CN113390765B - Method for researching influence of shock wave on evaporation process of fuel liquid drops under supersonic airflow - Google Patents
Method for researching influence of shock wave on evaporation process of fuel liquid drops under supersonic airflow Download PDFInfo
- Publication number
- CN113390765B CN113390765B CN202110735824.3A CN202110735824A CN113390765B CN 113390765 B CN113390765 B CN 113390765B CN 202110735824 A CN202110735824 A CN 202110735824A CN 113390765 B CN113390765 B CN 113390765B
- Authority
- CN
- China
- Prior art keywords
- section
- low
- pressure
- particle size
- shock wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000035939 shock Effects 0.000 title claims abstract description 152
- 239000000446 fuel Substances 0.000 title claims abstract description 94
- 238000000034 method Methods 0.000 title claims abstract description 70
- 238000001704 evaporation Methods 0.000 title claims abstract description 23
- 230000008020 evaporation Effects 0.000 title claims abstract description 23
- 230000008569 process Effects 0.000 title claims abstract description 23
- 239000007788 liquid Substances 0.000 title claims description 20
- 239000002245 particle Substances 0.000 claims abstract description 86
- 238000009826 distribution Methods 0.000 claims abstract description 46
- 238000005259 measurement Methods 0.000 claims abstract description 35
- 238000000889 atomisation Methods 0.000 claims abstract description 29
- 230000003993 interaction Effects 0.000 claims abstract description 13
- 238000011160 research Methods 0.000 claims abstract description 11
- 238000012545 processing Methods 0.000 claims abstract description 7
- 239000007789 gas Substances 0.000 claims description 49
- 238000007789 sealing Methods 0.000 claims description 48
- 230000008033 biological extinction Effects 0.000 claims description 42
- 230000003287 optical effect Effects 0.000 claims description 20
- 230000008859 change Effects 0.000 claims description 17
- 238000009434 installation Methods 0.000 claims description 17
- 230000004044 response Effects 0.000 claims description 13
- 230000033001 locomotion Effects 0.000 claims description 10
- 239000013307 optical fiber Substances 0.000 claims description 10
- 239000007921 spray Substances 0.000 claims description 4
- 239000000443 aerosol Substances 0.000 claims description 3
- 239000002912 waste gas Substances 0.000 claims 1
- 238000002474 experimental method Methods 0.000 abstract description 11
- 238000005474 detonation Methods 0.000 abstract description 2
- 238000002485 combustion reaction Methods 0.000 description 12
- 239000003595 mist Substances 0.000 description 12
- 239000005357 flat glass Substances 0.000 description 11
- 230000008054 signal transmission Effects 0.000 description 7
- 230000007704 transition Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000000835 fiber Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000013480 data collection Methods 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000006199 nebulizer Substances 0.000 description 2
- 239000003380 propellant Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M15/00—Testing of engines
- G01M15/04—Testing internal-combustion engines
Landscapes
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
本发明属于超燃冲压发动机和爆震发动机技术领域,具体涉及超声速气流下激波对燃料液滴蒸发过程影响的研究方法,所述研究方法包括步骤1、计算高压段内临界气体的压力值;步骤2、高压段预增压;步骤3、测量初始光强;步骤4、雾化;步骤5、测量激波前燃料液滴粒径分布;步骤6、产生激波;步骤7、测量激波与燃料液滴相互作用过程中燃料液滴粒径分布;步骤8、测量激波后燃料液滴粒径分布;步骤9、卸压;步骤10、数据处理。本发明能够在实验中产生激波的同时,实现燃料液滴粒径的产生和燃料液滴粒径的测量。
The invention belongs to the technical field of scramjet engines and detonation engines, and in particular relates to a research method for the influence of shock waves on fuel droplet evaporation processes under supersonic airflow. The research method includes step 1: calculating the pressure value of a critical gas in a high pressure section; Step 2, pre-pressurization in the high pressure section; Step 3, measure the initial light intensity; Step 4, atomization; Step 5, measure the particle size distribution of the fuel droplets before the shock wave; Step 6, generate a shock wave; Step 7, measure the shock wave The particle size distribution of the fuel droplets during the interaction with the fuel droplets; step 8, measuring the particle size distribution of the fuel droplets after the shock wave; step 9, pressure relief; and step 10, data processing. The invention can realize the generation of the particle size of the fuel droplet and the measurement of the particle size of the fuel droplet while generating the shock wave in the experiment.
Description
技术领域technical field
本发明属于超燃冲压发动机和爆震发动机技术领域,具体涉及超声速气流下激波对燃料液滴蒸发过程影响的研究方法。The invention belongs to the technical field of scramjet engines and detonation engines, and particularly relates to a research method for the influence of shock waves on fuel droplet evaporation processes under supersonic airflow.
背景技术Background technique
超燃冲压发动机是吸气式超声速飞行器的动力装置,其一般包括进气道、隔离段、燃烧室和尾喷管四个部分。超燃冲压发动机工作时,来流经进气道减速增压后以超声速通过隔离段进入燃烧室,并在燃烧室中与飞行器携带的推进剂进行混合燃烧,从而将推进剂的化学能转化为热能,燃烧后的高温高压气体再通过尾喷管膨胀做功将热能转化为动能。由于超燃冲压发动机不需要携带氧化剂而具有较高的比冲,在航空航天和国防领域深受青睐。The scramjet is the power plant of the air-breathing supersonic vehicle, which generally includes four parts: the intake port, the isolation section, the combustion chamber and the tail nozzle. When the scramjet is working, it flows through the intake port to decelerate and pressurize, and then enters the combustion chamber through the isolation section at supersonic speed, and mixes and burns with the propellant carried by the aircraft in the combustion chamber, thereby converting the chemical energy of the propellant into Thermal energy, the high temperature and high pressure gas after combustion then expands through the tail nozzle to do work to convert the thermal energy into kinetic energy. Since scramjets do not need to carry oxidants and have a high specific impulse, they are favored in the aerospace and defense fields.
由于超燃冲压发动机燃烧室入口气流速度为超声速,可燃混合物在燃烧室的驻留时间极短,另外燃烧室入口的超声速气流在燃烧室内壁的作用下会产生激波,使得燃烧室内的环境变得更加恶劣,这给燃料与来流空气的混合、燃烧带来极大的困难。如何使燃料在有限的空间和极短的时间内完成喷注、雾化、蒸发、混合、燃烧也就成了超燃冲压发动机研究领域的难题。其中,蒸发过程在整个过程中占有较长的时间,并影响到混合和燃烧过程,最终影响到燃料化学能的释放。因此,对超声速气流下激波对燃料液滴蒸发过程的影响进行研究具有重要意义。Since the airflow velocity at the inlet of the combustion chamber of the scramjet is supersonic, the residence time of the combustible mixture in the combustion chamber is extremely short, and the supersonic airflow at the inlet of the combustion chamber will generate shock waves under the action of the inner wall of the combustion chamber, which makes the environment in the combustion chamber change. It is even worse, which brings great difficulties to the mixing and combustion of fuel and incoming air. How to complete the injection, atomization, evaporation, mixing and combustion of fuel in a limited space and a very short time has become a difficult problem in the field of scramjet research. Among them, the evaporation process occupies a long time in the whole process, and affects the mixing and combustion process, and finally affects the release of fuel chemical energy. Therefore, it is of great significance to study the effect of shock waves on the evaporation process of fuel droplets under supersonic airflow.
由于激波的存在,当燃料液滴粒径较大时,液滴将被激波击碎,无法通过测量粒径变化来研究液滴蒸发规律。相关理论表明,当液滴粒径满足韦伯数处于临界韦伯数以下时,液滴将不发生破碎,在研究液滴蒸发问题时可以不再考虑液滴的破碎问题。但是,此时的液滴直径减小到微米量级,再加上存在激波的干扰,传统的测量方法将难以胜任此时的粒径测量任务。另外,平时所用的液滴生成方式产生液滴粒径较大,难以达到实验的要求。因此,在研究超声速气流下激波对燃料液滴蒸发过程的影响时,现有的实验装置难以同时满足产生激波、产生小液滴以及在激波干扰下测量小液滴粒径的需求。Due to the existence of the shock wave, when the fuel droplet size is large, the droplet will be broken by the shock wave, and it is impossible to study the droplet evaporation law by measuring the particle size change. Relevant theories show that when the droplet size satisfies the Weber number below the critical Weber number, the droplet will not break up, and the droplet breakup problem can no longer be considered when studying the problem of droplet evaporation. However, the droplet diameter at this time is reduced to the order of micrometers, and there is the interference of shock waves, so the traditional measurement method will be difficult to perform the particle size measurement task at this time. In addition, the droplet generation method usually used produces large droplet size, which is difficult to meet the requirements of the experiment. Therefore, when studying the effect of shock waves on the evaporation process of fuel droplets under supersonic airflow, it is difficult for existing experimental devices to simultaneously meet the needs of generating shock waves, generating small droplets and measuring the particle size of small droplets under the interference of shock waves.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题是针对上述现有技术的不足,而提供一种超声速气流下激波对燃料液滴蒸发过程影响的研究方法,该超声速气流下激波对燃料液滴蒸发过程影响的研究方法能够在实验产生激波的同时,实现燃料液滴的产生和燃料液滴粒径的测量。The technical problem to be solved by the present invention is aimed at the deficiencies of the above-mentioned prior art, and provides a research method for the influence of shock waves on the evaporation process of fuel droplets under supersonic airflow. The research method can realize the generation of fuel droplets and the measurement of the particle size of fuel droplets while the shock wave is generated experimentally.
本发明解决其技术问题所采用的技术方案是:一种超声速气流下激波对燃料液滴蒸发过程影响的研究方法,其特征在于,包括激波管,激波管包括沿入射激波运动方向依次设置的高压段、低压段和实验段,高压段和低压段之间设置有膜片;所述研究方法包括以下步骤:The technical scheme adopted by the present invention to solve the technical problem is: a method for researching the effect of shock waves on the evaporation process of fuel droplets under supersonic airflow, which is characterized in that the shock wave tube includes a shock wave tube along the movement direction of the incident shock wave. The high-pressure section, the low-pressure section and the experimental section are arranged in sequence, and a diaphragm is arranged between the high-pressure section and the low-pressure section; the research method includes the following steps:
步骤1、计算高压段内临界气体的压力值:高压段内的临界气体压力值为p4低压段内的气体压力值为p1,p4与p1的比值为p41;确定所需激波马赫数Mas,测得p1,通过p41与Mas的关系式,进而得到高压段内临界气体的压力值p4;Step 1. Calculate the pressure value of the critical gas in the high pressure section: the critical gas pressure value in the high pressure section is p 4 The gas pressure in the low pressure section is p 1 , and the ratio of p 4 to p 1 is p 41 ; determine the required excitation Wave Mach number Ma s , measure p 1 , and then obtain the pressure value p 4 of the critical gas in the high-pressure section through the relationship between p 41 and Ma s ;
步骤2、高压段预增压:通过压力控制系统对高压段进行增压,使得当前高压段内的气体压力值p′4接近但小于p4;
步骤3、测量初始光强:采用多波长消光法粒径测量系统测量消光前的初始光强;
步骤4、雾化:启动抽气泵,超声波雾化系统与实验段连通,超声波雾化系统中的超声波雾化器通过雾化转接段将雾化后的燃料液滴喷入实验段内行程气溶胶,直至达到设定浓度;
步骤5、测量激波前燃料液滴粒径分布:在雾化的同时,采用多波长消光法测量粒径系统对实验段内的燃料液滴的粒径分布进行实时测量,并得到波前燃料液滴粒径分布随时间的变化曲线;
步骤6、产生激波:通过压力控制系统对高压段进行增压,使得当前高压段内的气体压力值达到p4;此时,膜片破裂,高压段内的气体迅速冲入低压段和实验段,并在低压段和实验段内产生激波;
步骤7、测量激波与燃料液滴相互作用过程中燃料液滴粒径分布:在激波运动时,多波长消光法测量粒径系统对实验段内的燃料液滴粒径分布进行实时测量,并得到激波与燃料液滴相互作用过程中燃料液滴粒径分布随时间的变化曲线;同时通过若干低压段压电传感器之间的安装距离与激波发生时若干低压段压电传感器之间的响应时间差计算处多组激波速度,将多组激波速度的平均值作为实际激波速度Δv,从而得到实际激波马赫数Mas;
步骤8、测量激波后燃料液滴粒径分布:激波过后,多波长消光法测量粒径系统继续对实验段内的燃料液滴的粒径分布进行实时测量,直至多波长消光法测量粒径系统恢复至原始光强,停止测量,从而得到激波后燃料液滴粒径分布随时间的变化曲线;
步骤9、卸压:通过压力控制系统排除激波管中的废气;
步骤10、数据处理:计算机主机根据多波长消光法测量粒径系统测得的激波与燃料液滴相互作用过程中燃料液滴粒径分布随时间的变化曲线和波后燃料液滴粒径分布随时间的变化曲线与实际激波马赫数Mas的关系,从而得到燃料液滴蒸发速率与激波马赫数Mas之间的关系。
作为本发明的进一步优选,步骤1中p1为大气压或者预先设定的具体压力值;p41与Mas的关系式为:As a further preference of the present invention, in step 1, p 1 is atmospheric pressure or a preset specific pressure value; the relational formula between p 41 and Mas is:
式中a14为声速比,可表示为:where a 14 is the sound speed ratio, which can be expressed as:
其中,γ1为低压段气体的比热比,γ4为高压段气体的比热比,M1为低压段气体的分子量,M4为高压段气体的分子量,T1为低压段气体的初始温度,T4为高压段气体的初始温度。Among them, γ 1 is the specific heat ratio of the gas in the low pressure section, γ 4 is the specific heat ratio of the gas in the high pressure section, M 1 is the molecular weight of the gas in the low pressure section, M 4 is the molecular weight of the gas in the high pressure section, and T 1 is the initial stage of the gas in the low pressure section. temperature, T4 is the initial temperature of the gas in the high pressure section .
作为本发明的进一步优选,步骤4中喷入实验段内的燃料液滴达到设定浓度后,超声波雾化系统与实验段之间封闭。As a further preference of the present invention, after the fuel droplets injected into the experimental section in
作为本发明的进一步优选,多波长消光法粒径测量系统包括光纤耦合器、衍射光栅、光电探测器、信号调整电路以及数据采集卡;步骤3、步骤5、步骤7以及步骤8中均通过光纤耦合器将多个波长的光路耦合成一束光路并输出穿过实验段,然后通过衍射光栅分成路数与波长数相同的光路;光电探测器将探测到的分光后的各波长光强信号转化成的电信号通过信号调整电路传输至数据采集卡,从而反演出燃料液滴粒径和浓度的变化,得到相应的燃料液滴粒径分布随时间的变化曲线。As a further preference of the present invention, the multi-wavelength extinction method particle size measurement system includes a fiber coupler, a diffraction grating, a photodetector, a signal adjustment circuit and a data acquisition card; in
作为本发明的进一步优选,步骤7中,实际激波马赫数Mas=Δv/a,a为声速。As a further preference of the present invention, in
作为本发明的进一步优选,若干低压段压电传感器为沿入射激波运动方向依次设置的低压段I号压电传感器、低压段II号压电传感器以及低压段III号压电传感器;实际激波速度Δv计算公式如下:As a further preference of the present invention, the several low-voltage segment piezoelectric sensors are the low-voltage segment I piezoelectric sensors, the low-voltage segment II piezoelectric sensors, and the low-voltage segment III piezoelectric sensors arranged in sequence along the movement direction of the incident shock wave; the actual shock wave The calculation formula of speed Δv is as follows:
式中:where:
低压段I号压电传感器与低压段II号压电传感器之间的安装距离为ΔL1,The installation distance between the piezoelectric sensor No. I in the low-voltage section and the piezoelectric sensor in the low-voltage section II is ΔL 1 ,
低压段I号压电传感器与低压段II号压电传感器之间的响应时间差为Δt1,The response time difference between the piezoelectric sensor No. I in the low pressure section and the piezoelectric sensor No. II in the low pressure section is Δt 1 ,
低压段I号压电传感器与低压段III号压电传感器之间的安装距离为ΔL2,The installation distance between the piezoelectric sensor of the low-voltage section I and the piezoelectric sensor of the low-voltage section III is ΔL 2 ,
低压段I号压电传感器与低压段III号压电传感器之间的响应时间差为Δt2,The response time difference between the piezoelectric sensor No. I in the low pressure section and the piezoelectric sensor No. III in the low pressure section is Δt 2 ,
低压段II号压电传感器与低压段III号压电传感器之间的安装距离为ΔL3,The installation distance between the piezoelectric sensor of the low-voltage section II and the piezoelectric sensor of the low-voltage section III is ΔL 3 ,
低压段II号压电传感器与低压段III号压电传感器之间的响应时间差为Δt3。The response time difference between the piezoelectric sensor No. II in the low-voltage section and the piezoelectric sensor in the low-voltage section III is Δt 3 .
通过以上技术方案,相对于现有技术,本发明具有以下有益效果:Through the above technical solutions, with respect to the prior art, the present invention has the following beneficial effects:
1.本发明在实验时,通过超声波雾化系统产生微米级的燃料液滴并将微米级的燃料液滴喷入实验段,然后通过向高压段增压使得膜片破裂,从而在低压段和实验段内产生激波;同时依据多波长消光法粒径测量系统对实验段内微米级的燃料液滴的粒径进行实时测量。1. During the experiment of the present invention, the micron-scale fuel droplets are generated by the ultrasonic atomization system and sprayed into the experimental section, and then the diaphragm is ruptured by pressurizing the high-pressure section, so that the low-pressure section and A shock wave is generated in the experimental section; at the same time, the particle size of the micron fuel droplets in the experimental section is measured in real time according to the multi-wavelength extinction method particle size measurement system.
2.本发明可以根据实验需要选择不同强度的膜片以产生不同强度的激波,且因为激波管内截面均为矩形,所产生的激波无需经历以往设计方案中的圆转方段,因此产生的激波品质更好。2. The present invention can select diaphragms of different intensities to generate shock waves of different intensities according to the needs of the experiment, and because the inner section of the shock tube is all rectangular, the generated shock waves do not need to go through the circle-to-square section in the previous design scheme, so The resulting shock waves are of better quality.
3.本发明通过安装的若干低压段压电传感器检测出每个低压段压电传感器与其他低压段压电传感器间检测到压力变化的时间差,依据该些时间差与每个低压段压电传感器与其他低压段压电传感器间的安装距离计算出多个激波速度,再求激波速度的平均值从而减小误差。3. The present invention detects the time difference between each low-voltage segment piezoelectric sensor and other low-voltage segment piezoelectric sensors to detect the pressure change through the installed several low-voltage segment piezoelectric sensors. The installation distance between the piezoelectric sensors in other low-voltage sections is used to calculate a plurality of shock wave velocities, and then the average value of the shock wave velocities is calculated to reduce the error.
4.本发明的第一可拆卸观察窗和第二可拆卸观察窗能够为多种测量方式提供测量通道,可以满足不同实验的条件下的测量需求。4. The first detachable observation window and the second detachable observation window of the present invention can provide measurement channels for various measurement methods, and can meet the measurement requirements under different experimental conditions.
5.本发明的雾化器转接段,不仅可以将超声波雾化器和激波管连接起来,还可以通过凸轮手柄带动密封杆等其他结构快速移动实现快速密封;凸轮手柄不需要额外的控制装置且通过凸轮手柄自身重力即可实现锁紧,因此发生故障率较低,具有较高的可靠性。5. The atomizer adapter section of the present invention can not only connect the ultrasonic atomizer and the shock tube, but also can drive the sealing rod and other structures to move quickly through the cam handle to achieve rapid sealing; the cam handle does not require additional control The device can be locked by the gravity of the cam handle itself, so the failure rate is low and the reliability is high.
6.本发明中的多波长消光法粒径测量系统中的激光光源阵列的选择具有灵活性,可以根据实验段中物质的消光特性选择不同波长的光源进行组合;数据采集卡可以根据采样频率的需要而选择。6. The selection of the laser light source array in the multi-wavelength extinction method particle size measurement system in the present invention is flexible, and light sources of different wavelengths can be selected and combined according to the extinction characteristics of the substances in the experimental section; the data acquisition card can be combined according to the sampling frequency. Choose as needed.
附图说明Description of drawings
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
图1是本发明的整体结构立体图。FIG. 1 is a perspective view of the overall structure of the present invention.
图2是本发明的整体结构主视图。FIG. 2 is a front view of the overall structure of the present invention.
图3是本发明的整体结构俯视图。3 is a top view of the overall structure of the present invention.
图4是本发明的夹膜段、膜片、高压段和低压I段的装配图。FIG. 4 is an assembly diagram of the sandwich section, diaphragm, high pressure section and low pressure I section of the present invention.
图5是本发明的夹膜段和膜片的拆分图。Figure 5 is an exploded view of the capsular segment and diaphragm of the present invention.
图6是本发明的第二可拆卸观察窗的装配图。Figure 6 is an assembled view of the second removable viewing window of the present invention.
图7是本发明的第二可拆卸观察窗的爆炸图。Figure 7 is an exploded view of the second removable viewing window of the present invention.
图8是本发明的雾化器转接段的主视图。Figure 8 is a front view of the nebulizer adapter section of the present invention.
图9是本发明的雾化器转接段的俯视图。Figure 9 is a top view of the nebulizer adapter section of the present invention.
图10是本发明的雾化器转接段处于密封状态的立体图。Fig. 10 is a perspective view of the adapter section of the atomizer of the present invention in a sealed state.
图11是本发明的雾化器转接段处于开通状态的立体图。FIG. 11 is a perspective view of the adapter section of the atomizer of the present invention in an open state.
图12是本发明的第二盲孔板的立体图。12 is a perspective view of the second blind hole plate of the present invention.
图13是本发明的转接段腔体的立体图。FIG. 13 is a perspective view of the transition section cavity of the present invention.
图14是本发明的密封杆支撑板的立体图。14 is a perspective view of the seal rod support plate of the present invention.
图15是本发明的密封杆联动板的立体图。Fig. 15 is a perspective view of the seal rod linkage plate of the present invention.
图16是本发明的密封杆的立体图。Fig. 16 is a perspective view of the seal rod of the present invention.
图17是本发明的凸轮手柄的立体图。17 is a perspective view of the cam handle of the present invention.
图18是本发明的密封圈压紧螺母的立体图。Fig. 18 is a perspective view of the packing nut of the present invention.
图中:1.高压气瓶;2.压力控制柜;3.第一盲孔板;4.高压段;5.高压段压电传感器;6.夹膜段;7.低压I段;8.低压段I号压电传感器;9.低压II段;10.低压段II号压电传感器;11.低压段III号压电传感器;12.激光光源阵列;13.光纤;14.实验段;15.第二盲孔板;16.转接段腔体;17.密封杆支撑板;18.信号调理器;19.光电探测器;20.衍射光栅;21.数据采集卡;22.导流管道;23.超声波雾化器;24.计算机主机;25.显示器;26.抽气泵;27.抽气管道;28.三通管接头;29.高压管道;30.进气管道;31.排气管道;32.密封杆联动板;33.密封杆;34.凸轮手柄;35.压电传感器信号传输线;36.光纤耦合器;37.第一观察窗外框;38.第一观察窗内框;39.第二观察窗外框;40.第二观察窗内框;41.光电探测器信号传输线;42.膜片;43.调整螺钉;44.第一观察窗玻璃;45.连接螺钉;46.开口销;47.内六角螺钉;48.螺母;49.第一O型圈;50.第二O型圈;51.密封圈压紧螺母;52.V型圈。In the figure: 1. High pressure gas cylinder; 2. Pressure control cabinet; 3. The first blind hole plate; 4. High pressure section; 5. High pressure section piezoelectric sensor; Piezoelectric sensor of low voltage section I; 9. low voltage section II; 10. piezoelectric sensor of low voltage section II; 11. piezoelectric sensor of low voltage section III; 12. Laser light source array; 13. Optical fiber; 14. Experimental section; 15 .Second blind hole plate; 16. Adapter section cavity; 17. Seal rod support plate; 18. Signal conditioner; 19. Photoelectric detector; 20. Diffraction grating; 21. Data acquisition card; 22.
具体实施方式Detailed ways
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。The present invention will now be described in further detail with reference to the accompanying drawings. These drawings are all simplified schematic diagrams, and only illustrate the basic structure of the present invention in a schematic manner, so they only show the structures related to the present invention.
实施例1Example 1
本实施例提供一种优选实施方案,如图1至图18所示,一种超声速气流下激波对燃料液滴蒸发过程影响的研究装置,包括控制装置、激波管系统、超声波雾化系统、压力检测系统以及多波长消光法粒径测量系统,该些系统具体结构如下:This example provides a preferred implementation, as shown in Figures 1 to 18, a research device for the effect of shock waves on the evaporation process of fuel droplets under supersonic airflow, including a control device, a shock tube system, and an ultrasonic atomization system , pressure detection system and multi-wavelength extinction particle size measurement system, the specific structures of these systems are as follows:
如图1所示,上述控制装置包括计算机主机24和显示器25,显示器25与计算机主机24连接,计算机主机24通过数据线分别与压力检测系统和多波长消光法粒径测量系统连接。上述激波管系统包括激波管和压力控制系统,其中:As shown in Figure 1, the above-mentioned control device comprises a
如图1所示,上述激波管包括沿入射激波运动方向依次设置的高压段4、低压段以及实验段14,优选地,激波管可采用矩形截面激波管;在高压段4远离低压段的一端密封安装有第一盲孔板3,在高压段4与低压段的交接处密封设置有膜片42;上述低压段包括沿入射激波运动方向依次设置的低压I段7和低压II段9;实验段14的两个相对侧面分别设置有第一可拆卸观察窗和第二可拆卸观察窗,为便于两可拆卸观察窗的安装,在实验段14相应位置开窗。优选地,实验段14内截面设计为矩形,以在开窗的同时保证内表面的平整,避免因内表面不平整对激波阵面造成影响而引入复杂波系;两可拆卸观察窗与两可拆卸观察窗之间的实验段14形成便于多波长消光法粒径测量系统进行测量的测量通道。As shown in FIG. 1 , the above-mentioned shock tube includes a high-
本实施方案还包括夹膜段6,夹膜段6用于夹紧膜片42并设置于高压段4与低压段之间,此设计是为了在膜片42破裂前将高压段4和低压段隔离开以便形成不同的初始压力。优选地,高压段4、夹膜段6和低压段的内截面以及膜片42的形状均呈矩形,以避免现有技术中激波需要经历圆转方段而由激波阵面几何形状变化对激波品质带来的影响。The present embodiment also includes a
如图3、图6和图7所示,第一可拆卸观察窗包括第一观察窗内框38、第一观察窗外框37以及第一观察窗玻璃,第二可拆卸观察窗包括第二观察窗内框40、第二观察窗外框39以及第二观察窗玻璃44。第一观察窗玻璃处于第一观察窗内框38与第一观察窗外框37之间,优选地,通过12颗调整螺钉43的调整作用第一观察窗玻璃内表面与第一观察窗内框38内表面重合,值得注意的是,调整过程中,调整螺钉43要对角调整。第二可拆卸观察窗与第一可拆卸观察窗结构一致,第二观察窗玻璃44处于第二观察窗内框40与第二观察窗外框39之间,优选地,通过12颗调整螺钉43的调整作用下第二观察窗玻璃44内表面与第二观察窗内框40内表面重合,值得注意的是,调整过程中,调整螺钉43要对角调整。在装配好第一可拆卸观察窗或第二可拆卸观察窗后,第一可拆卸观察窗或第二可拆卸观察窗将作为一个可拆卸的整体通过14颗连接螺钉45与实验段14固接,安装后的第一可拆卸观察窗和第二可拆卸观察窗内表面均与实验段14内表面平齐。即安装完后,第一观察窗玻璃内表面、第一观察窗内框38内表面和实验段14内表面处于同一平面内,第二观察窗玻璃44内表面、第二观察窗内框40内表面实验段14内表面处于同一平面内,且因为零件加工精度高而使配合处无明显缝隙,尽量避免了因内表面不平整而引入复杂波系。As shown in FIGS. 3 , 6 and 7 , the first detachable observation window includes a first observation window inner frame 38 , a first observation window
如图1和图2所示,上述压力控制系统用于控制通入激波管内的气体压力,压力控制系统包括高压气瓶1、高压管道29、压力控制柜2、进气管道30、排气管道31以及三通管接头28。高压气瓶1通过高压管道29与压力控制柜2连接,压力控制柜2连接有进气管道30和排气管道31,高压段4上开设一孔,优选地,该孔开设在高压段4下侧,该孔、进气管道30以及排气管道31通过三通管接头28连接,压力控制系统通过三通管接头28控制高压段4内的进气和排气,从而控制高压段4内的压力。优选地,高压气瓶1为高压段4提供压力源,压力控制柜2上安装有压力表、减压阀和截止阀,用于调节控制高压段4内的压力。As shown in Figures 1 and 2, the above-mentioned pressure control system is used to control the gas pressure introduced into the shock tube, and the pressure control system includes a high-pressure gas cylinder 1, a high-pressure pipeline 29, a
如图1和图2所示,上述超声波雾化系统用于向实验段14内喷入微米级的燃料液滴,上述超声波雾化系统包括超声波雾化器23、导流管道22以及雾化器转接段,其中:超声波雾化器23存储有液体燃料,超声波雾化器23具有产生液雾粒径小(产生液雾粒径在微米量级)且产生的液雾粒径分布均匀的优点,解决了喷嘴式雾化器产生粒径大的问题,并使产生的液雾粒径小而在实验中不必考虑液滴破碎的问题。导流管道22一端与超声波雾化器23连接,另一端与雾化器转接段连接,雾化器转接段与实验段14连接。As shown in FIGS. 1 and 2 , the above-mentioned ultrasonic atomization system is used to inject micron-scale fuel droplets into the
如图8至图11所示,上述雾化器转接段包括带孔的第二盲孔板15、转接段腔体16、带孔的密封杆支撑板17、带孔的密封杆联动板32以及若干密封杆33。带孔的第二盲孔板15、转接段腔体16、密封杆支撑板17组装形成与激波管连通的腔体,该腔体用于向激波管内转移由超声波雾化器23产生的液雾。As shown in FIGS. 8 to 11 , the above-mentioned atomizer adapter section includes a second
如图1、图8、图9和图12所示,上述第二盲孔板15与激波管上的实验段14连接,带孔的第二盲孔板15与实验段14接触的一侧中部设置有凸台,该凸台上开设若干通孔,优选地,将若干通孔远离转接段腔体16的一端孔口锪成锥形,通孔的数量为6个,以使燃料液滴进入激波管后分布均匀。优选地,上述带孔的第二盲孔板15材质为不锈钢,在带孔的第二盲孔板15与实验段14连接的面上铣有密封圈槽,用于安装第一O型圈49保证激波管的气密性。As shown in FIG. 1 , FIG. 8 , FIG. 9 and FIG. 12 , the above-mentioned second
如图8、图9和图13所示,上述转接段腔体16由不锈钢加工而成,其位于带孔的第二盲孔板15和密封杆支撑板17之间。优选地,转接段腔体16通过内六角螺钉47和螺母48配合与第二盲孔板15固接,在转接段腔体16两个端面分别铣有密封圈槽,分别用以安装第二O型圈50保证雾化器转接段的气密性。As shown in FIG. 8 , FIG. 9 and FIG. 13 , the
如图8、图9和图14所示,上述密封杆支撑板17通过内六角螺钉47和螺母48配合与转接段腔体16固接,密封杆支撑板17上开设若干与凸台上开设的若干通孔同轴的孔,相应的数量为6个。优选地,上述密封杆支撑板17由不锈钢加工而成,其作用是为密封杆33提供支撑以满足密封杆33轴向移动的需求。在密封杆支撑板17上加工有用于安装V型圈52的光孔部分,并加工有安装密封圈压紧螺母51的螺纹。密封圈压紧螺母51的作用有两部分,一是压紧V型圈52满足密封的要求;二是与密封杆支撑板17一起支撑密封杆33以消除密封杆33绕垂直其轴线方向自转,起到限位作用。As shown in Figure 8, Figure 9 and Figure 14, the above-mentioned sealing
如图8、图9和图15所示,上述密封杆联动板32设置于密封杆支撑板17远离转接段腔体16的一侧,密封杆联动板32上开设若干与凸台上开设的若干通孔同轴的孔,相应的数量为6个,且在密封杆联动板32相对的两侧分别设置回转轴。As shown in FIGS. 8 , 9 and 15 , the above-mentioned sealing
如图9、图10和图16所示,上述密封杆33一端设置锥面结构,另一端设置螺纹,密封杆33的数量相应的为6根。六根密封杆33设置螺纹的一端均与密封杆联动板32连接;密封杆33上的锥面结构可与凸台上开设的若干通孔呈锥形的一端配合形成密封,且在形成密封时凸台朝向实验段14的一面与密封杆33底面重合组成激波的反射面,使激波管密封。因为是锥面配合且激波朝着密封杆33底面冲来,所以在激波冲击过程中,锥面配合会越压越紧,保证了激波管气密性的要求。由于本实施方案中密封杆33属于细长杆,在加工时选择硬度较高的模具钢以防加工过程中容易发生的变形,并在研磨后镀铬以防生锈。As shown in FIG. 9 , FIG. 10 and FIG. 16 , one end of the sealing
如图8至图11、图17所示,本实施方案还包括两个对称安装在密封杆联动板32上的凸轮手柄34,凸轮手柄34起到控制实验段14和转接段腔体16之间通与断的作用。凸轮手柄34包括凸轮和手柄,凸轮中部开孔,手柄与凸轮固接,凸轮手柄34上凸轮中部的孔套在回转轴上并固定,仅需推动手柄即可实现凸轮手柄34的转动。凸轮手柄34的转动带动密封杆联动板32沿密封杆支撑板17上孔的轴线方向移动,进而同时带动六根密封杆33沿上述通孔的轴线方向移动,以实现密封杆33与带孔的第二盲孔板15的接触与脱离,进一步控制液雾进入激波管的开始与停止。优选地,在上述凸轮手柄34的回转轴上且位于凸轮手柄34远离密封杆联动板32安装开口销46,由开口销46限制凸轮手柄34沿回转轴轴向移动。上述密封杆联动板32可以借助凸轮手柄34进行快速移动,且可以借助凸轮手柄34的重力锁紧,避免了使用单独的控制机构去控制密封杆联动板32的移动和锁紧从而引入其他不可靠因素。As shown in FIG. 8 to FIG. 11 and FIG. 17 , this embodiment also includes two cam handles 34 symmetrically installed on the sealing
如图11所示,当密封杆33与带孔的第二盲孔板15脱离接触时,转接段腔体16与实验段14连通状态,液雾可以从雾化转接段的转接段腔体16内进入实验段14;如图9和图10所示,当密封杆33与带孔的第二盲孔板15接触时形成配合,此时转接段腔体16与实验段14为封闭状态。As shown in FIG. 11 , when the sealing
如图1和图3所示,上述压力检测系统包括若干低压段压电传感器和高压段压电传感器5,若干低压段压电传感器沿入射激波运动方向依次设置于低压II段9上。若干低压段压电传感器包括沿入射激波运动方向依次设置的低压段I号压电传感器8、低压段II号压电传感器10以及低压段III号压电传感器11。优选地,在低压II段9上方依次间隔开设三个仪器孔,在三个仪器孔内沿入射激波运动方向依次分别安装低压段I号压电传感器8、低压段II号压电传感器10以及低压段III号压电传感器11。在高压段4上方开设一个仪器孔,该仪器孔安装高压段压电传感器5。As shown in FIG. 1 and FIG. 3 , the above-mentioned pressure detection system includes several piezoelectric sensors in the low pressure section and
高压段压电传感器5、低压段I号压电传感器8、低压段II号压电传感器10以及低压段III号压电传感器11分别通过数据线与压电传感器信号传输线35一端连接,压电传感器信号传输线35另一端与计算机主机24连接。优选地,压电传感器信号传输线35将高压段压电传感器5、低压段I号压电传感器8、低压段II号压电传感器10以及低压段III号压电传感器11的信号经过处理传给计算机主机24,并显示在显示器25上。其中,高压段压电传感器5用于更准确地测量高压段4压力,以记录实验的实际工况;低压段I号压电传感器8、低压段II号压电传感器10以及低压段III号压电传感器11用于检测低压II段9上对应安装低压段压电传感器处的压力,同时计算机主机24记录下三处低压段压电传感器的压力变化的时刻。依据测量任意两个低压段压电传感器间的安装距离ΔL和任意两个低压段压电传感器间检测到压力变化时的时间差Δt可计算出激波的速度Δv,Δv=ΔL/Δt,然后对多组Δv的值求平均值以减小误差。The high-voltage
如图1和图3所示,多波长消光法粒径测量系统包括激光光源阵列12、光纤13、光纤耦合器36、衍射光栅20、光电探测器19、信号调理器18、数据采集卡21以及光电探测器信号传输线41。第一可拆卸观察窗朝向外部环境的一侧依次设置有光纤耦合器36、光纤13、激光光源阵列12;衍射光栅20设置于第二可拆卸观察窗朝向外部环境的一侧;光电探测器19设置于衍射光栅20的反射路径中,光电探测器19与信号调理器18连接,信号调理器18和数据采集卡21连接。优选地,上述激光光源阵列12根据测量物质的消光特性选择特定波长的光源进行组合,具有一定的灵活性。As shown in FIG. 1 and FIG. 3, the multi-wavelength extinction particle size measurement system includes a laser
上述光纤13分别将激光光源阵列12中每一波长的光传输至光纤耦合器36中,经过光纤耦合器36耦合成一路光并射出,随后合成的一路光垂直的经过第一观察窗玻璃射入实验段14内的样品池,经过样品池后垂直经过第二观察窗玻璃并射出,然后在衍射光栅20的作用下分光,分光后的光路数与耦合前的光路数即波数一致。The above-mentioned
上述光电探测器19可以探测到分光后的每一波长光路的光强,并将光强信号转化为电信号,在经过信号调理器18后被数据采集卡21采集到,经过光电探测器信号传输线41传输至计算机主机24。在计算机主机24的控制下,可以连续的测量光强信号的变化,通过反演算法反演出实验段14内液雾粒径和浓度的变化,进而研究超声速下激波对燃料液滴蒸发过程的影响。消光法具有测量下限小且不需要标定等优点,故可以满足在存在激波冲击的条件下测量微米级液滴粒径变化的需求。The above-mentioned
如图2所示,本实施方案还包括抽气泵26,低压I段7上开设一孔,该孔通过抽气管道27与抽气泵26连接,抽气泵26用于雾化时抽气引导低压段内的气流。As shown in FIG. 2, the present embodiment also includes a
本实施方案还提供了一种超声速气流下激波对燃料液滴蒸发过程影响的研究方法,包括如下步骤:This embodiment also provides a method for researching the effect of shock waves on the evaporation process of fuel droplets under supersonic airflow, including the following steps:
步骤1、计算高压段4内临界气体的压力值:高压段4内的临界气体压力值为p4低压段内的气体压力值为p1,p4与p1的比值为p41;确定所需激波马赫数Mas,测得p1,通过p41与Mas的关系式,进而得到高压段4内临界气体的压力值p4;Step 1. Calculate the pressure value of the critical gas in the high pressure section 4: the critical gas pressure value in the
其中,p1为大气压或者预先设定的具体压力值;Wherein, p 1 is atmospheric pressure or a preset specific pressure value;
p41与Mas的关系式为The relation between p 41 and Mas is:
式中a14为声速比,可表示为:where a 14 is the sound speed ratio, which can be expressed as:
其中,γ1为低压段气体的比热比,γ4为高压段气体的比热比,M1为低压段气体的分子量,M4为高压段气体的分子量,T1为低压段气体的初始温度,T4为高压段气体的初始温度。Among them, γ 1 is the specific heat ratio of the gas in the low pressure section, γ 4 is the specific heat ratio of the gas in the high pressure section, M 1 is the molecular weight of the gas in the low pressure section, M 4 is the molecular weight of the gas in the high pressure section, and T 1 is the initial stage of the gas in the low pressure section. temperature, T4 is the initial temperature of the gas in the high pressure section .
步骤2、高压段4预增压:通过压力控制系统对高压段4进行增压,使得当前高压段4内的气体压力值p4′接近但小于p4;
步骤3、测量初始光强:采用多波长消光法粒径测量系统对通过实验段14和两块观察窗玻璃后的光强进行测量,得到消光前的初始光强。
通过光纤耦合器36将多个波长的光路耦合成一束光路并输出依次穿过第一可拆卸观察窗、实验段14、第二可拆卸管擦窗,然后通过衍射光栅20分成路数与波长数相同的光路;光电探测器19将探测到的分光后的各波长光强信号转化成的电信号并通过信号调整电路传输至数据采集卡21,从而得到消光前的光强信号。The optical paths of multiple wavelengths are coupled into a bundle of optical paths through the
步骤4、雾化:启动抽气泵26,超声波雾化系统与实验段14连通,超声波雾化系统中的超声波雾化器23通过雾化转接段将雾化后的燃料液滴喷入实验段14内形成气溶胶,直至达到设定浓度;
其中,通过转动凸轮手柄34,推动密封杆联动板32向转接段腔体16方向移动,使密封杆33锥面结构端部与带孔的第二盲孔板15脱离,从而超声波雾化系统中的转接段腔体16与实验段14连通;喷入实验段14内的燃料液滴达到设定浓度后,转动凸轮手柄34,使得密封杆联动板32向远离转接段腔体16方向移动,使密封杆33为锥面结构的一端面与凸台上开设的若干通孔呈锥形的一端配合,从而超声波雾化系统的转接段腔体16与实验段14之间封闭。Among them, by rotating the
步骤5、测量激波前燃料液滴粒径分布:在雾化的同时,采用多波长消光法测量粒径系统对实验段14内的燃料液滴粒径分布进行实时测量,并得到波前燃料液滴粒径分布随时间的变化曲线;
通过光纤耦合器36将多个波长的光路耦合成一束光路并输出穿过实验段14,然后通过衍射光栅20分成路数与波长数相同的光路;光电探测器19将探测到的分光后的各波长光强信号并转化成的电信号通过信号调整电路传输至数据采集卡21,从而得到被气溶胶消光后的光强,再结合步骤3中测得的消光前的初始光强,反演出燃料液滴粒径和浓度的变化,得到波前燃料液滴粒径分布随时间的变化曲线。The optical paths of multiple wavelengths are coupled into a beam of optical paths through the
步骤6、产生激波:通过压力控制系统对高压段4进行增压,使得当前高压段4内的气体压力值达到p4;此时,膜片42破裂,高压段4内的气体迅速冲入低压段和实验段14,并在低压段和实验段14内产生激波;
步骤7、测量激波与燃料液滴相互作用过程中燃料液滴粒径分布:在激波运动时,多波长消光法测量粒径系统对实验段14内的燃料液滴粒径分布进行实时测量,并得到激波与燃料液滴相互作用过程中燃料液滴粒径分布随时间的变化曲线;同时通过若干低压段压电传感器之间的安装距离与激波运动时若干低压段压电传感器之间的响应时间差计算出多组激波速度,将多组激波速度的平均值作为实际激波速度Δv,从而得到实际激波马赫数Mas,Mas=Δv/a,a为声速;
实际激波速度Δv计算公式如下:The formula for calculating the actual shock velocity Δv is as follows:
式中:where:
低压段I号压电传感器与低压段II号压电传感器之间的安装距离为ΔL1,The installation distance between the piezoelectric sensor No. I in the low-voltage section and the piezoelectric sensor in the low-voltage section II is ΔL 1 ,
低压段I号压电传感器与低压段II号压电传感器之间的响应时间差为Δt1,The response time difference between the piezoelectric sensor No. I in the low pressure section and the piezoelectric sensor No. II in the low pressure section is Δt 1 ,
低压段I号压电传感器与低压段III号压电传感器之间的安装距离为ΔL2,The installation distance between the piezoelectric sensor of the low-voltage section I and the piezoelectric sensor of the low-voltage section III is ΔL 2 ,
低压段I号压电传感器与低压段III号压电传感器之间的响应时间差为Δt2,The response time difference between the piezoelectric sensor No. I in the low pressure section and the piezoelectric sensor No. III in the low pressure section is Δt 2 ,
低压段II号压电传感器与低压段III号压电传感器之间的安装距离为ΔL3,The installation distance between the piezoelectric sensor of the low-voltage section II and the piezoelectric sensor of the low-voltage section III is ΔL 3 ,
低压段II号压电传感器与低压段III号压电传感器之间的响应时间差为Δt3。The response time difference between the piezoelectric sensor No. II in the low-voltage section and the piezoelectric sensor in the low-voltage section III is Δt 3 .
通过光纤耦合器36将多个波长的光路耦合成一束光路并输出穿过实验段14,然后通过衍射光栅20分成路数与波长数相同的光路;光电探测器19将探测到的分光后的各波长光强信号转化成的电信号通过信号调整电路传输至数据采集卡21,从而得到激波与燃料液滴相互作用过程中的光强,再结合步骤3中测得的消光前的初始光强,反演出燃料液滴粒径和浓度的变化,得到激波与燃料液滴相互作用过程中燃料液滴粒径分布随时间的变化曲线。The optical paths of multiple wavelengths are coupled into a beam of optical paths through the
步骤8、测量激波后燃料液滴粒径分布:激波过后,多波长消光法测量粒径系统继续对实验段14内的燃料液滴粒径分布进行实时测量,直至燃料液滴完全蒸发,停止测量,从而得到激波后燃料液滴粒径分布随时间的变化曲线;
步骤9、卸压:通过压力控制系统排除激波管中的废气;
步骤10、数据处理:计算机主机24根据多波长消光法测量粒径系统测得的激波与燃料液滴相互作用过程中燃料液滴粒径分布随时间的变化曲线和波后燃料液滴粒径分布随时间的变化曲线与实际激波马赫数Mas的关系,从而得到燃料液滴蒸发速率与激波马赫数Mas之间的关系。
为便于验证上述研究方法,本实施例提供一个具体实施方案,具体如下:For the convenience of verifying the above-mentioned research method, the present embodiment provides a specific implementation scheme, which is as follows:
设定实验条件为在室温下通过氮气驱动空气得到1.4马赫的激波,初始条件有γ1=γ4=1.4;M1=29,M4=28;T1=T4=298K。The experimental conditions are set as a shock wave of Mach 1.4 is obtained by driving air with nitrogen at room temperature, and the initial conditions are γ 1 =γ 4 =1.4; M 1 =29, M 4 =28; T 1 =T 4 =298K.
步骤1、计算p41:Step 1. Calculate p 41 :
当低压段压力为大气压时,高压段4所需压力为p4=4.881atm≈0.495MPa。When the pressure of the low pressure section is atmospheric pressure, the required pressure of the
依据上述实验条件下,步骤2:由于液雾中液滴粒径较小,即便在常温常压下液滴的蒸发寿命也较短,即在较短的时间内蒸发完毕,而高压段4加压需要较长的时间,因此将所需液雾充满激波管低压段再对高压段4加压将来不及。为了在液雾分布后好尽快通过激波,可以先对高压段预加压,使高压段4压力先达到略低于计算值p4=0.495MPa。According to the above experimental conditions, step 2: due to the small particle size of the droplets in the liquid mist, the evaporation life of the droplets is also short even at normal temperature and pressure, that is, the evaporation is completed in a short time, and the high-
步骤3:在雾化结束后,向高压段4快速增压到所需压力使膜片42破裂,从而产生激波。由于之前高压段4压力已经接近所需压力p4,故从继续加压到膜片42破裂的时间很短。实际产生激波速度可以根据若干低压段压电传感器之间的距离和响应时间计算得出。Step 3: After the atomization is completed, the
综上所述,本实施方案在实验时,通过超声波雾化系统产生微米级的燃料液滴并将微米级的燃料液滴喷入实验段14内,然后向高压段4增压使得膜片42破裂,从而在低压段和实验段14内产生激波;同时依据多波长消光法粒径测量系统对实验段14内微米级的燃料液滴的粒径进行实时测量。To sum up, during the experiment of this embodiment, the ultrasonic atomization system is used to generate micron-scale fuel droplets and spray the micron-scale fuel droplets into the
本实施方案可以根据实验需要选择不同强度的膜片42以产生不同强度的激波,且因为激波管内截面均为矩形,所产生的激波无需经历以往设计方案中的圆转方段,因此产生的激波品质更好。In this embodiment,
本实施方案通过安装的若干低压段压电传感器检测出每个低压段压电传感器与其他低压段压电传感器间检测到压力变化的时间差,依据该些时间差与每个低压段压电传感器与其他低压段压电传感器间的安装距离计算出多个激波速度,再求激波速度的平均值从而减小误差。This embodiment detects the time difference between the detected pressure change between each low-voltage segment piezoelectric sensor and other low-voltage segment piezoelectric sensors by installing several low-voltage segment piezoelectric sensors. The installation distance between the piezoelectric sensors in the low-voltage section calculates multiple shock wave velocities, and then calculates the average value of the shock wave velocities to reduce errors.
本实施方案的第一可拆卸观察窗和第二可拆卸观察窗能够为多种测量方式提供测量通道,可以满足不同实验条件下的测量需求。The first detachable observation window and the second detachable observation window of this embodiment can provide measurement channels for various measurement methods, and can meet measurement requirements under different experimental conditions.
本实施方案中的多波长消光法粒径测量系统中的激光光源阵列12的选择具有灵活性,可以根据实验段14中物质的消光特性选择不同波长的光源进行组合;数据采集卡21可以根据采样频率的需要而选择。The selection of the laser
本实施方案采用多波长消光法测量粒径,当借助光学来测量粒径时,由于激波与液雾的相互作用会对光的散射造成影响,并且激波后压力、温度的升高也会对光的散射造成一定的影响,因此接受散射光信号的测量仪器不能满足实验的需求。而在消光法测量过程中,由于测量时所采集的是穿过颗粒系的透射光,而非颗粒的散射光,因此光信号较强;另外,激波对光强的影响较小,所以消光法测量粒径能够使用于存在激波冲击的实验中。除此之外,消光法不仅要采集穿过颗粒系后的光强信号,还要采集穿过颗粒系前的光强信号,是一种绝对测量方法,不需要标定。In this embodiment, the multi-wavelength extinction method is used to measure the particle size. When the particle size is measured by means of optics, the interaction between the shock wave and the liquid mist will affect the scattering of light, and the pressure and temperature after the shock wave will also increase. It has a certain influence on the scattering of light, so the measuring instrument that accepts the scattered light signal cannot meet the needs of the experiment. In the measurement process of the extinction method, since the transmitted light passing through the particle system is collected during the measurement, rather than the scattered light of the particles, the optical signal is stronger; in addition, the shock wave has little influence on the light intensity, so the extinction The method of measuring particle size can be used in experiments where shock shock is present. In addition, the extinction method not only collects the light intensity signal after passing through the particle system, but also collects the light intensity signal before passing through the particle system. It is an absolute measurement method and does not require calibration.
本实施方案中,采用的是连续激光光源,因此数据的采集频率取决于数据采集卡21的采集频率,可以根据实验的需要选择不同采集频率的数据数据采集卡21。比如激波穿过测量区域的时间为微秒量级,因此可以采用采集频率为1MHz的数据采集卡21,以保证在激波穿过的时间内采集到可靠的数据。为了在特定的时间内采集到更多可靠的数据,可以采用更高采集频率的数据采集卡21,因此采集频率的选择具有灵活性。In this embodiment, a continuous laser light source is used, so the data collection frequency depends on the collection frequency of the
本实施方案中,多波长消光法中光波长选择具有灵活性。波长的选择对粒径的反演存在影响,因此可以事先借助已成熟的粒径测量装置在无激波冲击时测出粒径分布范围,根据测得的粒径范围选择适当的波长来组成所需的激光光源阵列12。In this embodiment, the wavelength selection of light in the multi-wavelength extinction method has flexibility. The choice of wavelength has an impact on the inversion of particle size, so the particle size distribution range can be measured in advance with the help of a mature particle size measuring device without shock shock, and an appropriate wavelength can be selected according to the measured particle size range to form the composition. required laser
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本申请所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。It will be understood by one of ordinary skill in the art that, unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs. It should also be understood that terms such as those defined in general dictionaries should be understood to have meanings consistent with their meanings in the context of the prior art and, unless defined as herein, are not to be taken in an idealized or overly formal sense. explain.
本申请中的“和/或”的含义指的是各自单独存在或两者同时存在的情况均包括在内。The meaning of "and/or" in this application means that each of them exists alone or both are included.
本申请中的“连接”的含义可以是部件之间的直接连接也可以是部件间通过其它部件的间接连接。The meaning of "connection" in this application may be a direct connection between components or an indirect connection between components through other components.
本发明的描述中,需要理解的是,术语“上侧”、“下侧”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,“第一”、“第二”等并不表示零部件的重要程度,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that the orientation or positional relationship indicated by the terms "upper side", "lower side", etc. is based on the orientation or positional relationship shown in the accompanying drawings, and is only for the convenience of describing the present invention and simplifying the description , rather than indicating or implying that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, "first", "second", etc. Invention limitations.
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。Taking the above ideal embodiments according to the present invention as inspiration, and through the above description, relevant personnel can make various changes and modifications without departing from the technical idea of the present invention. The technical scope of the present invention is not limited to the contents in the specification, and the technical scope must be determined according to the scope of the claims.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110735824.3A CN113390765B (en) | 2021-06-30 | 2021-06-30 | Method for researching influence of shock wave on evaporation process of fuel liquid drops under supersonic airflow |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110735824.3A CN113390765B (en) | 2021-06-30 | 2021-06-30 | Method for researching influence of shock wave on evaporation process of fuel liquid drops under supersonic airflow |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN113390765A CN113390765A (en) | 2021-09-14 |
| CN113390765B true CN113390765B (en) | 2022-09-23 |
Family
ID=77624629
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110735824.3A Active CN113390765B (en) | 2021-06-30 | 2021-06-30 | Method for researching influence of shock wave on evaporation process of fuel liquid drops under supersonic airflow |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN113390765B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102782940B1 (en) * | 2022-05-24 | 2025-03-19 | 계명대학교 산학협력단 | Handy Shock Tube Apparatus, System and Method for testing Material Properties |
| WO2023229253A1 (en) * | 2022-05-24 | 2023-11-30 | 계명대학교 산학협력단 | Titanium oxide phase change producing apparatus, system and method using number of shock wave exposures, handy shock wave tube device, and system and method for testing material characteristics comprising same |
Citations (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4470697A (en) * | 1981-05-11 | 1984-09-11 | General Motors Corporation | Method of measuring the concentration of gas in the presence of liquid particles |
| US5179923A (en) * | 1989-06-30 | 1993-01-19 | Tonen Corporation | Fuel supply control method and ultrasonic atomizer |
| CN102661933A (en) * | 2012-05-17 | 2012-09-12 | 苏州大学 | Wet steam dryness measuring device and measuring method based on surface plasma resonance |
| CN102706533A (en) * | 2012-05-23 | 2012-10-03 | 浙江理工大学 | Device for researching mutual action of shock wave and liquids in different forms |
| CN103454396A (en) * | 2013-09-06 | 2013-12-18 | 中国科学技术大学 | Test device for high-pressure combustible gas leakage spontaneous combustion and shock wave induction ignition |
| CN103728229A (en) * | 2013-12-09 | 2014-04-16 | 太原科技大学 | Measuring device and method for measuring average particulate size and concentration of atmospheric particulates |
| CN105314292A (en) * | 2015-07-09 | 2016-02-10 | 上海交通大学 | Mist spraying and air supplying system for air-cooled refrigeration container |
| CN105953226A (en) * | 2016-05-20 | 2016-09-21 | 中国人民解放军装备学院 | Novel liquid fuel premixing and intake method for shock tube outside atomization |
| CN107144503A (en) * | 2017-05-19 | 2017-09-08 | 上海理工大学 | Liquid fuel spray burning drop and flame synchronous measuring apparatus and method |
| CN108644810A (en) * | 2018-06-07 | 2018-10-12 | 南京航空航天大学 | A kind of double pre- membrane type ultrasonic nozzles |
| CN109084328A (en) * | 2018-07-25 | 2018-12-25 | 湖南云顶智能科技有限公司 | A kind of sliding arc discharge enhancing supersonic speed aerosol blending burner |
| CN111122653A (en) * | 2020-01-14 | 2020-05-08 | 华北科技学院 | System and method for realizing synchronous control of multiple targets in detonation experiment testing system |
| CN111122395A (en) * | 2019-12-04 | 2020-05-08 | 天津大学 | A mobile supersonic nozzle continuous measurement system |
| CN111649902A (en) * | 2020-03-31 | 2020-09-11 | 天津大学 | An experimental system of a cyclone supersonic separator based on aerosol-enhanced condensation |
| CN112085994A (en) * | 2020-09-30 | 2020-12-15 | 浙江理工大学 | Acoustic suspension gas-liquid two-phase shock tube experimental device and experimental method |
| CN112304620A (en) * | 2020-09-30 | 2021-02-02 | 中国人民解放军战略支援部队航天工程大学 | Fuel droplet evaporation combustion experimental device in high-pressure and oscillation environment and use method |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6732720B2 (en) * | 2002-05-30 | 2004-05-11 | Monroe R. Kelemencky | Ultrasonic liquid fuel introduction system |
| US7804064B2 (en) * | 2004-10-01 | 2010-09-28 | The George Washington University | In-situ droplet monitoring for self-tuning spectrometers |
-
2021
- 2021-06-30 CN CN202110735824.3A patent/CN113390765B/en active Active
Patent Citations (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4470697A (en) * | 1981-05-11 | 1984-09-11 | General Motors Corporation | Method of measuring the concentration of gas in the presence of liquid particles |
| US5179923A (en) * | 1989-06-30 | 1993-01-19 | Tonen Corporation | Fuel supply control method and ultrasonic atomizer |
| CN102661933A (en) * | 2012-05-17 | 2012-09-12 | 苏州大学 | Wet steam dryness measuring device and measuring method based on surface plasma resonance |
| CN102706533A (en) * | 2012-05-23 | 2012-10-03 | 浙江理工大学 | Device for researching mutual action of shock wave and liquids in different forms |
| CN103454396A (en) * | 2013-09-06 | 2013-12-18 | 中国科学技术大学 | Test device for high-pressure combustible gas leakage spontaneous combustion and shock wave induction ignition |
| CN103728229A (en) * | 2013-12-09 | 2014-04-16 | 太原科技大学 | Measuring device and method for measuring average particulate size and concentration of atmospheric particulates |
| CN105314292A (en) * | 2015-07-09 | 2016-02-10 | 上海交通大学 | Mist spraying and air supplying system for air-cooled refrigeration container |
| CN105953226A (en) * | 2016-05-20 | 2016-09-21 | 中国人民解放军装备学院 | Novel liquid fuel premixing and intake method for shock tube outside atomization |
| CN107144503A (en) * | 2017-05-19 | 2017-09-08 | 上海理工大学 | Liquid fuel spray burning drop and flame synchronous measuring apparatus and method |
| CN108644810A (en) * | 2018-06-07 | 2018-10-12 | 南京航空航天大学 | A kind of double pre- membrane type ultrasonic nozzles |
| CN109084328A (en) * | 2018-07-25 | 2018-12-25 | 湖南云顶智能科技有限公司 | A kind of sliding arc discharge enhancing supersonic speed aerosol blending burner |
| CN111122395A (en) * | 2019-12-04 | 2020-05-08 | 天津大学 | A mobile supersonic nozzle continuous measurement system |
| CN111122653A (en) * | 2020-01-14 | 2020-05-08 | 华北科技学院 | System and method for realizing synchronous control of multiple targets in detonation experiment testing system |
| CN111649902A (en) * | 2020-03-31 | 2020-09-11 | 天津大学 | An experimental system of a cyclone supersonic separator based on aerosol-enhanced condensation |
| CN112085994A (en) * | 2020-09-30 | 2020-12-15 | 浙江理工大学 | Acoustic suspension gas-liquid two-phase shock tube experimental device and experimental method |
| CN112304620A (en) * | 2020-09-30 | 2021-02-02 | 中国人民解放军战略支援部队航天工程大学 | Fuel droplet evaporation combustion experimental device in high-pressure and oscillation environment and use method |
Non-Patent Citations (3)
| Title |
|---|
| 激波与液滴作用的空气动力学现象的实验研究;肖毅等;《浙江理工大学学报》;20130310(第02期);全文 * |
| 超声衰减与光散射法蒸汽液滴粒径和含量对比测试;苏明旭等;《中南大学学报(自然科学版)》;20160226(第02期);全文 * |
| 超声速气流中液体横向射流的破碎特性;李锋等;《北京航空航天大学学报》;20151215(第12期);全文 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN113390765A (en) | 2021-09-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN113390762B (en) | A research device for the effect of shock waves on the evaporation process of fuel droplets under supersonic airflow | |
| CN113390765B (en) | Method for researching influence of shock wave on evaporation process of fuel liquid drops under supersonic airflow | |
| US20180245988A1 (en) | Measurement apparatus applicable to two-dimensional reconstruction of gas in combustion flow field | |
| Roesler et al. | Studies on aerated-liquid atomization | |
| CN102032987A (en) | Experiment device for researching jet atomizing characteristic of jet nozzle | |
| CN102305757A (en) | High-pressure combustion carbon black particle concentration measuring device and measuring method | |
| WO2020134503A1 (en) | Soft x-ray micro imaging device | |
| CN103852445B (en) | Design method of optical probe for measuring laser absorption spectrum | |
| CN114608709A (en) | Experimental device for simulating femtosecond laser to penetrate through clouds with different thicknesses and different phase states | |
| CN110823514A (en) | High-enthalpy gas-solid two-phase transverse jet flow and supersonic velocity air flow coupling effect generating device and measuring system | |
| CN105445033A (en) | Constant-volume burning device for studying spraying form and micro-characteristics of spraying form | |
| CN113654757B (en) | Device for simulating high supersonic velocity condensation process in spray pipe and diagnosis method | |
| CN211042654U (en) | High-enthalpy gas-solid two-phase transverse jet flow and supersonic velocity airflow coupling device and measuring system | |
| Takahashi et al. | Characteristics of a velocity-modulated pressure-swirl atomizing spray | |
| CN114858423B (en) | A test system and test device for measuring fuel spray field | |
| Anderson et al. | Measurement of spray/acoustic coupling in gas turbine fuel injectors | |
| CN108572159A (en) | A laser reflective detection device for the content of CO2 and H2O in multiple thermal fluid components | |
| CN113567143A (en) | Visual gas turbine combustion chamber experimental system | |
| Sankar et al. | Liquid atomization by coaxial rocket injectors | |
| CN115524125B (en) | A crosswind spray test system and test method | |
| CN116892467A (en) | Visual test device and method for simulating gas phase and condensed phase flow velocity in spray pipe | |
| Dombrovskii et al. | Atomization of superheated water: Results from experimental studies | |
| CN102590139A (en) | Refractive index measuring device of transparent fluid under high pressure | |
| CN120177707B (en) | Ignition limit test system and test method under high temperature spraying state of organic electrolyte | |
| CN222124765U (en) | Carbon dioxide heterogeneous condensation test cell for carbon dioxide test equipment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |