CN113389859B - Wind generating set prediction type constant speed box system and constant speed control method - Google Patents
Wind generating set prediction type constant speed box system and constant speed control method Download PDFInfo
- Publication number
- CN113389859B CN113389859B CN202110597206.7A CN202110597206A CN113389859B CN 113389859 B CN113389859 B CN 113389859B CN 202110597206 A CN202110597206 A CN 202110597206A CN 113389859 B CN113389859 B CN 113389859B
- Authority
- CN
- China
- Prior art keywords
- gear
- wind
- speed
- generating set
- main shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000008859 change Effects 0.000 claims abstract description 17
- 230000005540 biological transmission Effects 0.000 claims abstract description 11
- 230000008054 signal transmission Effects 0.000 claims abstract description 3
- 238000012937 correction Methods 0.000 claims description 12
- 230000007246 mechanism Effects 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/44—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
- F16H3/70—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D15/00—Transmission of mechanical power
- F03D15/10—Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/04—Automatic control; Regulation
- F03D7/041—Automatic control; Regulation by means of a mechanical governor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Wind Motors (AREA)
Abstract
Description
技术领域technical field
本发明涉及风力发电机组恒速控制系统领域,具体是一种风力发电机组预测型恒速箱系统及恒速控制方法。The invention relates to the field of constant speed control systems of wind power generators, in particular to a predictive constant speed box system and a constant speed control method of wind power generators.
背景技术Background technique
风力发电机组进行发电时,风带动叶轮旋转形成机械转矩,然后通过主轴传动链,经齿轮箱增速到异步发电机的主轴所需要的转速,通过发电机形成发电。常用的齿轮箱是定速比的,所以在风速发生变化时,叶轮的转速即会发生变化,致使齿轮箱增速后的发电机主轴的转速发生变化,发电机发出的电能频率就会波动,导致发出的电能降低或直接失去实际应用价值,只能独立使用,难以并入主流电网。When the wind turbine generates power, the wind drives the impeller to rotate to form a mechanical torque, and then through the main shaft transmission chain, the gear box increases the speed to the speed required by the main shaft of the asynchronous generator, and generates power through the generator. The commonly used gear box has a constant speed ratio, so when the wind speed changes, the speed of the impeller will change, causing the speed of the main shaft of the generator to change after the gear box speeds up, and the frequency of the electric energy generated by the generator will fluctuate. As a result, the generated electric energy is reduced or directly loses its practical application value, and can only be used independently, and it is difficult to merge into the mainstream power grid.
目前风力发电机组采用定速比的齿轮箱机构对叶轮转速进行增速,现有技术对于风速的变化导致的发电机主轴速度变化的解决措施采用一定的调速机构来解决,以控制发电机的输出稳定,常用的解决措施是控制叶轮的转矩输出,采用叶轮偏向、改变气动阻力、加装桨矩调整等措施设置调速机构。但这些调速结构不是针对对传动系统的齿轮箱部分进行的,而是调整叶轮的方向或改变风叶的角度或是改变风叶的桨矩等。采用上述解决措施不仅增加机械结构的复杂程度,发电机组的叶轮等关键部件的强度也会受到影响,失效概率增加,维护变得更加困难,同时,还降低了风能的利用效率。At present, wind turbines use a gear box mechanism with a fixed speed ratio to increase the speed of the impeller. In the existing technology, a certain speed regulating mechanism is used to solve the speed change of the main shaft of the generator caused by the change of wind speed, so as to control the speed of the generator. The output is stable, and the common solution is to control the torque output of the impeller, and set the speed regulating mechanism by adopting measures such as impeller deflection, changing aerodynamic resistance, and adding pitch adjustment. But these speed regulation structures are not aimed at the gear box part of the transmission system, but to adjust the direction of the impeller or change the angle of the fan blade or change the pitch of the fan blade. The adoption of the above solutions not only increases the complexity of the mechanical structure, but also affects the strength of key components such as the impeller of the generator set, increases the probability of failure, and makes maintenance more difficult. At the same time, it also reduces the utilization efficiency of wind energy.
发明内容Contents of the invention
本发明的目的是提供一种风力发电机组预测型恒速箱系统及恒速控制方法,以解决现有技术风力发电机组在风速变化时存在的输出电能的频率不稳定的问题。The purpose of the present invention is to provide a predictive constant speed box system and constant speed control method for a wind power generating set, so as to solve the problem of unstable frequency of output electric energy existing in the wind power generating set in the prior art when the wind speed changes.
为了达到上述目的,本发明所采用的技术方案为:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种风力发电机组预测型恒速箱系统,其特征在于:包括行星轮系、控制齿轮、动力源、风速计、控制器,所述行星轮系包括齿圈、太阳轮、行星轮、行星架,所述齿圈的外圆周设为齿轮面,行星轮系的行星架与风力发电机组的风轮轴固接,行星轮系的太阳轮与风力发电机组的发电机主轴固接,所述控制齿轮与行星轮系中齿圈外圆周的齿轮面啮合,所述动力源与控制齿轮传动连接,所述控制器与动力源控制连接,所述风速计设置于风力发电机组工作环境中,风速计与控制器信号传递连接,由风速计采集风力发电机组工作环境风速数据并传送至所述控制器。A predictive constant speed box system for wind power generators, characterized in that it includes a planetary gear train, a control gear, a power source, an anemometer, and a controller, and the planetary gear train includes a ring gear, a sun gear, a planetary gear, and a planet carrier , the outer circumference of the ring gear is set as a gear surface, the planet carrier of the planetary gear system is fixedly connected with the wind wheel shaft of the wind power generating set, the sun gear of the planetary gear system is fixedly connected with the generator main shaft of the wind power generating set, and the control gear It meshes with the gear surface of the outer circumference of the ring gear in the planetary gear train, the power source is connected to the control gear, the controller is connected to the power source, the anemometer is set in the working environment of the wind turbine, and the anemometer is connected to the power source. The controller is connected for signal transmission, and the anemometer collects the wind speed data of the working environment of the wind power generating set and transmits them to the controller.
所述的一种风力发电机组预测型恒速箱系统,其特征在于:所述控制器电连接有风轮转速传感器,所述风轮转速传感器工作配合于风力发电机组的风轮轴,由风轮转速传感器感测风力发电机组中风轮轴转速并将转速数据送入控制器。The predictive constant speed box system of a wind power generating set is characterized in that: the controller is electrically connected with a wind wheel speed sensor, and the wind wheel speed sensor works in cooperation with the wind wheel shaft of the wind power generating set, and is controlled by the wind wheel The rotational speed sensor senses the rotational speed of the wind rotor shaft in the wind power generating set and sends the rotational speed data to the controller.
所述的一种风力发电机组预测型恒速箱系统,其特征在于:所述控制器电连接有主轴转速传感器,所述主轴转速传感器工作配合于风力发电机组的发电机主轴,由主轴转速传感器感测风力发电机组中发电机主轴实际转速并将转速数据送入控制器。The predictive constant speed box system of a wind power generating set is characterized in that: the controller is electrically connected with a main shaft speed sensor, and the main shaft speed sensor works in cooperation with the generator main shaft of the wind power generating set, and the main shaft speed sensor Sense the actual speed of the main shaft of the generator in the wind turbine and send the speed data to the controller.
一种基于预测型恒速箱系统的风力发电机组恒速控制方法,其特征在于:由控制器根据所述风速计测量得到的风速数据,预测得到当前风速下所述风力发电机组中风轮轴转速变化量,再结合所述齿圈与太阳轮的齿数比、齿圈与控制齿轮的齿数比,通过动力源控制所述控制齿轮的转速,进而控制所述齿圈转速,使所述风力发电机组中发电机主轴转速保持恒定为设定目标值。A constant speed control method for a wind power generating set based on a predictive constant speed box system, characterized in that: the controller predicts the change of the shaft speed of the wind turbine in the wind generating set at the current wind speed according to the wind speed data measured by the anemometer combined with the gear ratio between the ring gear and the sun gear, and the gear ratio between the ring gear and the control gear, the speed of the control gear is controlled by the power source, and then the speed of the ring gear is controlled, so that in the wind power generating set The rotational speed of the main shaft of the generator remains constant at the set target value.
所述的风力发电机组恒速控制方法,其特征在于:所述控制器基于控制公式控制所述控制齿轮的转速,使所述风力发电机组中发电机主轴转速保持恒定为设定目标值,控制公式如下:The constant speed control method of the wind power generator set is characterized in that: the controller controls the speed of the control gear based on the control formula, so that the speed of the main shaft of the generator in the wind power generator set remains constant as the set target value, and the control The formula is as follows:
n4=b((1+a)(n3+Δn3)-n1)/a,n 4 =b((1+a)(n 3+ Δn 3 )-n 1 )/a,
其中:a为行星轮系中齿圈与太阳轮的齿数比;b为齿圈与控制齿轮的齿数比;Among them: a is the gear ratio of the ring gear and the sun gear in the planetary gear train; b is the gear ratio of the ring gear and the control gear;
n1为行星轮系中太阳轮的转速,由于太阳轮与风力发电机组的发电机主轴固接,故n1即为风力发电机组的发电机主轴需要保持恒定的设定目标值;n 1 is the rotational speed of the sun gear in the planetary gear system. Since the sun gear is fixedly connected to the generator main shaft of the wind power generating set, n 1 is the target value that needs to be kept constant for the generator main shaft of the wind power generating set;
n3为行星轮系中行星架的当前转速,由于行星架与风力发电机组的风轮轴固接,故n3即为风轮转速传感器测得的风力发电机组中风轮轴转速;n 3 is the current rotational speed of the planetary carrier in the planetary gear system. Since the planetary carrier is fixedly connected to the wind rotor shaft of the wind turbine, n 3 is the rotational speed of the wind rotor shaft in the wind turbine measured by the wind rotor speed sensor;
Δn3为行星架转速的变化量,由于行星架与风力发电机组的风轮轴固接,故Δn3即为控制器根据所述风速计测量数据预测得到的风轮轴转速变化量,Δn3初始值为0;Δn 3 is the variation of the rotation speed of the planetary carrier. Since the planetary carrier is fixedly connected to the wind rotor shaft of the wind turbine, Δn 3 is the variation of the rotation speed of the wind rotor shaft predicted by the controller based on the measurement data of the anemometer. The initial value of Δn 3 is is 0;
n4为控制齿轮的受控转速。n 4 is the controlled rotational speed of the control gear.
所述的风力发电机组恒速控制方法,其特征在于:由控制器获取主轴转速传感器感测得到的风力发电机组中发电机主轴实际转速,并结合风力发电机组中发电机主轴转速需要保持恒定的设定目标值,得到修正系数,然后通过修正系数对所述控制齿轮的受控转速进行修正,使风力发电机组中发电机主轴转速保持恒定为设定目标值。The constant speed control method of the wind power generating set is characterized in that: the controller acquires the actual speed of the generator main shaft in the wind power generating set sensed by the main shaft speed sensor, combined with the need to keep the constant speed of the generator main shaft in the wind power generating set A target value is set to obtain a correction coefficient, and then the controlled speed of the control gear is corrected by the correction coefficient, so that the speed of the main shaft of the generator in the wind power generating set remains constant as the set target value.
所述的风力发电机组恒速控制方法,其特征在于:设修正系数为c,当发电机主轴的实际转速大于需要保持恒定的设定目标值时,使所述控制齿轮的受控转速修正为:(1+c)*修正前控制齿轮的受控转速;The constant speed control method of the wind power generating set is characterized in that: the correction coefficient is set to c, and when the actual speed of the main shaft of the generator is greater than the set target value that needs to be kept constant, the controlled speed of the control gear is corrected as : (1+c)*The controlled speed of the control gear before correction;
当发电机主轴的实际转速小于需要保持恒定的设定目标值时,使所述控制齿轮的受控转速修正为:(1-c)*修正前控制齿轮的受控转速。When the actual rotational speed of the main shaft of the generator is lower than the set target value that needs to be kept constant, the controlled rotational speed of the control gear is corrected to: (1-c)*the controlled rotational speed of the control gear before correction.
针对风力发电机组的工作环境中风速不受控制的客观环境,本发明系统通过行星轮系构建风轮轴和发电机组主轴之间的传动机构,同时构建控制齿轮用于对行星轮系中的齿圈进行控速,进而实现控制发电机组主轴转速的目的。本发明方法利用风速计测量环境风速用于预测风轮轴风速数据,根据风速计测量的风速数据,预测得到风轮轴在当前风速下能够达到的转速,根据预测得到的风轮轴的转速,通过控制齿轮实现对行星轮系的控制,进而实现使发电机主轴转速保持恒定为设定目标值。通过上述方式,最终得到频率稳定的发电机电能输出。For the objective environment where the wind speed is not controlled in the working environment of the wind power generating set, the system of the present invention constructs the transmission mechanism between the wind rotor shaft and the main shaft of the generating set through the planetary gear train, and at the same time builds the control gear for the ring gear in the planetary gear train Carry out speed control, and then realize the purpose of controlling the main shaft speed of the generator set. The method of the present invention utilizes the anemometer to measure the ambient wind speed to predict the wind speed data of the wind rotor shaft. According to the wind speed data measured by the anemometer, the rotational speed that the wind rotor shaft can reach at the current wind speed is predicted, and according to the predicted rotational speed of the wind rotor shaft, by controlling the gear Realize the control of the planetary gear train, and then keep the rotation speed of the main shaft of the generator constant at the set target value. Through the above-mentioned method, the electric energy output of the generator with stable frequency is finally obtained.
与现有技术相比,本发明的优点为:Compared with prior art, the advantage of the present invention is:
本发明在风速变化时,可以使发电机组主轴输出稳定的转速,使发电机组能输出频率稳定的电能。本发明无需改变叶轮的整体性或对叶轮的偏向、风叶的安装角度或桨矩等进行调整或改变,降低了风力发电机组的复杂程度,增加了可靠性,提高风能的利用效率。When the wind speed changes, the present invention can make the main shaft of the generator set output a stable rotational speed, so that the generator set can output electric energy with a stable frequency. The invention does not need to change the integrity of the impeller or adjust or change the deflection of the impeller, the installation angle or pitch of the blades, etc., reduces the complexity of the wind power generating set, increases the reliability, and improves the utilization efficiency of wind energy.
本发明简化了风力发电机组的机械结构,应用电子控制技术能更快地主动响应外界条件的变化,在外界条件发生变化时,通过主动式的控制能够得到更稳定的输出结果,更好地利用风能发电。The invention simplifies the mechanical structure of the wind power generating set, applies electronic control technology to actively respond to changes in external conditions faster, and when external conditions change, more stable output results can be obtained through active control, and better utilization wind power generation.
附图说明Description of drawings
图1是本发明系统结构原理图;Fig. 1 is a schematic diagram of the system structure of the present invention;
图2是本发明系统中行星轮架部分结构原理图;Fig. 2 is a partial structural schematic diagram of the planetary carrier in the system of the present invention;
图3是本发明方法流程图。Fig. 3 is a flow chart of the method of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
如图1、图2所示,本发明风力发电机预测型恒速箱系统由齿轮箱装置和电子控制系统组成,其中齿轮箱装置包括太阳轮4、行星轮5、行星架6、齿圈7构成的行星轮系,以及风轮轴1、控制齿轮8、发电机主轴13。As shown in Figure 1 and Figure 2, the predictive constant speed box system of the wind power generator of the present invention is composed of a gear box device and an electronic control system, wherein the gear box device includes a
本发明中,行星轮系为太阳轮4、行星架6、齿圈7、控制齿轮8构成的四元件不定传动比的行星轮系,行星轮系中的太阳轮4、行星架6、齿圈7全部可以转动。风力发电机组中风轮轴1与行星架6在回转轴线上同轴固接,也可以是风机轴1通过连接件与行星架6的非中心位置固接。风力发电机组找那个发电机主轴12与太阳轮4在回转轴线上同轴固接。In the present invention, the planetary gear system is a planetary gear system with four elements with indeterminate transmission ratios composed of
行星轮系中,齿圈7除了在行星轮系所需的齿轮外,在齿圈7的外圆周面设置齿轮面,控制齿轮8与齿圈7的外圆周的齿轮面相互啮合。In the planetary gear train, in addition to the gears required by the planetary gear train, the
电子控制系统由风轮轴齿圈2、风轮转速传感器3、动力源9、控制器10、主轴转速传感器11、发电机主轴齿圈13、风速计14构成。其中,动力源9为电机、或者液压马达、或者气动马达,或者其他能够实现驱动目标部件转动的机构,动力源9的输出轴与控制齿轮8固接,具体可以是控制齿轮8同轴固定于动力源9输出轴,也可以是动力源9的输出轴通过其他传动机构与控制齿轮8连接,本实施例中以动力源9为电机为例。风轮轴齿圈2随风轮轴1同步转动,风轮转速传感器3放置在风轮轴齿圈2边上,发电机主轴齿圈13随发电机主轴同步转动,主轴转速传感器11放置在发电机主轴齿圈13边上。风速计14为叶轮式风速计,风速计14设置于风力发电机机组的工作环境中,风速计14的叶轮与风力发电机组叶轮平行安装,用于感测风速信号。风轮转速传感器3、主轴转速传感器11、风速计14和动力源9通过导线与控制器10电连接,由控制器10接收风轮转速传感器3、主轴转速传感器11、风速计14各自采集的数据,并由控制器10控制动力源9的转速,进而实现对控制齿轮8转速的控制。The electronic control system is composed of the wind wheel
应用中,将叶轮连接到风轮轴1上,发电机主轴12连接到发电机主体上,整体置于风力发电机组的支架上。未开始工作前,动力源9不动作,控制齿轮8不转动,此时齿圈7固定不动,行星轮系依据自身的齿轮参数会有一个初始传动比。风吹动叶轮转动到一定速度时,并通过传动将发电机主轴12加速到预定的转动速度,整个系统开始工作,并设定叶轮转动到该速度下,在行星轮系处于初始的传动比时,发电机主轴12进行稳定转动的对应的风速计14的速度值。In application, the impeller is connected to the
如图3所示,是本发明风力发电机组恒速控制方法的控制流程图。风速变化时,风速计14和风轮速度会随之发生变化,但由于风速计14的转动惯量远远小于风轮,风速计14的转速会比风轮转速变化得快,能更准确得感知风速。风速计14将风速信号通过导线传递到控制器10,控制器10依据叶轮的转动惯量计算风轮的转速,再依据太阳轮4、行星架6、齿圈7设定的参数确定的三元件之间的转速的固有规律,在太阳轮4随发电机主轴12按设定转速转动的条件下,计算齿圈7的转速,并通过导线驱动动力源9带动控制齿轮8转动,控制齿轮8随即驱动齿圈7转动,先期使行星轮系得到当前条件下的传动比,保证发电机主轴12转速与发电机主轴齿圈13转速一致。As shown in FIG. 3 , it is a control flow chart of the constant speed control method of the wind power generating set of the present invention. When the wind speed changes, the speed of the
风轮转速传感器3通过风轮轴1上风轮轴齿圈2感应风轮的实际转速,和主轴转速传感器11通过发电机主轴12上发电机主轴齿圈13感应的主轴转速的实际信号也反馈到控制器10,由控制器10通过控制动力源9带动控制齿轮8对齿圈7的转速进行修正。The wind wheel speed sensor 3 senses the actual speed of the wind wheel through the wind wheel
通过对控制齿轮8速度进行持续的控制,本发明能将发电机主轴12的转速保持在恒定的速度,发电机的输出就是频率恒定的电能。By continuously controlling the speed of the
本发明首先要通过在同样的风力条件下风力发电机组风轮和风速计叶轮的转速关系,才能通过风速计的转速变化预测出风力发电机组叶轮的转速变化,然后再通过齿轮箱装置的内在规律计算齿圈7的相应转速。In the present invention, the rotational speed relationship between the wind rotor of the wind power generator and the impeller of the anemometer under the same wind conditions can be used to predict the change of the speed of the impeller of the wind power generator through the change of the speed of the anemometer, and then through the internal law of the gear box device The corresponding rotational speed of the
设定风力发电机组风轮的转动惯量为J1,其转速与行星架6的转速一致,设为n3,时间Δt内的速度变化量为Δn3,风力有效作用面积为S1,则在风压p作用下,各参数之间的关系有:Set the moment of inertia of the wind rotor of the wind turbine as J 1 , its speed is consistent with the speed of the
J1Δn3/Δt=p S1,J 1 Δn 3 /Δt=p S 1 ,
同样,设定风速计叶轮的转动惯量为J5,其转速设为n5,时间Δt内的速度变化量为Δn5,风力有效作用面积为S5,则在同样的风压p作用下,各参数之间的关系有:Similarly, if the moment of inertia of the impeller of the anemometer is J 5 , its rotational speed is n 5 , the velocity variation within time Δt is Δn 5 , and the effective area of wind force is S 5 , then under the same wind pressure p, The relationship between the parameters is:
J5Δn5/Δt=p S5,J 5 Δn 5 /Δt=p S 5 ,
以上两式消去Δt和p并整理可得:Eliminate Δt and p from the above two formulas and arrange them to get:
Δn3=(J5/J1)(S1/S5)Δn5。Δn 3 =(J 5 /J 1 )(S 1 /S 5 )Δn 5 .
因此,基于风速计14测取叶轮的速度变化量Δn5,能预测出风轮轴1的转速Δn3变化量。Therefore, based on the speed variation Δn 5 of the impeller measured by the
在一轮控制循环中,将风轮轴1的当前速度与变化量之和重新赋值给风轮轴1的速度n3,使之在控制过程中能进行具体的计算,即:In one round of control cycle, reassign the sum of the current speed and the variation of the
n3=n3+Δn3。n 3 =n 3 +Δn 3 .
另如图2所示,本发明风力发电机预测型恒速箱系统及控制方法中齿轮箱装置,设定太阳轮4的转速为n1,齿圈7的转速为n2,行星架6的转速为n3,控制齿轮8的转速为n4,齿圈7与太阳轮4的齿数比为a,齿圈7与控制齿轮8的齿数比为b,其中太阳轮4的转速n1与发电机主轴12的转速一致,在风力发电机组的应用中为定值,并可由主轴转速传感器11测定;行星架6的转速n3与风轮轴1一致,是输入量,并可由风轮转速传感器3测定;齿圈7的转速n2是被控制量;控制齿轮8的转速n4是控制量,由控制器10控制动力源9获得。由行星轮系的固有规律可得:Also as shown in Figure 2, in the gear box device in the predictive constant speed box system and control method of the wind power generator of the present invention, the speed of the
n1+a n2-(1+a)n3=0,n 1 +a n 2 −(1+a)n 3 =0,
在太阳轮4转速n1为已知设定值,行星架6转速n3随风轮转动的情况下,可计算出齿圈7的转速n2:In the case that the speed n 1 of the
n2=((1+a)n3-n1)/a,n 2 =((1+a)n 3 -n 1 )/a,
为了得到齿圈7的转速n2,由齿圈7与控制齿轮8的啮合关系,控制器10可计算出控制齿轮8的转速n4:In order to obtain the rotational speed n 2 of the
n4=b n2=b((1+a)n3-n1)/a,n 4 =b n 2 =b((1+a)n 3 -n 1 )/a,
实际应用中,行星架6转速n3会存在一个预测变化量Δn3,该变化量也应计入,则控制器10计算控制齿轮8的转速n4应修正为:In practical applications, there will be a predicted variation Δn 3 in the rotation speed n 3 of the
n4=b n2=b((1+a)(n3+Δn3)-n1)/a,n 4 =b n 2 =b((1+a)(n 3 +Δn 3 )-n 1 )/a,
然后使动力源9按得出的转速运转,即可实现本发明的控制方法。Then make the
本发明风力发电机组预测型恒速箱系统在实际运行中,通过计算获得的发电机主轴12转速n1可能会与设定值有偏差,控制器10通过动力源9修正控制齿轮8的转速n4来进行。设定控制齿轮8转速n4的修正系数为c,当发电机主轴12转速n1高于设定值时,控制器10修正控制齿轮8的实际转速为(1+c)n4;当发电机主轴12转速n1低于设定值时,控制器10修正控制齿轮8的实际转速为(1-c)n4。在本发明风力发电机组被动型恒速箱系统运行中,控制器10对控制齿轮8转速的修正会持续不断地进行,从而保证在不同的风速作用在风轮的条件下恒速箱的输出转速能稳定在设定值。In the actual operation of the predictive constant speed box system of the wind power generating set of the present invention, the rotational speed n of the
本发明所述的实施例仅仅是对本发明的优选实施方式进行的描述,并非对本发明构思和范围进行限定,在不脱离本发明设计思想的前提下,本领域中工程技术人员对本发明的技术方案作出的各种变型和改进,均应落入本发明的保护范围,本发明请求保护的技术内容,已经全部记载在权利要求书中。The embodiments described in the present invention are only a description of the preferred implementation of the present invention, and are not intended to limit the concept and scope of the present invention. Various modifications and improvements made should fall within the protection scope of the present invention, and the technical content claimed in the present invention has been fully recorded in the claims.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110597206.7A CN113389859B (en) | 2021-05-31 | 2021-05-31 | Wind generating set prediction type constant speed box system and constant speed control method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110597206.7A CN113389859B (en) | 2021-05-31 | 2021-05-31 | Wind generating set prediction type constant speed box system and constant speed control method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN113389859A CN113389859A (en) | 2021-09-14 |
| CN113389859B true CN113389859B (en) | 2023-04-25 |
Family
ID=77619541
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110597206.7A Active CN113389859B (en) | 2021-05-31 | 2021-05-31 | Wind generating set prediction type constant speed box system and constant speed control method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN113389859B (en) |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4112311A (en) * | 1975-12-18 | 1978-09-05 | Stichting Energieonderzoek Centrum Nederland | Windmill plant for generating energy |
| US4774855A (en) * | 1982-08-17 | 1988-10-04 | Vickers Shipbuilding And Engineering Limited | Apparatus for providing an electrical generator with a constant rotational speed from a variable speed input |
| CN201106525Y (en) * | 2007-08-27 | 2008-08-27 | 上海瑞仁国际贸易有限公司 | A wind power generating set with a self-controlled constant speed speed increaser |
| JP2010031673A (en) * | 2008-07-25 | 2010-02-12 | Apm Corp | Wind power generation system |
| CN102120424A (en) * | 2010-12-09 | 2011-07-13 | 浙江师范大学 | Controller and control method of eddy-current retarder of combined braking system |
| CN102506017A (en) * | 2011-11-22 | 2012-06-20 | 江麓机电科技有限公司 | Static-pressure differential speed regulation-type main transmission in wind generating set |
| CN102852726A (en) * | 2012-08-29 | 2013-01-02 | 华北电力大学 | Gird-connected wind power generation system with self-adaptive speed regulation composite transmission based on differential mechanism |
| CN103233862A (en) * | 2013-04-09 | 2013-08-07 | 浙江大学 | Stepless speed-up type wind power generation system |
| CN103644279A (en) * | 2013-12-23 | 2014-03-19 | 重庆望江工业有限公司 | Constant-speed output gearbox of wind-power generating set |
| CN103967721A (en) * | 2014-05-23 | 2014-08-06 | 张东升 | Wind generating set |
| CN104066977A (en) * | 2011-12-20 | 2014-09-24 | 文德浮洛科技有限公司 | Power generating system and hydraulic control system |
| CN105114347A (en) * | 2015-08-14 | 2015-12-02 | 浙江迪野农业装备有限公司 | Electric power test system for agricultural fan |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008184932A (en) * | 2007-01-29 | 2008-08-14 | Mitsubishi Heavy Ind Ltd | Wind power generator |
| US8008797B2 (en) * | 2009-02-13 | 2011-08-30 | Bernard Joseph Simon | System for converting wind power to electrcial power with transmission |
| US8388481B2 (en) * | 2009-07-20 | 2013-03-05 | Differential Dynamics Corporation | System and method for providing a constant output from a variable flow input |
| DE102009028612A1 (en) * | 2009-08-18 | 2011-02-24 | Zf Friedrichshafen Ag | Wind turbine and method for controlling the operation of a wind turbine |
| US9476401B2 (en) * | 2010-07-20 | 2016-10-25 | Differential Dynamics Corporation | Marine hydrokinetic turbine |
-
2021
- 2021-05-31 CN CN202110597206.7A patent/CN113389859B/en active Active
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4112311A (en) * | 1975-12-18 | 1978-09-05 | Stichting Energieonderzoek Centrum Nederland | Windmill plant for generating energy |
| US4774855A (en) * | 1982-08-17 | 1988-10-04 | Vickers Shipbuilding And Engineering Limited | Apparatus for providing an electrical generator with a constant rotational speed from a variable speed input |
| CN201106525Y (en) * | 2007-08-27 | 2008-08-27 | 上海瑞仁国际贸易有限公司 | A wind power generating set with a self-controlled constant speed speed increaser |
| JP2010031673A (en) * | 2008-07-25 | 2010-02-12 | Apm Corp | Wind power generation system |
| CN102120424A (en) * | 2010-12-09 | 2011-07-13 | 浙江师范大学 | Controller and control method of eddy-current retarder of combined braking system |
| CN102506017A (en) * | 2011-11-22 | 2012-06-20 | 江麓机电科技有限公司 | Static-pressure differential speed regulation-type main transmission in wind generating set |
| CN104066977A (en) * | 2011-12-20 | 2014-09-24 | 文德浮洛科技有限公司 | Power generating system and hydraulic control system |
| CN102852726A (en) * | 2012-08-29 | 2013-01-02 | 华北电力大学 | Gird-connected wind power generation system with self-adaptive speed regulation composite transmission based on differential mechanism |
| CN103233862A (en) * | 2013-04-09 | 2013-08-07 | 浙江大学 | Stepless speed-up type wind power generation system |
| CN103644279A (en) * | 2013-12-23 | 2014-03-19 | 重庆望江工业有限公司 | Constant-speed output gearbox of wind-power generating set |
| CN103967721A (en) * | 2014-05-23 | 2014-08-06 | 张东升 | Wind generating set |
| CN105114347A (en) * | 2015-08-14 | 2015-12-02 | 浙江迪野农业装备有限公司 | Electric power test system for agricultural fan |
Non-Patent Citations (4)
| Title |
|---|
| 刘林 ; 麦云飞 ; 宁李谱 ; .兆瓦级风力发电机组电动变桨距控制系统设计.机械制造.2008,(09),19-22. * |
| 王迪 ; 常山 ; 杨龙 ; .海上风力发电液力调速控制系统分析.舰船科学技术.2018,(第21期),86-91. * |
| 芮晓明 ; 谢鲁冰 ; 高学伟 ; 修长开 ; .差动调速型风力发电机组并网控制研究.自动化仪表.2019,(12),39-44. * |
| 赵迎生 ; 赵又群 ; 魏超 ; .汽车联合制动系统制动力分配系数优化.农业机械学报.2009,(第10期),14-17. * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN113389859A (en) | 2021-09-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104153942B (en) | Wind turbine and method for controlling wind turbine load | |
| CN102032108B (en) | Method and system for controlling wind turbine | |
| CN103807096B (en) | Wind turbine and control method thereof | |
| US7952215B2 (en) | Wind turbine generator, wind turbine generator system, and power generation control method of wind turbine generator | |
| EP3067556B1 (en) | System and method for variable tip-speed-ratio control of a wind turbine | |
| US8210811B2 (en) | Apparatus and method for operation of a wind turbine | |
| JP6494514B2 (en) | Wind turbine control method using predicted input wind speed | |
| EP3812579B1 (en) | System and method for improved extreme load control for wind turbine components | |
| EP2757256A2 (en) | Wind turbine and method for adjusting rotor blade pitch angle in wind turbines | |
| US20150275860A1 (en) | Fatigue in wind turbines | |
| US9341159B2 (en) | Methods for controlling wind turbine loading | |
| CA2681784A1 (en) | A speed control for wind turbines | |
| CN112005009B (en) | System and method for improved overspeed monitoring of a wind turbine operating at a reduced rotor speed | |
| CN113494418B (en) | System and method for reducing load acting on rotor blades of a wind turbine | |
| CN113389859B (en) | Wind generating set prediction type constant speed box system and constant speed control method | |
| EP4093967B1 (en) | System and method for controlling a wind turbine | |
| EP3124789B1 (en) | Wind turbine control using secondary controller to adjust wind speed and/or direction input values | |
| CN113389860A (en) | Passive constant-speed transmission control system and constant-speed control method for wind generating set | |
| EP2656499A2 (en) | Control of water current turbines | |
| EP3699421B1 (en) | Method of dynamically adjusting a rate of change of a rotor speed set point during wind turbine shutdown | |
| CN108301988A (en) | System and method for determining the torque in wind turbine shaft | |
| WO2013068411A1 (en) | Control of water current turbines | |
| US11421653B2 (en) | Systems and methods for multivariable control of a power generating system | |
| JP2025056729A (en) | Method for estimating the values of wind turbine operating parameters | |
| JP2021038729A (en) | Wind power generation system and diagnostic method of wind power generation system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |