CN113441184B - Catalyst for carbodiimide amination synthesis, synthesis method and obtained guanidine compound - Google Patents
Catalyst for carbodiimide amination synthesis, synthesis method and obtained guanidine compound Download PDFInfo
- Publication number
- CN113441184B CN113441184B CN202110851069.5A CN202110851069A CN113441184B CN 113441184 B CN113441184 B CN 113441184B CN 202110851069 A CN202110851069 A CN 202110851069A CN 113441184 B CN113441184 B CN 113441184B
- Authority
- CN
- China
- Prior art keywords
- compound
- carbodiimide
- catalyst
- synthesis
- synthesis according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- -1 guanidine compound Chemical class 0.000 title claims abstract description 65
- 239000003054 catalyst Substances 0.000 title claims abstract description 24
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 20
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 18
- 150000001718 carbodiimides Chemical class 0.000 title abstract description 15
- 238000001308 synthesis method Methods 0.000 title abstract description 9
- 238000005576 amination reaction Methods 0.000 title abstract description 4
- ZRALSGWEFCBTJO-UHFFFAOYSA-N anhydrous guanidine Natural products NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 title description 35
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 title description 19
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 title description 19
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000006243 chemical reaction Methods 0.000 claims description 35
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 claims description 15
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 14
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- 125000003118 aryl group Chemical group 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- RUFPHBVGCFYCNW-UHFFFAOYSA-N 1-naphthylamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1 RUFPHBVGCFYCNW-UHFFFAOYSA-N 0.000 claims description 8
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 8
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 claims description 7
- 238000001953 recrystallisation Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 5
- 125000001424 substituent group Chemical group 0.000 claims description 5
- 230000002194 synthesizing effect Effects 0.000 claims description 5
- JDMFXJULNGEPOI-UHFFFAOYSA-N 2,6-dichloroaniline Chemical compound NC1=C(Cl)C=CC=C1Cl JDMFXJULNGEPOI-UHFFFAOYSA-N 0.000 claims description 4
- AKCRQHGQIJBRMN-UHFFFAOYSA-N 2-chloroaniline Chemical compound NC1=CC=CC=C1Cl AKCRQHGQIJBRMN-UHFFFAOYSA-N 0.000 claims description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 4
- VSHTWPWTCXQLQN-UHFFFAOYSA-N n-butylaniline Chemical compound CCCCNC1=CC=CC=C1 VSHTWPWTCXQLQN-UHFFFAOYSA-N 0.000 claims description 4
- 125000003545 alkoxy group Chemical group 0.000 claims description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- 125000000304 alkynyl group Chemical group 0.000 claims description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 3
- 125000005843 halogen group Chemical group 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- ILCQYORZHHFLNL-UHFFFAOYSA-N n-bromoaniline Chemical compound BrNC1=CC=CC=C1 ILCQYORZHHFLNL-UHFFFAOYSA-N 0.000 claims description 2
- MGNPLIACIXIYJE-UHFFFAOYSA-N n-fluoroaniline Chemical compound FNC1=CC=CC=C1 MGNPLIACIXIYJE-UHFFFAOYSA-N 0.000 claims description 2
- NSBIQPJIWUJBBX-UHFFFAOYSA-N n-methoxyaniline Chemical compound CONC1=CC=CC=C1 NSBIQPJIWUJBBX-UHFFFAOYSA-N 0.000 claims description 2
- MYAIFIIQZXKVBM-UHFFFAOYSA-N 7-thiabicyclo[4.1.0]hepta-2,4-dien-1-amine Chemical compound NC12C(C=CC=C1)S2 MYAIFIIQZXKVBM-UHFFFAOYSA-N 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 abstract description 27
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 230000008569 process Effects 0.000 abstract description 4
- 231100000053 low toxicity Toxicity 0.000 abstract description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 36
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 18
- 150000001412 amines Chemical class 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- 238000006555 catalytic reaction Methods 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 9
- 238000005160 1H NMR spectroscopy Methods 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 239000003446 ligand Substances 0.000 description 9
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 238000004611 spectroscopical analysis Methods 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 150000002357 guanidines Chemical class 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000007259 addition reaction Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- DGBISJKLNVVJGD-UHFFFAOYSA-N 2-phenylsulfanylaniline Chemical compound NC1=CC=CC=C1SC1=CC=CC=C1 DGBISJKLNVVJGD-UHFFFAOYSA-N 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- UOCUSOBVEHOMMB-UHFFFAOYSA-N 2h-1$l^{6},2,3-benzothiadiazine 1,1-dioxide Chemical class C1=CC=C2S(=O)(=O)NN=CC2=C1 UOCUSOBVEHOMMB-UHFFFAOYSA-N 0.000 description 2
- WDFQBORIUYODSI-UHFFFAOYSA-N 4-bromoaniline Chemical compound NC1=CC=C(Br)C=C1 WDFQBORIUYODSI-UHFFFAOYSA-N 0.000 description 2
- KRZCOLNOCZKSDF-UHFFFAOYSA-N 4-fluoroaniline Chemical compound NC1=CC=C(F)C=C1 KRZCOLNOCZKSDF-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 125000002795 guanidino group Chemical group C(N)(=N)N* 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- FTQWRYSLUYAIRQ-UHFFFAOYSA-N n-[(octadecanoylamino)methyl]octadecanamide Chemical class CCCCCCCCCCCCCCCCCC(=O)NCNC(=O)CCCCCCCCCCCCCCCCC FTQWRYSLUYAIRQ-UHFFFAOYSA-N 0.000 description 2
- BHAAPTBBJKJZER-UHFFFAOYSA-N p-anisidine Chemical compound COC1=CC=C(N)C=C1 BHAAPTBBJKJZER-UHFFFAOYSA-N 0.000 description 2
- 230000001766 physiological effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 150000003608 titanium Chemical class 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000010499 C–H functionalization reaction Methods 0.000 description 1
- 238000006842 Henry reaction Methods 0.000 description 1
- 238000006845 Michael addition reaction Methods 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000007059 Strecker synthesis reaction Methods 0.000 description 1
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 1
- 230000002155 anti-virotic effect Effects 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- CSKNSYBAZOQPLR-UHFFFAOYSA-N benzenesulfonyl chloride Chemical compound ClS(=O)(=O)C1=CC=CC=C1 CSKNSYBAZOQPLR-UHFFFAOYSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical class [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 229940125532 enzyme inhibitor Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006884 silylation reaction Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/12—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
- B01J31/14—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
- B01J31/146—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of boron
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C277/00—Preparation of guanidine or its derivatives, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
- C07C277/08—Preparation of guanidine or its derivatives, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups of substituted guanidines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C279/00—Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
- C07C279/18—Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of guanidine groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C319/00—Preparation of thiols, sulfides, hydropolysulfides or polysulfides
- C07C319/14—Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
- C07C319/20—Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C323/00—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
- C07C323/23—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
- C07C323/39—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton at least one of the nitrogen atoms being part of any of the groups, X being a hetero atom, Y being any atom
- C07C323/43—Y being a hetero atom
- C07C323/44—X or Y being nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The invention discloses a catalyst for carbodiimide amination synthesis, a synthesis method and an obtained guanidino compound, wherein the catalyst is lithium triethylborohydride. The catalyst has the characteristics of low price, easy obtaining, low toxicity, greenness and the like, the synthesis method can obtain the high-purity guanidyl compound, and the method has the advantages of simple process, high yield, high atom economy and low energy consumption.
Description
Technical Field
The invention relates to the technical field of guanidino compound synthesis.
Background
Guanidine is a compound with important physiological activity, molecules containing guanidine mostly show physiological activity such as antibiosis, antivirus, enzyme inhibitor and the like, and the skeleton of guanidine is widely existed in medicines and natural products. Guanidine and its derivatives are also an important class of ancillary ligands and are widely used in the synthesis of organometallic compounds including main group metals, transition metals and rare earth metals. Guanidine compounds have also been widely used as catalysts in organic synthesis, for example, they can efficiently catalyze Streckers reaction, silylation reaction, Henry reaction, Michael addition, synthesis reaction of esters, etc., and in the catalytic process, guanidine compounds exhibit advantages such as moderating reaction conditions and simplifying reaction process. Therefore, guanidine has great industrial value, and research on its synthesis has received extensive attention.
In the prior art, guanidine compounds are synthesized and studied as follows:
in 2021, Lukas Lohmeyer synthesized octahedrally coordinated cobalt (II) complexes with redox active guanidine ligands and acac co-ligands, the increase in hydrogen bond strength upon oxidation of this guanidine ligand triggering redox-induced electron transfer (RIET), which is not present in complexes with guanidine ligands with fully alkylated guanidino groups. Thus, the one-electron oxidation of monocationic Co III complexes with neutral guanidine ligands results in metal reduction and two-electron oxidation of the guanidine ligands, producing Co II complexes with biscationic guanidine ligand units. The results of this study demonstrate the possibility of altering the outcome of the redox process and initiating the Intramolecular Electron Transfer (IET) by introducing intramolecular hydrogen bonding interactions.
Chinese patent application CN 110746325a discloses a η -type doped compound based on guanidine skeleton, which is prepared by mixing 1.2 equivalents of guanidine compound (CyNH)2C ═ N-Ar (-Ar is substituted or unsubstituted aryl)With 1 equivalent of CH3OCOOCOOCH3The precursor is reacted for 24 hours under the catalysis of sodium methoxide to obtain a guanidine framework eta-type doped compound, the 30-nanometer Alq 3/guanidine framework eta-type doped compound (60:40) is used as an electron transport layer and is evaporated on the transparent anode electrode ITO substrate, and the dopant not only has high-efficiency conductivity, but also has good thermal stability when being used as a dopant of the electron transport layer through the molecular structure design of the guanidine framework. As can be seen from the test results, the current efficiency of the organic electroluminescent device was significantly improved after the n-type dopant was added, and the driving voltage was also slightly decreased with substantially unchanged color coordinates.
In 2017, Maryam Nazari synthesized various benzothiadiazine 1, 1-dioxide derivatives in one pot under copper catalysis by three-component intramolecular C-H activation reaction of benzenesulfonyl chloride and aromatic guanidine, which became a suitable method for synthesizing various benzothiadiazine 1, 1-dioxide derivatives under mild conditions and high yield with easy purification.
Compared with the existing synthesis method, the direct preparation of guanidine through the addition reaction of amine and carbodiimide is a route which is more in line with the green chemical requirements and has high atom economy, but the requirement on the catalyst is higher, for example, in the recent research work, a series of bisamide trivalent rare earth metal complexes are synthesized by Bei ZHao and the like, wherein the bisamide trivalent rare earth metal complexes with different groups have different influences on the conversion, and the complexes with better performance are lanthanum and neodymium; or Jayeeta Bhattacharjee and the like synthesize a series of dinuclear titanium complexes supported by phosphorus-containing ligands, and the binuclear titanium complexes catalyze the addition of aromatic amines into carbodiimide, so that corresponding products can be obtained at high yield under mild conditions, and the range of substrates capable of catalyzing is wider.
As shown in the above method, the prior art method for directly preparing guanidine by the addition reaction of amine and carbodiimide often has the following defects: (1) most of the used catalysts are transition metal catalysts, most of the transition metal elements belong to rare metal elements with high mining difficulty, and the transition metal elements are applied to industrial production and often need high cost, and part of the metal is polluted to the environment and cannot be used in a large scale; (2) part of the catalytic process needs to be heated to a higher temperature to obtain satisfactory yield, the energy consumption is large, and the reaction economy is poor; (3) the catalyst has high preparation difficulty and cannot be applied to large-scale industrial application.
Disclosure of Invention
The invention aims to provide a novel catalyst for synthesizing guanidine compounds by carbodiimide hydrogenation and amine and a synthesis method using the catalyst, wherein the catalyst has the characteristics of low price, easy obtainment, low toxicity, green and the like, and the synthesis method has high atom economy and low energy consumption in the reaction process.
The invention firstly provides the following technical scheme:
the catalyst for carbodiimide amination synthesis is lithium triethylborohydride, and the synthesis is synthesis between an amino compound and a carbodiimide compound.
The invention further provides a method for synthesizing a guanidino compound based on the catalyst, which comprises the following steps:
(1) mixing the amine-based compound and the carbodiimide-based compound in an inert atmosphere;
(2) adding the catalyst lithium triethylborohydride into the mixture obtained in the step (1), reacting for 0.5-1 h at room temperature, and then exposing in air to terminate the reaction;
(3) and (3) adding a recrystallization solvent into the mixture obtained in the step (2) for recrystallization to obtain the guanidino compound.
According to some preferred embodiments of the invention, the ratio of the amount of substance of the amine-based compound to the carbodiimide-based compound is 1: 1.
According to some preferred embodiments of the present invention, the molar amount of the catalyst is 0.1 to 1% of the molar amount of the amine-based compound.
According to some preferred embodiments of the present invention, the recrystallization solvent is selected from methanol and/or n-hexane.
According to some preferred embodiments of the present invention, the amine compound is selected from aromatic amine compounds, wherein the aromatic group is selected from substituted or unsubstituted aromatic groups.
According to some preferred embodiments of the present invention, the substituent of the substituted aromatic group is selected from one or more of alkyl group having 1 to 4 carbon atoms, alkoxy group, nitro group, carbonyl group, terminal alkynyl group and halogen atom.
According to some preferred embodiments of the present invention, the amine-based compound is selected from one or more of aniline, bromoaniline, o-chloroaniline, 2, 6-dichloroaniline, fluoroaniline, 1-naphthylamine, 2-aminodiphenyl sulfide, methoxyaniline, n-butylaniline.
According to some preferred embodiments of the present invention, the carbodiimide group compound has the following structural formula:
wherein R is1、R2Selected from isopropyl or cyclohexyl.
According to some preferred embodiments of the invention, the carbodiimide group compound is selected from N, N-diisopropylcarbodiimide and/or N, N-dicyclohexylcarbodiimide.
The present invention further provides a guanidino compound synthesized according to the above synthesis method, having the following structural formula:
the invention has the following beneficial effects:
(1) the invention discovers for the first time that the commercial lithium triethylborohydride reagent can efficiently catalyze the addition reaction of amine and carbodiimide, and the catalyst is cheap and easy to obtain and highly accords with the atom economic synthesis;
(2) lithium triethylborohydride is used for catalyzing addition reaction of amine and carbodiimide, and the lithium triethylborohydride has high catalytic activity, the dosage of the lithium triethylborohydride is only 0.1-1% of the molar weight of a substrate, and the dosage of other catalysts of the existing metal catalysts is more than 2-5% of the molar weight of the substrate;
(3) the method has the advantages that the reaction time required by the addition reaction of lithium triethylborohydride for catalyzing amine and carbodiimide is short, most substrates can obtain satisfactory yield within 1 hour, the yield is over 95 percent, and most other metal catalysts can obtain satisfactory yield within 1-3 hours;
(4) in the prior art, when a metal salt compound is used as a catalyst, heating is generally needed in the reaction process, the synthesis method disclosed by the invention can be smoothly carried out at room temperature without heating in all reaction processes, and has the advantages of less energy consumption and lower production cost;
(5) the synthetic method can successfully obtain a purified product through recrystallization, does not need other column chromatography methods required by the prior art for purification, has simpler steps, and is beneficial to large-scale industrial production.
Detailed Description
The present invention is described in detail with reference to the following examples, but it should be understood that the examples are only for illustrative purposes and are not intended to limit the scope of the present invention. All reasonable variations and combinations that fall within the spirit of the invention are intended to be within the scope of the invention.
According to the technical scheme of the invention, the method for synthesizing the guanidino compound by combining the carbodiimide and the hydrogenated amine comprises the following steps:
(1) under an inert gas atmosphere, mixing an amino compound and a carbodiimide compound according to the mass ratio of 1:1 adding the mixture into a reaction bottle for mixing;
(2) adding lithium triethylborohydride into the mixture obtained in the step (1), reacting for 0.5-1 h at room temperature, and then exposing in air to terminate the reaction;
(3) adding a solvent methanol and/or n-hexane into the product system after the step (2) is completed, and recrystallizing to obtain the guanidino compound;
wherein, the lithium triethylborohydride can directly use commercial lithium triethylborohydride reagent without treatment and purification, and the catalytic amount thereof is preferably in the range of 0.1-1% equivalent of the amine compound;
the amino compound is preferably an aromatic amino compound, the aromatic group (Ar-) contained in the amino compound can be selected from substituted or unsubstituted aromatic groups, wherein the substituent of the substituted aromatic group is preferably one or more of alkyl, alkoxy, nitro, carbonyl, terminal alkynyl and halogen atoms (F, Cl, Br and I) with the carbon number of 1-4, the position of the substituent is not particularly limited, and the substituent can be ortho-position, meta-position and para-position.
The carbodiimide group compound preferably has the following structural formula:
wherein R is1、R2Selected from isopropyl (i-Pr) or cyclohexyl (Cy).
The synthesis of the guanidino compounds via the preferred amine-based compounds and the preferred carbodiimide-based compounds is as follows:
the invention further provides some specific examples as follows:
example 1
Lithium triethylborohydride catalysis aniline and N, N-diisopropyl carbodiimide reaction
0.09313 g (1mmol) of aniline and 0.1262 g (1mmol) of N, N-diisopropylcarbodiimide were introduced into a dry reaction flask in a glove box, and then 0.005 ml of a 1mol/L tetrahydrofuran solution of lithium triethylborohydride was added by a syringe, stirred at room temperature for 0.5 hour, left open to the air for 0.5 hour to stop the reaction, dissolved by the addition of 3 ml of N-hexane, and recrystallized to obtain a product in 99% yield, which was confirmed by nuclear magnetic hydrogen spectroscopy and carbon spectroscopy as the objective compound as follows:
1HNMR(400MHz,CDCl3)δ=7.17(d,J=7.5Hz,1H),6.86(t,J=7.4Hz,1H),6.82–6.76(m,2H),3.70(s,2H),3.49(s,1H),1.10(d,J=6.4Hz,12H);
13C NMR(101MHz,CDCl3)δ=150.32,150.11,129.25,123.54,121.33,43.21,23.36.
example 2
Lithium triethylborohydride catalysis reaction of p-bromoaniline and N, N-diisopropylcarbodiimide
In a glove box, 0.1720 g (1mmol) of p-bromoaniline and 0.1262 g (1mmol) of N, N-diisopropylcarbodiimide were charged into a dry reaction flask, then 0.005 ml of a 1mol/L tetrahydrofuran solution of lithium triethylborohydride was added by a syringe, stirred at room temperature for 0.5 hour, left open to the air for 0.5 hour to stop the reaction, dissolved by adding 5 ml of N-hexane, and recrystallized to obtain a product in 99% yield, which was confirmed to be the objective compound by nuclear magnetic hydrogen spectrum and carbon spectrum as follows:
1HNMR(400MHz,CDCl3)δ=7.11(d,J=8.6Hz,2H),6.70(d,J=8.6Hz,2H),3.67(dt,J=12.7,6.3Hz,2H),3.50–3.45(m,2H),1.08(d,J=6.4Hz,12H);
13C NMR(101MHz,CDCl3)δ=149.08,148.60,131.11,124.31,112.74,42.13,22.28。
example 3
Lithium triethylborohydride catalysis o-chloroaniline reacts with N, N-diisopropylcarbodiimide
In a glove box, 0.1720 g (1mmol) of o-chloroaniline and 0.1262 g (1mmol) of N, N-diisopropylcarbodiimide were charged into a dry reaction flask, then 0.005 ml of a 1mol/L tetrahydrofuran solution of lithium triethylborohydride was added by a syringe, stirred at room temperature for 0.5 hour, left open to the air for 0.5 hour to stop the reaction, dissolved by adding 5 ml of N-hexane, and recrystallized to obtain a product in 99% yield, which was confirmed to be the objective compound by nuclear magnetic hydrogen spectrum and carbon spectrum as follows:
1HNMR(400MHz,CDCl3)δ7.28(dd,J=7.9,1.3Hz,1H),7.07(td,J=7.8,1.4Hz,1H),6.87–6.77(m,2H),3.79–3.63(m,2H),1.12(d,J=6.4Hz,12H);
13C NMR(101MHz,CDCl3)δ=156.87,154.46,150.71,137.77,126.21,124.52,122.20,116.06,43.31,23.31。
example 4
Lithium triethylborohydride catalysis reaction of 2, 6-dichloroaniline and N, N-dicyclohexylcarbodiimide
0.1650 g (1mmol) of 2, 6-dichloroaniline and 0.2063 g (1mmol) of N, N-diisopropylcarbodiimide were charged into a dry reaction flask in a glove box, and then 0.005 ml of a 1mol/L tetrahydrofuran solution of lithium triethylborohydride was added by syringe, stirred at room temperature for 0.5 hour, left to stand open to the air for 0.5 hour to terminate the reaction, dissolved by adding 6 ml of N-hexane, and recrystallized to obtain the product in a yield of 98%.
The nuclear magnetic data of the product is as follows,1H NMR(400MHz,CDCl3)δ=7.18(s,2H),6.72(t,J=7.9Hz,2H),3.40(s,2H),2.00(d,J=10.7Hz,4H),1.58(dd,J=39.3,12.7Hz,6H),1.28(dd,J=24.4,12.1Hz,4H),1.08(dd,J=23.8,11.8Hz,6H).13C NMR(101MHz,CDCl3)δ=149.28,144.55,129.99,128.22,122.21,50.33,33.86,25.68,24.91.
example 5
Lithium triethylborohydride-catalyzed reaction of para-fluoroaniline and N, N-dicyclohexylcarbodiimide
In a glove box, 0.1111 g (1mmol) of para-fluoroaniline and 0.2063 g (1mmol) of N, N-diisopropylcarbodiimide were charged into a dry reaction flask, and then 0.005 ml of a 1mol/L tetrahydrofuran solution of lithium triethylborohydride was added by a syringe, stirred at room temperature for 0.75 hour, left open to the air for 0.5 hour to stop the reaction, dissolved by addition of 6 ml of N-hexane, and recrystallized to obtain a product in a yield of 98%, and the obtained compound was confirmed to be the objective compound by nuclear magnetic hydrogen spectrum and carbon spectrum as follows:
1H NMR(400MHz,CDCl3)δ=7.37(dd,J=7.9,0.9Hz,1H),7.20–7.13(m,1H),6.92(ddd,J=15.2,8.3,4.0Hz,2H),3.57(s,1H),3.47(dd,J=11.8,8.4Hz,2H),2.07(dd,J=12.3,2.6Hz,4H),1.78–1.58(m,6H),1.46–1.32(m,4H),1.25–1.07(m,6H);
13C NMR(101MHz,CDCl3)δ=149.77,147.23,129.91,128.44,127.48,125.36,122.39,50.22,33.83,25.69,24.91。
example 6
Lithium triethylborohydride catalysis reaction of 1-naphthylamine and N, N-diisopropylcarbodiimide
0.1432 g (1mmol) of 1-naphthylamine and 0.1262 g (1mmol) of N, N-diisopropylcarbodiimide were introduced into a dry reaction flask in a glove box, and then 0.005 ml of a 1mol/L tetrahydrofuran solution of lithium triethylborohydride was added by a syringe, stirred at room temperature for 0.75 hour, left open to the air for 0.5 hour to stop the reaction, dissolved by addition of 8 ml of N-hexane, and recrystallized to obtain a product in a yield of 98%, and the obtained compound was confirmed to be the objective compound by nuclear magnetic hydrogen spectroscopy and carbon spectroscopy as follows:
1HNMR(400MHz,CDCl3)δ=8.00(d,J=8.0Hz,1H),7.71(d,J=7.5Hz,1H),7.41–7.26(m,4H),6.84(dd,J=7.2,0.9Hz,1H),3.80(d,J=5.0Hz,2H),3.54(s,2H),1.11(d,J=6.4Hz,12H);
13C NMR(101MHz,CDCl3)δ=150.11,134.85,129.60,127.76,126.41,125.79,124.77,124.32,121.61,117.95,43.42,23.45。
example 7
Lithium triethylborohydride catalyzed reaction of 2-aminodiphenyl sulfide with N, N-dicyclohexylcarbodiimide 0.2013 g (1mmol) of 2-aminodiphenyl sulfide and 0.2063 g (1mmol) of N, N-diisopropylcarbodiimide were charged into a dry reaction flask in a glove box, then 0.01 ml of 1mol/L tetrahydrofuran solution of lithium triethylborohydride was added by syringe, stirred at room temperature for 0.75 hours, left open to the air for 0.5 hours to stop the reaction, dissolved by adding 5 ml of methanol, and recrystallized to obtain the product with a yield of 95%, and the obtained compound was confirmed to be the target compound by nuclear magnetic hydrogen spectrum and carbon spectrum as follows:
1H NMR(400MHz,CDCl3)δ=7.36–7.30(m,2H),7.25–7.13(m,4H),7.01(td,J=7.7,1.4Hz,2H),6.87(dd,J=7.8,1.2Hz,2H),6.74(ddd,J=15.1,8.2,4.1Hz,2H),3.54(s,2H),3.32(t,J=9.9Hz,2H),1.99–1.88(m,4H),1.65–1.45(m,6H),1.25(tt,J=15.3,3.2Hz,4H),1.11–0.95(m,6H);
13C NMR(101MHz,CDCl3)δ=149.56,148.29,135.24,132.62,131.56,129.47,129.03,127.04(d,J=2.6Hz),123.25,122.03,50.16,33.90,25.73,24.94。
example 8
Lithium triethylborohydride-catalyzed reaction of p-anisidine and N, N-dicyclohexylcarbodiimide
In a glove box, 0.1231 g (1mmol) of p-anisidine and 0.2063 g (1mmol) of N, N-diisopropylcarbodiimide were charged into a dry reaction flask, and then 0.01 ml of a 1mol/L tetrahydrofuran solution of lithium triethylborohydride was added by a syringe, stirred at room temperature for 0.5 hour, left open to the air for 0.5 hour to stop the reaction, dissolved by the addition of 5 ml of N-hexane, and recrystallized to obtain a product in a yield of 95%, and the obtained compound was confirmed to be the objective compound by nuclear magnetic hydrogen spectroscopy and carbon spectroscopy as follows:
1HNMR(400MHz,CDCl3)δ=6.84–6.74(m,4H),3.77(s,3H),3.40(s,2H),1.99(d,J=9.8Hz,4H),1.74–1.52(m,6H),1.41–1.27(m,4H),1.22–1.02(m,6H);
13C NMR(101MHz,CDCl3)δ=154.56,150.54,143.33,124.27,114.61,55.43,50.13,33.81,25.69,24.90。
example 9
Lithium triethylborohydride catalyzed reaction of N-butylaniline and N, N-dicyclohexylcarbodiimide
0.1492 g (1mmol) of N-butylaniline and 0.2063 g (1mmol) of N, N-diisopropylcarbodiimide were taken in a glove box and charged into a dry reaction flask, then 0.01 ml of a 1mol/L tetrahydrofuran solution of lithium triethylborohydride was added by a syringe, stirred at room temperature for 1 hour, left open to the air for 0.5 hour to stop the reaction, dissolved by adding 6 ml of N-hexane, and recrystallized to obtain a product in a yield of 95%, and the obtained compound was confirmed to be the objective compound by nuclear magnetic hydrogen spectroscopy and carbon spectroscopy as follows:
1HNMR(400MHz,CDCl3)δ=6.97(d,J=8.2Hz,2H),6.68(d,J=8.2Hz,2H),3.33(s,2H),2.51–2.41(m,2H),1.97–1.87(m,4H),1.66–1.44(m,8H),1.33–1.18(m,6H),1.14–0.96(m,6H),0.84(t,J=7.3Hz,3H);
13C NMR(101MHz,CDCl3)δ=150.21,147.47,135.70,129.16,123.23,50.23,35.01,33.80,25.70,24.92,22.30,13.97。
the above examples are merely preferred embodiments of the present invention, and the scope of the present invention is not limited to the above examples. All technical schemes belonging to the idea of the invention belong to the protection scope of the invention. It should be noted that modifications and embellishments within the scope of the invention may be made by those skilled in the art without departing from the principle of the invention, and such modifications and embellishments should also be considered as within the scope of the invention.
Claims (8)
1. A method for synthesizing a guanidino compound is characterized by comprising the following steps: the method comprises the following steps:
(1) mixing an amino compound and a carbodiimide compound in an inert atmosphere;
(2) adding a catalyst lithium triethylborohydride into the mixture obtained in the step (1), reacting for 0.5-1 h at room temperature, and then exposing in air to terminate the reaction;
(3) and (3) adding a recrystallization solvent into the mixture obtained in the step (2) for recrystallization to obtain the guanidino compound.
2. The method of synthesis according to claim 1, characterized in that: the amount of the substance of the amino compound and the carbodiimide compound is 1:1, and/or the molar amount of the catalyst is 0.1 to 1% of the molar amount of the amino compound.
3. The method of synthesis according to claim 1, characterized in that: the recrystallization solvent is selected from methanol and/or n-hexane.
4. The method of synthesis according to claim 1, characterized in that: the amino compound is selected from aromatic amino compounds, and the aromatic group contained in the amino compound is selected from substituted or unsubstituted aromatic groups.
5. The method of synthesis according to claim 4, characterized in that: the substituent of the substituted aromatic group is selected from one or more of alkyl, alkoxy, nitro, carbonyl, terminal alkynyl and halogen atoms with the carbon atom number of 1-4.
6. The method of synthesis according to claim 4, characterized in that: the amino compound is selected from one or more of aniline, bromoaniline, o-chloroaniline, 2, 6-dichloroaniline, fluoroaniline, 1-naphthylamine, 2-aminobenzene sulfide, methoxyaniline and n-butylaniline.
8. The method of synthesis according to claim 7, characterized in that: the carbodiimide compound is selected from N, N-diisopropyl carbodiimide and/or N, N-dicyclohexylcarbodiimide.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110851069.5A CN113441184B (en) | 2021-07-27 | 2021-07-27 | Catalyst for carbodiimide amination synthesis, synthesis method and obtained guanidine compound |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110851069.5A CN113441184B (en) | 2021-07-27 | 2021-07-27 | Catalyst for carbodiimide amination synthesis, synthesis method and obtained guanidine compound |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN113441184A CN113441184A (en) | 2021-09-28 |
| CN113441184B true CN113441184B (en) | 2021-12-28 |
Family
ID=77817395
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110851069.5A Expired - Fee Related CN113441184B (en) | 2021-07-27 | 2021-07-27 | Catalyst for carbodiimide amination synthesis, synthesis method and obtained guanidine compound |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN113441184B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117842943A (en) * | 2022-10-09 | 2024-04-09 | 中国科学院大连化学物理研究所 | A kind of synthetic method of lithium carbodiimide |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101024667A (en) * | 2007-03-30 | 2007-08-29 | 北京博泰世纪科技发展有限公司 | Method for preparing gemcitabine hydrochloride |
| CN101656313A (en) * | 2009-09-11 | 2010-02-24 | 太原理工大学 | Preparation method of catalyst for cathode of direct methanol fuel cell |
| CN102274736A (en) * | 2011-06-28 | 2011-12-14 | 苏州大学 | Application of aluminum chloride in catalyzing amine and carbodiimide addition reaction |
-
2021
- 2021-07-27 CN CN202110851069.5A patent/CN113441184B/en not_active Expired - Fee Related
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101024667A (en) * | 2007-03-30 | 2007-08-29 | 北京博泰世纪科技发展有限公司 | Method for preparing gemcitabine hydrochloride |
| CN101656313A (en) * | 2009-09-11 | 2010-02-24 | 太原理工大学 | Preparation method of catalyst for cathode of direct methanol fuel cell |
| CN102274736A (en) * | 2011-06-28 | 2011-12-14 | 苏州大学 | Application of aluminum chloride in catalyzing amine and carbodiimide addition reaction |
Also Published As
| Publication number | Publication date |
|---|---|
| CN113441184A (en) | 2021-09-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Guo et al. | Palladium, iridium and ruthenium complexes with acyclic imino-N-heterocyclic carbenes and their application in aqua-phase Suzuki–Miyaura cross-coupling reaction and transfer hydrogenation | |
| CN104140436B (en) | A kind of β-diimine divalent rare earth borohydride complex and its preparation method and application | |
| CN104402934A (en) | Preparation method and application of 2-(diphenylphosphineethyl)-(5,6,7,8-tetrahydroquinolinyl)amine ruthenium complexes | |
| CN107473991A (en) | By the synthetic method of the isourea of catalysis of rare-earth compound | |
| CN113441184B (en) | Catalyst for carbodiimide amination synthesis, synthesis method and obtained guanidine compound | |
| CN101219988B (en) | Synthesis of 4,4'disubstituted-2,2'-dipyridine | |
| CN112694489B (en) | Preparation method of N-heterocyclic carbene copper catalyst | |
| CN109810147B (en) | Pyrene-labeled benzimidazole nitrogen heterocyclic carbene palladium metal complex, and preparation and application thereof | |
| CN114478362A (en) | Preparation method of chiral pyridinol derivative | |
| CN104817583B (en) | Carbon Bridged Bisamido Rare Earth Amines and Their Preparation and Application in Catalytic Amidation Synthesis of Aldehydes and Amines | |
| CN111269272A (en) | Complex for synthesizing dye intermediate and preparation method thereof | |
| CN114437143B (en) | A kind of pyridyl bridged bistetrazole cheap metal complex and its preparation and application | |
| CN111100124B (en) | Linear o-phenanthroline compound and preparation method and application thereof | |
| CN108610380A (en) | A kind of tetrapyridylporphine zinc-ruthenium complex and its preparation and application | |
| CN101531621A (en) | Method for preparing guanidine compound | |
| CN113004248A (en) | Method for synthesizing carbazole compound by catalyzing hydrocarbon amination reaction with cobalt | |
| RU2420515C2 (en) | Method of producing 3,4,5-trifluoroaniline | |
| CN114213469B (en) | Metal organic complex containing benzimidazole skeleton and preparation method and application thereof | |
| CN119841782B (en) | Compounds based on diphenylamine derivatives and quinoxaline skeletons, preparation methods and applications as photocatalysts | |
| CN113735730B (en) | A kind of preparation method of primary acyl amine | |
| CN114602558B (en) | Metallic iridium photocatalyst and preparation method and application thereof | |
| CN119331033B (en) | Catalyst CudppfBH4 and its application in catalytic reduction of α,β-unsaturated amides | |
| US20060041159A1 (en) | Transition metal complexes with proton sponges as ligands | |
| CN108774137B (en) | Method for catalytically synthesizing secondary amine compound by dinuclear manganese complex | |
| JP2021502885A (en) | Phosphine-free cobalt-based catalysts and methods and uses for their preparation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20211228 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |