。Solving the optimization model of the total solid waste filling material ratio of the phosphogypsum-carbide slag-slag micropowder system by formulas (4)-(7), the optimal ratio of the total solid waste filling material is obtained: the content of phosphogypsum is 48%, the content of calcium carbide slag is 48% The amount of slag powder is 20%, and the amount of slag powder is 32%. The strengths of cemented filling bodies 7d and 28d are 0.93 MPa and 5.25 MPa, respectively. The water resistance stability coefficient of the filling body after curing for 28d is 0.86.

实施例2:磷石膏-矿渣微粉-电石渣-铜选尾渣体系Example 2: Phosphogypsum-Slag Micropowder-Carbide Slag-Copper Separation Tailing System

磷石膏-矿渣微粉-电石渣-铜选尾渣体系全固废充填材料的配比优化,首先对体系的固废物进行干燥、粉磨处理以及化学成分分析与粒径测试。该体系充填材料的磷石膏化学成分见表4。To optimize the ratio of all solid waste filling materials in the phosphogypsum-slag micropowder-carbide slag-copper tailings system, the solid waste in the system is firstly dried and ground, as well as chemical composition analysis and particle size testing. The chemical composition of the phosphogypsum filling material of this system is shown in Table 4.

表4:磷石膏-矿渣微粉-电石渣-铜选尾渣体系中磷石膏化学成分结果Table 4: Results of chemical composition of phosphogypsum in phosphogypsum-slag powder-carbide slag-copper tailings system

化学成分chemical composition P<sub>2</sub>O<sub>5</sub>P<sub>2</sub>O<sub>5</sub> Fe<sub>2</sub>O<sub>3</sub>Fe<sub>2</sub>O<sub>3</sub> Al<sub>2</sub>O<sub>3</sub>Al<sub>2</sub>O<sub>3</sub> MgOMgO CaOCaO SO<sub>4</sub><sup>2-</sup>SO<sub>4</sub><sup>2-</sup> FF 酸不溶物acid insoluble 含量/%content/% 1.761.76 0.480.48 0.280.28 2.442.44 30.6430.64 53.5253.52 0.450.45 6.676.67

磷石膏-矿渣微粉-电石渣-铜选尾渣体系的矿渣微粉粒径分布曲线见图3,矿渣微粉粉-45μm细颗粒含量占81.9%;矿渣化学成分见表5,质量系数

Figure BDA0003139485580000111
活性系数
Figure BDA0003139485580000112
The particle size distribution curve of the slag micropowder of the phosphogypsum-slag micropowder-carbide slag-copper tailings system is shown in Figure 3. The slag micropowder-45μm fine particle content accounts for 81.9%; the chemical composition of the slag is shown in Table 5, and the quality coefficient
Figure BDA0003139485580000111
activity coefficient
Figure BDA0003139485580000112

表5:磷石膏-矿渣微粉-电石渣-铜选尾渣体系中矿渣化学成分Table 5: Chemical composition of slag in phosphogypsum-slag powder-carbide slag-copper tailings system

化学成分chemical composition CaOCaO SiO<sub>2</sub>SiO<sub>2</sub> Al<sub>2</sub>O<sub>3</sub>Al<sub>2</sub>O<sub>3</sub> MgOMgO SO<sub>3</sub>SO<sub>3</sub> Fe<sub>2</sub>O<sub>3</sub>Fe<sub>2</sub>O<sub>3</sub> 含量/%content/% 43.5143.51 30.6830.68 14.0314.03 7.357.35 1.321.32 0.720.72 化学成分chemical composition TiO<sub>2</sub>TiO<sub>2</sub> MnOMnO K<sub>2</sub>OK<sub>2</sub>O Na<sub>2</sub>ONa<sub>2</sub>O P<sub>2</sub>O<sub>5</sub>P<sub>2</sub>O<sub>5</sub> 其他other 含量/%content/% 0.680.68 0.570.57 0.540.54 0.330.33 0.060.06 0.210.21

磷石膏微观表面形貌结构图见图4,磷石膏的XRD图谱见图5。The microscopic surface morphology and structure of the phosphogypsum are shown in Figure 4, and the XRD pattern of the phosphogypsum is shown in Figure 5.

磷石膏-矿渣微粉-电石渣-铜选尾渣体系的电石渣主要成分为CaO、CaS、Ca3N2、Ca3P2、Ca2Si、Ca3As2、Ca(OH)2。CaO含量占87%。The main components of the calcium carbide slag in the phosphogypsum-slag powder-carbide slag-copper tailings system are CaO, CaS, Ca 3 N 2 , Ca 3 P 2 , Ca 2 Si, Ca 3 As 2 , and Ca(OH) 2 . The CaO content accounts for 87%.

磷石膏-矿渣微粉-电石渣-铜选尾渣体系中的铜选尾渣,是铜镍渣选铜后再选铁后排放出的低品质固废(见图6),铜选尾渣的粒径分布见图7。The copper tailings in the phosphogypsum-slag powder-carbide slag-copper tailings system are low-quality solid wastes discharged after the copper-nickel slag is selected for copper and then iron (see Figure 6). The particle size distribution is shown in Figure 7.

磷石膏-矿渣微粉-电石渣-铜选尾渣体系全固废充填材料的配比范围:磷石膏40%-50%、矿渣微粉25%-35%、电石渣10%-20%、铜选尾渣5%-20%.根据体系配比范围,开展胶结充填体强度和抗水稳定性试验,试验结果见表6。Proportion range of phosphogypsum-slag powder-carbide carbide slag-copper tailings system full solid waste filling material: phosphogypsum 40%-50%, slag powder 25%-35%, carbide slag 10%-20%, copper dressing The tailings are 5%-20%. According to the ratio range of the system, the strength and water resistance stability tests of the cemented backfill are carried out. The test results are shown in Table 6.

表6:磷石膏-电石渣-矿渣粉-铜选尾渣体系充填体强度和抗水性试验结果Table 6: Test results of strength and water resistance of phosphogypsum-carbide slag-slag powder-copper tailings system backfill

Figure BDA0003139485580000121
Figure BDA0003139485580000121

Figure BDA0003139485580000131
Figure BDA0003139485580000131

采用二次多项式对试验数据回归分析,建立胶结充填体7d、28d强度和28d充填体抗水稳定性K28d数学模型如下:Using quadratic polynomial regression analysis of test data, the mathematical model of cemented backfill 7d, 28d strength and 28d water resistance stability K 28d is established as follows:

R7d=1.76+0.35x1-0.55x2-0.4x3-0.0034x1x1+0.014x2x2-0.004x3x3-0.05x1x2+0.01x1x3 (8)R 7d = 1.76+0.35x 1 -0.55x 2 -0.4x 3 -0.0034x 1 x 1 +0.014x 2 x 2 -0.004x 3 x 3 -0.05x 1 x 2 +0.01x 1 x 3 (8)

R28d=1.86-0.00184x2x2 (9)R 28d = 1.86-0.00184 x 2 x 2 (9)

K28d=-30.5+2.19x1-0.69x2-0.021x1x1+0.019x2x2-0.0097x3x3+0.0025x4x4-0.013x1x2-0.0059x1x4 (10)K 28d = -30.5+2.19x 1 -0.69x 2 -0.021x 1 x 1 +0.019x 2 x 2 -0.0097x 3 x 3 +0.0025x 4 x 4 -0.013x 1 x 2 -0.0059x 1 x 4 ( 10)

采用二次多项式对充填成本数据回归分析,由此获得材料成本函数fcA quadratic polynomial is used to regress the filling cost data to obtain the material cost function f c :

fc=29.74+2.025x2+0.014x1 x2+0.021x3 x4 (11)f c = 29.74+2.025x 2 +0.014x 1 x 2 +0.021x 3 x 4 (11)

式中:x1代表磷石膏掺量,%;x2代表矿渣微粉掺量,%,x3代表电石渣掺量,%,x3代表铜选尾渣掺量,%。In the formula: x 1 represents the content of phosphogypsum, %; x 2 represents the content of slag micropowder, %, x 3 represents the content of carbide slag, %, and x 3 represents the content of copper tailings, %.

建立磷石膏-矿渣微粉-电石渣-铜选尾渣体系材料配比优化模型:The material ratio optimization model of phosphogypsum-slag powder-carbide slag-copper tailings system was established:

MinCT=Min(29.74+2.025x2+0.014x1x2+0.021x3x4 (12) MinCT = Min(29.74+2.025x 2 +0.014x 1 x 2 +0.021x 3 x 4 (12)

1.76+0.35x1-0.55x2-0.40x3-0.0034x1x1+0.014x2x2-0.004x3x3-0.05x1x2+0.01x1x3≥0.5 (13)1.76+0.35x 1 -0.55x 2 -0.40x 3 -0.0034x 1 x 1 +0.014x 2 x 2 -0.004x 3 x 3 -0.05x 1 x 2 +0.01x 1 x 3 ≥0.5 (13)

1.86-0.00184x2x2≥2.5 (14)1.86-0.00184x 2 x 2 ≥2.5 (14)

-30.5+2.19x1-0.69x2-0.021x1x1+0.019x2x2-0.0097x3x3+0.0025x4x4-0.013x1x2-0.0059x1x4≥0.85 (15)-30.5+2.19x 1 -0.69x 2 -0.021x 1 x 1 +0.019x 2 x 2 -0.0097x 3 x 3 +0.0025x 4 x 4 -0.013x 1 x 2 -0.0059x 1 x 4 ≥0.85 (15 )

求解式(12)-(15)磷石膏-矿渣微粉-电石渣-铜选尾渣体系全固废充填材料配比优化模型,获得充填材料配比为:磷石膏掺量46%、电石渣掺量10%、矿渣微粉掺量32%、铜选尾渣掺量12%。胶结充填体7d和28d强度分别达到0.67MPa和3.80MPa。28d充填体抗水稳定性系数达到0.92。Solving formulas (12)-(15), the optimal model for the proportion of phosphogypsum-slag micropowder-carbide slag-copper tailings system for all-solid waste filling materials, the proportion of filling materials obtained is: the content of phosphogypsum is 46%, the content of calcium carbide slag is 46% 10% of slag powder, 32% of slag powder, and 12% of copper tailings. The strengths of cemented filling bodies 7d and 28d reached 0.67MPa and 3.80MPa, respectively. The water resistance stability coefficient of the 28d filling body reaches 0.92.

实施例3:磷石膏-矿渣微粉-电石渣-粉煤灰体系Example 3: Phosphogypsum-Slag Micropowder-Carbide Slag-Fly Ash System

磷石膏-矿渣微粉-电石渣-粉煤灰体系的材料配比优化方法,对体系中的固废物进行干燥、粉磨处理以及化学成分分析与粒径测试。The material ratio optimization method of phosphogypsum-slag micropowder-carbide slag-fly ash system, the solid waste in the system is dried, ground, chemical composition analysis and particle size test.

磷石膏-矿渣微粉-电石渣-粉煤灰系的充填材料中磷石膏化学成分见表7。The chemical composition of phosphogypsum in the filling material of phosphogypsum-slag powder-carbide slag-fly ash system is shown in Table 7.

表7:磷石膏-矿渣微粉-电石渣-粉煤灰体系中的磷石膏化学成分Table 7: Chemical Composition of Phosphogypsum in Phosphogypsum-Slag Micropowder-Carbide Slag-Fly Ash System

Figure BDA0003139485580000141
Figure BDA0003139485580000141

磷石膏-矿渣微粉-电石渣-粉煤灰体系的矿渣微粉粒径分布曲线见图3,矿渣微粉粉-45μm细颗粒含量为81.9%;The particle size distribution curve of the slag micropowder of the phosphogypsum-slag micropowder-carbide slag-fly ash system is shown in Figure 3, and the slag micropowder-45μm fine particle content is 81.9%;

矿渣化学成分见表8,质量系数

Figure BDA0003139485580000142
活性系数
Figure BDA0003139485580000143
The chemical composition of the slag is shown in Table 8, the quality coefficient
Figure BDA0003139485580000142
activity coefficient
Figure BDA0003139485580000143

表8:磷石膏-矿渣微粉-电石渣-粉煤灰体系中矿渣化学成分Table 8: Chemical composition of slag in phosphogypsum-slag micropowder-carbide slag-fly ash system

化学成分chemical composition CaOCaO SiO<sub>2</sub>SiO<sub>2</sub> Al<sub>2</sub>O<sub>3</sub>Al<sub>2</sub>O<sub>3</sub> MgOMgO SO<sub>3</sub>SO<sub>3</sub> Fe<sub>2</sub>O<sub>3</sub>Fe<sub>2</sub>O<sub>3</sub> 含量/%content/% 43.5143.51 30.6830.68 14.0314.03 7.357.35 1.321.32 0.720.72 成分Element TiO<sub>2</sub>TiO<sub>2</sub> MnOMnO K<sub>2</sub>OK<sub>2</sub>O Na<sub>2</sub>ONa<sub>2</sub>O P<sub>2</sub>O<sub>5</sub>P<sub>2</sub>O<sub>5</sub> 其他other 含量/%content/% 0.680.68 0.570.57 0.540.54 0.330.33 0.060.06 0.210.21

磷石膏的微观表面形貌结构图见图4,磷石膏的XRD图谱见图5。The microscopic surface morphology structure of the phosphogypsum is shown in Figure 4, and the XRD pattern of the phosphogypsum is shown in Figure 5.

磷石膏-矿渣微粉-电石渣-粉煤灰体系中电石渣主要成分有CaO、CaS、Ca3N2、Ca3P2、Ca2Si、Ca3As2、Ca(OH)2。CaO含量占87%。The main components of calcium carbide slag in the phosphogypsum-slag micropowder-carbide slag-fly ash system are CaO, CaS, Ca 3 N 2 , Ca 3 P 2 , Ca 2 Si, Ca 3 As 2 , and Ca(OH) 2 . The CaO content accounts for 87%.

磷石膏-矿渣微粉-电石渣-粉煤灰体系中粉煤灰化学成分见表9,XRD衍射图见图8,粒径分布图见图9。The chemical composition of fly ash in the phosphogypsum-slag micropowder-carbide slag-fly ash system is shown in Table 9, the XRD diffraction pattern is shown in Fig. 8, and the particle size distribution diagram is shown in Fig. 9.

表9:热电厂粉煤灰的化学成分分析结果Table 9: Chemical composition analysis results of fly ash from thermal power plants

化学成分chemical composition SiO<sub>2</sub>SiO<sub>2</sub> Al<sub>2</sub>O<sub>3</sub>Al<sub>2</sub>O<sub>3</sub> Fe<sub>2</sub>O<sub>3</sub>Fe<sub>2</sub>O<sub>3</sub> CaOCaO MgOMgO SO<sub>3</sub>SO<sub>3</sub> K<sub>2</sub>O+Na<sub>2</sub>OK<sub>2</sub>O+Na<sub>2</sub>O 含量/%content/% 48.7648.76 16.2216.22 23.9123.91 2.052.05 1.441.44 0.890.89 1.591.59

磷石膏-矿渣微粉-电石渣-粉煤灰体系全固废充填材料的配比范围为:磷石膏40%-50%、矿渣微粉25%-35%、电石渣10%-15%、粉煤灰5%-20%。根据磷石膏-矿渣微粉-电石渣-粉煤灰体系的配比范围,进行充填体强度和抗水稳定性试验,试验结果见表10。The ratio of phosphogypsum-slag powder-carbide slag-fly ash system full solid waste filling material range is: phosphogypsum 40%-50%, slag powder 25%-35%, carbide slag 10%-15%, pulverized coal Ash 5%-20%. According to the ratio range of the phosphogypsum-slag powder-carbide slag-fly ash system, the strength and water resistance stability tests of the backfill were carried out. The test results are shown in Table 10.

表10:磷石膏-电石渣-矿渣微粉-粉煤灰体系充填体强度和抗水性试验结果Table 10: Test results of strength and water resistance of phosphogypsum-carbide slag-slag powder-fly ash system backfill

Figure BDA0003139485580000151
Figure BDA0003139485580000151

采用二次多项式回归分析方法,对磷石膏-矿渣微粉-电石渣-粉煤灰体系的充填体强度和抗水稳定性试验数据进行回归分析,建立胶结充填体7d、28d强度和28d充填体抗水稳定性系数K28d的数学模型如下:Using the quadratic polynomial regression analysis method, the regression analysis was carried out on the test data of the backfill strength and water resistance stability of the phosphogypsum-slag powder-carbide slag-fly ash system. The mathematical model of the water stability coefficient K 28d is as follows:

R7d=40.2-0.51x1-2.22x2+0.66x3+0.0086x1x1+0.051x2x2-0.020x3x3-0.012x1x2+0.009x1x3-0.021x2x3 (16)R 7d = 40.2-0.51x 1 -2.22x 2 +0.66x 3 +0.0086x 1 x 1 +0.051x 2 x 2 -0.020x 3 x 3 -0.012x 1 x 2 +0.009x 1 x 3 -0.021x 2 x 3 (16)

R28d=-85.96+4.29x1+0.20x2-2.46x3-0.053x1x1-0.01x2x2+0.03x3x3+0.01x1x2+0.035x1x3+0.0033x2x3 (17)R 28d = -85.96+4.29x 1 +0.20x 2 -2.46x 3 -0.053x 1 x 1 -0.01x 2 x 2 +0.03x 3 x 3 +0.01x 1 x 2 +0.035x 1 x 3 +0.0033x 2 x 3 (17)

K28d=44.96+0.16x1-3.31x2+0.052x1x1-0.0079x3x3-0.011x1x4+0.0038x2x2+0.015x2x4+0.0058x3x4 (18)K 28d = 44.96+0.16x 1 -3.31x 2 +0.052x 1 x 1 -0.0079x 3 x 3 -0.011x 1 x 4 +0.0038x 2 x 2 +0.015x 2 x 4 +0.0058x 3 x 4 (18 )

采用二次多项式回归分析方法,对磷石膏-矿渣微粉-电石渣-粉煤灰体系充填材料成本数据回归分析,建立充填材料成本模型fcUsing quadratic polynomial regression analysis method, the cost data of phosphogypsum-slag micropowder-carbide slag-fly ash system filling material cost data regression analysis, to establish the filling material cost model f c :

fc=41.29+2.40x2+0.0098x1x4 (19)f c = 41.29 + 2.40x 2 +0.0098x 1 x 4 (19)

式中:x1代表磷石膏,%;x2代表矿渣微粉,%,x3代表电石渣,%,粉煤灰=100%-x1-x2-x3In the formula: x 1 represents phosphogypsum, %; x 2 represents slag fine powder, %, x 3 represents carbide slag, %, fly ash=100%-x 1 -x 2 -x 3 .

建立磷石膏-矿渣微粉-电石渣-粉煤灰体系材料配比优化模型:Establish a material ratio optimization model of phosphogypsum-slag powder-carbide slag-fly ash system:

MinCT=Min(41.29+2.40x2+0.0098x1x4) (20) MinCT = Min(41.29+2.40x 2 +0.0098x 1 x 4 ) (20)

40.2-0.51x1-2.22x2+0.66x3+0.0086x1x1+0.051x2x2-0.020x3x3≥0.5 (21)40.2-0.51x 1 -2.22x 2 +0.66x 3 +0.0086x 1 x 1 +0.051x 2 x 2 -0.020x 3 x 3 ≥0.5 (21)

-85.96+4.29x1+0.20x2-2.46x3-0.053x1x1-0.01x2x2+0.03x3x3+0.01x1x2+0.035x1x3+0.0033x2x3≥2.5 (22)-85.96+4.29x 1 +0.20x 2 -2.46x 3 -0.053x 1 x 1 -0.01x 2 x 2 +0.03x 3 x 3 +0.01x 1 x 2 +0.035x 1 x 3 +0.0033x 2 x 3 ≥2.5 (22)

44.96+0.16x1-3.31x2+0.052x1x1-0.0079x3x3-0.011x1x4+0.0038x2x2+0.015x2x4+0.0058x3x4≥0.85 (23)44.96+0.16x 1 -3.31x 2 +0.052x 1 x 1 -0.0079x 3 x 3 -0.011x 1 x 4 +0.0038x 2 x 2 +0.015x 2 x 4 +0.0058x 3 x 4 ≥0.85 (23)

求解式(20)-(23)磷石膏-矿渣微粉-电石渣-粉煤灰体系配比优化模型,获得充填材料优化配比为:磷石膏46%、电石渣26%、矿渣微粉12%、粉煤灰16%。充填体7d和28d强度分别为1.13MPa和3.50MPa。28d充填体抗水稳定性系数为0.88。Solving formulas (20)-(23) for the optimal proportioning model of phosphogypsum-slag powder-carbide slag-fly ash system, the optimal proportions of filling materials are obtained: phosphogypsum 46%, calcium carbide slag 26%, slag powder 12%, Fly ash 16%. The strengths of the filling bodies 7d and 28d are 1.13 MPa and 3.50 MPa, respectively. The water resistance stability coefficient of the 28d filling body is 0.88.

针对大水矿山安全生产对充填体抗水稳定性要求以及全固废充填体存在的浸水弱化特性,本发明给出了全固废充填材料的配比优化方法。本发明关键技术是通过建立优化模型进行全固废充填材料配比优化,实现多种固废物的配比优化组合以及协同作用,由此制备出具有抗水稳定性的全固废充填材料,为低品质固废在大水矿山充填采矿中资源化利用,探索出一条途径。Aiming at the water resistance stability requirements of the backfill body in safe production in Dashui mines and the water immersion weakening characteristics of the all-solid waste backfill body, the invention provides a method for optimizing the proportion of all-solid waste backfill materials. The key technology of the present invention is to optimize the proportion of solid waste filling materials by establishing an optimization model, so as to realize the optimal combination and synergistic effect of the proportions of various solid wastes, thereby preparing an all-solid waste filling material with water resistance and stability. A way has been explored for resource utilization of low-quality solid waste in backfill mining of Dashui mines.

以上对本申请实施例所提供的一种大水矿山抗水稳定性全固废充填材料配比优化方法,进行了详细介绍。以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。A method for optimizing the proportion of all-solid waste filling materials with water resistance and stability in Dashui mines provided by the embodiments of the present application has been described in detail above. The description of the above embodiment is only used to help understand the method of the present application and its core idea; meanwhile, for those of ordinary skill in the art, according to the idea of the present application, there will be changes in the specific embodiment and the scope of application, In conclusion, the content of this specification should not be construed as a limitation on the present application.

如在说明书及权利要求书当中使用了某些词汇来指称特定组件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求书并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求书当中所提及的“包含”、“包括”为一开放式用语,故应解释成“包含/包括但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求书所界定者为准。As certain terms are used in the specification and claims to refer to particular components. It should be understood by those skilled in the art that hardware manufacturers may refer to the same component by different nouns. The present specification and claims do not use the difference in name as a way to distinguish components, but use the difference in function of the components as a criterion for distinguishing. As mentioned in the entire specification and claims, "comprising" and "including" are open-ended terms, so they should be interpreted as "including/including but not limited to". "Approximately" means that within an acceptable error range, those skilled in the art can solve the technical problem within a certain error range, and basically achieve the technical effect. Subsequent descriptions in the specification are preferred embodiments for implementing the present application. However, the descriptions are for the purpose of illustrating the general principles of the present application and are not intended to limit the scope of the present application. The scope of protection of this application should be determined by the appended claims.

还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者系统中还存在另外的相同要素。It should also be noted that the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a commodity or system comprising a list of elements includes not only those elements, but also includes not explicitly listed other elements, or elements inherent to the commodity or system. Without further limitation, an element defined by the phrase "comprising a..." does not preclude the presence of additional identical elements in the article or system that includes the element.

应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。It should be understood that the term "and/or" used in this document is only an association relationship to describe associated objects, indicating that there may be three kinds of relationships, for example, A and/or B, which may indicate that A exists alone, and A and B exist simultaneously. B, there are three cases of B alone. In addition, the character "/" in this document generally indicates that the related objects are an "or" relationship.

上述说明示出并描述了本申请的若干优选实施例,但如前所述,应当理解本申请并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述申请构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本申请的精神和范围,则都应在本申请所附权利要求书的保护范围内。The above description shows and describes several preferred embodiments of the present application, but as mentioned above, it should be understood that the present application is not limited to the form disclosed herein, and should not be regarded as excluding other embodiments, but can be used in various various other combinations, modifications and environments, and can be modified within the scope of the concept of the application described herein, using the above teachings or skill or knowledge in the relevant field. However, modifications and changes made by those skilled in the art do not depart from the spirit and scope of the present application, and should all fall within the protection scope of the appended claims of the present application.

Claims (6)

1.一种大水矿山抗水稳定性全固废充填材料配比优化方法,其特征在于,所述方法的步骤包括:1. a method for optimizing the proportioning of all solid waste filling materials with water resistance stability in Dashui mines, it is characterised in that the step of the method comprises: S1、对固废材料进行干燥和粉磨处理,得到若干不同配比的混合粉体;所述混合粉体包括磷石膏和高炉矿渣;S1, dry and grind the solid waste material to obtain mixed powders with different ratios; the mixed powders include phosphogypsum and blast furnace slag; S2、对S1得到的所有混合粉体进行充填体强度试验和抗水性能试验,得到不同配比的混合粉体的充填体强度试验结果和抗水性能试验结果;S2. Carry out the strength test and water resistance test of the filling body for all the mixed powders obtained in S1, and obtain the results of the filling body strength test and the water resistance performance test results of the mixed powders with different ratios; S3、根据S2得到的充填体强度试验结果和抗水性能试验结果建立充填体强度数学模型和抗水稳定性数学模型;S3. According to the backfill strength test results and water resistance test results obtained in S2, establish a backfill strength mathematical model and a water resistance stability mathematical model; S4、以充填材料成本为优化目标,以S3得到的充填体强度数学模型和抗水稳定性数学模型为约束条件,建立全固废充填材料配比优化模型;S4. Taking the cost of the filling material as the optimization objective, and taking the mathematical model of the strength of the backing body and the mathematical model of the water resistance stability obtained in S3 as the constraints, an optimization model for the proportion of all-solid waste filling materials is established; S5、求解S4得到的全固废充填材料配比优化模型,得到全固废充填材料的优化配比;S5. Solve the optimization model of the proportion of all solid waste filling materials obtained in S4, and obtain the optimal proportion of all solid waste filling materials; 所述抗水性能试验及抗水性能试验结果的获得方式包括:制备两组充填体试块,分别置于水中和养护箱中养护;测试两组充填体试块的单轴抗压强度,将两种养护条件下充填体试块的单轴抗压强度之比作为该混合粉体抗水性能试验结果;The methods for obtaining the results of the water resistance performance test and the water resistance performance test include: preparing two groups of filling body test blocks, respectively placing them in water and a curing box for curing; testing the uniaxial compressive strength of the two groups of filling body test blocks, The ratio of the uniaxial compressive strength of the filling body test block under the two curing conditions is taken as the test result of the water resistance performance of the mixed powder; 步骤S3中:In step S3: 采用二次多项式对充填体强度试验结果进行回归分析,建立胶结充填体7d和28d强度的数学模型;The second-order polynomial was used to perform regression analysis on the strength test results of the backfill, and the mathematical model of the 7d and 28d strength of the cemented backfill was established; 采用二次多项式对抗水性能试验结果进行回归分析,建立28d充填体的抗水稳定性数学模型;Using the quadratic polynomial to perform regression analysis on the results of the water resistance performance test, the mathematical model of the water resistance stability of the 28d backfill was established; 所述胶结充填体7d和28d强度的数学模型为:The mathematical model of the strength of the cemented filling body 7d and 28d is: R7d=f1(x1,x2,...,xn)、R28d=f2(x1,x2,...,xn);R 7d =f 1 (x 1 ,x 2 ,...,x n ), R 28d =f 2 (x 1 ,x 2 ,...,x n ); 其中,R7d、R28d代表充填体7d、28d强度;x1,x2,...,xn代表全固废充填材料配比;f1、f2代表充填体7d、28d强度与固废物掺加量的关系函数;Among them, R 7d and R 28d represent the strength of the filling body 7d and 28d; x 1 , x 2 ,...,x n represent the ratio of all solid waste filling materials; f 1 and f 2 represent the strength and solid waste of the filling body 7d and 28d. The relationship function of the amount of waste added; 所述抗水稳定性数学模型为:The mathematical model of water resistance stability is: K28d=f3(x1,x2,...,xn)K 28d = f 3 (x 1 , x 2 ,...,x n ) 其中,K28d代表养护28d充填体抗水稳定性系数,x1,x2,...,xn代表全固废充填材料配比,f3代表28d充填体抗水稳定性系数与固废物掺加量的关系函数;Among them, K 28d represents the water resistance stability coefficient of the curing 28d filling body, x 1 , x 2 ,...,x n represents the proportion of all solid waste filling materials, f 3 represents the water resistance stability coefficient of the 28d filling body and the solid waste The relationship function of the dosage; 步骤S4中所述全固废充填材料配比优化模型包括:The all-solid waste filling material ratio optimization model described in step S4 includes: 优化目标:MinCT=Min fc(x1,x2,...,xn);Optimization objective: MinC T =Min f c (x 1 ,x 2 ,...,x n ); 约束条件:R7d=f1(x1,x2,...,xn)≥[R7d]Constraints: R 7d =f 1 (x 1 ,x 2 ,...,x n )≥[R 7d ] R28d=f2(x1,x2,...,xn)≥[R28d]R 28d =f 2 (x 1 ,x 2 ,...,x n )≥[R 28d ] K28d=f3(x1,x2,...,xn)[K28d];K 28d =f 3 (x 1 ,x 2 ,...,x n )[K 28d ]; 其中,CT代表全固废充填材料成本,fc(x1,x2,...,xn)为充填材料成本函数;Among them, C T represents the cost of all solid waste filling materials, and f c (x 1 ,x 2 ,...,x n ) is the cost function of filling materials; [R7d]、[R28d]代表充填体7d、28d强度的设计值,[K28d]代表28d充填体抗水稳定性系数的设计值。[R 7d ] and [R 28d ] represent the design values of the strength of the filling body 7d and 28d, and [K 28d ] represent the design value of the water resistance stability coefficient of the 28d filling body. 2.根据权利要求1所述的大水矿山抗水稳定性全固废充填材料配比优化方法,其特征在于,所述磷石膏的参数要求包括:P2O5≤5%、含水率≤3%、MgO≤3%和比表面积≥200m2/kg。2 . The method for optimizing the proportion of all-solid waste filling materials with water resistance and stability in Dashui mines according to claim 1 , wherein the parameter requirements of the phosphogypsum include: P 2 O 5 ≤ 5%, moisture content ≤ 3%, MgO≤3% and specific surface area≥200m 2 /kg. 3.根据权利要求1所述的大水矿山抗水稳定性全固废充填材料配比优化方法,其特征在于,所述高炉矿渣的参数要求包括:高炉矿渣微粉细度≤5%或比表面积≥420m2/kg、质量系数≥1.6、活性指数≥0.3和含水率<3%。3. The method for optimizing the proportion of all-solid waste filling materials with water resistance and stability in Dashui mines according to claim 1, wherein the parameter requirements of the blast furnace slag include: blast furnace slag fineness≤5% or specific surface area ≥420m 2 /kg, quality coefficient ≥1.6, activity index ≥0.3 and moisture content <3%. 4.根据权利要求1所述的大水矿山抗水稳定性全固废充填材料配比优化方法,其特征在于,所述混合粉体还包括电石渣、粉煤灰和铜选尾渣中的一种或多种。4. The method for optimizing the proportion of water-resistant and stable all-solid waste filling materials in Dashui mines according to claim 1, wherein the mixed powder also comprises calcium carbide slag, fly ash and copper selection tailings. one or more. 5.根据权利要求4所述的大水矿山抗水稳定性全固废充填材料配比优化方法,其特征在于,所述电石渣、所述粉煤灰和所述铜选尾渣的参数要求包括:含水率<3%和比表面积≥300m2/kg。5. The method for optimizing the proportion of all-solid waste filling materials with water resistance and stability in Dashui mines according to claim 4, characterized in that the parameter requirements of the carbide slag, the fly ash and the copper tailings Including: moisture content <3% and specific surface area ≥300m 2 /kg. 6.根据权利要求4所述的大水矿山抗水稳定性全固废充填材料配比优化方法,其特征在于,所述混合粉体包括磷石膏、高炉矿渣和电石渣时各组分质量占比为:磷石膏40%-65%、高炉矿渣15%-40%、电石渣10%-20%;6. The method for optimizing the proportion of water-resistant and stable all-solid waste filling materials in Dashui mines according to claim 4, characterized in that, when the mixed powder comprises phosphogypsum, blast furnace slag and carbide slag, the mass of each component accounts for 30%. The ratio is: phosphogypsum 40%-65%, blast furnace slag 15%-40%, calcium carbide slag 10%-20%; 所述混合粉体包括磷石膏、高炉矿渣、电石渣和铜选尾渣时各组分质量占比为:磷石膏40%-50%、高炉矿渣25%-35%、电石渣10%-15%、铜选尾渣5%-20%;When the mixed powder includes phosphogypsum, blast furnace slag, carbide slag and copper dressing tailings, the mass proportion of each component is: 40%-50% of phosphogypsum, 25%-35% of blast furnace slag, and 10%-15% of calcium carbide slag. %, copper tailings 5%-20%; 所述混合粉体包括磷石膏、高炉矿渣、电石渣和粉煤灰时各组分质量占比为:磷石膏40%-50%、高炉矿渣25%-35%、电石渣10%-15%、粉煤灰5%-20%。When the mixed powder includes phosphogypsum, blast furnace slag, carbide slag and fly ash, the mass proportion of each component is: 40%-50% of phosphogypsum, 25%-35% of blast furnace slag, and 10%-15% of calcium carbide slag , fly ash 5%-20%.
CN202110732017.6A 2021-06-29 2021-06-29 Optimization method for water resistance and stability of all solid waste filling materials in Dashui mines Active CN113387671B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110732017.6A CN113387671B (en) 2021-06-29 2021-06-29 Optimization method for water resistance and stability of all solid waste filling materials in Dashui mines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110732017.6A CN113387671B (en) 2021-06-29 2021-06-29 Optimization method for water resistance and stability of all solid waste filling materials in Dashui mines

Publications (2)

Publication Number Publication Date
CN113387671A CN113387671A (en) 2021-09-14
CN113387671B true CN113387671B (en) 2022-05-13

Family

ID=77624491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110732017.6A Active CN113387671B (en) 2021-06-29 2021-06-29 Optimization method for water resistance and stability of all solid waste filling materials in Dashui mines

Country Status (1)

Country Link
CN (1) CN113387671B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114550839A (en) * 2022-04-07 2022-05-27 北京科技大学 Optimization method for large-scale and high-value utilization of nickel slag in backfill mining
CN115288780A (en) * 2022-07-14 2022-11-04 山东杰控电气技术有限公司 Optimization design method for utilization of red mud solid waste in filling mining of water-rich mine
CN115504753A (en) * 2022-10-08 2022-12-23 昆明理工大学 A mine filling cementitious material based on phosphogypsum
CN117253569B (en) * 2023-11-16 2024-02-06 河北省建筑科学研究院有限公司 Batching calculation method of all-solid waste cementing material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106348713A (en) * 2016-08-30 2017-01-25 北京玉锦资源与环境技术研究院(有限合伙) Cementing filling material for co-processing copper-containing dangerous waste of mine and preparation method of cementing filling material
CN106348711A (en) * 2016-08-30 2017-01-25 北京玉锦资源与环境技术研究院(有限合伙) Cementing filling material for co-processing mercury-containing dangerous wastes of mine and preparation method of cementing filling material
CN107382239A (en) * 2017-07-18 2017-11-24 北京科技大学 For stablizing full solid waste casting resin and the preparation method of Han bioxin flying ash
CN110655376A (en) * 2019-10-30 2020-01-07 北京科技大学 Steel slag synergistic preparation full-solid waste cementing material and multi-objective optimization method
CN110723952A (en) * 2019-10-12 2020-01-24 北京科技大学 Phosphogypsum-based all-solid waste filler proportioning optimization method for improving filling roof contact rate
AU2020100278A4 (en) * 2020-02-25 2020-04-02 Beike Yunhong Environmental Technology (Beijing) Co., Ltd. All-Solid Waste Filler for Stabilizing Dioxin-containing Incineration Fly Ash and Method for Preparing the Same
CN111312344A (en) * 2020-02-12 2020-06-19 河北钢铁集团矿业有限公司 Optimization method of all-solid waste cementitious material and mixed aggregate filling slurry
CN111807730A (en) * 2020-06-15 2020-10-23 北京科技大学 A kind of all-solid waste cementitious material for fine tailings filling and preparation method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2442490A1 (en) * 2001-03-29 2002-10-10 Nippon Steel Chemical Co SUBSTANCE AND METHOD FOR THE TREATMENT OF ACIDIC WASTEWATER
CN110781587B (en) * 2019-10-16 2020-09-18 北京科技大学 Multi-objective optimization method of waste rock filling slurry using low-quality solid waste and anti-segregation
CN111191387B (en) * 2020-02-12 2021-04-23 河北钢铁集团矿业有限公司 Phosphogypsum-based cementing material optimization method for improving filling roof contact rate
CN111508566B (en) * 2020-04-08 2023-12-26 北京科技大学 Preparation method for preparing low-cost filling cementing material by composite excitation of multiple solid wastes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106348713A (en) * 2016-08-30 2017-01-25 北京玉锦资源与环境技术研究院(有限合伙) Cementing filling material for co-processing copper-containing dangerous waste of mine and preparation method of cementing filling material
CN106348711A (en) * 2016-08-30 2017-01-25 北京玉锦资源与环境技术研究院(有限合伙) Cementing filling material for co-processing mercury-containing dangerous wastes of mine and preparation method of cementing filling material
CN107382239A (en) * 2017-07-18 2017-11-24 北京科技大学 For stablizing full solid waste casting resin and the preparation method of Han bioxin flying ash
CN110723952A (en) * 2019-10-12 2020-01-24 北京科技大学 Phosphogypsum-based all-solid waste filler proportioning optimization method for improving filling roof contact rate
CN110655376A (en) * 2019-10-30 2020-01-07 北京科技大学 Steel slag synergistic preparation full-solid waste cementing material and multi-objective optimization method
CN111312344A (en) * 2020-02-12 2020-06-19 河北钢铁集团矿业有限公司 Optimization method of all-solid waste cementitious material and mixed aggregate filling slurry
AU2020100278A4 (en) * 2020-02-25 2020-04-02 Beike Yunhong Environmental Technology (Beijing) Co., Ltd. All-Solid Waste Filler for Stabilizing Dioxin-containing Incineration Fly Ash and Method for Preparing the Same
CN111807730A (en) * 2020-06-15 2020-10-23 北京科技大学 A kind of all-solid waste cementitious material for fine tailings filling and preparation method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Study on strength test and hydration mechanism of phosphogypsum based cemented backfill;Hanbo Wei;《IOP Conference Series: Earth and Environmental Science》;20210411;全文 *
工业固废开发充填胶凝材料概述与应用展望;李立涛等;《矿业研究与开发》;20200225;第40卷(第02期);全文 *
磷石膏基胶凝材料充填体强度正交-BP神经网络模型研究;温楷等;《化工矿物与加工》;20180919;第47卷(第10期);全文 *
磷石膏—矿渣复合胶凝材料配比优化试验;李宏业等;《金属矿山》;20210331(第3期);全文 *
金川矿山磷石膏基新型充填胶凝材料的研制;肖柏林等;《矿业研究与开发》;20150131;第35卷(第1期);全文 *

Also Published As

Publication number Publication date
CN113387671A (en) 2021-09-14

Similar Documents

Publication Publication Date Title
CN113387671B (en) Optimization method for water resistance and stability of all solid waste filling materials in Dashui mines
Zhou et al. Feasibility study and performance optimization of sand-based cemented paste backfill materials
CN110723952B (en) Phosphogypsum-based all-solid waste filler proportioning optimization method for improving filling roof contact rate
CN104909677B (en) A kind of filling in mine sial base tailings cementing agent and preparation method thereof
CN111807730A (en) A kind of all-solid waste cementitious material for fine tailings filling and preparation method
CN102765889B (en) A preparation method of tailing waste rock high-strength concrete containing fly ash
CN107244865A (en) High-strength concrete using fines molybdic tailing and barren rock and preparation method thereof
CN106007568B (en) A kind of method that coal mine filling lotion is prepared using biomass lime-ash
CN101215137A (en) Ferromanganese slag concrete admixture and production method thereof
CN103435281A (en) Cement clinker and preparation process thereof
CN105218023A (en) A kind of drift-sand foam material and preparation method
CN112125543A (en) Composite gel material prepared from bulk solid wastes and preparation method thereof
CN106746818A (en) A kind of concrete admixture, preparation method and the concrete containing the admixture
CN112429986A (en) Full-solid-waste underground filling cementing material for high-sulfur tailings and preparation method thereof
CN110655338A (en) Copper slag-based cementing material, preparation method and application
CN114702256A (en) Low-carbon cementing material for resource utilization of industrial solid waste and preparation method thereof
CN108911660B (en) Consolidation material for electrolytic manganese slag stabilization treatment and application thereof
CN113213844A (en) Filling tailing curing agent of copper-containing smelting slag
CN113754391A (en) Self-compacting light waste concrete and preparation method thereof
CN105859207A (en) C30 tailing sand anti-dispersion concrete and preparation method thereof
CN112759319B (en) Controllable low-strength mine filling material
Deng et al. Experimental Study on Lead‐Smelting Slag as Paste Filling Cementing Material
CN116063044A (en) A road base cement stabilizer containing TBM hole excavation material, preparation method and application method
CN116354687A (en) Multi-solid waste cemented filling material for superfine full tailings and preparation method thereof
CN115849811A (en) A kind of highly stable self-compacting concrete and its preparation method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant