CN113644138B - Single layer MoS 2 -Si-based tunneling diode and preparation method thereof - Google Patents
Single layer MoS 2 -Si-based tunneling diode and preparation method thereof Download PDFInfo
- Publication number
- CN113644138B CN113644138B CN202110686636.6A CN202110686636A CN113644138B CN 113644138 B CN113644138 B CN 113644138B CN 202110686636 A CN202110686636 A CN 202110686636A CN 113644138 B CN113644138 B CN 113644138B
- Authority
- CN
- China
- Prior art keywords
- mos
- substrate
- layer
- layer mos
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002356 single layer Substances 0.000 title claims abstract description 143
- 230000005641 tunneling Effects 0.000 title claims abstract description 58
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 101100069231 Caenorhabditis elegans gkow-1 gene Proteins 0.000 title 1
- 239000000758 substrate Substances 0.000 claims abstract description 129
- 239000010410 layer Substances 0.000 claims abstract description 50
- 238000002955 isolation Methods 0.000 claims abstract description 37
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000000151 deposition Methods 0.000 claims abstract description 9
- 238000000059 patterning Methods 0.000 claims abstract description 8
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 39
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 39
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 24
- 229920002120 photoresistant polymer Polymers 0.000 claims description 19
- 239000010408 film Substances 0.000 claims description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 12
- 239000008367 deionised water Substances 0.000 claims description 12
- 229910021641 deionized water Inorganic materials 0.000 claims description 12
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 12
- 239000010931 gold Substances 0.000 claims description 12
- 229910052737 gold Inorganic materials 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 12
- 239000010936 titanium Substances 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 239000010409 thin film Substances 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 6
- 238000004528 spin coating Methods 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 4
- 238000005566 electron beam evaporation Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 229910052594 sapphire Inorganic materials 0.000 claims description 4
- 239000010980 sapphire Substances 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 238000005498 polishing Methods 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 238000002791 soaking Methods 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 6
- 230000007547 defect Effects 0.000 abstract description 5
- 239000004065 semiconductor Substances 0.000 abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 28
- 229910052961 molybdenite Inorganic materials 0.000 description 22
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 22
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 22
- 229910052681 coesite Inorganic materials 0.000 description 14
- 229910052906 cristobalite Inorganic materials 0.000 description 14
- 239000000377 silicon dioxide Substances 0.000 description 14
- 235000012239 silicon dioxide Nutrition 0.000 description 14
- 229910052682 stishovite Inorganic materials 0.000 description 14
- 229910052905 tridymite Inorganic materials 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 5
- 230000005669 field effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 238000010023 transfer printing Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/70—Tunnel-effect diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/82—Heterojunctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/01—Manufacture or treatment
- H10D8/053—Manufacture or treatment of heterojunction diodes or of tunnel diodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Element Separation (AREA)
Abstract
Description
技术领域technical field
本发明属于半导体技术领域,具体涉及一种单层MoS2-Si基隧穿二极管及其制备方法。The invention belongs to the technical field of semiconductors, and in particular relates to a single-layer MoS 2 -Si-based tunneling diode and a preparation method thereof.
背景技术Background technique
随着MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金属-氧化物半导体场效应晶体管)器件特征尺寸逐渐达到深亚微米,短沟道效应随之显现,导致泄漏电流上升,进而使器件功耗增大、可靠性降低,因此需要追求超陡峭器件。然而,MOSFET由于玻尔兹曼拖尾效应,使得室温下其亚阈值摆幅无法突破60mV/dec的限制,这是MOSFET使用热电子输运的导电机制决定的,因此寻求新机理的超陡峭器件刻不容缓。As the MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor, Metal-Oxide Semiconductor Field-Effect Transistor) device feature size gradually reaches deep submicron, the short channel effect appears, resulting in an increase in leakage current, which in turn reduces the power consumption of the device. Increased and reduced reliability, so ultra-steep devices need to be pursued. However, due to the Boltzmann smearing effect, the subthreshold swing of MOSFET cannot break through the limit of 60mV/dec at room temperature. This is determined by the conduction mechanism of MOSFET using hot electron transport. Therefore, ultra-steep devices with new mechanisms are sought without delay.
相关技术中,新型器件TFET(Tunneling Field-Effect Transistor,隧穿场效应晶体管)引发了广大关注。TFET的工作原理是带带隧穿机制,因而能够摆脱玻尔兹曼拖尾效应的影响,拥有更陡峭的亚阈摆率以及优异的关态特性。然而,在材料选择上,传统Si基TFET由于间接带隙且禁带宽度较大的性质,隧穿效率低,同时对于同质隧穿结来说,双极效应也较为显著,这会使得亚阈摆率和关态特性变差。此外,形成Ⅱ型能带结构的异质结能带结构是最为理想的隧穿结,但传统意义上的体材料形成的异质隧穿结具晶格失配严重、陷阱辅助隧穿等一系列问题,进而导致器件性能较差。In related technologies, the new device TFET (Tunneling Field-Effect Transistor, Tunneling Field-Effect Transistor) has attracted widespread attention. The working principle of TFET is a band-band tunneling mechanism, so it can get rid of the influence of Boltzmann tailing effect, has a steeper sub-threshold slew rate and excellent off-state characteristics. However, in terms of material selection, the traditional Si-based TFET has low tunneling efficiency due to its indirect bandgap and large forbidden band width. Threshold slew rate and off-state characteristics deteriorate. In addition, the heterojunction energy band structure that forms the type II energy band structure is the most ideal tunneling junction, but the heterogeneous tunneling junction formed by the bulk material in the traditional sense has serious lattice mismatch and trap-assisted tunneling. A series of problems, which in turn lead to poor device performance.
发明内容Contents of the invention
为了解决现有技术中存在的上述问题,本发明提供了一种单层MoS2-Si基隧穿二极管及其制备方法。本发明要解决的技术问题通过以下技术方案实现:In order to solve the above-mentioned problems in the prior art, the present invention provides a single-layer MoS 2 -Si-based tunneling diode and a preparation method thereof. The technical problem to be solved in the present invention is realized through the following technical solutions:
第一方面,本发明提供一种单层MoS2-Si基隧穿二极管的制备方法,包括:In the first aspect, the present invention provides a method for preparing a single-layer MoS 2 -Si-based tunneling diode, comprising:
提供第一衬底,并在所述第一衬底的一侧表面制备SiO2隔离区,得到第一衬底结构;其中,沿第一方向,所述第一衬底结构包括相对设置的第一表面和第二表面,所述第一方向与所述第一衬底结构所在的平面垂直;A first substrate is provided, and an SiO2 isolation region is prepared on one side surface of the first substrate to obtain a first substrate structure; wherein, along a first direction, the first substrate structure includes a first substrate structure oppositely arranged a surface and a second surface, the first direction is perpendicular to the plane where the first substrate structure is located;
获取第二衬底,所述第二衬底包括预先生长得到的单层MoS2;Obtaining a second substrate, the second substrate comprising pre-grown monolayer MoS 2 ;
利用外延层转印技术,将所述单层MoS2转移至所述第一表面;Using an epitaxial layer transfer technique, transferring the single layer MoS 2 to the first surface;
图形化所述单层MoS2,形成单层MoS2沟道层;所述单层MoS2沟道层在所述第一方向上的正投影覆盖至少部分第一边界,所述第一边界为所述SiO2隔离区与所述第一衬底的接触面在所述第一衬底结构所在平面的正投影,其中,所述接触面与所述第一衬底结构所在的平面垂直;Patterning the single-layer MoS 2 to form a single-layer MoS 2 channel layer; the orthographic projection of the single-layer MoS 2 channel layer in the first direction covers at least part of the first boundary, and the first boundary is The orthographic projection of the contact surface between the SiO2 isolation region and the first substrate on the plane where the first substrate structure is located, wherein the contact surface is perpendicular to the plane where the first substrate structure is located;
在所述第一表面淀积形成第一电极和第二电极,使所述第二电极与所述SiO2隔离区及所述单层MoS2沟道层直接接触,获得制作完成的单层MoS2-Si基隧穿二极管。Deposit and form a first electrode and a second electrode on the first surface, make the second electrode directly contact with the SiO2 isolation region and the single-layer MoS2 channel layer, and obtain the completed single-layer MoS 2 - Si-based tunneling diodes.
在本发明的一个实施例中,所述提供第一衬底,并在所述第一衬底的一侧表面制备SiO2隔离区,得到第一衬底结构的步骤,包括:In one embodiment of the present invention, the step of providing the first substrate and preparing a SiO2 isolation region on one side surface of the first substrate to obtain the first substrate structure includes:
提供第一衬底;providing a first substrate;
在所述第一衬底的一侧表面刻蚀形成图形区;Etching one side surface of the first substrate to form a pattern area;
在刻蚀有所述图形区的该侧表面上淀积SiO2,并对淀积SiO2后的第一衬底进行抛光,形成SiO2隔离区,得到第一衬底结构。SiO 2 is deposited on the side surface where the pattern area is etched, and the first substrate after the SiO 2 deposition is polished to form a SiO 2 isolation area to obtain the first substrate structure.
在本发明的一个实施例中,所述SiO2隔离区在所述第一方向上的厚度为h,其中,1μm<h<10μm。In an embodiment of the present invention, the thickness of the SiO 2 isolation region in the first direction is h, wherein 1 μm<h<10 μm.
在本发明的一个实施例中,所述第一衬底为硅衬底,所述第二衬底为蓝宝石衬底。In one embodiment of the present invention, the first substrate is a silicon substrate, and the second substrate is a sapphire substrate.
在本发明的一个实施例中,所述利用外延层转印技术,将所述单层MoS2转移至所述第一表面的步骤,包括:In one embodiment of the present invention, the step of transferring the single layer of MoS2 to the first surface using epitaxial layer transfer technology includes:
在所述预先生长得到的单层MoS2远离所述第二衬底一侧的表面旋涂聚甲基丙烯酸甲酯PMMA溶液,并利用热板烘烤使所述聚甲基丙烯酸甲酯溶液固化;Spin-coat polymethyl methacrylate PMMA solution on the surface of the pre-grown monolayer MoS away from the second substrate side, and use a hot plate to bake the polymethyl methacrylate solution to solidify ;
将带有固化PMMA/单层MoS2薄膜的第二衬底浸入去离子水中,并在加热至预设温度后保温;The second substrate with the cured PMMA/monolayer MoS2 film was immersed in deionized water and kept warm after heating to a preset temperature;
从去离子水中取出所述带有固化PMMA/单层MoS2薄膜的第二衬底,通过机械剥离使PMMA/单层MoS2薄膜与所述第二衬底分离,并将PMMA/单层MoS2薄膜转移至所述第一衬底结构的第一表面;The second substrate with cured PMMA/ monolayer MoS film was taken out from deionized water, the PMMA/monolayer MoS film was separated from the second substrate by mechanical peeling, and the PMMA/monolayer MoS 2 transferring the thin film to the first surface of the first substrate structure;
通过加热板烘烤使所述PMMA/单层MoS2薄膜中的单层MoS2与所述第一表面贴合;Make described PMMA/monolayer MoS 2 in the thin film through hot plate baking Monolayer MoS 2 and described first surface are bonded;
将带有固化PMMA/单层MoS2薄膜的第一衬底结构置入丙酮溶液,去除PMMA后用乙醇浸泡;Put the first substrate structure with cured PMMA/monolayer MoS 2 film into acetone solution, remove PMMA and soak with ethanol;
从乙醇中取出带有单层MoS2的第一衬底结构,并使用去离子水清洗。Remove the first substrate structure with monolayer MoS2 from ethanol and wash using deionized water.
在本发明的一个实施例中,所述图形化所述单层MoS2,形成单层MoS2沟道层的步骤,包括:In one embodiment of the present invention, the step of patterning the single-layer MoS 2 to form a single-layer MoS 2 channel layer includes:
在所述单层MoS2远离所述第一衬底结构的一侧表面旋涂光刻胶,经过曝光、显影后,留下第一预设区域的光刻胶掩膜,并刻蚀所述单层MoS2,形成单层MoS2沟道层。Spin-coat photoresist on the surface of the single-layer MoS 2 away from the first substrate structure, after exposure and development, leave a photoresist mask in the first predetermined area, and etch the monolayer MoS 2 , forming a monolayer MoS 2 channel layer.
在本发明的一个实施例中,所述在第一表面淀积形成第一电极和第二电极,使所述第二电极与所述SiO2隔离区及所述图形化后的单层MoS2直接接触,获得制作完成的单层MoS2-Si基隧穿二极管的步骤,包括:In one embodiment of the present invention, the deposition on the first surface forms the first electrode and the second electrode, so that the second electrode is isolated from the SiO 2 and the patterned single-layer MoS 2 Direct contact, the steps to obtain the completed single-layer MoS 2 -Si-based tunneling diode include:
在所述第一表面旋涂光刻胶,经过曝光、显影后,留下第二预设区域的光刻胶掩膜;Spin-coating photoresist on the first surface, leaving a photoresist mask in the second predetermined area after exposure and development;
使用电子束蒸发在第一表面淀积镍/钛/金,并剥离第二预设区域范围内多余的镍/钛/金,形成第一电极和第二电极,获得制作完成的单层MoS2-Si基隧穿二极管;其中,所述第二电极与所述单层MoS2沟道层及所述SiO2隔离区直接接触。Electron beam evaporation is used to deposit nickel/titanium/gold on the first surface, and the excess nickel/titanium/gold in the second preset area is stripped to form the first electrode and the second electrode, and the completed single-layer MoS 2 is obtained - Si-based tunneling diode; wherein said second electrode is in direct contact with said monolayer MoS2 channel layer and said SiO2 isolation region.
在本发明的一个实施例中,沿所述第一方向,镍的厚度为80nm、钛的厚度为20nm、金的厚度为50nm。In an embodiment of the present invention, along the first direction, the thickness of nickel is 80 nm, the thickness of titanium is 20 nm, and the thickness of gold is 50 nm.
第二方面,本发明提供一种单层MoS2-Si基隧穿二极管,采用如上述第一方面任一所述的制备方法制得。In a second aspect, the present invention provides a single-layer MoS 2 -Si-based tunneling diode, which is prepared by the preparation method described in any one of the above-mentioned first aspects.
与现有技术相比,本发明的有益效果在于:Compared with prior art, the beneficial effect of the present invention is:
1、在本发明提供的单层MoS2-Si基隧穿二极管的制备方法中,采用外延层转印技术在第一衬底上制备单层MoS2沟道层,以形成范德华异质结,可以在一定程度上缓解热膨胀系数失配,降低界面缺陷密度,进而抑制陷阱辅助隧穿,并从工艺角度改善器件的亚阈值摆幅。1. In the method for preparing a single-layer MoS 2 -Si-based tunneling diode provided by the present invention, a single-layer MoS 2 channel layer is prepared on the first substrate by using epitaxial layer transfer technology to form a van der Waals heterojunction, It can alleviate the thermal expansion coefficient mismatch to a certain extent, reduce the interface defect density, thereby suppress trap-assisted tunneling, and improve the subthreshold swing of the device from a process perspective.
2、本发明将外延层转印技术制备单层MoS2沟道层与器件的结构相结合,形成的隧穿二极管为平面结构,有利于在此基础上实现三极管器件的对准、电极隔离和器件互联,有利于实现高性能的异质集成系统。2. The present invention combines the monolayer MoS2 channel layer prepared by epitaxial layer transfer printing technology with the structure of the device, and the formed tunneling diode is a planar structure, which is beneficial to realize the alignment, electrode isolation and The interconnection of devices is conducive to the realization of high-performance heterogeneous integrated systems.
以下将结合附图及实施例对本发明做进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.
附图说明Description of drawings
图1是本发明实施例提供的单层MoS2-Si基隧穿二极管的制备方法的一种流程示意图;Fig. 1 is a schematic flow chart of a method for preparing a single-layer MoS 2 -Si-based tunneling diode provided by an embodiment of the present invention;
图2是本发明实施例提供的制备单层MoS2-Si基隧穿二极管的一种过程示意图;Fig. 2 is a schematic diagram of a process for preparing a single-layer MoS 2 -Si-based tunneling diode provided by an embodiment of the present invention;
图3是本发明实施例提供的制备单层MoS2-Si基隧穿二极管的另一种过程示意图;3 is a schematic diagram of another process for preparing a single-layer MoS 2 -Si-based tunneling diode provided by an embodiment of the present invention;
图4是本发明实施例提供的制备单层MoS2-Si基隧穿二极管的另一种过程示意图;Fig. 4 is a schematic diagram of another process for preparing a single-layer MoS 2 -Si-based tunneling diode provided by an embodiment of the present invention;
图5是本发明实施例提供的制备单层MoS2-Si基隧穿二极管的另一种过程示意图;5 is a schematic diagram of another process for preparing a single-layer MoS 2 -Si-based tunneling diode provided by an embodiment of the present invention;
图6是本发明实施例提供的制备单层MoS2-Si基隧穿二极管的另一种过程示意图;6 is a schematic diagram of another process for preparing a single-layer MoS 2 -Si-based tunneling diode provided by an embodiment of the present invention;
图7是本发明实施例提供的单层MoS2-Si基隧穿二极管的结构示意图;Fig. 7 is a schematic structural diagram of a single-layer MoS 2 -Si-based tunneling diode provided by an embodiment of the present invention;
图8是本发明实施例提供的单层MoS2-Si基隧穿二极管的俯视图。Fig. 8 is a top view of a single-layer MoS 2 -Si-based tunneling diode provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below in conjunction with specific examples, but the embodiments of the present invention are not limited thereto.
图1是本发明实施例提供的单层MoS2-Si基隧穿二极管的制备方法的一种流程示意图,图2-6是本发明实施例提供的制备单层MoS2-Si基隧穿二极管的过程示意图,图7是本发明实施例提供的单层MoS2-Si基隧穿二极管的结构示意图。请参见图1-7,本发明提供一种单层MoS2-Si基隧穿二极管的制备方法,包括:Fig. 1 is a schematic flow chart of a method for preparing a single-layer MoS 2 -Si-based tunneling diode provided by an embodiment of the present invention, and Figs. 2-6 are preparations of a single-layer MoS 2 -Si-based tunneling diode provided by an embodiment of the
S1、提供第一衬底101,并在第一衬底101的一侧表面制备SiO2隔离区102,得到第一衬底结构10;其中,沿第一方向x,第一衬底结构10包括相对设置的第一表面s1和第二表面s2,第一方向x与第一衬底结构10所在的平面垂直;S1. A
S2、获取第二衬底201,第二衬底201包括预先生长得到的单层MoS2202;S2. Acquiring the
S3、利用外延层转印技术,将单层MoS2202转移至第一表面s1;S3, using the epitaxial layer transfer technology to transfer the single layer of
S4、图形化单层MoS2202,形成单层MoS2沟道层103;单层MoS2沟道层103在第一方向x上的正投影覆盖至少部分第一边界L1,第一边界L1为SiO2隔离区102与第一衬底101的接触面s3在第一衬底结构10所在平面的正投影,其中,接触面s3与第一衬底结构10所在的平面垂直;S4. Patterning the single-
S5、在第一表面s1淀积形成第一电极1041和第二电极1042,使第二电极1042与SiO2隔离区102及单层MoS2沟道层103直接接触,获得制作完成的单层MoS2-Si基隧穿二极管。S5, deposit and form the
示例性地,第一衬底101为P型重掺杂的Si衬底,其晶向为<100>、掺杂浓度为1×1020~1×1021cm-3。如图2所示,在第一衬底101的一侧表面制备SiO2隔离区102,形成第一衬底结构10,也就是说,第一衬底结构10包括第一衬底101和SiO2隔离区102。其中,第一衬底结构10包括在第一方向x上相对设置的第一表面s1和第二表面s2,SiO2隔离区102位于第一衬底结构10的第一表面s1一侧。Exemplarily, the
请参见图3,在上述步骤S2中,第二衬底201为蓝宝石衬底,可通过化学气相淀积的方式在蓝宝石沉底上淀积MoS2,从而获得质量较好的单层MoS2202。当然,在本发明的一些其他实施例中,也可以选择其他材料的第二衬底,本发明对此不作限定。Please refer to Fig. 3. In the above step S2, the
进一步地,如图4-5所示,利用外延层转印技术将第二衬底201上预先生长得到的单层MoS2转移至第一衬底结构10的第一表面s1,单层MoS2在一方向上的正投影覆盖第一衬底结构10;而后图形化上述单层MoS2,形成单层MoS2沟道层103,在如图6所示的俯视视角下,单层MoS2沟道层103在第一方向x上的正投影覆盖至少部分第一边界L1,第一边界L1为SiO2隔离区102与第一衬底101的接触面s3在第一衬底结构10所在平面的正投影,且接触面s3与第一衬底结构10所在的平面垂直。Further, as shown in FIGS. 4-5 , the pre-grown single-layer MoS 2 on the
需要说明的是,本实施例中可将单层MoS2沟道层103104刻蚀形成条状,条状的面积可以根据器件所需的沟道层103面积进行刻蚀,本发明对此不作限定。It should be noted that in this embodiment, the single-layer MoS2 channel layer 103104 can be etched to form strips, and the area of the strips can be etched according to the area of the
如图7-8所示,在上述步骤S5中,在第一衬底结构10的第一表面s1淀积形成第一电极1041和第二电极1042,其中,第二电极1042与SiO2隔离区102及单层MoS2沟道层103均直接接触,从而获得制作完成的单层MoS2-Si基隧穿二极管。As shown in FIGS. 7-8, in the above step S5, the
一方面,本实施例采用外延层转印技术在第一衬底101上制备单层MoS2沟道层103,不仅可以避免直接在第一衬底101上生长单层MoS2沟道层103而导致的界面缺陷,防止单层MoS2沟道层103薄膜质量退化,而且还可以在一定程度上缓解晶格失配,降低界面缺陷密度,从而抑制陷阱辅助隧穿,从工艺角度改善器件的亚阈值摆幅。另一方面,本实施例提供的制备方法以制备平面隧穿二极管为目的,将外延层转印技术制备沟道层103与隧穿器件的结构相结合,制备得到平面结构的隧穿二极管,平面结构有利于实现三极管器件的对准、电极隔离和器件互联,进而有利于实现高性能的异质集成系统。On the one hand, this embodiment adopts the epitaxial layer transfer technology to prepare the single-layer MoS2 channel layer 103 on the
可选地,在上述步骤S1中,提供第一衬底101,并在第一衬底101的一侧表面制备SiO2隔离区102,得到第一衬底结构10的步骤,包括:Optionally, in the above step S1, the
提供第一衬底101;providing a
在第一衬底101的一侧表面刻蚀形成图形区;Etching one side surface of the
在刻蚀有图形区的该侧表面上淀积SiO2,并对淀积SiO2后的第一衬底101进行抛光,形成SiO2隔离区102,得到第一衬底结构10。SiO 2 is deposited on the side surface where the pattern area is etched, and the
具体而言,在第一衬底101的一侧表面刻蚀形成图形区,图形区为一凹槽,且该凹槽朝向靠近第一衬底结构10的第二表面s2一侧凹陷,可选地,该凹槽在一方向上的正投影为正方形,尺寸为150*150μm。进一步地,利用等离子体增强化学气相淀积法(PECVD)在250~450℃条件下,向刻蚀有图形区的一侧表面上淀积氧化物层,即SiO2。在淀积过程中,SiO2会溢出图形区、并覆盖部分第一衬底101,因而还需进一步采用化学机械抛光工艺(Chemical Mechanical Polishing,CMP)研磨SiO2,从而确保制作得到的SiO2隔离区102与第一衬底101的接触面s3被完全暴露出来。Specifically, a pattern area is formed by etching on one side of the
应当理解,SiO2隔离区102的作用是阻隔金属电极与第一衬底101之间的导电通路,受到制作工艺的限制,SiO2隔离区102无法制作的过厚,但是若SiO2隔离区102制作的过薄,则又存在SiO2被击穿的风险。因此,如图2所示,本实施例将SiO2隔离区102在第一方向x上的厚度h设置为1~10μm,例如,SiO2隔离区102在第一方向x上的厚度为5μm、6μm或8μm,如此不仅可以使SiO2隔离区102充分发挥电隔离作用,也可以降低工艺难度、节约制作成本。It should be understood that the function of the SiO2
可选地,在上述步骤S3中,利用外延层转印技术,将单层MoS2转移至第一表面s1的步骤,包括:Optionally, in the above step S3, the step of transferring the single layer of MoS2 to the first surface s1 using the epitaxial layer transfer technology includes:
在预先生长得到的单层MoS2远离第二衬底201一侧的表面旋涂聚甲基丙烯酸甲酯PMMA溶液,并利用热板烘烤使聚甲基丙烯酸甲酯溶液固化;Spin-coat polymethyl methacrylate PMMA solution on the surface of the pre-grown monolayer MoS 2 away from the
将带有固化PMMA/单层MoS2薄膜的第二衬底201浸入去离子水中,并在加热至预设温度后保温;Immerse the
从去离子水中取出带有固化PMMA/单层MoS2薄膜的第二衬底201,通过机械剥离使PMMA/单层MoS2薄膜与第二衬底201分离,并将PMMA/单层MoS2薄膜转移至第一衬底结构10的第一表面s1;Take out the
通过加热板烘烤使PMMA/单层MoS2薄膜中的单层MoS2与第一表面s1贴合;The monolayer MoS in the PMMA/monolayer MoS 2 film is bonded to the first surface s1 by heating plate baking;
将带有固化PMMA/单层MoS2薄膜的第一衬底结构10置入丙酮溶液,去除PMMA后用乙醇浸泡;Put the
从乙醇中取出带有单层MoS2的第一衬底结构10,并使用去离子水清洗。The
本实施例中,首先在预先生长得到的单层MoS2远离第二衬底201一侧的表面涂覆体积分数为8%的聚甲基丙烯酸甲酯PMMA溶液,例如,可使用匀胶机以1000r/min的速度旋涂30s,然后用热板加热至100℃,并烘烤60s使PMMA固化;将带有固化PMMA/单层MoS2薄膜的第二衬底201置入盛有去离子水的烧杯中,加热至80℃后保温3h,并从去离子水中取出带有固化PMMA/单层MoS2薄膜的第二衬底201,通过机械剥离的方法获得PMMA/单层MoS2薄膜。In this embodiment, firstly, a polymethyl methacrylate PMMA solution with a volume fraction of 8% is coated on the surface of the pre-grown monolayer MoS 2 away from the
进一步地,从第二衬底201上剥离得到PMMA/单层MoS2薄膜后,将PMMA/单层MoS2薄膜中的MoS2一面附着在第一衬底结构10的第一表面s1,随后用加热板加热至140℃,并烘烤30分钟,单层MoS2与第一表面s1紧密贴合。Further, after peeling off from the
可选地,转移PMMA/单层MoS2薄膜至第一衬底结构10后,将带有固化PMMA/单层MoS2薄膜的第一衬底结构10置入丙酮溶液浸泡10分钟,去除PMMA后用乙醇浸泡,再将带有单层MoS2的第一衬底结构10捞出,并使用去离子水加以清洗,从而得到带有单层MoS2薄膜的第一衬底结构10。Alternatively, after transferring the PMMA/monolayer MoS2 thin film to the
可选地,上述步骤S4中,图形化单层MoS2,形成单层MoS2沟道层103的步骤,包括:Optionally, in the above step S4, the step of patterning the single-layer MoS 2 to form the single-layer MoS 2 channel layer 103 includes:
在单层MoS2远离第一衬底结构10的一侧表面旋涂光刻胶,经过曝光、显影后,留下第一预设区域的光刻胶掩膜,并刻蚀单层MoS2,形成单层MoS2沟道层103。Spin-coat photoresist on the surface of the single-layer MoS 2 away from the
具体地,在带有单层MoS2薄膜的第一衬底结构10上方(即第一表面s1一侧)以4000r/min的速度旋涂5214光刻胶30s,采用MA-6步进式光刻机将掩膜版对准旋涂完光刻胶的第一衬底结构10,经曝光、显影后,留下第一预设区域的光刻胶掩膜,使用离子束刻蚀机IBE刻蚀单层MoS2,形成单层MoS2沟道层103。Specifically, a 5214 photoresist was spin-coated at a speed of 4000 r/min for 30 s on the
本实施例中,在第一表面s1淀积形成第一电极1041和第二电极1042,使所述第二电极1042与所述SiO2隔离区102及所述图形化后的单层MoS2直接接触,获得制作完成的单层MoS2-Si基隧穿二极管的步骤,包括:In this embodiment, the
在第一表面s1旋涂光刻胶,经过曝光、显影后,留下第二预设区域的光刻胶掩膜;Spin-coat photoresist on the first surface s1, and leave a photoresist mask in the second predetermined area after exposure and development;
使用电子束蒸发在第一表面淀积镍/钛/金,并剥离第二预设区域范围内多余的镍/钛/金,形成第一电极和第二电极,获得制作完成的单层MoS2-Si基隧穿二极管;其中,所述第二电极与所述单层MoS2沟道层及所述SiO2隔离区直接接触。Electron beam evaporation is used to deposit nickel/titanium/gold on the first surface, and the excess nickel/titanium/gold in the second preset area is stripped to form the first electrode and the second electrode, and the completed single-layer MoS 2 is obtained - Si-based tunneling diode; wherein said second electrode is in direct contact with said monolayer MoS2 channel layer and said SiO2 isolation region.
具体而言,在第一衬底结构10的第一表面s1以4000r/min的速度旋涂5214光刻胶30s,经曝光、显影后,留下第二预设区域的光刻胶掩膜之后,使用电子束蒸发在第一衬底结构10的第一表面s1上淀积镍/钛/金,然后将第一衬底结构10放入丙酮清洗光刻胶,去除非功能区域的金属层(即第二预设区域范围内的镍/钛/金),从而形成第一电极1041和第二电极1042,且第二电极1042与单层MoS2沟道层103及SiO2隔离区102直接接触。Specifically, after the first surface s1 of the
示例性地,沿第一方向,第一电极1041和第二电极1042中镍的厚度为80nm、钛的厚度为20nm、金的厚度为50nm。需要说明的是,在实际制作过程中,第一电极和第二电极中镍、钛、金的厚度可根据工艺要求灵活调整,本申请对此不做限定。Exemplarily, along the first direction, the thickness of nickel in the
如图7所示,本发明实施例还提供了一种单层MoS2-Si基隧穿二极管,可以采用上述单层MoS2-Si基隧穿二极管的制备方法制备得到。As shown in FIG. 7 , the embodiment of the present invention also provides a single-layer MoS 2 -Si-based tunneling diode, which can be prepared by the above-mentioned preparation method of the single-layer MoS 2 -Si-based tunneling diode.
通过上述各实施例可知,本发明的有益效果在于:Can know by above-mentioned each embodiment, beneficial effect of the present invention is:
1、在本发明提供的单层MoS2-Si基隧穿二极管的制备方法中,采用外延层转印技术在第一衬底上制备单层MoS2沟道层,以形成范德华异质结,可以在一定程度上缓解热膨胀系数失配,降低界面缺陷密度,进而抑制陷阱辅助隧穿,并从工艺角度改善器件的亚阈值摆幅。1. In the method for preparing a single-layer MoS 2 -Si-based tunneling diode provided by the present invention, a single-layer MoS 2 channel layer is prepared on the first substrate by using epitaxial layer transfer technology to form a van der Waals heterojunction, It can alleviate the thermal expansion coefficient mismatch to a certain extent, reduce the interface defect density, thereby suppress trap-assisted tunneling, and improve the subthreshold swing of the device from a process perspective.
2、本发明将外延层转印技术制备单层MoS2沟道层与器件的结构相结合,形成的隧穿二极管为平面结构,有利于在此基础上实现三极管器件的对准、电极隔离和器件互联,有利于实现高性能的异质集成系统。2. The present invention combines the monolayer MoS2 channel layer prepared by epitaxial layer transfer printing technology with the structure of the device, and the formed tunneling diode is a planar structure, which is beneficial to realize the alignment, electrode isolation and The interconnection of devices is conducive to the realization of high-performance heterogeneous integrated systems.
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In describing the present invention, it should be understood that the terms "center", "longitudinal", "transverse", "length", "width", "thickness", "upper", "lower", "front", " Orientation indicated by rear, left, right, vertical, horizontal, top, bottom, inside, outside, clockwise, counterclockwise, etc. The positional relationship is based on the orientation or positional relationship shown in the drawings, which is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, Therefore, it should not be construed as limiting the invention.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as "first" and "second" may explicitly or implicitly include one or more of these features. In the description of the present invention, "plurality" means two or more, unless otherwise specifically defined.
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise clearly specified and limited, terms such as "installation", "connection", "connection" and "fixation" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。In the present invention, unless otherwise clearly specified and limited, a first feature being "on" or "under" a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them. Moreover, "above", "above" and "above" the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature. "Below", "beneath" and "under" the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。In the description of this specification, descriptions referring to the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" mean that specific features described in connection with the embodiment or example , structure, material or characteristic is included in at least one embodiment or example of the present invention. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples described in this specification.
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。Although the present application has been described in conjunction with various embodiments here, however, in the process of implementing the claimed application, those skilled in the art can understand and Other variations of the disclosed embodiments are implemented. In the claims, the word "comprising" does not exclude other components or steps, and "a" or "an" does not exclude a plurality. A single processor or other unit may fulfill the functions of several items recited in the claims. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that these measures cannot be combined to advantage.
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in conjunction with specific preferred embodiments, and it cannot be assumed that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deduction or replacement can be made, which should be regarded as belonging to the protection scope of the present invention.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110686636.6A CN113644138B (en) | 2021-06-21 | 2021-06-21 | Single layer MoS 2 -Si-based tunneling diode and preparation method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110686636.6A CN113644138B (en) | 2021-06-21 | 2021-06-21 | Single layer MoS 2 -Si-based tunneling diode and preparation method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN113644138A CN113644138A (en) | 2021-11-12 |
| CN113644138B true CN113644138B (en) | 2023-04-18 |
Family
ID=78416007
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110686636.6A Active CN113644138B (en) | 2021-06-21 | 2021-06-21 | Single layer MoS 2 -Si-based tunneling diode and preparation method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN113644138B (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003282517A (en) * | 2002-03-27 | 2003-10-03 | Mitsui Eng & Shipbuild Co Ltd | Resist stripping method |
| CN107170711A (en) * | 2017-04-26 | 2017-09-15 | 中山大学 | It is a kind of to shift the method for preparing two-dimensional atomic crystal laminated construction |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102100415B1 (en) * | 2013-07-15 | 2020-04-14 | 삼성전자주식회사 | Tunneling device and method of manufacturing the same |
| CN104049022A (en) * | 2014-06-10 | 2014-09-17 | 中国石油大学(华东) | Molybdenum disulfide/silicon heterogeneous film component with hydrogen sensitivity effect as well as preparation method and application thereof |
| KR101596157B1 (en) * | 2014-08-21 | 2016-02-22 | 경희대학교 산학협력단 | Tunneling diode using hybrid structure of graphene-silicon quantum dots and method of manufacturing the same |
| EP3037382A1 (en) * | 2014-12-24 | 2016-06-29 | Nokia Technologies OY | Graphene double-barrier resonant tunneling device |
| KR102391911B1 (en) * | 2015-10-16 | 2022-04-27 | 삼성전자주식회사 | Semiconductor device including two-dimensional material |
| CN107039587A (en) * | 2017-03-31 | 2017-08-11 | 东南大学 | Negative differential resistance and preparation method based on black phosphorus/rhenium disulfide hetero-junctions |
| CN109935654B (en) * | 2019-03-21 | 2020-12-29 | 电子科技大学 | A kind of silicon-based molybdenum disulfide heterojunction photoelectric sensor and preparation method thereof |
| CN110854190B (en) * | 2019-10-28 | 2022-09-16 | 南京邮电大学 | Single-layer molybdenum disulfide energy valley coordinated unipolar spin diode |
-
2021
- 2021-06-21 CN CN202110686636.6A patent/CN113644138B/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003282517A (en) * | 2002-03-27 | 2003-10-03 | Mitsui Eng & Shipbuild Co Ltd | Resist stripping method |
| CN107170711A (en) * | 2017-04-26 | 2017-09-15 | 中山大学 | It is a kind of to shift the method for preparing two-dimensional atomic crystal laminated construction |
Also Published As
| Publication number | Publication date |
|---|---|
| CN113644138A (en) | 2021-11-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102931057B (en) | Graphene field-effect device based on gate dielectric structure and manufacturing method for graphene field-effect device | |
| CN101944477A (en) | Manufacturing method for flexible semiconductor device | |
| CN111986999B (en) | Method for forming semiconductor device | |
| WO2013152458A1 (en) | Thin film transistor memory and preparation method therefor | |
| CN102769033B (en) | HEMT with high breakdown voltage and method of manufacturing the same | |
| CN106981423A (en) | Process based on Si substrate epitaxial SiC base GaN HEMT | |
| CN107634099B (en) | A two-dimensional crystal material field effect transistor and its preparation method | |
| CN104538449A (en) | Graphene field effect transistor structure and large-scale manufacturing process thereof | |
| CN105448713A (en) | Manufacturing method of vacuum cavity gate structure pseudomorphic high electron mobility transistor | |
| CN113644138B (en) | Single layer MoS 2 -Si-based tunneling diode and preparation method thereof | |
| CN111129169A (en) | Photoelectric device based on graphene/tungsten diselenide/tin diselenide laminated structure and preparation method thereof | |
| CN112466930B (en) | A metal contact structure of a two-dimensional semiconductor material and a preparation method thereof | |
| WO2016008194A1 (en) | Semiconductor device and manufacturing method thereof | |
| CN107919397A (en) | A kind of High Linear FET device and preparation method thereof | |
| CN110600562A (en) | Zirconium disulfide-germanium nano pyramid heterojunction, preparation method and application thereof | |
| CN114628523B (en) | A gallium nitride-based CMOS field effect transistor and its preparation method | |
| CN105609539A (en) | Self-aligned two-dimensional crystal material field-effect semiconductor device and preparation method thereof | |
| TWI452621B (en) | Separation method of epitaxial element | |
| CN111446289B (en) | Structure of GaN device based on graphene capping layer and preparation method thereof | |
| CN109346405A (en) | A kind of preparation method of GaN-based SBD flip chip | |
| CN109360856A (en) | A kind of N-face GaN HEMT device with high heat dissipation structure and manufacturing method | |
| CN111785792B (en) | A kind of preparation method of germanium lead alloy material | |
| CN111244222B (en) | Hexagonal boron nitride ultraviolet light detector and preparation method thereof | |
| CN105185823A (en) | Manufacturing method of ring-fence non-junction nanowire transistor | |
| CN114937741A (en) | Charge-trapping type two-dimensional horizontal homojunction rectifier and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |