CN113445005B - A kind of preparation method of low stress TiW film - Google Patents
A kind of preparation method of low stress TiW film Download PDFInfo
- Publication number
- CN113445005B CN113445005B CN202110555105.3A CN202110555105A CN113445005B CN 113445005 B CN113445005 B CN 113445005B CN 202110555105 A CN202110555105 A CN 202110555105A CN 113445005 B CN113445005 B CN 113445005B
- Authority
- CN
- China
- Prior art keywords
- tiw
- film layer
- thin film
- stress
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 6
- 239000010408 film Substances 0.000 claims abstract description 62
- 239000010409 thin film Substances 0.000 claims abstract description 61
- 239000000758 substrate Substances 0.000 claims abstract description 39
- 230000008021 deposition Effects 0.000 claims abstract description 34
- 238000000151 deposition Methods 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 20
- 238000005240 physical vapour deposition Methods 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000004065 semiconductor Substances 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 7
- 238000005516 engineering process Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 2
- 229910003460 diamond Inorganic materials 0.000 claims description 2
- 239000010432 diamond Substances 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 230000003139 buffering effect Effects 0.000 abstract description 2
- 230000004927 fusion Effects 0.000 abstract description 2
- 238000009827 uniform distribution Methods 0.000 abstract 1
- 230000035882 stress Effects 0.000 description 29
- 238000004544 sputter deposition Methods 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 5
- 239000000956 alloy Substances 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000005477 sputtering target Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 239000011156 metal matrix composite Substances 0.000 description 1
- 239000011104 metalized film Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- MAKDTFFYCIMFQP-UHFFFAOYSA-N titanium tungsten Chemical compound [Ti].[W] MAKDTFFYCIMFQP-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
技术领域technical field
本发明涉及电子信息半导体领域,尤其是涉及一种低应力TiW薄膜的制备方法。The invention relates to the field of electronic information semiconductors, in particular to a preparation method of a low-stress TiW thin film.
背景技术Background technique
在钛金属中掺入了钨颗粒元素而形成的TiW(Titanium Tungsten)合金材料,由于具备高强度、耐磨损、韧性好及质量轻等特点,使得TiW合金广泛应用于航空航天器件与构件的制造、医学器材、轻工业等领域。除涵盖以上特性外,随着电子信息及半导体超大规格集成电路行业的迅速发展,TiW合金此外具备较低的电子迁移率、稳定的热机械性能、耐腐蚀性能以及其化学稳定等特性,可作为扩散阻挡层应用于半导体芯片中,尤其是应用于高温和大电流环境,通过制备高纯薄膜的工艺,广泛应用于半导体集成电路及器件制造行业中。TiW (Titanium Tungsten) alloy material is formed by doped tungsten particles in titanium metal. Due to its high strength, wear resistance, good toughness and light weight, TiW alloy is widely used in aerospace devices and components. Manufacturing, medical equipment, light industry and other fields. In addition to the above characteristics, with the rapid development of electronic information and semiconductor ultra-large-scale integrated circuit industries, TiW alloys also have low electron mobility, stable thermomechanical properties, corrosion resistance and chemical stability. Diffusion barrier layers are used in semiconductor chips, especially in high temperature and high current environments. Through the process of preparing high-purity thin films, they are widely used in semiconductor integrated circuits and device manufacturing industries.
在目前的薄膜生长技术条件下,大多数薄膜或多或少都存在薄膜应力的问题。薄膜与其支撑的基片之间,通常由以下两者相互作用影响:(1)界面结合强度的附着力;(2)截面承受约束的薄膜应力。其中的薄膜应力包括以下两种:(1)生长环境产生的本征应力,本征应力包含界面与生长应力,例如基片与薄膜晶格结构差异大时,薄膜的晶体结构将接近基片结构并产生大的畸变;(2)薄膜/基片间热膨胀系数差异产生的热应力,在生长后降温时产生。减小应力的发明技术类似有,c-BN薄膜与基片间插入分子晶体结构的氮化硼,可减小晶格畸变与杂质掺入的复合结构;以及金刚石多层薄膜以拉应力与压应力交替抵消的方式;也包括采用双层伸缩趋势相反的薄膜减小内应力,改善半导体器件内应力;或者在基片背面同时施加金属应力,补偿正面外延层产生的应力。Under the current thin film growth technology, most thin films have the problem of film stress more or less. The interaction between the film and the substrate it supports is usually influenced by the following two interactions: (1) the adhesion of the interface bonding strength; (2) the constraining film stress on the cross section. The film stress includes the following two types: (1) Intrinsic stress generated by the growth environment. Intrinsic stress includes interface and growth stress. For example, when the lattice structure of the substrate and the film is greatly different, the crystal structure of the film will be close to the substrate structure. And produce large distortion; (2) The thermal stress caused by the difference in thermal expansion coefficient between the film/substrate is generated when the temperature is lowered after growth. The invention technology of reducing stress is similar to that, the boron nitride with molecular crystal structure is inserted between the c-BN film and the substrate, which can reduce the lattice distortion and the composite structure of impurity doping; The method of alternately offsetting the stress; also includes using a double-layer film with opposite stretching tendency to reduce the internal stress and improve the internal stress of the semiconductor device; or applying metal stress on the backside of the substrate at the same time to compensate the stress generated by the front-side epitaxial layer.
TiW合金薄膜高纯、高质量的制备通常利用真空环境下的镀膜技术,多为物理气相沉积法(PVD),可通过工艺参数的调试达到低应力效果的调节。对于TiW薄膜应力调节方法曾有通过维持沉积速率不变下,改变沉积及冷却时间的方法;也有改变TiW沉积过程的气压与功率,以获得超宽的应力变化范围的技术。然而对于TiW具体生长中速率对应力的控制方面的研究较为粗糙,相对地,过小的沉积速率下生长薄膜,会增加生长时间,同时成本上升;过大的沉积速率下生长薄膜时,由于基片温度会持续升高导致沉积出均匀性差、致密度低的TiW薄膜,此外,对于半导体器件而言,过大的沉积速率将使金属化膜层的内应力过大,TiW薄膜内应力过大会使器件的结构层发生形变翘曲,直至界面结合强度的附着力下降,基片与膜层将破裂从而造成器件失效,出现例如电压不稳定及寿命缩短等问题。也有发明技术通过在基片上沉积过渡层释放应力,而后沉积薄膜制备氮化铬薄膜的方法。然而薄膜内应力通常无法完全消除的,对于PVD或CVD工艺制备薄膜的残余应力存在几个GPa大小,可以通过光杠杆法对薄膜应力大小进行测试表征。在例如TiW薄膜的生长中则需要寻求新的工艺生长技术,尽量地减小生长应力,以达到可应用于器件的效果。The preparation of high-purity and high-quality TiW alloy films usually uses coating technology in a vacuum environment, mostly physical vapor deposition (PVD). For TiW thin film stress adjustment methods, there have been methods to change the deposition and cooling time by maintaining the deposition rate constant; there are also techniques to change the pressure and power of the TiW deposition process to obtain an ultra-wide stress variation range. However, the research on the control of stress by the specific growth rate of TiW is relatively rough. Relatively, when the film is grown at an excessively small deposition rate, the growth time will increase and the cost will increase; when the film is grown at an excessively large deposition rate, the substrate The wafer temperature will continue to rise, resulting in the deposition of TiW films with poor uniformity and low density. In addition, for semiconductor devices, an excessive deposition rate will cause excessive internal stress of the metallized film layer, and the internal stress of the TiW film will be too large. The structural layer of the device is deformed and warped until the adhesion of the interface bonding strength decreases, the substrate and the film layer will be broken, resulting in device failure, such as voltage instability and shortened life. There is also an inventive technique for preparing a chromium nitride film by depositing a transition layer on a substrate to release stress and then depositing a film. However, the internal stress of the film can not be completely eliminated. For the residual stress of the film prepared by PVD or CVD process, there are several GPa sizes, which can be tested and characterized by the optical lever method. For example, in the growth of TiW thin films, it is necessary to seek a new process growth technology to minimize the growth stress, so as to achieve the effect that can be applied to the device.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种低应力TiW薄膜的制备方法,先在基片上小沉积速率下生长较薄的TiW种子薄膜层,再采用大沉积速率生长较厚的TiW主要薄膜层。The purpose of the present invention is to provide a method for preparing a low-stress TiW thin film, which firstly grows a thin TiW seed thin film layer on a substrate at a small deposition rate, and then grows a thicker TiW main thin film layer with a large deposition rate.
本发明的目的是这样实现的:The object of the present invention is achieved in this way:
一种低应力TiW薄膜的制备方法,其特征在于:采用物理气相沉积技术,包括在基片上两步生长的TiW薄膜层,所述两步生长的TiW薄膜层分别指的是,第一步为TiW种子薄膜层的生长,第二步为TiW主要薄膜层的生长,在TiW主要薄膜层与所述基片的中间生长有TiW种子薄膜层,所述的第一步TiW薄膜层的生长速率与第二步TiW薄膜层的生长速率不同,所述的第一步TiW薄膜层的生长厚度与第二步TiW薄膜层的生长厚度不同。A method for preparing a low-stress TiW thin film, characterized in that: adopting physical vapor deposition technology, comprising a TiW thin film layer grown in two steps on a substrate, and the two-step growth of the TiW thin film layer respectively refers to, the first step is The growth of the TiW seed thin film layer, the second step is the growth of the main TiW thin film layer, the TiW seed thin film layer is grown between the main TiW thin film layer and the substrate, and the growth rate of the TiW thin film layer in the first step is the same as The growth rate of the TiW thin film layer in the second step is different, and the growth thickness of the TiW thin film layer in the first step is different from the growth thickness of the TiW thin film layer in the second step.
所述第一步TiW薄膜层为小沉积速率生长,所述第二步TiW薄膜层为大沉积速率生长。The first-step TiW thin film layer is grown at a small deposition rate, and the second-step TiW thin film layer is grown at a large deposition rate.
所述小沉积生长速率范围为20~40Å/min,大沉积生长速率范围为50~100Å/min。The small deposition growth rate ranges from 20 to 40 Å/min, and the large deposition growth rate ranges from 50 to 100 Å/min.
所述第一步TiW薄膜层的厚度不超过第二步TiW薄膜层厚度的20~30%。The thickness of the first-step TiW thin film layer does not exceed 20-30% of the thickness of the second-step TiW thin film layer.
所述生长TiW薄膜的基片包括,但不限于第三代半导体材料、玻璃片、金刚石、金属或金属基复合材料。The substrate on which the TiW thin film is grown includes, but is not limited to, third-generation semiconductor material, glass sheet, diamond, metal or metal matrix composite material.
本发明以小沉积速率下生长的种子薄膜层致密度高,通过与基片原子相互融合获得具有高可靠性的界面;大沉积速率下生长的主要薄膜层,在种子层缓冲基础上生长的薄膜附着力增强,使得TiW薄膜厚度稳定、分布均匀,对基片的应力减弱、消散,使其变形量较小并得到低应力高质量的TiW薄膜。相比现有技术,通过使用本发明的两步式TiW薄膜层生长,其有益效果在于:In the present invention, the seed thin film layer grown at a small deposition rate has high density, and a highly reliable interface is obtained through mutual fusion with the atoms of the substrate; the main thin film layer grown at a large deposition rate is the thin film grown on the basis of the seed layer buffer. The adhesion is enhanced, the thickness of the TiW film is stable and the distribution is uniform, and the stress on the substrate is weakened and dissipated, so that the deformation amount is small and a low-stress and high-quality TiW film is obtained. Compared with the prior art, by using the two-step TiW thin film layer growth of the present invention, the beneficial effects are:
(1)、基片上小沉积速率生长较薄的TiW种子薄膜层,维持基片的一个低温状态,以降低热应力,并提前释放晶格畸变内应力,与基片间原子相互融合形成高可靠性的界面,以增强TiW主要薄膜层的附着力,并减小界面应力;(1) A thin TiW seed film layer is grown on the substrate at a small deposition rate, maintaining a low temperature state of the substrate to reduce thermal stress, release the internal stress of lattice distortion in advance, and fuse with the atoms between the substrates to form high reliability interface to enhance the adhesion of the main TiW thin film layer and reduce the interface stress;
(2)、在TiW种子薄膜层上大沉积速率生长较厚的TiW主要薄膜层,在TiW种子薄膜层的缓冲作用下,填充应力释放后的表层缺陷与孔隙,形成薄膜新相的成核中心以增加薄膜形核率;在最优功率与气压下,快速形成致密薄膜组织并降低生长应力。(2) On the TiW seed film layer, a thicker TiW main film layer is grown at a large deposition rate. Under the buffering effect of the TiW seed film layer, the surface defects and pores after stress release are filled to form the nucleation center of the new film phase. In order to increase the nucleation rate of the film; under the optimal power and air pressure, the dense film structure is quickly formed and the growth stress is reduced.
本发明的TiW薄膜可以通过真空热蒸发、磁控溅射、离子镀等常用沉积方式进行制备,获得薄膜的稳定性高,膜层应力低,具有较好的可用及推广性。The TiW film of the present invention can be prepared by common deposition methods such as vacuum thermal evaporation, magnetron sputtering, ion plating, etc., and the obtained film has high stability, low film stress, and good usability and popularization.
附图说明Description of drawings
图1为两步式生长在基板上,包括TiW种子薄膜层与TiW主要薄膜层的结构示意图,其中:100-基片,101-TiW种子薄膜层,102-TiW主要薄膜层;Figure 1 is a schematic diagram of the structure of the two-step growth on the substrate, including the TiW seed thin film layer and the TiW main thin film layer, wherein: 100-substrate, 101-TiW seed thin film layer, 102-TiW main thin film layer;
图2为在蒸镀Ag层的硅基片上生长TiW薄膜,翘曲应力高度测试的结构示意图,其中:200-硅基片,201-Ag金属层,202- TiW种子薄膜层,203- TiW主要薄膜层;Figure 2 is a schematic diagram of the structure of the TiW film grown on the silicon substrate with the vapor deposited Ag layer, and the warpage stress height test, wherein: 200-silicon substrate, 201-Ag metal layer, 202-TiW seed film layer, 203-TiW main layer film layer;
图3为基片的弯曲高度测试原理图,其中:300-Ag层翘曲高度差h,301-台阶仪的水平扫描长度L,303-曲率半径R;Fig. 3 is the test principle diagram of the bending height of the substrate, wherein: 300-the warping height difference h of the Ag layer, 301-the horizontal scanning length L of the step meter, 303-the radius of curvature R;
图4为Ag层翘曲高度差h与台阶仪的水平扫描长度L之间的测试结果图;Fig. 4 is a test result diagram between the warpage height difference h of the Ag layer and the horizontal scanning length L of the step meter;
图5为PVD溅射设备示意图,其中:500-出气口,501-加热台,502-基片,503-腔室,504-上电极,505-进气口。Fig. 5 is a schematic diagram of PVD sputtering equipment, wherein: 500-air outlet, 501-heating table, 502-substrate, 503-chamber, 504-upper electrode, 505-air inlet.
具体实施方式Detailed ways
以下结合附图以及具体实施例对本发明作进一步详细的描述,但本发明的实施方式包括但不限于以下实施例中表示的范围。The present invention will be described in further detail below with reference to the accompanying drawings and specific examples, but the embodiments of the present invention include but are not limited to the scopes indicated in the following examples.
参照图1,一种低应力TiW薄膜的结构示意图,从下之上依次包括基片、TiW种子薄膜层、TiW主要薄膜层。为了达到上述目的,本发明提供一种两步PVD溅射的低应力TiW薄膜的制备方法,其主要溅射参数包括直流/射频功率、沉积时间、氩气流量及腔室真空压力等。利用PVD溅射法生长速率稳定的特性,调整沉积功率与时间对两步TiW薄膜层薄膜作出精确控制。Referring to FIG. 1 , a schematic structural diagram of a low-stress TiW thin film includes a substrate, a TiW seed thin film layer, and a TiW main thin film layer in order from bottom to top. In order to achieve the above purpose, the present invention provides a method for preparing a two-step PVD sputtering low-stress TiW thin film. The main sputtering parameters include DC/RF power, deposition time, argon flow rate, and chamber vacuum pressure. Using the stable growth rate of PVD sputtering method, the deposition power and time are adjusted to precisely control the two-step TiW thin film.
参照图2,一种两步PVD溅射的低应力TiW薄膜的结构示意图,从下至上依次包括硅基片、Ag金属层、TiW种子薄膜层、TiW主要薄膜层。Referring to FIG. 2 , a schematic structural diagram of a two-step PVD sputtering low-stress TiW thin film includes a silicon substrate, an Ag metal layer, a TiW seed thin film layer, and a main TiW thin film layer in order from bottom to top.
上述的一种两步PVD溅射的低应力TiW薄膜的制备方法,包括以下步骤:The preparation method of the above-mentioned low-stress TiW film of two-step PVD sputtering, comprises the following steps:
(1)、加载步骤:将待溅射TiW层的基片加载并置于溅射平台上;(1), loading step: load the substrate to be sputtered TiW layer and place it on the sputtering platform;
(2)、抽空步骤:利用真空泵抽走空气进行高真空腔室处理;(2) Evacuation step: use a vacuum pump to evacuate air for high-vacuum chamber treatment;
(3)、通气步骤:在腔室中通入氩气并维持低压氛围,同时开启溅射靶材旋转;(3) Ventilation step: Pour argon into the chamber and maintain a low-pressure atmosphere, while turning on the rotation of the sputtering target;
(4)、预溅射步骤:开启直流功率,进行加热与靶材烧蚀的预处理,进行点火起辉;(4), pre-sputtering step: turn on the DC power, carry out the pretreatment of heating and target ablation, and carry out ignition;
(5)、沉积步骤:开启直流功率,维持沉积预设时间进行TiW薄膜沉积;(5) Deposition step: turn on the DC power and maintain the deposition preset time for TiW film deposition;
(6)、冷却步骤:停止直流功率的施加,停止氩气的引入,停止溅射靶材旋转,并维持冷却预设时间;(6) Cooling step: stop the application of DC power, stop the introduction of argon gas, stop the rotation of the sputtering target, and maintain the cooling preset time;
(7)、预溅射步骤:通入氩气并维持低压氛围,开启溅射靶材旋转;(7) Pre-sputtering step: pass argon gas and maintain a low-pressure atmosphere, and turn on the rotation of the sputtering target;
(8)、重复步骤:重复步骤(5)、(6)和(7)直至分别制备出TiW种子薄膜层与TiW主要薄膜层的厚度。(8) Repeat steps: Repeat steps (5), (6) and (7) until the thicknesses of the TiW seed thin film layer and the TiW main thin film layer are respectively prepared.
进一步地,根据以上阶段,在已蒸镀Ag薄膜的硅基片上,分两步生长TiW薄膜,先小沉积速率生长TiW种子薄膜层,再大沉积速率生长TiW主要薄膜层。Further, according to the above stage, on the silicon substrate on which the Ag film has been evaporated, the TiW film is grown in two steps, firstly, the TiW seed film layer is grown at a small deposition rate, and then the main TiW film layer is grown at a large deposition rate.
进一步地,TiW种子薄膜层的沉积生长速率为25~30Å/min,TiW主要薄膜层的沉积生长速率为75~80Å/min。Further, the deposition growth rate of the TiW seed thin film layer was 25-30 Å/min, and the deposition growth rate of the TiW main thin film layer was 75-80 Å/min.
进一步地,TiW种子薄膜层的厚度为600埃,TiW主要薄膜层的厚度为2400埃。Further, the thickness of the TiW seed thin film layer is 600 angstroms, and the thickness of the TiW main thin film layer is 2400 angstroms.
进一步地,抽空步骤的高真空腔室压力为1×10-6~9×10-6 mTr。Further, the high vacuum chamber pressure of the evacuation step is 1×10 −6 to 9×10 −6 mTr.
进一步地,TiW薄膜沉积步骤的真空压力为2mTr至15mTr。Further, the vacuum pressure in the TiW thin film deposition step is 2 mTr to 15 mTr.
参照图3为采用基片变形法中的“圆形基片曲率变形法”,对基片的弯曲度进行测量的原理示意图,利用台阶仪测试,测量范围长度为L,将测量范围的两端设为等高,量出中心凹陷处与两端高度差为h,由于 h<<R,根据相交弦的乘积相等定理得到:R=L2/8h。Referring to Figure 3, it is a schematic diagram of the principle of measuring the curvature of the substrate by using the "circular substrate curvature deformation method" in the substrate deformation method, using a step tester to test, the length of the measurement range is L, and the two ends of the measurement range are measured. Set the height as equal, and measure the height difference between the center depression and the two ends as h. Since h<<R, according to the equality theorem of the product of intersecting chords, we can get: R=L 2 /8h.
参照图4为Ag层翘曲高度差h与台阶仪的水平扫描长度L之间的测试结果图,h为正表示下凹弯曲,h为负表示上凸弯曲;由结果可见基板中心凹陷处与两端高度差相对较小,一定程度上降低了TiW金属薄膜的内应力。4 is a graph of the test results between the warpage height difference h of the Ag layer and the horizontal scanning length L of the step meter, where h is positive for concave curvature, and h is negative for convex curvature; it can be seen from the results that the depression in the center of the substrate and The height difference between the two ends is relatively small, which reduces the internal stress of the TiW metal film to a certain extent.
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例中,所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围。The above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: , the recorded technical solutions are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions in the embodiments of the present invention.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110555105.3A CN113445005B (en) | 2021-05-21 | 2021-05-21 | A kind of preparation method of low stress TiW film |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110555105.3A CN113445005B (en) | 2021-05-21 | 2021-05-21 | A kind of preparation method of low stress TiW film |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN113445005A CN113445005A (en) | 2021-09-28 |
| CN113445005B true CN113445005B (en) | 2022-07-12 |
Family
ID=77809956
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110555105.3A Active CN113445005B (en) | 2021-05-21 | 2021-05-21 | A kind of preparation method of low stress TiW film |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN113445005B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116155231A (en) * | 2023-02-28 | 2023-05-23 | 苏州敏声新技术有限公司 | A kind of bulk acoustic wave resonator and preparation method thereof |
| CN117070892B (en) * | 2023-08-10 | 2024-07-05 | 之江实验室 | Two-step control N2Method for reducing internal stress of NbN film and improving superconducting transition temperature by partial pressure |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5055908A (en) * | 1987-07-27 | 1991-10-08 | Texas Instruments Incorporated | Semiconductor circuit having metallization with TiW |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH09143716A (en) * | 1995-11-27 | 1997-06-03 | Hitachi Ltd | Film forming equipment |
| US8421121B2 (en) * | 2007-04-18 | 2013-04-16 | Northrop Grumman Systems Corporation | Antimonide-based compound semiconductor with titanium tungsten stack |
| CN102586758B (en) * | 2012-03-23 | 2013-12-18 | 上海先进半导体制造股份有限公司 | Method for pre-depositing high-density plasma machine platform |
| US8847335B2 (en) * | 2012-08-28 | 2014-09-30 | Stmicroelectronics Pte Ltd. | Membrane structure for electrochemical sensor |
| CN104746006B (en) * | 2013-12-31 | 2017-06-06 | 北京北方微电子基地设备工艺研究中心有限责任公司 | The magnetron sputtering preparation process of the TiW films of adjustable TiW membrane stresses |
| CN104073770B (en) * | 2014-06-23 | 2016-10-19 | 江苏科技大学 | TiWAIN hard film and preparation method |
| CN104362080A (en) * | 2014-09-24 | 2015-02-18 | 南昌大学 | Method for growing GaN-base thin film materials on Si substrate selectively |
| CN108767083B (en) * | 2018-05-30 | 2021-01-26 | 河源市众拓光电科技有限公司 | Stress-adjustable vertical-structure LED chip and preparation method thereof |
-
2021
- 2021-05-21 CN CN202110555105.3A patent/CN113445005B/en active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5055908A (en) * | 1987-07-27 | 1991-10-08 | Texas Instruments Incorporated | Semiconductor circuit having metallization with TiW |
Also Published As
| Publication number | Publication date |
|---|---|
| CN113445005A (en) | 2021-09-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN113445005B (en) | A kind of preparation method of low stress TiW film | |
| CN113913751B (en) | Cu-high-entropy alloy film and preparation method thereof | |
| TWI810071B (en) | Manufacturing method of metal compound film | |
| CN108611603B (en) | A kind of preparation method of metal multilayer film | |
| JP2000073166A (en) | Method for producing carbon film on substrate and substrate having carbon film obtained by the method | |
| CN116770247B (en) | A nano twinned silver material and preparation method thereof | |
| CN110218971A (en) | A kind of nano-multilayer film and preparation method thereof suitable for titanium alloy surface | |
| CN111304616A (en) | A kind of preparation method of Ti, C doped molybdenum disulfide-based nanocomposite film | |
| US20240334841A1 (en) | Low-stress nbn superconducting thin film and preparation method and application thereof | |
| CN114672778A (en) | Nanocrystalline NbMoTaWTi refractory high-entropy alloy coating and preparation method thereof | |
| CN112382718A (en) | C-axis vertical preferred orientation AlN piezoelectric film and preparation method thereof | |
| CN111489956B (en) | AlCrNbSiTi high-entropy alloy oxide insulating film material for transistor and preparation method thereof | |
| TWI883025B (en) | SUBSTRATE WITH PIEZOELECTRIC COATING, METHOD FOR PREPARING THE SAME, AND MeN MULTICHAMBER PROCESS SYSTEM | |
| CN119291821B (en) | Graphical low-internal-stress high-reflection layer and preparation method and application thereof | |
| CN111647864A (en) | Preparation method of TiAlN/TaN antifriction and wear-resistant nano multilayer coating with modulation structure | |
| CN112831766B (en) | Method for preparing zirconium metal film on silicon substrate by utilizing magnetron sputtering and application | |
| CN114807880B (en) | A kind of nanocrystalline TaWMoCrZr refractory high-entropy alloy coating and preparation method thereof | |
| CN1294293C (en) | Auxiliary grid hot wire chemical vapor deposition process for preparing nano-diamond thin film | |
| CN113293353B (en) | Metal-doped zirconium diboride film and preparation method thereof | |
| CN114752892A (en) | A kind of super-large grain platinum film and preparation method thereof | |
| CN115360995A (en) | A composite piezoelectric thin film, its preparation method, and resonator | |
| CN114941122A (en) | High-hardness TiTaCrMoNbNx high-entropy alloy film for medical instruments and preparation method thereof | |
| CN110144485B (en) | Cu-Ta alloy and preparation method thereof | |
| CN107227447A (en) | A kind of titanium alloy/zirconium diboride nano-multilayer film and preparation method and application | |
| CN109338312B (en) | A kind of silver-containing chromium nitride-based hard nanostructure composite film and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |