CN113506802B - A direct bandgap GeSn CMOS device and its preparation method - Google Patents
A direct bandgap GeSn CMOS device and its preparation method Download PDFInfo
- Publication number
- CN113506802B CN113506802B CN202110722554.2A CN202110722554A CN113506802B CN 113506802 B CN113506802 B CN 113506802B CN 202110722554 A CN202110722554 A CN 202110722554A CN 113506802 B CN113506802 B CN 113506802B
- Authority
- CN
- China
- Prior art keywords
- layer
- intrinsic
- type
- ternary alloy
- nmos
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910005898 GeSn Inorganic materials 0.000 title claims abstract description 28
- 238000002360 preparation method Methods 0.000 title abstract description 3
- 229910002058 ternary alloy Inorganic materials 0.000 claims abstract description 90
- 238000002955 isolation Methods 0.000 claims abstract description 63
- 239000000463 material Substances 0.000 claims abstract description 46
- 238000000034 method Methods 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 238000002161 passivation Methods 0.000 claims abstract description 11
- 238000000151 deposition Methods 0.000 claims description 29
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 21
- 229920002120 photoresistant polymer Polymers 0.000 claims description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- 238000005530 etching Methods 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 235000012239 silicon dioxide Nutrition 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 8
- 238000005468 ion implantation Methods 0.000 claims description 7
- 150000002500 ions Chemical class 0.000 claims description 7
- 238000001953 recrystallisation Methods 0.000 claims description 6
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 5
- 238000001312 dry etching Methods 0.000 claims description 3
- 239000007943 implant Substances 0.000 claims description 3
- 238000001039 wet etching Methods 0.000 claims description 2
- 229910052681 coesite Inorganic materials 0.000 claims 5
- 229910052906 cristobalite Inorganic materials 0.000 claims 5
- 229910052682 stishovite Inorganic materials 0.000 claims 5
- 229910052905 tridymite Inorganic materials 0.000 claims 5
- 229910052581 Si3N4 Inorganic materials 0.000 claims 1
- 230000009286 beneficial effect Effects 0.000 abstract description 8
- 239000004065 semiconductor Substances 0.000 abstract description 8
- 230000004888 barrier function Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 239
- 238000005516 engineering process Methods 0.000 description 9
- 239000012535 impurity Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000001451 molecular beam epitaxy Methods 0.000 description 6
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 239000005380 borophosphosilicate glass Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 238000005036 potential barrier Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/85—Complementary IGFETs, e.g. CMOS
- H10D84/857—Complementary IGFETs, e.g. CMOS comprising an N-type well but not a P-type well
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域Technical Field
本发明属于半导体集成电路技术领域,具体涉及一种直接带隙GeSn CMOS器件及其制备方法。The invention belongs to the technical field of semiconductor integrated circuits, and in particular relates to a direct bandgap GeSn CMOS device and a preparation method thereof.
背景技术Background technique
微电子技术发展一直遵循摩尔定律,但随着Si MOS器件特征尺寸不断缩小,延续摩尔定律越来越困难。在此背景下,一系列新技术层出不穷,如应变技术、鳍栅FinFet、SOI等技术。然而目前,即使辅以这些新技术,Si MOS器件特征尺寸几乎也已达到极限(沟道仅几个纳米),集成电路逐渐趋近其物理和工艺极限。因此,替换Si材料,开发并采用与Si工艺兼容的MOS新沟道材料,已成为继续延续摩尔定律的重要技术途径。The development of microelectronics technology has always followed Moore's Law, but as the feature size of Si MOS devices continues to shrink, it is becoming increasingly difficult to continue Moore's Law. In this context, a series of new technologies have emerged, such as strain technology, fin gate FinFet, SOI and other technologies. However, at present, even with the assistance of these new technologies, the feature size of Si MOS devices has almost reached its limit (the channel is only a few nanometers), and integrated circuits are gradually approaching their physical and process limits. Therefore, replacing Si materials and developing and adopting new MOS channel materials compatible with Si processes have become an important technical approach to continue Moore's Law.
Ge半导体,以及改性Ge半导体(包括应变致改性的应变Ge、Sn合金化改性的直接带隙GeSn)载流子迁移率显著高于Si半导体载流子迁移率(其中,直接带隙GeSn电子迁移率约为Si半导体电子迁移率的4倍,前者空穴迁移率约为后者的两倍),且其可在Si衬底上外延制备,与Si工艺兼容,是理想的MOS沟道材料。以其替换Si材料,应用为MOS器件的沟道材料,可望持续延续摩尔定律,打破Si工艺物理极限。The carrier mobility of Ge semiconductors and modified Ge semiconductors (including strain-induced modified strained Ge and Sn alloy-modified direct bandgap GeSn) is significantly higher than that of Si semiconductors (wherein, the electron mobility of direct bandgap GeSn is about 4 times that of Si semiconductors, and the hole mobility of the former is about twice that of the latter), and they can be epitaxially prepared on Si substrates and are compatible with Si processes, making them ideal MOS channel materials. Replacing Si materials with them and applying them as channel materials for MOS devices is expected to continue Moore's Law and break the physical limits of Si processes.
然而,目前无论是利用Ge半导体,还是直接带隙GeSn(即,DR-GeSn)制作增强型表面沟道nMOS器件沟道材料,由于栅介质与P型Ge基半导体之间的界面特性差,界面态引起的费米钉扎效应导致Ge基增强型表面沟道nMOS沟道无法反型开启工作,这种情况的出现,更无法考虑与Ge基PMOS的兼容结构,而形成互补型Ge基CMOS器件,极大限制了Ge基CMOS器件的性能。However, at present, whether Ge semiconductor or direct bandgap GeSn (i.e., DR-GeSn) is used to make the channel material of the enhanced surface channel nMOS device, due to the poor interface characteristics between the gate dielectric and the P-type Ge-based semiconductor, the Fermi pinning effect caused by the interface state causes the Ge-based enhanced surface channel nMOS channel to be unable to turn on and work in the inversion state. The emergence of this situation makes it impossible to consider a compatible structure with the Ge-based PMOS, and form a complementary Ge-based CMOS device, which greatly limits the performance of the Ge-based CMOS device.
发明内容Summary of the invention
为了解决现有技术中存在的上述问题,本发明提供了一种直接带隙GeSn CMOS器件及其制备方法。本发明要解决的技术问题通过以下技术方案实现:In order to solve the above problems existing in the prior art, the present invention provides a direct bandgap GeSn CMOS device and a method for preparing the same. The technical problem to be solved by the present invention is achieved by the following technical solutions:
本发明实施例的第一方面提供一种直接带隙GeSn CMOS器件,包括:衬底层、Ge虚衬底、第一P型Ge层、隔离区、N阱、第二P型Ge层、本征Ge隔离层、沟道层、第一本征三元合金异质帽层、PMOS栅极、PMOS源漏区、N型Ge层、第二本征三元合金异质帽层、NMOS栅极、NMOS源漏区、介质层、PMOS源电极、PMOS漏电极、NMOS源电极、NMOS漏电极和钝化层;A first aspect of an embodiment of the present invention provides a direct bandgap GeSn CMOS device, comprising: a substrate layer, a Ge virtual substrate, a first P-type Ge layer, an isolation region, an N well, a second P-type Ge layer, an intrinsic Ge isolation layer, a channel layer, a first intrinsic ternary alloy heterogeneous cap layer, a PMOS gate, a PMOS source and drain region, an N-type Ge layer, a second intrinsic ternary alloy heterogeneous cap layer, an NMOS gate, an NMOS source and drain region, a dielectric layer, a PMOS source electrode, a PMOS drain electrode, an NMOS source electrode, an NMOS drain electrode, and a passivation layer;
所述衬底层、所述Ge虚衬底和第一P型Ge层由下至上依次设置;The substrate layer, the Ge virtual substrate and the first P-type Ge layer are arranged in sequence from bottom to top;
所述N型Ge层和所述第二P型Ge层均位于所述第一P型Ge层的上层;The N-type Ge layer and the second P-type Ge layer are both located on the upper layer of the first P-type Ge layer;
所述N阱位于所述第一P型Ge层内,且位于所述第二P型Ge层的下方;The N-well is located in the first P-type Ge layer and below the second P-type Ge layer;
所述本征Ge隔离层位于所述N型Ge层和所述第二P型Ge层的上层;The intrinsic Ge isolation layer is located on the upper layer of the N-type Ge layer and the second P-type Ge layer;
所述沟道层位于所述本征Ge隔离层的上层;The channel layer is located on the upper layer of the intrinsic Ge isolation layer;
所述第一本征三元合金异质帽层和所述第二本征三元合金异质帽层均位于所述沟道层的上层;The first intrinsic ternary alloy heterogeneous cap layer and the second intrinsic ternary alloy heterogeneous cap layer are both located on the upper layer of the channel layer;
所述隔离区由所述第一P型Ge层穿过所述本征Ge隔离层和所述沟道层向上延伸至所述第一本征三元合金异质帽层和第二本征三元合金异质帽层上方;The isolation region extends upward from the first P-type Ge layer through the intrinsic Ge isolation layer and the channel layer to above the first intrinsic ternary alloy heterogeneous cap layer and the second intrinsic ternary alloy heterogeneous cap layer;
所述N阱、所述第二P型Ge层和所述第一本征三元合金异质帽层位于所述隔离区的一侧;The N well, the second P-type Ge layer and the first intrinsic ternary alloy heterogeneous cap layer are located on one side of the isolation region;
所述N型Ge层和所述第二本征三元合金异质帽层位于所述隔离区的另一侧;The N-type Ge layer and the second intrinsic ternary alloy heterogeneous cap layer are located on the other side of the isolation region;
所述PMOS源漏区位于所述第一本征三元合金异质帽层、所述沟道层和所述本征Ge隔离层内;The PMOS source and drain regions are located within the first intrinsic ternary alloy heterogeneous cap layer, the channel layer and the intrinsic Ge isolation layer;
所述NMOS源漏区位于所述第二本征三元合金异质帽层、所述沟道层和本征Ge隔离层内;The NMOS source and drain regions are located within the second intrinsic ternary alloy heterogeneous cap layer, the channel layer and the intrinsic Ge isolation layer;
所述PMOS栅极位于所述第一本征三元合金异质帽层的上层;The PMOS gate is located on the upper layer of the first intrinsic ternary alloy heterogeneous cap layer;
所述NMOS栅极位于所述第二本征三元合金异质帽层的上层;The NMOS gate is located on the upper layer of the second intrinsic ternary alloy heterogeneous cap layer;
所述PMOS栅极和所述NMOS栅极上覆盖有介质层;The PMOS gate and the NMOS gate are covered with a dielectric layer;
所述PMOS源电极、PMOS漏电极位于介质层上且位于所述隔离区的一侧,且分别位于所述PMOS栅极的两侧;The PMOS source electrode and the PMOS drain electrode are located on the dielectric layer and on one side of the isolation region, and are respectively located on both sides of the PMOS gate;
所述NMOS源电极、所述NMOS漏电极位于介质层上且位于所述隔离区的另一侧,且位于所述NMOS栅极的两侧;The NMOS source electrode and the NMOS drain electrode are located on the dielectric layer and on the other side of the isolation region, and on both sides of the NMOS gate;
所述介质层、所述PMOS源电极、PMOS漏电极、所述NMOS源电极、所述NMOS漏电极上覆盖有所述钝化层;The dielectric layer, the PMOS source electrode, the PMOS drain electrode, the NMOS source electrode, and the NMOS drain electrode are covered with the passivation layer;
所述第一本征三元合金异质帽层的材料为SixGe1-x-ySny;其中,x的范围为0.1~0.15,y的范围为0.05~0.07;The material of the first intrinsic ternary alloy heterogeneous cap layer is Si x Ge 1-xy Sn y ; wherein the range of x is 0.1 to 0.15, and the range of y is 0.05 to 0.07;
所述第二本征三元合金异质帽层的材料为SixGe1-x-ySny;其中,x的范围为0.1~0.15,y的范围为0.08~0.1;The material of the second intrinsic ternary alloy heterogeneous cap layer is Si x Ge 1-xy Sn y ; wherein the range of x is 0.1 to 0.15, and the range of y is 0.08 to 0.1;
所述沟道层为本征DR-Ge1-zSnz层;其中,z的范围为0.12~0.18。The channel layer is an intrinsic DR-Ge 1-z Sn z layer, wherein the range of z is 0.12-0.18.
本发明实施例的第二方面提供一种直接带隙GeSn CMOS器件的制备方法,包括以下步骤:A second aspect of an embodiment of the present invention provides a method for preparing a direct bandgap GeSn CMOS device, comprising the following steps:
步骤101、衬底选取:选取单晶Si作为衬底层;Step 101, substrate selection: select single crystal Si as the substrate layer;
步骤102、使用激光再晶体化的方法制备Ge虚衬底;Step 102: Prepare a Ge virtual substrate by using a laser recrystallization method;
步骤103、在所述Ge虚衬底的表面沉积第一P型Ge层;Step 103, depositing a first P-type Ge layer on the surface of the Ge virtual substrate;
步骤104、在所述第一P型Ge层的表面涂抹光刻胶,曝光一侧区域的光刻胶并在曝光后的区域并利用离子注入工艺注入P离子,形成N阱;Step 104, applying photoresist on the surface of the first P-type Ge layer, exposing the photoresist in one area, and implanting P ions in the exposed area by an ion implantation process to form an N well;
步骤105、去除剩余的光刻胶,并在表面制作N型Ge层和第二P型Ge层;Step 105, removing the remaining photoresist, and forming an N-type Ge layer and a second P-type Ge layer on the surface;
步骤106、在所述N型Ge层和所述第二P型Ge层表面沉积本征Ge隔离层;Step 106, depositing an intrinsic Ge isolation layer on the surface of the N-type Ge layer and the second P-type Ge layer;
步骤107、在所述本征Ge隔离层上生长厚度为15~20nm的本征DR-Ge1-zSnz,生成沟道层,其中,z的范围为0.12~0.18;Step 107 , growing intrinsic DR-Ge 1-z Sn z with a thickness of 15-20 nm on the intrinsic Ge isolation layer to form a channel layer, wherein the range of z is 0.12-0.18;
步骤108、在步骤107制备的器件制作隔离区、第一本征三元合金异质帽层和第二本征三元合金异质帽层;其中,所述第一本征三元合金异质帽层的材料为SixGe1-x-ySny;其中,x的范围为0.1~0.15,y的范围为0.05~0.07;Step 108, making an isolation region, a first intrinsic ternary alloy heterogeneous cap layer and a second intrinsic ternary alloy heterogeneous cap layer of the device prepared in step 107; wherein the material of the first intrinsic ternary alloy heterogeneous cap layer is Si x Ge 1-xy Sn y ; wherein x ranges from 0.1 to 0.15, and y ranges from 0.05 to 0.07;
所述第二本征三元合金异质帽层的材料为SixGe1-x-ySny;其中,x的范围为0.1~0.15,y的范围为0.08~0.1;The material of the second intrinsic ternary alloy heterogeneous cap layer is Si x Ge 1-xy Sn y ; wherein the range of x is 0.1 to 0.15, and the range of y is 0.08 to 0.1;
步骤109、在所述第一本征三元合金异质帽层上制作PMOS栅极,在所述第二本征三元合金异质帽层上制作NMOS栅极;Step 109, manufacturing a PMOS gate on the first intrinsic ternary alloy heterogeneous cap layer, and manufacturing an NMOS gate on the second intrinsic ternary alloy heterogeneous cap layer;
步骤110、在步骤109制备的器件上制作PMOS源漏区和NMOS源漏区;Step 110, fabricating a PMOS source-drain region and an NMOS source-drain region on the device fabricated in step 109;
步骤111、在步骤110制备的器件表面淀积介质层;Step 111, depositing a dielectric layer on the surface of the device prepared in step 110;
步骤112、在所述介质层上制作PMOS源电极、PMOS漏电极、NMOS源电极和NMOS漏电极;Step 112, manufacturing a PMOS source electrode, a PMOS drain electrode, an NMOS source electrode and an NMOS drain electrode on the dielectric layer;
步骤113、在步骤112制作的器件表面淀积钝化层。Step 113, depositing a passivation layer on the surface of the device manufactured in step 112.
本发明的有益效果:Beneficial effects of the present invention:
1、本发明本征三元合金异质帽层的存在一方面避免了栅极区与沟道层的直接接触,进而消除了界面态引起的沟道区费米钉扎效应,利于nMOS器件沟道的开启;另一方面,在栅压的场感应作用,以及本征三元合金异质帽层与沟道层深ΔEC导带带偏形成的单边高势垒阻挡作用下,源于N型Ge层的电子将被限制于沟道区,累积进而形成开启沟道,以实现Ge基增强型nMOS器件。1. The presence of the intrinsic ternary alloy heterogeneous cap layer of the present invention avoids direct contact between the gate region and the channel layer, thereby eliminating the Fermi pinning effect in the channel region caused by the interface state, which is beneficial to the opening of the channel of the nMOS device; on the other hand, under the field induction effect of the gate voltage and the unilateral high potential barrier blocking effect formed by the conduction band deviation of the intrinsic ternary alloy heterogeneous cap layer and the channel layer deep ΔEC, the electrons originating from the N-type Ge layer will be confined in the channel region, accumulated and then form an open channel, so as to realize a Ge-based enhancement mode nMOS device.
2、本发明的器件nMOS沟道层电子输运时,由于无表面粗糙度散射(沟道层不与栅介质直接接触)和离化杂质散射(离化杂质不可动电荷处于N型Ge层),沟道电子迁移率进一步提升,器件性能相应增强;本征三元合金异质帽层为高Ge组分三元合金,费米钉扎效应使得该层无法形成寄生沟道,利于后续电路应用;整个器件在Si衬底上实现,与Si工艺兼容,利于集成与成本的控制。2. When the nMOS channel layer of the device of the present invention transports electrons, the channel electron mobility is further improved due to the absence of surface roughness scattering (the channel layer is not in direct contact with the gate dielectric) and ionized impurity scattering (the immovable charges of ionized impurities are in the N-type Ge layer), and the device performance is correspondingly enhanced; the intrinsic ternary alloy heterogeneous cap layer is a ternary alloy with a high Ge component, and the Fermi pinning effect makes it impossible for this layer to form a parasitic channel, which is beneficial to subsequent circuit applications; the entire device is implemented on a Si substrate, is compatible with Si technology, and is beneficial to integration and cost control.
3、pMOS部分为能带宽-窄-宽深ΔEV价带带偏双异质结三层量子阱结构,器件工作时,量子阱结构使空穴仅在量子阱沟道中输运,且无表面粗糙度散射(不与栅介质直接接触)和离化杂质散射(离化杂质不可动电荷处于第二P型Ge层),沟道高空穴迁移率保证了PMOS的性能优异。3. The pMOS part is a three-layer quantum well structure with a wide-narrow-wide-deep ΔE V valence band bias and double heterojunction. When the device is working, the quantum well structure allows holes to be transported only in the quantum well channel, and there is no surface roughness scattering (no direct contact with the gate dielectric) and ionized impurity scattering (the immovable charge of the ionized impurities is in the second P-type Ge layer). The high hole mobility of the channel ensures the excellent performance of the PMOS.
4、紧邻沟道层下方两层分别为本征Ge隔离层和第二P型Ge层、N型Ge层,整个器件各层材料相同,仅部分区域掺杂和本征三元合金异质帽层的三元合金组分不同,Ge基NMOS与Ge基PMOS结构与工艺兼容性较佳。4. The two layers immediately below the channel layer are the intrinsic Ge isolation layer, the second P-type Ge layer, and the N-type Ge layer. The materials of each layer of the entire device are the same, only the doping of some areas and the ternary alloy composition of the intrinsic ternary alloy heterogeneous cap layer are different. The Ge-based NMOS and Ge-based PMOS structures and processes are more compatible.
以下将结合附图及实施例对本发明做进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and embodiments.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1-图37是本发明实施例提供的一种直接带隙GeSn CMOS器件的制备工艺图。1 to 37 are diagrams of a manufacturing process of a direct bandgap GeSn CMOS device provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。The present invention is further described in detail below with reference to specific embodiments, but the embodiments of the present invention are not limited thereto.
实施例一Embodiment 1
请参见图37,本发明实施例的第一方面提供一种直接带隙GeSn CMOS器件,包括:衬底层1、Ge虚衬底4、第一P型Ge层5、隔离区17、N阱7、第二P型Ge层11、本征Ge隔离层12、沟道层13、第一本征三元合金异质帽层16、PMOS栅极、PMOS源漏区25、N型Ge层8、第二本征三元合金异质帽层20、NMOS栅极、NMOS源漏区27、介质层28、PMOS源电极、PMOS漏电极、NMOS源电极、NMOS漏电极和钝化层30。Please refer to Figure 37. The first aspect of an embodiment of the present invention provides a direct bandgap GeSn CMOS device, including: a substrate layer 1, a Ge virtual substrate 4, a first P-type Ge layer 5, an isolation region 17, an N well 7, a second P-type Ge layer 11, an intrinsic Ge isolation layer 12, a channel layer 13, a first intrinsic ternary alloy heterogeneous cap layer 16, a PMOS gate, a PMOS source and drain region 25, an N-type Ge layer 8, a second intrinsic ternary alloy heterogeneous cap layer 20, an NMOS gate, an NMOS source and drain region 27, a dielectric layer 28, a PMOS source electrode, a PMOS drain electrode, an NMOS source electrode, an NMOS drain electrode and a passivation layer 30.
衬底层1、Ge虚衬底4和第一P型Ge层5由下至上依次设置。N型Ge层8和第二P型Ge层11均位于第一P型Ge层5的上层。The substrate layer 1 , the Ge dummy substrate 4 and the first P-type Ge layer 5 are arranged in sequence from bottom to top. The N-type Ge layer 8 and the second P-type Ge layer 11 are both located on the upper layer of the first P-type Ge layer 5 .
N阱7位于第一P型Ge层5内,且位于第二P型Ge层11的下方。The N-well 7 is located in the first P-type Ge layer 5 and below the second P-type Ge layer 11 .
本征Ge隔离层12位于N型Ge层8和第二P型Ge层11的上层。The intrinsic Ge isolation layer 12 is located on the upper layer of the N-type Ge layer 8 and the second P-type Ge layer 11 .
沟道层13位于本征Ge隔离层12的上层。The channel layer 13 is located on the intrinsic Ge isolation layer 12 .
第一本征三元合金异质帽层16和第二本征三元合金异质帽层20均位于沟道层13的上层。The first intrinsic ternary alloy heterogeneous cap layer 16 and the second intrinsic ternary alloy heterogeneous cap layer 20 are both located on the upper layer of the channel layer 13 .
隔离区17由第一P型Ge层5穿过本征Ge隔离层12和沟道层13向上延伸至第一本征三元合金异质帽层16和第二本征三元合金异质帽层20上方。N阱7、第二P型Ge层11和第一本征三元合金异质帽层16位于隔离区17的一侧。N型Ge层8和第二本征三元合金异质帽层20位于隔离区17的另一侧。The isolation region 17 extends upward from the first P-type Ge layer 5 through the intrinsic Ge isolation layer 12 and the channel layer 13 to above the first intrinsic ternary alloy heterogeneous cap layer 16 and the second intrinsic ternary alloy heterogeneous cap layer 20. The N-well 7, the second P-type Ge layer 11 and the first intrinsic ternary alloy heterogeneous cap layer 16 are located on one side of the isolation region 17. The N-type Ge layer 8 and the second intrinsic ternary alloy heterogeneous cap layer 20 are located on the other side of the isolation region 17.
PMOS源漏区25位于第一本征三元合金异质帽层16、沟道层13和本征Ge隔离层12内。NMOS源漏区27位于第二本征三元合金异质帽层20、沟道层13和本征Ge隔离层12内。The PMOS source and drain regions 25 are located in the first intrinsic ternary alloy heterogeneous cap layer 16, the channel layer 13 and the intrinsic Ge isolation layer 12. The NMOS source and drain regions 27 are located in the second intrinsic ternary alloy heterogeneous cap layer 20, the channel layer 13 and the intrinsic Ge isolation layer 12.
PMOS栅极位于第一本征三元合金异质帽层16的上层。NMOS栅极位于第二本征三元合金异质帽层20的上层。PMOS栅极和NMOS栅极上覆盖有介质层28。The PMOS gate is located on the upper layer of the first intrinsic ternary alloy heterogeneous cap layer 16. The NMOS gate is located on the upper layer of the second intrinsic ternary alloy heterogeneous cap layer 20. A dielectric layer 28 covers the PMOS gate and the NMOS gate.
PMOS源电极、PMOS漏电极位于介质层28上且位于隔离区17的一侧,且分别位于PMOS栅极的两侧。NMOS源电极、NMOS漏电极位于介质层28上且位于隔离区17的另一侧,且位于NMOS栅极的两侧。介质层28、PMOS源电极、PMOS漏电极、NMOS源电极、NMOS漏电极上覆盖有钝化层30。The PMOS source electrode and the PMOS drain electrode are located on the dielectric layer 28 and on one side of the isolation region 17, and are located on both sides of the PMOS gate. The NMOS source electrode and the NMOS drain electrode are located on the dielectric layer 28 and on the other side of the isolation region 17, and are located on both sides of the NMOS gate. The dielectric layer 28, the PMOS source electrode, the PMOS drain electrode, the NMOS source electrode, and the NMOS drain electrode are covered with a passivation layer 30.
沟道层13为本征DR-Ge1-zSnz层;其中,z的范围为0.12~0.18。The channel layer 13 is an intrinsic DR-Ge 1-z Sn z layer, wherein the range of z is 0.12-0.18.
第一本征三元合金异质帽层16的材料为SixGe1-x-ySny;其中,x的范围为0.1~0.15,y的范围为0.05~0.07。本实施例中,第一本征三元合金异质帽层16禁带宽度大于DR-GeSn禁带宽度,且与沟道层13形成深ΔEV价带带偏异质结。PMOS部分为能带宽-窄-宽深ΔEV价带带偏双异质结三层量子阱结构,器件工作时,量子阱结构使空穴仅在量子阱沟道中输运,且无表面粗糙度散射(不与栅介质直接接触)和离化杂质散射(离化杂质不可动电荷处于第二P型Ge层11),沟道高空穴迁移率保证了PMOS的性能优异。The material of the first intrinsic ternary alloy heterogeneous cap layer 16 is Si x Ge 1-xy Sn y ; wherein the range of x is 0.1 to 0.15, and the range of y is 0.05 to 0.07. In this embodiment, the first intrinsic ternary alloy heterogeneous cap layer 16 has a bandgap width greater than the bandgap width of DR-GeSn, and forms a deep ΔEV valence band bias heterojunction with the channel layer 13. The PMOS part is a wide-bandwidth-narrow-wide-deep ΔEV valence band bias double heterojunction three-layer quantum well structure. When the device is working, the quantum well structure allows holes to be transported only in the quantum well channel, and there is no surface roughness scattering (not in direct contact with the gate dielectric) and ionized impurity scattering (ionized impurity immovable charges are in the second P-type Ge layer 11), and the high hole mobility of the channel ensures the excellent performance of the PMOS.
第二本征三元合金异质帽层20的材料为SixGe1-x-ySny;其中,x的范围为0.1~0.15,y的范围为0.08~0.1。本实施例中,第二本征三元合金异质帽层20禁带宽度大于DR-GeSn禁带宽度,且与沟道层13形成深ΔEC导带带偏异质结。当该NMOS器件施加栅压工作时,本征三元合金异质帽层的存在一方面避免了栅极区与沟道层13的直接接触,进而消除了界面态引起的沟道区费米钉扎效应,利于nMOS器件沟道的开启;另一方面,在栅压的场感应作用,以及本征三元合金异质帽层与沟道层13深ΔEC导带带偏形成的单边高势垒阻挡作用下,源于N型Ge层8的电子将被限制于沟道区,累积进而形成开启沟道,以实现Ge基增强型nMOS器件。The material of the second intrinsic ternary alloy heterogeneous cap layer 20 is Si x Ge 1-xy Sn y ; wherein the range of x is 0.1 to 0.15, and the range of y is 0.08 to 0.1. In this embodiment, the bandgap width of the second intrinsic ternary alloy heterogeneous cap layer 20 is greater than the bandgap width of DR-GeSn, and forms a deep ΔEC conduction band offset heterojunction with the channel layer 13. When the NMOS device is operated by applying a gate voltage, the presence of the intrinsic ternary alloy heterogeneous cap layer avoids direct contact between the gate region and the channel layer 13, thereby eliminating the Fermi pinning effect in the channel region caused by the interface state, which is beneficial to the opening of the channel of the nMOS device; on the other hand, under the field induction effect of the gate voltage and the unilateral high potential barrier blocking effect formed by the deep ΔEC conduction band offset of the intrinsic ternary alloy heterogeneous cap layer and the channel layer 13, the electrons from the N-type Ge layer 8 will be confined to the channel region, accumulated to form an open channel, so as to realize a Ge-based enhancement type nMOS device.
此外,沟道层13电子输运时,由于无表面粗糙度散射(沟道层13不与栅介质直接接触)和离化杂质散射(离化杂质不可动电荷处于N型Ge层8),沟道电子迁移率进一步提升,器件性能相应增强;本征三元合金异质帽层为高Ge组分三元合金,费米钉扎效应使得该层无法形成寄生沟道,利于后续电路应用;整个器件在Si衬底上实现,与Si工艺兼容,利于集成与成本的控制。In addition, when electrons in the channel layer 13 are transported, the mobility of channel electrons is further improved due to the absence of surface roughness scattering (the channel layer 13 is not in direct contact with the gate dielectric) and ionized impurity scattering (the immovable charges of ionized impurities are in the N-type Ge layer 8), and the device performance is correspondingly enhanced; the intrinsic ternary alloy heterogeneous cap layer is a ternary alloy with a high Ge component, and the Fermi pinning effect makes it impossible for this layer to form a parasitic channel, which is beneficial to subsequent circuit applications; the entire device is implemented on a Si substrate, which is compatible with Si technology, and is beneficial to integration and cost control.
本实施例中,整个CMOS器件各层材料相同,仅部分区域掺杂和三元合金组分不同,Ge基NMOS与Ge基PMOS结构与工艺兼容性较佳。单边高势垒量子限域NMOS和量子阱PMOS组成的DR-GeSn CMOS结构,沟道载流子迁移率高,器件驱动能力等性能指标优异。In this embodiment, the materials of each layer of the entire CMOS device are the same, and only the doping and ternary alloy components of some regions are different. The Ge-based NMOS and Ge-based PMOS structures have good process compatibility. The DR-GeSn CMOS structure composed of a single-sided high-barrier quantum confined NMOS and a quantum well PMOS has high channel carrier mobility and excellent performance indicators such as device driving capability.
进一步地,第一P型Ge层5的掺杂浓度为1×1016~1×1017cm-3;第二P型Ge层11的掺杂浓度为1×1016~1×1019cm-3;N型Ge层8的掺杂浓度为1×1016~1×1019cm-3。Further, the doping concentration of the first P-type Ge layer 5 is 1×10 16 ~1×10 17 cm -3 ; the doping concentration of the second P-type Ge layer 11 is 1×10 16 ~1×10 19 cm -3 ; and the doping concentration of the N-type Ge layer 8 is 1×10 16 ~1×10 19 cm -3 .
进一步地,沟道层13的厚度为15~20nm。Furthermore, the thickness of the channel layer 13 is 15-20 nm.
进一步地,第一本征三元合金异质帽层16的厚度为5~10nm;第二本征三元合金异质帽层20的厚度为5~10nm。Furthermore, the thickness of the first intrinsic ternary alloy heterogeneous cap layer 16 is 5-10 nm; the thickness of the second intrinsic ternary alloy heterogeneous cap layer 20 is 5-10 nm.
进一步地,衬底层1采用单晶Si。整个器件在Si衬底上实现,与Si工艺兼容,利于集成与成本的控制。Furthermore, the substrate layer 1 is made of single crystal Si. The entire device is implemented on a Si substrate, which is compatible with Si technology and is conducive to integration and cost control.
实施例二Embodiment 2
本发明实施例的第二方面提供一种直接带隙GeSn CMOS器件的制备方法,包括以下步骤:A second aspect of an embodiment of the present invention provides a method for preparing a direct bandgap GeSn CMOS device, comprising the following steps:
步骤101、衬底选取:选取单晶Si作为衬底层1,如图1所示。Step 101 , substrate selection: single crystal Si is selected as the substrate layer 1 , as shown in FIG1 .
步骤102、使用激光再晶体化的方法制备Ge虚衬底4。步骤102的具体步骤包括:Step 102: Prepare Ge virtual substrate 4 by laser recrystallization. The specific steps of step 102 include:
步骤1021、使用RCA方法清洁衬底层1,然后用10%的氢氟酸清洗,去除Si表面氧化层。Step 1021 , clean the substrate layer 1 using the RCA method, and then clean it with 10% hydrofluoric acid to remove the Si surface oxide layer.
步骤1022、采用磁控溅射的方法,在400℃~500℃温度下,将纯度为99.999%的本征Ge靶材料以1.5×10-3mb的工艺压力,5nm/min的淀积速率溅射淀积在衬底层1上,淀积厚度为300~400nm,形成Ge外延层薄膜2,如图2所示。Step 1022, using the magnetron sputtering method, at a temperature of 400°C to 500°C, an intrinsic Ge target material with a purity of 99.999% is sputtered and deposited on the substrate layer 1 at a process pressure of 1.5×10-3mb and a deposition rate of 5nm/min, with a deposition thickness of 300 to 400nm, to form a Ge epitaxial layer film 2, as shown in Figure 2.
步骤1023、淀积第一二氧化硅保护层3:利用CVD工艺在Ge外延层薄膜2上淀积厚度为100nm第一二氧化硅保护层3,如图3所示。Step 1023 , depositing a first silicon dioxide protection layer 3 : depositing a first silicon dioxide protection layer 3 with a thickness of 100 nm on the Ge epitaxial film 2 by using a CVD process, as shown in FIG. 3 .
步骤1024、将步骤1023制备的材料加热至600℃~650℃,然后连续激光扫描,其中激光波长为808nm,激光功率密度为2.1kW/cm2,激光光斑尺寸10mm×1mm,激光移动速度为20mm/s,而后使材料自然冷却。连续激光照射使得Ge外延层薄膜2发生熔化以及冷却后再结晶的过程,使得外延层位错密度大大降低。Step 1024, heating the material prepared in step 1023 to 600°C to 650°C, and then continuously laser scanning, wherein the laser wavelength is 808nm, the laser power density is 2.1kW/cm2, the laser spot size is 10mm×1mm, the laser moving speed is 20mm/s, and then the material is allowed to cool naturally. Continuous laser irradiation causes the Ge epitaxial layer film 2 to melt and recrystallize after cooling, so that the dislocation density of the epitaxial layer is greatly reduced.
其中,激光再晶化高Ge外延层薄膜需要精确控制激光物理参量(激光功率,扫描速度等),Ge外延层薄膜2的初始温度和外延层厚度。对于激光功率的设置,需要激光能量可使Ge外延层薄膜2的温度至少达到熔点,并尽可能高却不至于超过烧蚀点。这样的热处理过程,可以显著提高Ge外延层的晶体质量。同时,还需重点考虑Ge外延的初始温度参量,在激光再晶化前预热Ge外延,可以显著降低激光再晶化所需的阈值激光功率。Si衬底与Ge外延层薄膜2存在热失配,体系预热还可以有效防止因激光照射时温度瞬时大幅升高引起的材料开裂现象。Among them, laser recrystallization of high Ge epitaxial layer film requires precise control of laser physical parameters (laser power, scanning speed, etc.), the initial temperature of the Ge epitaxial layer film 2 and the thickness of the epitaxial layer. For the setting of laser power, the laser energy is required to make the temperature of the Ge epitaxial layer film 2 at least reach the melting point, and as high as possible without exceeding the ablation point. Such a heat treatment process can significantly improve the crystal quality of the Ge epitaxial layer. At the same time, it is also necessary to focus on the initial temperature parameters of the Ge epitaxy. Preheating the Ge epitaxy before laser recrystallization can significantly reduce the threshold laser power required for laser recrystallization. There is a thermal mismatch between the Si substrate and the Ge epitaxial layer film 2. System preheating can also effectively prevent material cracking caused by a sharp increase in temperature during laser irradiation.
步骤1025、自然冷却步骤1024制备的材料,利用干法刻蚀工艺刻蚀第一二氧化硅保护层3,得到Ge虚衬底4,如图4所示。Step 1025 , naturally cool the material prepared in step 1024 , and etch the first silicon dioxide protective layer 3 using a dry etching process to obtain a Ge virtual substrate 4 , as shown in FIG. 4 .
步骤103、在500~600℃温度下,利用分子束外延工艺在Ge虚衬底4的表面淀积厚度为700~750nm第一P型Ge层5,掺杂浓度为1×1016~1×1017cm-3,如图5所示。Step 103 , depositing a first P-type Ge layer 5 with a thickness of 700-750 nm on the surface of the Ge dummy substrate 4 by molecular beam epitaxy at a temperature of 500-600° C., with a doping concentration of 1×10 16 -1×10 17 cm −3 , as shown in FIG5 .
步骤104、在第一P型Ge层5的表面涂抹光刻胶6,曝光一侧区域的光刻胶并在曝光后的区域利用离子注入工艺注入P离子,形成N阱7,如图6所示。Step 104 , applying photoresist 6 on the surface of the first P-type Ge layer 5 , exposing the photoresist in one area and implanting P ions into the exposed area by an ion implantation process to form an N well 7 , as shown in FIG. 6 .
步骤105、去除剩余的光刻胶6,并在表面制作N型Ge层8和第二P型Ge层11。步骤105的具体步骤包括:Step 105, remove the remaining photoresist 6, and form an N-type Ge layer 8 and a second P-type Ge layer 11 on the surface. The specific steps of step 105 include:
步骤1051、去除剩余的光刻胶6,如图7所示。Step 1051 , removing the remaining photoresist 6 , as shown in FIG. 7 .
步骤1052、在步骤1501制作的器件表面利用分子束外延(MBE)工艺在淀积厚度为5~10nm的N型Ge层8,掺杂浓度为1×1016~1×1019cm-3,如图8所示。Step 1052 , depositing an N-type Ge layer 8 with a thickness of 5 to 10 nm and a doping concentration of 1×10 16 to 1×10 19 cm −3 on the surface of the device manufactured in step 1501 by using a molecular beam epitaxy (MBE) process, as shown in FIG. 8 .
步骤1053、在N型Ge层8表面淀积一层厚度为20nm的第一SiO2层9,如图9所示。Step 1053 , depositing a first SiO 2 layer 9 with a thickness of 20 nm on the surface of the N-type Ge layer 8 , as shown in FIG. 9 .
步骤1054、在第一SiO2层9上淀积厚度为20~30nm的第一Si3N4层10,如图10所示。Step 1054 : depositing a first Si 3 N 4 layer 10 with a thickness of 20-30 nm on the first SiO 2 layer 9 , as shown in FIG. 10 .
步骤1055、刻蚀除掉N阱7上方对应位置处的第一SiO2层9和第一Si3N4层10,如图11所示。Step 1055 , etching and removing the first SiO 2 layer 9 and the first Si 3 N 4 layer 10 at the corresponding position above the N well 7 , as shown in FIG. 11 .
步骤1056、对N阱7上方的未掩盖的N型Ge层8进行离子补偿形成第二P型Ge层11,掺杂浓度为1×1016~1×1019cm-3,如图12所示。Step 1056 , perform ion compensation on the unmasked N-type Ge layer 8 above the N-well 7 to form a second P-type Ge layer 11 , with a doping concentration of 1×10 16 to 1×10 19 cm −3 , as shown in FIG. 12 .
步骤1057、采用湿法刻蚀的方法去除N型Ge层8上的第一SiO2层9和第一Si3N4层10,如图13所示。Step 1057 : remove the first SiO 2 layer 9 and the first Si 3 N 4 layer 10 on the N-type Ge layer 8 by wet etching, as shown in FIG. 13 .
步骤106、在500℃~600℃温度下,利用分子束外延工艺在N型Ge层8和第二P型Ge层11表面沉积厚度为15~20nm的本征Ge隔离层12,如图14所示。Step 106 , depositing an intrinsic Ge isolation layer 12 with a thickness of 15 to 20 nm on the surface of the N-type Ge layer 8 and the second P-type Ge layer 11 at a temperature of 500° C. to 600° C. by using a molecular beam epitaxy process, as shown in FIG. 14 .
步骤107、在500℃~600℃温度下,利用分子束外延工艺在本征Ge隔离层12上生长厚度为15~20nm的本征DR-Ge1-zSnz,生成沟道层13,其中,z的范围为0.12~0.18,如图15所示。Step 107 , growing intrinsic DR-Ge 1-z Sn z with a thickness of 15-20 nm on the intrinsic Ge isolation layer 12 by molecular beam epitaxy at 500° C.-600° C. to form a channel layer 13 , wherein z ranges from 0.12 to 0.18, as shown in FIG. 15 .
步骤108、在步骤107制备的器件制作隔离区17、第一本征三元合金异质帽层16和第二本征三元合金异质帽层20;其中,第一本征三元合金异质帽层16的材料为SixGe1-x- ySny;其中,x的范围为0.1~0.15,y的范围为0.05~0.07。Step 108, the device prepared in step 107 is made into an isolation region 17, a first intrinsic ternary alloy heterogeneous cap layer 16 and a second intrinsic ternary alloy heterogeneous cap layer 20; wherein the material of the first intrinsic ternary alloy heterogeneous cap layer 16 is Si x Ge 1-x- y Sn y ; wherein the range of x is 0.1-0.15, and the range of y is 0.05-0.07.
第二本征三元合金异质帽层20的材料为SixGe1-x-ySny;其中,x的范围为0.1~0.15,y的范围为0.08~0.1。步骤108的具体步骤包括:The material of the second intrinsic ternary alloy heterogeneous cap layer 20 is Si x Ge 1-xy Sn y , wherein x is in the range of 0.1 to 0.15, and y is in the range of 0.08 to 0.1. The specific steps of step 108 include:
步骤1081、利用干法刻蚀工艺,在步骤107制备的器件上刻蚀出深度为100~150nm的隔离槽,如图16所示。Step 1081 , using a dry etching process, an isolation groove with a depth of 100 to 150 nm is etched on the device prepared in step 107 , as shown in FIG. 16 .
步骤1082、在680℃~730℃温度下,利用CVD工艺在在器件表面淀积第二SiO2材料14,将隔离槽内填满,如图17所示。Step 1082: Deposit a second SiO 2 material 14 on the device surface at a temperature of 680° C. to 730° C. using a CVD process to fill the isolation trench, as shown in FIG. 17 .
步骤1083、利用CVD工艺在第二SiO2材料14表面淀积厚度为20~30nm的第二Si3N4层15,如图18所示。Step 1083: Deposit a second Si 3 N 4 layer 15 with a thickness of 20-30 nm on the surface of the second SiO 2 material 14 by using a CVD process, as shown in FIG. 18 .
步骤1084、刻蚀除掉N阱7上方的沟道层13表面的第二SiO2材料14和第二Si3N4层15,如图19所示。Step 1084 , the second SiO 2 material 14 and the second Si 3 N 4 layer 15 on the surface of the channel layer 13 above the N well 7 are removed by etching, as shown in FIG. 19 .
步骤1085、使用分子束外延工艺在沟道层13的表面淀积厚度为5~10nm的本征SixGe1-x-ySny形成第一本征三元合金异质帽层16,其中,x的范围为0.1~0.15,y的范围为0.05~0.07,如图20所示。Step 1085 , using a molecular beam epitaxy process to deposit 5-10 nm thick intrinsic Si x Ge 1-xy Sn y on the surface of the channel layer 13 to form a first intrinsic ternary alloy heterogeneous cap layer 16 , wherein x ranges from 0.1 to 0.15, and y ranges from 0.05 to 0.07, as shown in FIG. 20 .
步骤1086、刻蚀除掉器件表面剩余的第二Si3N4层15和部分第二SiO2材料14,形成隔离区17,如图21所示。Step 1086 , etching away the remaining second Si 3 N 4 layer 15 and part of the second SiO 2 material 14 on the device surface to form an isolation region 17 , as shown in FIG. 21 .
步骤1087、使用CVD工艺继续在在步骤1086制作的器件表面淀积20~30nm的第三SiO2材料18和第三Si3N4层19,如图22所示。Step 1087 , using the CVD process to continue depositing a third SiO 2 material 18 and a third Si 3 N 4 layer 19 with a thickness of 20 to 30 nm on the surface of the device manufactured in step 1086 , as shown in FIG. 22 .
步骤1088、刻蚀除掉隔离区17另一侧沟道层13表面的第三SiO2材料18和第三Si3N4层19,如图23所示。Step 1088 , the third SiO 2 material 18 and the third Si 3 N 4 layer 19 on the surface of the channel layer 13 on the other side of the isolation region 17 are removed by etching, as shown in FIG. 23 .
步骤1089、使用分子束外延工艺在沟道层13的表面淀积厚度为5~10nm的本征SixGe1-x-ySny形成第二本征三元合金异质帽层20,其中,x的范围为0.1~0.15,y的范围为0.08~0.10,如图24所示。然后刻蚀除掉剩余的第三SiO2材料18和第三Si3N4层19,如图25所示。Step 1089: Deposit intrinsic Si x Ge 1-xy Sn y with a thickness of 5 to 10 nm on the surface of the channel layer 13 using a molecular beam epitaxy process to form a second intrinsic ternary alloy heterogeneous cap layer 20, wherein x ranges from 0.1 to 0.15, and y ranges from 0.08 to 0.10, as shown in FIG24. Then, the remaining third SiO 2 material 18 and the third Si 3 N 4 layer 19 are etched away, as shown in FIG25.
步骤109、在第一本征三元合金异质帽层16上制作PMOS栅极,在第二本征三元合金异质帽层20上制作NMOS栅极。步骤109的具体步骤包括:Step 109: fabricate a PMOS gate on the first intrinsic ternary alloy heterogeneous cap layer 16, and fabricate an NMOS gate on the second intrinsic ternary alloy heterogeneous cap layer 20. The specific steps of step 109 include:
步骤1091、利用原子层淀积法淀积厚度为5~10nm的HfO2层21,如图26所示。Step 1091 , depositing a HfO 2 layer 21 with a thickness of 5 to 10 nm by atomic layer deposition, as shown in FIG. 26 .
步骤1092、在750~850℃温度下,利用CVD工艺在HfO2层21表面淀积厚度为70nm的TaN层22,如图27所示。Step 1092: Deposit a TaN layer 22 with a thickness of 70 nm on the surface of the HfO 2 layer 21 by using a CVD process at a temperature of 750-850° C., as shown in FIG. 27 .
步骤1093、利用选择性刻蚀工艺刻蚀部分TaN层22和HfO2层21,在第一本征三元合金异质帽层16上形成PMOS栅极,在第二本征三元合金异质帽层20上形成NMOS栅极,如图28所示。Step 1093, partially etch the TaN layer 22 and the HfO2 layer 21 using a selective etching process to form a PMOS gate on the first intrinsic ternary alloy heterogeneous cap layer 16, and form an NMOS gate on the second intrinsic ternary alloy heterogeneous cap layer 20, as shown in Figure 28.
步骤110、在步骤109制备的器件上制作PMOS源漏区25和NMOS源漏区27。步骤110的具体步骤包括:Step 110: fabricate a PMOS source/drain region 25 and an NMOS source/drain region 27 on the device fabricated in step 109. The specific steps of step 110 include:
步骤1101、在步骤109制备的器件表面利用CVD工艺淀积第四SiO2材料23,并利用选择性刻蚀工艺刻蚀出NMOS栅极和PMOS栅极以外的区域,如图29所示。Step 1101: deposit a fourth SiO 2 material 23 on the surface of the device prepared in step 109 by using a CVD process, and etch out the area other than the NMOS gate and the PMOS gate by using a selective etching process, as shown in FIG. 29 .
步骤1102、利用光刻胶24覆盖隔离区17另一侧的NMOS区域,采用离子注入工艺,对N阱7中的PMOS有源区进行BF2+注入形成PMOS源漏区25,如图30所示。然后去除该光刻胶24。Step 1102, using photoresist 24 to cover the NMOS region on the other side of the isolation region 17, using ion implantation process, BF2 + implantation is performed on the PMOS active region in the N well 7 to form a PMOS source and drain region 25, as shown in FIG30. Then the photoresist 24 is removed.
步骤1103、利用光刻胶26覆盖隔离区17一侧的PMOS区域,采用离子注入工艺,对NMOS有源区进行As离子注入形成NMOS源漏区27,如图31所示。然后去除光刻胶26。Step 1103, use photoresist 26 to cover the PMOS region on one side of the isolation region 17, and use ion implantation technology to implant As ions into the NMOS active region to form NMOS source and drain regions 27, as shown in FIG31. Then remove the photoresist 26.
步骤1104、去除NMOS栅极和PMOS栅极表面的第四SiO2材料23,如图32所示。Step 1104: remove the fourth SiO 2 material 23 on the surface of the NMOS gate and the PMOS gate, as shown in FIG. 32 .
步骤111、利用CVD工艺在步骤110制备的器件表面淀积厚度为30~50nm的BPSG,形成介质层28,如图33所示。Step 111 , using a CVD process to deposit BPSG with a thickness of 30 to 50 nm on the surface of the device prepared in step 110 to form a dielectric layer 28 , as shown in FIG. 33 .
步骤112、在介质层28上制作PMOS源电极、PMOS漏电极、NMOS源电极和NMOS漏电极。具体地,采用硝酸和氢氟酸刻蚀BPSG形成NMOS源漏接触孔和PMOS源漏接触孔,如图34所示。Step 112: fabricate a PMOS source electrode, a PMOS drain electrode, an NMOS source electrode and an NMOS drain electrode on the dielectric layer 28. Specifically, nitric acid and hydrofluoric acid are used to etch BPSG to form NMOS source and drain contact holes and PMOS source and drain contact holes, as shown in FIG. 34 .
然后,利用电子束蒸发工艺在器件表面淀积厚度为20nm金属钨29形成源漏接触,如图35所示。之后,利用选择性刻蚀工艺刻蚀指定区域的金属钨29,并利用CMP工艺进行平坦化处理,如图36所示。Then, a 20 nm thick metal tungsten 29 is deposited on the device surface by electron beam evaporation to form source and drain contacts, as shown in FIG35. Afterwards, the metal tungsten 29 in the designated area is etched by selective etching, and planarized by CMP, as shown in FIG36.
步骤113、在步骤112制作的器件表面淀积。利用CVD工艺在整个衬底表面淀积厚度为20~30nm的SiN材料用于钝化电介质,形成钝化层30,最终形成直接带隙GeSn CMOS器件,如图37所示。Step 113, depositing on the surface of the device manufactured in step 112. Using the CVD process, a SiN material with a thickness of 20 to 30 nm is deposited on the entire substrate surface for passivation of the dielectric to form a passivation layer 30, and finally a direct bandgap GeSn CMOS device is formed, as shown in FIG37 .
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above contents are further detailed descriptions of the present invention in combination with specific preferred embodiments, and it cannot be determined that the specific implementation of the present invention is limited to these descriptions. For ordinary technicians in the technical field to which the present invention belongs, several simple deductions or substitutions can be made without departing from the concept of the present invention, which should be regarded as falling within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110722554.2A CN113506802B (en) | 2021-06-28 | 2021-06-28 | A direct bandgap GeSn CMOS device and its preparation method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110722554.2A CN113506802B (en) | 2021-06-28 | 2021-06-28 | A direct bandgap GeSn CMOS device and its preparation method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN113506802A CN113506802A (en) | 2021-10-15 |
| CN113506802B true CN113506802B (en) | 2024-08-06 |
Family
ID=78011326
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110722554.2A Active CN113506802B (en) | 2021-06-28 | 2021-06-28 | A direct bandgap GeSn CMOS device and its preparation method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN113506802B (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107546176A (en) * | 2016-06-28 | 2018-01-05 | 西安电子科技大学 | Direct band gap Ge channel CMOS integrated devices that SiGeC stress introduces and preparation method thereof |
| CN107611003A (en) * | 2017-08-11 | 2018-01-19 | 西安科锐盛创新科技有限公司 | Direct band gap GeSn complementary type TFET devices based on LRC and preparation method thereof |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101962802A (en) * | 2010-07-14 | 2011-02-02 | 中国科学院半导体研究所 | Method for growing GeSn alloy on Si substrate by molecular beam epitaxy |
| US8890120B2 (en) * | 2012-11-16 | 2014-11-18 | Intel Corporation | Tunneling field effect transistors (TFETs) for CMOS approaches to fabricating N-type and P-type TFETs |
| US9666702B2 (en) * | 2013-03-15 | 2017-05-30 | Matthew H. Kim | Advanced heterojunction devices and methods of manufacturing advanced heterojunction devices |
| US10685834B2 (en) * | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
| CN107658339A (en) * | 2017-08-11 | 2018-02-02 | 西安科锐盛创新科技有限公司 | Direct band gap GeSnP type TFET devices based on LRC and preparation method thereof |
| CN112993045B (en) * | 2021-02-07 | 2023-12-05 | 中国人民武装警察部队工程大学 | Preparation method of heterogeneous GeSn-based solid-state plasma Pin diode and device thereof |
-
2021
- 2021-06-28 CN CN202110722554.2A patent/CN113506802B/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107546176A (en) * | 2016-06-28 | 2018-01-05 | 西安电子科技大学 | Direct band gap Ge channel CMOS integrated devices that SiGeC stress introduces and preparation method thereof |
| CN107611003A (en) * | 2017-08-11 | 2018-01-19 | 西安科锐盛创新科技有限公司 | Direct band gap GeSn complementary type TFET devices based on LRC and preparation method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| CN113506802A (en) | 2021-10-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI234283B (en) | Novel field effect transistor and method of fabrication | |
| US6833596B2 (en) | Semiconductor device and method of manufacturing the same | |
| JP5544367B2 (en) | Recessed drain and source areas combined with advanced silicide formation in transistors | |
| US8969916B2 (en) | Strain enhancement in transistors comprising an embedded strain-inducing semiconductor alloy by creating a patterning non-uniformity at the bottom of the gate electrode | |
| TWI646654B (en) | Method of manufacturing a semiconductor substrate of high resistivity insulator | |
| CN105762146A (en) | Techniques for forming contacts to quantum well transistors | |
| US20070052027A1 (en) | Hybrid Schottky source-drain CMOS for high mobility and low barrier | |
| US9472406B2 (en) | Metal semiconductor alloy contact resistance improvement | |
| KR101397334B1 (en) | Transistors, Semiconductor Devices, and Methods of Manufacture Thereof | |
| JPH11243210A (en) | Semiconductor device and manufacturing method thereof | |
| CN101055851B (en) | Complementary metal oxide semiconductor and method of forming the same | |
| CN103633029A (en) | Semiconductor structure and manufacturing method thereof | |
| US20240387531A1 (en) | Input/output devices | |
| CN104282629A (en) | Method for manufacturing CMOS structure | |
| CN106504989B (en) | Tunneling field effect transistor and manufacturing method thereof | |
| US8877575B2 (en) | Complementary junction field effect transistor device and its gate-last fabrication method | |
| TWI396229B (en) | Improved source and drain process with disposable spacers | |
| CN110265359A (en) | Semiconductor devices and its manufacturing method | |
| US9646823B2 (en) | Semiconductor dielectric interface and gate stack | |
| CN105097511A (en) | Fin field effect transistor and formation method thereof | |
| US8729639B2 (en) | Semiconductor device and method for producing the same | |
| US20210335784A1 (en) | Input/output devices | |
| CN113506802B (en) | A direct bandgap GeSn CMOS device and its preparation method | |
| CN109671673A (en) | Semiconductor structure and forming method thereof | |
| CN113517348B (en) | A kind of direct bandgap GeSn enhanced nMOS device and its preparation method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |