CN113548181B - A flapping wing robot and its control method - Google Patents
A flapping wing robot and its control method Download PDFInfo
- Publication number
- CN113548181B CN113548181B CN202110950647.0A CN202110950647A CN113548181B CN 113548181 B CN113548181 B CN 113548181B CN 202110950647 A CN202110950647 A CN 202110950647A CN 113548181 B CN113548181 B CN 113548181B
- Authority
- CN
- China
- Prior art keywords
- conical
- wing
- flapping
- assembly
- friction ball
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000005540 biological transmission Effects 0.000 claims abstract description 35
- 230000007246 mechanism Effects 0.000 claims abstract description 21
- 230000008569 process Effects 0.000 claims abstract description 12
- 230000000712 assembly Effects 0.000 claims abstract description 10
- 238000000429 assembly Methods 0.000 claims abstract description 10
- 238000005096 rolling process Methods 0.000 claims abstract description 9
- 230000008859 change Effects 0.000 claims description 19
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 230000033001 locomotion Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 4
- 241000238631 Hexapoda Species 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000011664 nicotinic acid Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000003915 air pollution Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 230000036544 posture Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C33/00—Ornithopters
- B64C33/02—Wings; Actuating mechanisms therefor
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Toys (AREA)
Abstract
Description
技术领域technical field
本发明涉及智能机器人技术领域,尤其涉及一种扑翼机器人及其控制方法。The invention relates to the technical field of intelligent robots, in particular to a flapping-wing robot and a control method thereof.
背景技术Background technique
鸟是自然飞行的主人之一,可利用有限能量实现长途迁徙。研究表明,鸟类可动态地调节翅膀的振幅和频率。这意味着鸟类在各种飞行条件下的能量消耗是最小的,通过观察自然鸟类的飞行情况,不难发现鸟类在飞行的不同阶段可以选择不同的幅度和频率。Birds are one of the masters of natural flight and can use limited energy to achieve long-distance migration. Research has shown that birds dynamically adjust the amplitude and frequency of their wings. This means that the energy consumption of birds is minimal under various flight conditions. By observing the flight conditions of natural birds, it is not difficult to find that birds can choose different amplitudes and frequencies in different stages of flight.
扑翼是一种模仿鸟类和昆虫飞行,基于仿生学原理设计制造的新型飞行器类型的重要结构。与固定翼和旋翼相比,扑翼的主要特点是将举升、悬停和推进功能集于一个扑翼系统,可以用很小的能量进行长距离飞行,同时,具有较强的机动性。The flapping wing is an important structure of a new type of aircraft designed and manufactured based on the principle of bionics to imitate the flight of birds and insects. Compared with fixed wings and rotors, the main feature of the flapping wing is that it integrates the functions of lifting, hovering and propulsion into one flapping wing system, which can carry out long-distance flight with a small amount of energy, and at the same time, has strong maneuverability.
仿生扑翼飞行器通常具有尺寸适中、便于携带、飞行灵活、隐蔽性好等特点,因此在民用和国防领域有十分重要而广泛的应用,并能完成许多其他飞行器所无法执行的任务。它可以进行生化探测与环境监测,进入生化禁区执行任务;可以对森林、草原和农田上的火灾、虫灾及空气污染等生态环境进行实时监测;可以进入人员不易进入地区,如地势险要战地,失火或出事故建筑物中等;特别在军事上,仿生扑翼飞行器可用于战场侦察、巡逻、突袭、信号干扰及进行城市作战等。Bionic flapping-wing aircraft usually have the characteristics of moderate size, easy to carry, flexible flight, and good concealment. Therefore, it has very important and extensive applications in the fields of civil and national defense, and can accomplish many tasks that other aircraft cannot perform. It can carry out biochemical detection and environmental monitoring, and enter the biochemical restricted zone to perform tasks; it can monitor the ecological environment such as fires, insect disasters, and air pollution in forests, grasslands, and farmland in real time; Or accident buildings are medium; especially in the military, the bionic flapping wing aircraft can be used for battlefield reconnaissance, patrol, surprise attack, signal jamming and urban combat.
由于现有扑翼机构大多采用左右两边翅翼对称的同步运动设计,不能左右分别控制,不利于应对突发情况时的调整和灵活控制,不能适应多变的复杂环境,而非对称频率机构设计的相关文献非常少,因此有必要在这方面进行发明研究。北京科技大学的贺威及其团队研发了一款名为“USTBird”的仿鸟飞行器,虽然可以实现双侧翅膀独立控制,但是由于采用两个驱动器分别控制两侧的翅膀,导致两侧翅膀的运动做到了真正完全独立,为保证翅膀动作的协调性需要更加精密复杂的结构或控制过程,增加了设计复杂度,机构整体的可靠性难以保证。Since most of the existing flapping wing mechanisms adopt the symmetrical synchronous motion design of the left and right wings, the left and right wings cannot be controlled separately, which is not conducive to the adjustment and flexible control in response to emergencies, and cannot adapt to the changing and complex environment. The asymmetrical frequency mechanism design There are very few related documents, so it is necessary to carry out invention research in this respect. He Wei of Beijing University of Science and Technology and his team have developed a bird-like aircraft called "UST Bird". Although the wings on both sides can be independently controlled, two drivers are used to control the wings on both sides separately, resulting in the wings on both sides. The movement is truly completely independent. In order to ensure the coordination of the wing movements, a more sophisticated structure or control process is required, which increases the complexity of the design and makes it difficult to guarantee the overall reliability of the mechanism.
发明内容Contents of the invention
鉴于现有技术存在的不足,本发明提供了一种扑翼机器人及其控制方法,可以采用简单的方式精确控制非对称频率的扑翼机器人的动作频率,降低了设计复杂度,提高了机构整体的可靠性。In view of the deficiencies in the prior art, the present invention provides a flapping-wing robot and its control method, which can accurately control the action frequency of the asymmetric frequency flapping-wing robot in a simple way, which reduces the complexity of the design and improves the overall performance of the mechanism. reliability.
为了实现上述的目的,本发明采用了如下的技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种扑翼机器人,包括机身和分别连接所述机身的尾翼组件、扑动机构与翅翼组件,所述翅翼组件包括两个翅翼,每个翅翼的一端与所述机身铰接,两个翅翼的自由端分别朝向机身的左右两侧张开;所述扑动机构包括第一舵机、由所述第一舵机驱动的传动组件以及两个扑动组件、两个频率调节组件,所述传动组件包括分别设于所述机身两侧的两个锥形主动轮,每个所述扑动组件包括锥形从动轮和传动杆,所述锥形主动轮与同侧的锥形从动轮相邻设置,且二者的锥形面朝向彼此;每个所述频率调节组件包括摩擦球保持块和设于所述摩擦球保持块上的摩擦球,所述摩擦球同时与所述锥形主动轮的锥形面、所述锥形从动轮的锥形面滚动配合,所述摩擦球保持块沿所述锥形主动轮的锥面坡度方向可移动地设置,以改变所述摩擦球的位置;所述传动杆的两端分别与所述锥形从动轮的表面和所述翅翼通过万向节活动连接,以在所述锥形从动轮转动过程中带动所述翅翼的张开角度发生变化。A flapping wing robot, comprising a fuselage and an empennage assembly respectively connected to the fuselage, a flapping mechanism and a wing assembly, the wing assembly includes two wings, one end of each wing is connected to the fuselage Hinged, the free ends of the two wings open towards the left and right sides of the fuselage respectively; the flapping mechanism includes a first steering gear, a transmission assembly driven by the first steering gear, two flapping assemblies, two A frequency adjustment assembly, the transmission assembly includes two conical driving wheels respectively arranged on both sides of the fuselage, each flapping assembly includes a conical driven wheel and a transmission rod, the conical driving wheel and The tapered driven wheels on the same side are arranged adjacent to each other, and the tapered surfaces of the two face each other; each frequency adjustment assembly includes a friction ball holding block and a friction ball arranged on the friction ball holding block, and the friction The ball rolls and fits with the tapered surface of the tapered driving wheel and the tapered driven wheel at the same time, and the friction ball holding block is movably arranged along the slope direction of the tapered surface of the tapered driving wheel, to change the position of the friction ball; the two ends of the transmission rod are respectively connected with the surface of the tapered driven wheel and the wings through universal joints, so as to drive the The opening angle of the wings changes.
作为其中一种实施方式,两个所述锥形主动轮同轴且一体设置。As one of the implementation manners, the two conical driving wheels are arranged coaxially and integrally.
作为其中一种实施方式,所述传动组件还包括与所述锥形主动轮同轴固定的一圈轮齿,所述第一舵机通过齿轮组与所述轮齿啮合。As one of the implementation manners, the transmission assembly further includes a ring of gear teeth fixed coaxially with the conical driving wheel, and the first steering gear meshes with the gear teeth through a gear set.
作为其中一种实施方式,所述频率调节组件包括与所述机身相对固定的导杆,所述导杆设于所述锥形主动轮与所述锥形从动轮之间且相对于所述机身的倾斜角度与所述锥形主动轮的坡度匹配,所述摩擦球保持块沿所述导杆的长度方向可滑动地设置在所述导杆上。As one of the implementation manners, the frequency adjustment assembly includes a guide rod relatively fixed to the fuselage, the guide rod is arranged between the conical driving wheel and the conical driven wheel and is opposite to the The inclination angle of the fuselage matches the slope of the conical driving wheel, and the friction ball holding block is slidably arranged on the guide rod along the length direction of the guide rod.
作为其中一种实施方式,所述频率调节组件包括第二舵机和两端分别铰接所述第二舵机的摆臂和所述摩擦球保持块的调节连杆,所述摩擦球保持块在所述第二舵机的驱动下可沿所述导杆往复运动。As one of the implementations, the frequency adjustment assembly includes a second steering gear and an adjusting link whose two ends are respectively hinged to the swing arm of the second steering gear and the friction ball holding block, and the friction ball holding block is Driven by the second steering gear, it can reciprocate along the guide rod.
作为其中一种实施方式,所述尾翼组件包括尾翼和尾翼驱动机构,所述尾翼与所述机身的尾部可转动地连接,所述尾翼驱动机构用于驱动所述尾翼相对于所述机身上下摆动;和/或,每个所述翅翼包括末端的翅翼杆和用于驱动所述翅翼杆相对于翅翼的主体部分前后摆动的翅翼舵机。As one of the implementations, the empennage assembly includes an empennage and an empennage driving mechanism, the empennage is rotatably connected with the tail of the fuselage, and the empennage driving mechanism is used to drive the empennage relative to the fuselage swinging up and down; and/or, each of the wings includes a wing bar at the end and a wing servo for driving the wing bar to swing back and forth relative to the main part of the wing.
作为其中一种实施方式,每个所述翅翼包括与所述机身铰接的骨架和可滑动地设置在所述骨架上的滑块,所述翅翼组件还包括连接各滑块的振幅调节组件,所述滑块与所述传动杆通过万向节活动连接,所述振幅调节组件用于沿所述骨架的长度方向移动各滑块。As one of the implementations, each of the wings includes a frame hinged with the fuselage and sliders slidably arranged on the frame, and the wing assembly also includes an amplitude regulator connecting the sliders. Assemblies, the sliders are movably connected with the transmission rods through universal joints, and the amplitude adjustment components are used to move each slider along the length direction of the skeleton.
作为其中一种实施方式,所述振幅调节组件包括固定在所述机身的第三舵机、由所述第三舵机驱动的主动滑轮、固定在每个所述骨架上的第一滑轮以及张力绳,所述第一滑轮相对于所述滑块更远离所述机身,所述张力绳同时套设于所述主动滑轮和两个所述第一滑轮的外周面并张紧,且每个所述滑块均与一股所述张力绳相对固定。As one of the implementations, the amplitude adjustment assembly includes a third steering gear fixed on the fuselage, a driving pulley driven by the third steering gear, a first pulley fixed on each frame, and The tension rope, the first pulley is farther away from the fuselage than the slider, the tension rope is sleeved on the outer peripheral surfaces of the driving pulley and the two first pulleys and tensioned, and each Each of the sliders is relatively fixed to one strand of the tension rope.
本发明的另一目的在于提供一种扑翼机器人的控制方法,包括:Another object of the present invention is to provide a control method for a flapping wing robot, including:
启动第一舵机,转矩依次通过两侧的锥形主动轮、摩擦球传递至锥形从动轮;Start the first steering gear, and the torque is transmitted to the conical driven wheel through the conical driving wheel and friction ball on both sides in turn;
两侧的传动杆在锥形从动轮的转动过程中带动对应的翅翼的张开角度发生变化;The transmission rods on both sides drive the opening angle of the corresponding wings to change during the rotation of the tapered driven wheel;
当需要改变某个翅翼的扑动频率时,改变翅翼所在侧的摩擦球在锥形主动轮、锥形从动轮之间的滚动位置。When the flapping frequency of a certain wing needs to be changed, the rolling position of the friction ball on the side where the wing is located between the tapered driving wheel and the tapered driven wheel is changed.
作为其中一种实施方式,当需要改变某个翅翼的扑动振幅时,调节与翅翼所在侧的所述传动杆连接的滑块在骨架上的位置。As one of the implementation manners, when the flapping amplitude of a certain wing needs to be changed, the position of the slider connected to the transmission rod on the side where the wing is located is adjusted on the frame.
本发明采用一个舵机同时驱动两侧的翅翼扑动,而且在翅翼扑动过程中,可以通过改变摩擦球的位置独立地调节两侧翅翼的扑动频率,控制过程非常简单可靠,降低了设计的复杂度,提高了飞行的精确性。另外,还可以在翅翼的扑动过程中改变左右两侧翅翼的扑动振幅和翅翼的扭转幅度、尾翼姿态,实现非对称振幅控制、无级变速、翅翼扭转的功能。The invention adopts a steering gear to simultaneously drive the flapping wings on both sides, and in the flapping process, the flapping frequency of the wings on both sides can be independently adjusted by changing the position of the friction ball, the control process is very simple and reliable, The complexity of design is reduced, and the accuracy of flight is improved. In addition, it is also possible to change the flapping amplitude of the left and right wings, the twisting amplitude of the wings, and the attitude of the tail during the fluttering process of the wings, so as to realize the functions of asymmetrical amplitude control, stepless speed change, and wing twisting.
附图说明Description of drawings
图1为本发明实施例的一种扑翼机器人的结构示意图;Fig. 1 is the structural representation of a kind of flapping wing robot of the embodiment of the present invention;
图2示出了本发明实施例的一种扑翼机器人的扑动机构的结构示意图;Fig. 2 shows a schematic structural view of a flapping mechanism of a flapping wing robot according to an embodiment of the present invention;
图3示出了本发明实施例的一种扑翼机器人的扑动机构的结构分解示意图;Fig. 3 shows a structural exploded schematic view of a flapping mechanism of a flapping wing robot according to an embodiment of the present invention;
图4为本发明实施例的一种扑翼机器人的局部剖视图;Fig. 4 is a partial sectional view of a flapping wing robot according to an embodiment of the present invention;
图5示出了本发明实施例的一种扑翼机器人的频率调节组件的结构示意图;Fig. 5 shows a schematic structural diagram of a frequency adjustment assembly of a flapping wing robot according to an embodiment of the present invention;
图6为本发明实施例的一种扑翼机器人的尾部的结构示意图;Fig. 6 is a structural schematic diagram of the tail of a flapping wing robot according to an embodiment of the present invention;
图7为本发明实施例的一种扑翼机器人的头部的结构示意图;Fig. 7 is a schematic structural view of the head of a flapping wing robot according to an embodiment of the present invention;
图8为本发明实施例的一种扑翼机器人的飞行状态示意图;Fig. 8 is a schematic diagram of a flying state of a flapping-wing robot according to an embodiment of the present invention;
图9为本发明实施例的一种扑翼机器人的振幅调节前的状态图;Fig. 9 is a state diagram of a flapping wing robot before amplitude adjustment according to an embodiment of the present invention;
图10为本发明实施例的一种扑翼机器人的振幅调节后的状态图;Fig. 10 is a state diagram of a flapping wing robot after amplitude adjustment according to an embodiment of the present invention;
图11为本发明实施例的一种扑翼机器人的控制方法示意图。Fig. 11 is a schematic diagram of a control method of a flapping-wing robot according to an embodiment of the present invention.
具体实施方式Detailed ways
在本发明中,术语“设置”、“设有”、“连接”应做广义理解。例如,可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, the terms "arranged", "provided", and "connected" should be interpreted broadly. For example, it may be a fixed connection, a detachable connection, or an integral structure; it may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediary; internal connectivity. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。The terms "center", "longitudinal", "transverse", "length", "width", "thickness", "top", "bottom", "front", "rear", "left", "right", " Vertical", "horizontal", "top", "bottom", "inner", "outer", "clockwise", "counterclockwise", "axial", "radial", "circumferential", etc. The orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the application and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation or be configured in a specific orientation. and operation, and therefore should not be construed as limiting the application.
需要特别说明的是,为方便描述,本实施例所述的“左”、“右”、“上”、“下”、“前”、“后”都是按照扑翼机器人在飞行过程中相对于机身的方位作为参考,例如,扑翼机器人的头部朝前,尾部朝后,翅翼抬起的方向称为“上”,翅翼下压的方向称为“下”,左翅翼一侧称为“左”,右翅翼一侧称为“右”。It should be noted that, for the convenience of description, the terms "left", "right", "up", "down", "front", and "back" in this embodiment are all relative to each other during the flight of the flapping-wing robot. Take the orientation of the fuselage as a reference. For example, the head of the flapping wing robot faces forward and the tail faces backward. The side of the wing is called "left" and the side of the right wing is called "right".
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, the features defined as "first" and "second" may explicitly or implicitly include at least one of these features. In the description of the present application, "plurality" means at least two, such as two, three, etc., unless otherwise specifically defined.
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本发明中的具体含义。Moreover, some of the above terms may be used to indicate other meanings besides orientation or positional relationship, for example, the term "upper" may also be used to indicate a certain attachment relationship or connection relationship in some cases. Those skilled in the art can understand the specific meanings of these terms in the present invention according to specific situations.
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention more clear, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
参阅图1,本发明实施例提供了一种扑翼机器人,包括机身10和分别连接机身10的尾翼组件1、扑动机构2与翅翼组件3,翅翼组件3包括两个翅翼30,每个翅翼30的一端与机身10铰接,另一端朝外张开,即两个翅翼30的自由端分别朝向机身10的左右两侧张开。扑翼机器人的电源40可固定在机身10上,为各个部位的运动提供动力源。Referring to Fig. 1, an embodiment of the present invention provides a flapping wing robot, including a
结合图2所示,扑动机构2包括第一舵机20、传动组件21以及两个扑动组件22、两个频率调节组件23。传动组件21由第一舵机20驱动,包括分别设于机身10左右两侧的两个锥形主动轮210。机身10的左右两侧均设有一个扑动组件22和一个频率调节组件23,每个扑动组件22包括锥形从动轮220和与之相连的传动杆221,锥形主动轮210与同侧的锥形从动轮220相邻设置,且二者的锥形面朝向彼此,即二者的锥形面形成间隔且宽度处处相等的狭缝。As shown in FIG. 2 , the
每个频率调节组件23包括摩擦球保持块231和设于摩擦球保持块231上的摩擦球230,摩擦球保持块231与机身10相对固定,摩擦球230设于该狭缝中,同时与锥形主动轮210的锥形面、锥形从动轮220的锥形面接触而滚动配合,以将锥形主动轮210的转矩传递至锥形从动轮220。结合图2和图5所示,摩擦球保持块231沿锥形主动轮210的锥面坡度方向可移动地设置,将摩擦球230活动地限制于锥形主动轮210与锥形从动轮220之间的狭缝内,并带动摩擦球230改变在狭缝内的位置。当摩擦球230在狭缝内的位置发生变化后,则锥形主动轮210与锥形从动轮220的传动比发生变化,又由于摩擦球230与锥形主动轮210、锥形从动轮220都是滚动接触,因此可以在传动过程中调节摩擦球230的位置,实现无级变速,从而改变锥形从动轮220的转动频率,也即改变与其相连的翅翼30的扑动频率。Each
如图2和图3所示,本实施例中,优选传动杆221的两端分别与锥形从动轮220的表面和翅翼30通过万向节活动连接,以在锥形从动轮220的转动过程中带动翅翼30的张开角度发生变化。传动杆221的两端的万向节可以是例如万向球头的结构,可以保证传动杆221灵活地将锥形从动轮220的旋转运动转变为翅翼30的上下摆动。万向球头包括球头2211和与球头滚动配合的球头包裹部2210,球头2211具有球体状的转动部和自转动部引出的固定端,球头包裹部2210内部形成中空的具有球面的容纳部,球头2211的转动部容纳于球头包裹部2210的容纳部内而与该容纳部滚动配合,传动杆221的两端均固定有一个球头包裹部2210,每个球头包裹部2210内安装有一个球头2211,两个球头2211的固定端分别固定在锥形从动轮220和翅翼30上。优选地,与锥形从动轮220固定的球头2211安装在锥形从动轮220的轮盘面上,与锥形从动轮220的转轴间隔设置。锥形从动轮220与传动杆221连接形成凸轮驱动结构,从而可以在锥形从动轮220转动过程中持续地驱动与传动杆221相连的翅翼30进行上下扑动。As shown in Fig. 2 and Fig. 3, in the present embodiment, preferably the two ends of the
本实施例中,机身10左右两侧的扑动组件22由同一个舵机进行驱动,因此驱动结构和驱动过程更简单。传动组件21具体可以包括与锥形主动轮210同轴固定的一圈轮齿2100,第一舵机20可以通过齿轮组与轮齿2100啮合,从而将驱动分别传递给两侧的锥形从动轮220。In this embodiment, the flapping
除此之外,本实施例还进一步地将两个扑动组件22共用一个传动组件21,结合图4所示,两个锥形主动轮210同轴且一体设置,两个锥形主动轮210分别设置在机身10的左右两侧,轮齿2100设置于两个锥形主动轮210之间的部位,齿轮组只需与轮齿2100啮合即可驱动两个锥形主动轮210同步转动。具体地,支架234固定在机身10上,机身10开设有供锥形主动轮210穿过的通孔,锥形主动轮210的末端通过支架234可转动地固定在机身10上。In addition, this embodiment further uses two
优选地,两个锥形主动轮210对称设置,且越靠近机身10,锥形主动轮210的径向尺寸越小。与之相应地,两个锥形从动轮220也对称设置,但两个锥形从动轮220仅同轴设置,但二者的运动彼此独立,使得两个翅翼30可以以不同的频率摆动,锥形从动轮220的形状则与之匹配,越靠近机身10,锥形从动轮220的径向尺寸越大,从而保证锥形主动轮210与锥形从动轮220之间狭缝宽度处处相等,无论摩擦球230移动到何处,始终能与锥形主动轮210、锥形从动轮220同时接触。Preferably, the two
这里,锥形主动轮210与第一舵机20之间用于传递转矩的齿轮组具体可以包括第一齿轮211、第二齿轮212和主动齿轮213,第一齿轮211、第二齿轮212同轴设置,分别固定在垂直于机身10的同一齿轮轴的两端,固定在第一舵机20的转轴上的主动齿轮213与第一齿轮211啮合,第二齿轮212与第一齿轮211同步转动,第二齿轮212与锥形主动轮210啮合,从而驱动锥形主动轮210转动。Here, the gear set for transmitting torque between the
如图2~5所示,频率调节组件23具体包括与机身10相对固定的导杆232和支架234,导杆232设于锥形主动轮210与锥形从动轮220之间且相对于机身10的倾斜角度与锥形主动轮210的坡度匹配,摩擦球保持块231沿导杆232的长度方向可滑动地设置在导杆232上,使得摩擦球230始终同时保持与锥形主动轮210、锥形从动轮220的滚动接触。其中,导杆232的一端可以固定在支架234上,另一端可以悬空,也可以固定在机身10上。As shown in Figures 2 to 5, the
导杆232可以是两个,平行布置在锥形主动轮210与锥形从动轮220之间狭缝的左右两侧,摩擦球保持块231同时套设在两个导杆232上。可以理解的是,在其他实施方式中,导杆232也可以只有一个,通过将其构造成方形的截面,摩擦球保持块231内也开设有对应的方形的孔,方形的导杆232穿设在摩擦球保持块231的方形的孔中进行滑动。There can be two
本实施例示出的是频率调节组件23包括摩擦球轴233(如图4)的情形,摩擦球保持块231上开设有安装孔2310,摩擦球230放置于其中,摩擦球轴233固定在摩擦球保持块231上,且其轴向与导杆232一致。摩擦球轴233贯穿该安装孔2310,摩擦球230可转动地套设在摩擦球轴233上,从而被限位于安装孔2310内,并可沿摩擦球轴233转动。What this embodiment shows is the situation that the
可以理解,本实施例的摩擦球230可以为滚柱、滚珠或滚轮,但其仅能绕摩擦球轴233转动。在其他实施方式中,摩擦球轴233也可以省略,摩擦球230为球状的滚珠,安装孔2310为略大于摩擦球230尺寸的通孔,仅需要摩擦球保持块231限制其不脱出锥形主动轮210与锥形从动轮220之间的狭缝即可,滚珠始终与锥形主动轮210、锥形从动轮220滚动配合。It can be understood that the
支架234可以作为频率调节组件23的一部分,支架234固定在机身10上,导杆232的一端固定在支架234上,支架234既作为锥形主动轮210的保持架,又作为导杆232的保持架。优选支架234呈拱起的U形,锥形主动轮210的轮轴可以转动地设置在支架234的拱起部位,而两个导杆232分别固定在支架234的拱起部位的上下两侧。例如,可以在支架234内安装有轴承,锥形主动轮210的轮轴穿设于轴承内,两个锥形主动轮210的两个支架234即可将轮齿2100悬空地固定在机身10上。
作为摩擦球保持块231的一种驱动方式,频率调节组件23包括第二舵机235和两端分别铰接第二舵机235的摆臂和摩擦球保持块231的调节连杆236,摩擦球保持块231在第二舵机235的驱动下可沿导杆232往复运动,从而在飞行过程中自由调节相应翅翼30的扑动频率。As a driving method of the friction
结合图1和图6所示,尾翼组件1包括尾翼11和尾翼驱动机构,尾翼11与机身10的尾部可转动地连接,尾翼驱动机构用于驱动尾翼11相对于机身10上下摆动而改变二者的夹角。具体地,尾翼驱动机构包括尾翼舵机12、尾翼摆臂13、尾翼连杆14,尾翼摆臂13、尾翼连杆14、尾翼11依次转动连接,尾翼舵机12驱动尾翼摆臂13转动,从而带动尾翼11上下摆动,以改变不同的飞行姿态。尾翼11相对于机身10的转动中心、尾翼11与尾翼连杆14的连接部位间隔设置,使得尾翼舵机12、尾翼摆臂13、尾翼连杆14、尾翼11组成曲柄连杆机构。1 and 6, the empennage assembly 1 includes an
如图7,考虑到扑翼机器人在飞行过程中可能遇到各种突发状况或恶劣环境,本实施例的每个翅翼30可以包括末端的翅翼杆300和用于驱动翅翼杆300相对于翅翼30的主体部分前后摆动的翅翼舵机301。通过翅翼舵机301改变翅翼杆300的前后扭转幅度,可以有效地应对各种气流或变故,减小空气阻力,使运动更为灵活。As shown in Figure 7, considering that the flapping wing robot may encounter various emergencies or harsh environments during flight, each
如图8所示,每个翅翼30包括与机身10铰接的骨架31和可滑动地设置在骨架31上的滑块32,翅翼组件3还包括连接各滑块32的振幅调节组件33,滑块32与传动杆221通过万向节活动连接,振幅调节组件33用于沿骨架31的长度方向移动各滑块32。As shown in Figure 8, each
具体地,本实施例的振幅调节组件33包括固定在机身10的第三舵机331、由第三舵机331驱动的主动滑轮332、固定在每个骨架31上的第一滑轮333以及张力绳334,第一滑轮333相对于滑块32更远离机身10,张力绳334同时套设于主动滑轮332和两个第一滑轮333的外周面并张紧,且每个滑块32均与一股张力绳334相对固定。张力绳334同时绷紧在主动滑轮332和两侧的第一滑轮333外周面,当第三舵机331驱动主动滑轮332发生转动的过程中,张力绳334被带动朝对应的方向移动,带动第一滑轮333转动的同时,还带动左右两侧的滑块32在骨架31上的位置发生变化,使得两侧翅翼30的振幅同时发生变化。需要说明的是,张力绳334从每个第一滑轮333的一侧引入,沿第一滑轮333的表面张紧后,从另一侧引出,张力绳334的引入端和引出端称为两股,这里的“一股张力绳334”指的就是第一滑轮333其中一侧的引入端或引出端,“滑块32与一股张力绳334相对固定”区别于引入端和引出端同时与滑块32相对固定的情形,以保证滑块32可以在主动滑轮332的带动下相对于骨架31滑动。Specifically, the
本实施例示出的是左右两侧的滑块32相对于机身10运动的状态相反的情形,即,主动滑轮332转动时,一侧的滑块32朝向翅翼30的末端(背向机身10)运动,则另一侧的滑块32背向翅翼30的末端(朝向机身10)运动,使得两侧的振幅出现差动值,实现左右扑动振幅的差异化。这就要求左右两侧的滑块32同时固定在各自的第一滑轮333的同侧的张力绳334上,即,两侧的滑块32要么是均固定在第一滑轮333的朝向头部侧的张力绳334上,要么是均固定在第一滑轮333的朝向尾部侧的张力绳334上。What present embodiment shows is that the
可以理解的是,在其他实施方式中,左右两侧的滑块32相对于机身10运动的状态也可以相同,即,主动滑轮332转动时,两侧的滑块32同时朝向翅翼30的末端(背向机身10)运动,或者同时背向翅翼30的末端(朝向机身10)运动,这种情况下,左右两侧的扑动振幅则完全一致,仅能起到同步、等幅度调节两侧的振幅的作用,无法实现两侧振幅的差异化调节。It can be understood that, in other embodiments, the
此外,本实施例的振幅调节组件33还包括固定在每个骨架31上的第二滑轮335,第二滑轮335固定在骨架31上相对于滑块32更靠近机身10的部位,第二滑轮335位于主动滑轮332与第一滑轮333之间,张力绳334的两端分别从主动滑轮332的左右两侧引出,经过第二滑轮335的朝向机身10的部位(内侧)张紧后引出至滑块32所在侧,从滑块32下方引出至缠绕在第一滑轮333的外周面,然后迂回至缠绕在对侧的第一滑轮333的外周面,形成闭合的张紧回路。In addition, the
另外,振幅调节组件33还可以包括固定在机身10的头部的第三滑轮336,张力绳334还同时套设在第三滑轮336的外周面并张紧。也就是说,第三滑轮336位于左右的第一滑轮333之间的张紧回路上。为了提高张力绳334的移动的顺畅程度,本实施例还在骨架31上靠近第三滑轮336的一侧固定有第四滑轮337,第四滑轮337位于第一滑轮333与第三滑轮336之间,也位于第二滑轮335与第三滑轮336之间。从第三滑轮336两端引出的张力绳334经两侧的第四滑轮337张紧后引出至滑块32所在侧,固定在滑块32上后引出至第一滑轮333外表面,经过第二滑轮335张紧后缠绕在主动滑轮332外周面,从而形成完整的“+”形的闭合回路。In addition, the
如图9,为扑翼机器人的振幅调节前的状态图,此时的两侧翅翼30上的滑块32对称设置;如图10,为扑翼机器人的振幅调节后的状态图,此时,两侧翅翼30均被朝图中的右方滑动,即,图中的右边翅翼30的滑块32被朝外滑动,左边翅翼30的滑块32被朝机身10滑动,图中右边翅翼30的振幅变小,左边翅翼30的振幅变大。As shown in Figure 9, it is a state diagram before the amplitude adjustment of the flapping wing robot, and the
如图11,本实施例的扑翼机器人的控制方法主要包括:As shown in Figure 11, the control method of the flapping wing robot of the present embodiment mainly includes:
S01、启动第一舵机20,转矩依次通过两侧的锥形主动轮210、摩擦球230传递至锥形从动轮220,两侧的传动杆221在锥形从动轮220的转动过程中带动对应的翅翼30的张开角度发生变化,将第一舵机20的转矩转化为翅翼30的上下的扑动动作;S01, start the
S02、当需要改变某个翅翼30的扑动频率时,启动第二舵机235,改变翅翼30所在侧的摩擦球230在锥形主动轮210、锥形从动轮220之间的滚动位置。S02. When the flapping frequency of a
进一步地,该控制方法还包括:Further, the control method also includes:
S03、当需要改变某个翅翼30的扑动振幅时,启动第三舵机331,调节与翅翼30所在侧的传动杆221连接的滑块32在骨架31上的位置。S03. When it is necessary to change the flapping amplitude of a
S04、当需要改变飞行姿态时,启动尾翼舵机12,调节尾翼11与机身10之间的夹角。S04. When the flight attitude needs to be changed, start the
以及,S05、当需要改变某侧翅翼30的空气阻力时,启动翅翼舵机301,调节该侧的翅翼杆300的前后扭转幅度。And, S05, when it is necessary to change the air resistance of the
可以理解的是,上述步骤S02~S05不分先后,根据实际飞行场景采取按需调节的方式进行。It can be understood that the above steps S02 to S05 are performed in an on-demand manner according to actual flight scenarios, in no particular order.
综上所述,本发明采用一个舵机同时驱动两侧的翅翼扑动,而且在翅翼扑动过程中,可以通过改变摩擦球的位置独立地调节两侧翅翼的扑动频率,控制过程非常简单可靠,降低了设计的复杂度,提高了飞行的精确性。另外,还可以在翅翼的扑动过程中改变左右两侧翅翼的扑动振幅和翅翼的扭转幅度、尾翼姿态,实现非对称振幅控制、无级变速、翅翼扭转的功能。In summary, the present invention uses a steering gear to simultaneously drive the flapping wings on both sides, and during the flapping process, the flapping frequency of the wings on both sides can be independently adjusted by changing the position of the friction ball to control The process is very simple and reliable, which reduces the complexity of the design and improves the accuracy of the flight. In addition, it is also possible to change the flapping amplitude of the left and right wings, the twisting amplitude of the wings, and the attitude of the tail during the fluttering process of the wings, so as to realize the functions of asymmetrical amplitude control, stepless speed change, and wing twisting.
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。The above description is only the specific implementation of the present application. It should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present application, some improvements and modifications can also be made. It should be regarded as the protection scope of this application.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110950647.0A CN113548181B (en) | 2021-08-18 | 2021-08-18 | A flapping wing robot and its control method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110950647.0A CN113548181B (en) | 2021-08-18 | 2021-08-18 | A flapping wing robot and its control method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN113548181A CN113548181A (en) | 2021-10-26 |
| CN113548181B true CN113548181B (en) | 2023-06-23 |
Family
ID=78105724
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110950647.0A Active CN113548181B (en) | 2021-08-18 | 2021-08-18 | A flapping wing robot and its control method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN113548181B (en) |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW200930619A (en) * | 2008-01-15 | 2009-07-16 | Univ Tamkang | Biomimetc micro air vehicle with 8-shaped flapping wing trajectory |
| CN102167159B (en) * | 2011-03-31 | 2013-05-01 | 上海交通大学 | Bevel gear train flapping-wing aircraft |
| US10017248B2 (en) * | 2014-04-28 | 2018-07-10 | University Of Maryland, College Park | Flapping wing aerial vehicles |
| CN105691615B (en) * | 2016-03-22 | 2017-08-11 | 吉林大学 | A kind of wing can active deformation multiple degrees of freedom micro flapping wing air vehicle |
| CN106927041A (en) * | 2017-04-21 | 2017-07-07 | 吉林大学 | A kind of multiple degrees of freedom flapping-wing modal with propulsive efficiency high |
| CN108945430B (en) * | 2018-07-16 | 2022-04-12 | 武汉科技大学 | Bionic flapping-folding-active torsion hybrid-driven flapping wing aircraft |
| CN110588970B (en) * | 2019-09-12 | 2021-01-15 | 北京科技大学 | A bionic flapping-wing flying robot with deflectable drive mechanism |
-
2021
- 2021-08-18 CN CN202110950647.0A patent/CN113548181B/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| CN113548181A (en) | 2021-10-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10850837B2 (en) | Air vehicle flight mechanism and control method for non-sinusoidal wing flapping | |
| CN107416202B (en) | Miniature flapping wing aircraft | |
| CN109592029B (en) | Bird-imitating micro flapping wing aircraft | |
| CN107150804B (en) | Flapping wing aircraft with three-degree-of-freedom wings | |
| WO2020233608A1 (en) | Dragonfly-like miniature four-winged ornithopter | |
| CN111086634B (en) | A dragonfly-like double flapping wing micro-aircraft | |
| CN108438218B (en) | Bionic hummingbird aircraft | |
| CN113306701B (en) | Bionic hummingbird flapping wing aircraft | |
| CN207060398U (en) | A kind of wing has the flapping wing aircraft of Three Degree Of Freedom | |
| CN110562454B (en) | A bionic flapping aircraft | |
| CN207737497U (en) | It is a kind of can front and back swipe flapping wing aircraft device | |
| CN109911197A (en) | A four-degree-of-freedom flapping-wing aircraft device | |
| CN109808881B (en) | Bionic foldable double-wing flapping mechanism | |
| WO2012112816A1 (en) | Air vehicle flight mechanism and control method for non-sinusoidal wing flapping | |
| CN108058825A (en) | It is a kind of can front and rear swipe flapping wing aircraft device | |
| CN110615099A (en) | Flapping wing mechanism with two variable flapping torsion amplitude degrees and aircraft thereof | |
| CN106927041A (en) | A kind of multiple degrees of freedom flapping-wing modal with propulsive efficiency high | |
| CN109178303A (en) | A kind of eccentric wheel reciprocating structure and the united flapping wing mechanism of gear set | |
| CN113548181B (en) | A flapping wing robot and its control method | |
| CN220430503U (en) | An ornithopter with ball screw type wing folding mechanism | |
| WO2025000699A1 (en) | Biomimetic flapping-wing aircraft | |
| CN112278267B (en) | A bionic flapping-wing aircraft and its control method | |
| CN108298077B (en) | A double-ball joint compound motion imitation bird flapping wing device | |
| CN120057317B (en) | A flapping-wing aircraft capable of controlling the flapping of wings by sweeping a double crankshaft | |
| CN223001679U (en) | Bionic flapping-wing low-altitude flying robot |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |