[go: up one dir, main page]

CN113676926B - User network perception profiling method and device - Google Patents

User network perception profiling method and device Download PDF

Info

Publication number
CN113676926B
CN113676926B CN202010413096.XA CN202010413096A CN113676926B CN 113676926 B CN113676926 B CN 113676926B CN 202010413096 A CN202010413096 A CN 202010413096A CN 113676926 B CN113676926 B CN 113676926B
Authority
CN
China
Prior art keywords
data
user
perception
network
target user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010413096.XA
Other languages
Chinese (zh)
Other versions
CN113676926A (en
Inventor
何蕊馨
周琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Mobile Communications Group Co Ltd
China Mobile Group Design Institute Co Ltd
Original Assignee
China Mobile Communications Group Co Ltd
China Mobile Group Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Mobile Communications Group Co Ltd, China Mobile Group Design Institute Co Ltd filed Critical China Mobile Communications Group Co Ltd
Priority to CN202010413096.XA priority Critical patent/CN113676926B/en
Publication of CN113676926A publication Critical patent/CN113676926A/en
Application granted granted Critical
Publication of CN113676926B publication Critical patent/CN113676926B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Telephonic Communication Services (AREA)

Abstract

The embodiment of the invention provides a user network perceived image method and a device, wherein the method comprises the following steps: collecting internet surfing behavior data, XDR data, MR data and complaint data of a target user, and analyzing performance data representing network perception of the target user from the internet surfing behavior data; correlating the performance data, XDR data, MR data and complaint data, obtaining perception fusion information of the target user, and obtaining the service type of the perception fusion information according to the perception fusion information; selecting data corresponding to the service type from the perception fusion information according to the service type; inputting the selected data into a user perception portrait model, outputting the network perception score of the target user, and obtaining the user network perception description corresponding to the network perception score. The embodiment of the invention realizes accurate user perception portrait.

Description

用户网络感知画像方法及装置User network perception profiling method and device

技术领域Technical field

本发明属于移动通信无线网络技术领域,尤其涉及一种用户网络感知画像方法及装置。The invention belongs to the technical field of mobile communication wireless networks, and in particular relates to a user network sensing portrait method and device.

背景技术Background technique

现有技术主要依靠用户调研、用户投诉和监控网络指标方法来模拟、评估用户网络感知,并定位网络质差问题。Existing technologies mainly rely on user surveys, user complaints and monitoring network indicators to simulate and evaluate user network perception and locate poor network quality problems.

其中,用户调研方法由于用户主观性强,评估普遍采用分值或简单描述评估感知,维度模糊、单一且专业性差,难以从中获得准确的用户感知评价及对网络质差问题的根本原因进行定位。Among them, user survey methods generally use scores or simple descriptions to evaluate perceptions due to the strong subjectivity of users. The dimensions are vague, single and poorly professional, making it difficult to obtain accurate user perception evaluations and locate the root causes of poor network quality.

用户投诉方法具有滞后性,在用户投诉后才能获知用户感知和网络质差问题定位,严重影响用户体验。此外,用户对于问题现象与位置的描述通常是模糊的,导致难以准确定位质差原因,以及涉及的网元或小区。The user complaint method is lagging. Only after the user complains can we know the user perception and the location of poor network quality problems, which seriously affects the user experience. In addition, users' descriptions of problem phenomena and locations are often vague, making it difficult to accurately locate the cause of poor quality and the involved network elements or cells.

监控网络指标方法由于网络指标是网元级的统计平均值,且由于网络指标统计最小粒度为分钟级,而用户感知异常粒度均为秒级事件,因此监控网络指标难以准确映射单个用户的感知情况,目前普遍存在指标优良但用户感知不好的情况。另外,互联网应用灵活多样,用户体验与电信协议缺乏有效映射,也是导致测量指标难以匹配用户感知的重要原因。Monitoring network indicator method Since network indicators are statistical averages at the network element level, and because the minimum granularity of network indicator statistics is minute level, and the granularity of user perception anomalies are second-level events, it is difficult to monitor network indicators to accurately map the perception of a single user. , currently there is a common situation where the indicators are excellent but the user perception is not good. In addition, the flexibility and diversity of Internet applications and the lack of effective mapping between user experience and telecommunications protocols are also important reasons why it is difficult for measurement indicators to match user perceptions.

发明内容Contents of the invention

为克服上述现有的用户网络感知画像方法对用户网络感知的画像不准确,具有滞后性的问题或者至少部分地解决上述问题,本发明实施例提供一种用户网络感知画像方法及装置。In order to overcome the above-mentioned problems that the existing user network-aware profiling method produces inaccurate and hysteretic user network-aware portraits or at least partially solve the above problems, embodiments of the present invention provide a user network-aware profiling method and device.

根据本发明实施例的第一方面,提供一种用户网络感知画像方法,包括:According to a first aspect of an embodiment of the present invention, a user network awareness profiling method is provided, including:

采集目标用户的上网行为数据、XDR数据、MR数据和投诉数据,并从所述上网行为数据中解析出表征所述目标用户的网络感知的性能数据;Collect the target user's online behavior data, XDR data, MR data and complaint data, and parse the performance data that characterizes the target user's network perception from the online behavior data;

将所述性能数据、XDR数据、MR数据和投诉数据进行关联,获取所述目标用户的感知融合信息,并根据所述感知融合信息获取所述感知融合信息的业务类型;Correlate the performance data, XDR data, MR data and complaint data to obtain the perceptual fusion information of the target user, and obtain the service type of the perceptual fusion information according to the perceptual fusion information;

根据所述业务类型从所述感知融合信息中选择所述业务类型对应的数据;将选择的数据输入用户感知画像模型,输出所述目标用户的网络感知评分,并获取所述网络感知评分对应的用户网络感知描述;Select the data corresponding to the service type from the perception fusion information according to the service type; input the selected data into the user perception portrait model, output the network perception score of the target user, and obtain the network perception score corresponding to the network perception score. User network awareness description;

其中,所述业务类型和所述业务类型对应的数据预先关联存储;Wherein, the service type and the data corresponding to the service type are stored in association in advance;

所述网络感知评分和所述用户网络感知描述预先关联存储;The network awareness score and the user network awareness description are stored in association in advance;

所述用户感知画像模型根据用户样本的感知融合信息和所述用户样本的网络感知评分进行训练获取。The user perception portrait model is trained and acquired based on the perception fusion information of the user sample and the network perception score of the user sample.

具体地,采集目标用户的上网行为数据的步骤包括:Specifically, the steps for collecting target users’ online behavior data include:

通过SDK埋点方式采集所述目标用户的日志数据;Collect log data of the target users through SDK burying method;

通过网络爬虫或公共API抓取所述目标用户的网络数据;Crawl the network data of the target user through a web crawler or public API;

将采集的日志数据和抓取的网络数据作为所述目标用户的上网行为数据。The collected log data and captured network data are used as the target user's online behavior data.

具体地,将所述性能数据、XDR数据、MR数据和投诉数据进行关联,获取所述目标用户的感知融合信息的步骤包括:Specifically, the steps of correlating the performance data, XDR data, MR data and complaint data to obtain the perceptual fusion information of the target user include:

根据所述XDR数据、MR数据和投诉数据中均存在的时间戳、IMEI、IMSI、MME UES1AP ID、Cell ID和eNB ID字段,将所述XDR数据、MR数据和投诉数据进行关联,获取所述目标用户的关联融合数据;According to the timestamp, IMEI, IMSI, MME UES1AP ID, Cell ID and eNB ID fields that exist in the XDR data, MR data and complaint data, associate the XDR data, MR data and complaint data to obtain the Related fusion data of target users;

根据所述性能数据和关联融合数据中均存在的时间戳、App Type、App Sub-type和IMEI字段,将所述性能数据和关联融合数据进行关联,获取所述目标用户的感知融合信息。According to the timestamp, App Type, App Sub-type and IMEI fields that exist in the performance data and the associated fusion data, the performance data and the associated fusion data are associated to obtain the perceptual fusion information of the target user.

具体地,将选择的数据输入用户感知画像模型,输出所述目标用户的网络感知评分的步骤之前还包括:Specifically, the step of inputting the selected data into the user perception portrait model and outputting the network perception score of the target user also includes:

根据每个用户样本的感知融合信息获取每个用户样本的感知融合信息的业务类型;The business type of obtaining the perceptual fusion information of each user sample based on the perceptual fusion information of each user sample;

根据所有所述用户样本的感知融合信息的业务类型,将所有所述用户样本的感知融合信息划分为多个数据子集;According to the service type of the perceptual fusion information of all the user samples, divide the perceptual fusion information of all the user samples into multiple data subsets;

对于任一所述数据子集,根据该数据子集所属的业务类型,从该数据子集中选择所述业务类型对应的数据;For any of the data subsets, select the data corresponding to the business type from the data subset according to the business type to which the data subset belongs;

根据从该数据子集中选择的数据对所述用户感知画像模型进行训练,获取该数据子集所属的业务类型对应的用户感知画像模型;Train the user perception profile model based on the data selected from the data subset, and obtain the user perception profile model corresponding to the business type to which the data subset belongs;

相应地,将选择的数据输入用户感知画像模型,输出所述目标用户的网络感知评分的步骤包括:Accordingly, the step of inputting the selected data into the user perception portrait model and outputting the network perception score of the target user includes:

根据所述目标用户的感知融合信息的业务类型,获取所述业务类型对应的用户感知画像模型;According to the service type of the target user's perception fusion information, obtain the user perception portrait model corresponding to the service type;

将从所述目标用户的感知融合信息选择的数据输入所述业务类型对应的用户感知画像模型,输出所述目标用户的网络感知评分。The data selected from the perceptual fusion information of the target user is input into the user perceptual portrait model corresponding to the service type, and the network perceptual score of the target user is output.

具体地,根据从该数据子集中选择的数据对所述用户感知画像模型进行训练,获取该数据子集所属的业务类型对应的用户感知画像模型的步骤包括:Specifically, the user perception profile model is trained based on the data selected from the data subset, and the step of obtaining the user perception profile model corresponding to the business type to which the data subset belongs includes:

根据从该数据子集中选择的数据对多种用户感知画像模型进行训练;Train multiple user perception profiling models based on data selected from this data subset;

统计每种训练好的用户感知画像模型的准确率,选择所述准确率最高的用户感知画像模型作为该数据子集所属的业务类型对应的用户感知画像模型。The accuracy of each trained user perception profile model is counted, and the user perception profile model with the highest accuracy is selected as the user perception profile model corresponding to the business type to which the data subset belongs.

具体地,获取所述网络感知评分对应的用户网络感知描述的步骤之后还包括:Specifically, the step of obtaining the user's network awareness description corresponding to the network awareness score also includes:

若根据所述网络感知评分对应的用户网络感知描述获知所述目标用户存在网络感知差问题,则根据所述目标用户的感知融合信息中的时间戳获取所述网络感知差问题的持续时间;If it is learned that the target user has a poor network perception problem according to the user network perception description corresponding to the network awareness score, then obtain the duration of the poor network perception problem according to the timestamp in the perception fusion information of the target user;

从所述目标用户的感知融合信息中获取所述持续时间内所述目标用户的位置信息,以及占用的网元信息或小区信息。The location information of the target user within the duration and the occupied network element information or cell information are obtained from the perceptual fusion information of the target user.

具体地,从所述目标用户的感知融合信息中获取所述持续时间内所述目标用户的位置信息,以及占用的网元信息或小区信息的步骤之后还包括:Specifically, after the step of obtaining the location information of the target user within the duration and the occupied network element information or cell information from the perceptual fusion information of the target user, the step further includes:

根据所述目标用户的感知融合信息的业务类型的重要性、用户星级和网络感知差问题的持续时间,判断所述网络感知差问题的严重程度;Determine the severity of the poor network perception problem according to the importance of the service type of the target user's perception fusion information, user star rating and the duration of the poor network perception problem;

根据所述目标用户占用的网元的用户数、流量和场景标签,或者或小区的用户数、流量和场景标签,判断所述目标用户占用的网元或小区的重要等级;Determine the importance level of the network element or cell occupied by the target user based on the number of users, traffic volume, and scenario labels of the network element occupied by the target user, or the number of users, traffic volume, and scenario labels of the cell;

将所述网络感知差问题的严重程度和所述目标用户占用的网元或小区的重要等级进行加权,获取所述网络感知差问题的处理优先级;Weight the severity of the poor network perception problem and the importance level of the network element or cell occupied by the target user to obtain the processing priority of the poor network perception problem;

若所述处理优先级达到预设阈值,则对所述目标用户占用的网元或小区进行排查,确定导致所述网络感知差问题的原因。If the processing priority reaches a preset threshold, the network element or cell occupied by the target user is investigated to determine the cause of the poor network perception problem.

根据本发明实施例第二方面提供一种用户网络感知画像装置,包括:According to a second aspect of an embodiment of the present invention, a user network perception profiling device is provided, which includes:

采集模块,用于采集目标用户的上网行为数据、XDR数据、MR数据和投诉数据,并从所述上网行为数据中解析出表征所述目标用户的网络感知的性能数据;A collection module, used to collect the target user's online behavior data, XDR data, MR data and complaint data, and parse the performance data that characterizes the target user's network perception from the online behavior data;

关联模块,用于将所述性能数据、XDR数据、MR数据和投诉数据进行关联,获取所述目标用户的感知融合信息,并根据所述感知融合信息获取所述感知融合信息的业务类型;An association module, used to associate the performance data, XDR data, MR data and complaint data, obtain the perceptual fusion information of the target user, and obtain the service type of the perceptual fusion information according to the perceptual fusion information;

画像模块,用于根据所述业务类型从所述感知融合信息中选择所述业务类型对应的数据;将选择的数据输入用户感知画像模型,输出所述目标用户的网络感知评分,并获取所述网络感知评分对应的用户网络感知描述;A profiling module, configured to select data corresponding to the service type from the perceptual fusion information according to the service type; input the selected data into the user perceptual profiling model, output the network perceptual score of the target user, and obtain the User network perception description corresponding to network perception score;

其中,所述业务类型和所述业务类型对应的数据预先关联存储;Wherein, the service type and the data corresponding to the service type are stored in association in advance;

所述网络感知评分和所述用户网络感知描述预先关联存储;The network awareness score and the user network awareness description are stored in association in advance;

所述用户感知画像模型根据用户样本的感知融合信息和所述用户样本的网络感知评分进行训练获取。The user perception portrait model is trained and acquired based on the perception fusion information of the user sample and the network perception score of the user sample.

根据本发明实施例的第三个方面,还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器调用所述程序指令能够执行第一方面的各种可能的实现方式中任一种可能的实现方式所提供的用户网络感知画像方法。According to a third aspect of the embodiment of the present invention, an electronic device is also provided, including a memory, a processor, and a computer program stored in the memory and executable on the processor. The processor can execute the program instructions by calling the program instructions. The user network perception profiling method provided by any of the various possible implementation methods of the first aspect.

根据本发明实施例的第四个方面,还提供一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令使所述计算机执行第一方面的各种可能的实现方式中任一种可能的实现方式所提供的用户网络感知画像方法。According to a fourth aspect of the embodiment of the present invention, a non-transitory computer-readable storage medium is also provided, the non-transitory computer-readable storage medium stores computer instructions, the computer instructions cause the computer to execute the first aspect The user network perception profiling method provided by any of the various possible implementation methods.

本发明实施例提供一种用户网络感知画像方法及装置,该方法通过采集用户上网行为数据、XDR数据、MR数据和投诉数据,并将从用户上网行为数据中解析出表征用户网络感知的性能数据与XDR数据、MR数据和投诉数据进行关联,根据用户网络感知的业务类型从关联数据中选择相应的数据进行网络感知评分,从而实现精准的用户网络感知画像。Embodiments of the present invention provide a user network perception profiling method and device. The method collects user online behavior data, XDR data, MR data and complaint data, and parses the user online behavior data to obtain performance data that characterizes the user's network perception. Correlate with XDR data, MR data and complaint data, and select corresponding data from the associated data according to the service type of user network perception for network perception scoring, thereby achieving an accurate user network perception portrait.

附图说明Description of the drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can be obtained based on these drawings without exerting creative efforts.

图1为本发明实施例提供的用户网络感知画像方法流程示意图;Figure 1 is a schematic flow chart of a user network awareness profiling method provided by an embodiment of the present invention;

图2为本发明实施例提供的用户网络感知画像方法实现原理流程示意图;Figure 2 is a schematic flow chart of the implementation principle of the user network sensing profiling method provided by an embodiment of the present invention;

图3为本发明实施例提供的用户网络感知画像方法中数据采集流程示意图;Figure 3 is a schematic diagram of the data collection process in the user network perception profiling method provided by an embodiment of the present invention;

图4为本发明实施例提供的用户网络感知画像方法中数据处理流程示意图;Figure 4 is a schematic diagram of the data processing flow in the user network perception profiling method provided by an embodiment of the present invention;

图5为本发明实施例提供的用户网络感知画像方法中基于融合数据进行用户感知画像的流程示意图;Figure 5 is a schematic flowchart of performing user perception profiling based on fused data in the user network perception profiling method provided by an embodiment of the present invention;

图6为本发明实施例提供的用户网络感知画像方法中用户网络感知差问题定位流程示意图;Figure 6 is a schematic diagram of the process of locating the problem of poor user network perception in the user network perception profiling method provided by an embodiment of the present invention;

图7为本发明实施例提供的用户网络感知画像装置结构示意图;Figure 7 is a schematic structural diagram of a user network sensing profiling device provided by an embodiment of the present invention;

图8为本发明实施例提供的电子设备结构示意图。FIG. 8 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.

具体实施方式Detailed ways

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can be obtained based on these drawings without exerting creative efforts.

在本发明的一个实施例中提供一种用户网络感知画像方法,图1为本发明实施例提供的用户网络感知画像方法流程示意图,该方法包括:S101,采集目标用户的上网行为数据、XDR数据、MR数据和投诉数据,并从所述上网行为数据中解析出表征所述目标用户的网络感知的性能数据;In one embodiment of the present invention, a user network-aware profiling method is provided. Figure 1 is a schematic flow chart of a user network-aware profiling method provided by an embodiment of the present invention. The method includes: S101, collecting the target user's online behavior data and XDR data. , MR data and complaint data, and parse the performance data that characterizes the network perception of the target user from the online behavior data;

如图2所示,本实施例实现原理主要为:自动采集用户上网行为数据,与XDR数据、投诉数据、MR指纹库等进行关联匹配,建立秒级粒度用户感知融合数据信息库。通过大数据分析建模,进行用户感知画像,并进一步实现感知质差问题自动精准定位与用户感知预防性维护。As shown in Figure 2, the implementation principle of this embodiment is mainly to automatically collect user online behavior data, associate and match it with XDR data, complaint data, MR fingerprint database, etc., and establish a second-level granular user perception fusion data information database. Through big data analysis and modeling, user perception profiling is carried out, and further automatic and precise positioning of poor perception quality problems and user perception preventive maintenance are realized.

随着通信技术的发展,电子设备占据了用户大量的时间,而在用户接收网络提供的大量信息的同时,也会留下海量痕迹数据,这些痕迹可有效反映用户的真实感知。为了精准评估用户网络感知,实现用户网络感知画像及感知质差问题精准定位,有效的数据采集至关重要,直接影响后续分析的准确性与完整性。本实施例需要采集目标用户的上网行为数据、用户XDR(External Data Representation,外部数据表示)数据、投诉数据和MR(Measurement Report,测量报告)数据。其中,目标用户为需要进行网络感知画像的用户。With the development of communication technology, electronic devices occupy a large amount of users' time. While users receive a large amount of information provided by the network, they also leave behind massive trace data. These traces can effectively reflect the user's true perception. In order to accurately assess user network perception and achieve precise location of user network perception portraits and poor perception quality issues, effective data collection is crucial, which directly affects the accuracy and completeness of subsequent analysis. This embodiment needs to collect the target user's online behavior data, user XDR (External Data Representation, external data representation) data, complaint data and MR (Measurement Report, measurement report) data. Among them, the target users are users who need network awareness profiling.

数据采集的流程示意图如图3所示。其中,用户上网行为数据包括用户通过APP(Application,应用程序)和网页等途径使用网络功能产生的各种行为数据,粒度可达秒级。更具体地,用户上网行为数据采集路径主要包括日志数据采集与网络数据采集。其中,日志数据采集可使用包括SDK埋点等方式实现自动采集;网络数据采集主要通过网络爬虫或公共API(Application Programming Interface,应用程序接口)抓取所需网络数据。采集的用户上网行为数据主要包括:用户名username、浏览网页page view、唯一访问者标识unique visitor、接收数据流量Receive、发送数据流量transmit、数据包标识PID、日志log、平均使用时长、总使用时长、网络类别及运营商、Message发送失败、功能和界面各自的访问次数、人数、时长和错误率、消息发送和接收次数、电话发起和接收次数、VoicemailPlay/Delete次数、登录时长、登录失败次数、消息发送失败次数和电话发起接收失败次数、电话呼叫质量、IMEI(International Mobile Equipment Identity,国际移动设备识别码)、设备型号、经度longitude、纬度latitude、网址url、提交信息post等字段。The flow chart of data collection is shown in Figure 3. Among them, user online behavior data includes various behavioral data generated by users using network functions through APP (Application, application) and web pages, and the granularity can reach the second level. More specifically, the user's online behavior data collection path mainly includes log data collection and network data collection. Among them, log data collection can be automatically collected using methods such as SDK buried points; network data collection mainly uses web crawlers or public APIs (Application Programming Interface, application program interfaces) to capture the required network data. The collected user online behavior data mainly includes: username, page view, unique visitor ID, receive data traffic, send data traffic transmit, packet ID PID, log, average usage time, and total usage time. , network type and operator, failure to send messages, number of visits, number of people, duration and error rate of functions and interfaces, number of messages sent and received, number of phone calls initiated and received, number of VoicemailPlay/Delete times, login duration, number of failed logins, Fields such as the number of message sending failures and phone initiation and reception failures, phone call quality, IMEI (International Mobile Equipment Identity, International Mobile Equipment Identity), device model, longitude, latitude, website URL, submission information post, etc.

用户XDR数据通过平台对接实现,采集的XDR数据主要包括S1-MME和S1-U/S11原始码流,即用户所在省份Local Province、用户所在城市Local City、漫游类型RoamingType、接口Interface、xDR ID、IMEI、程序启动时间Procedure Start Time、程序关闭时间Procedure End Time、程序状态Procedure Status、Cell ID、MME UE S1AP ID、IMSI(International Mobile Subscriber Identity,国际移动用户识别码)、longitude、latitude、App Type、App Sub-type、App Content、App Status、操作类型Operation-Type、登录成功Login-Success、登录请求时间Login-Request-Time、登录响应时间Login-Response-Time、Uplink数据UL Data、Downlink数据DL Data、URI((Uniform ResourceIdentifier,统一资源标志符)、HTTP响应时间HTTP(HyperText Transfer Protocol,超文本传输协议)Response Time、主机名称HOST、HTTP内容类型HTTP_content_type、服务组件标示Service Comp Flag、服务行为标示Service Behavior Flag、服务时间Service Time、视频下载时间VideoDownTime、初始缓冲持续时间InitbufferDuration、上行持续时间updura、下行持续时间downdura、UL无序IP包UL Disorder IP Packet、DL无序IP包DLDisorder IP Packet、UL重新传输IP包UL Retrans IP Packet、DL重新传输IP包DLRetrans IP Packet、TCP响应时间TCP(Transmission Control Protocol,传输控制协议)Response Time、TCP确认时间TCP ACK Time、请求时间Req Time、UL_AVG_RTT、DW_AVG_RTT等字段。User XDR data is realized through platform docking. The collected XDR data mainly includes S1-MME and S1-U/S11 original code streams, that is, the user's Local Province, the user's city Local City, roaming type, interface, xDR ID, IMEI, Procedure Start Time, Procedure End Time, Procedure Status, Cell ID, MME UE S1AP ID, IMSI (International Mobile Subscriber Identity, International Mobile Subscriber Identity), longitude, latitude, App Type, App Sub-type, App Content, App Status, Operation Type, Login-Success, Login-Request-Time, Login-Response-Time, Uplink Data UL Data, Downlink Data DL Data , URI((Uniform ResourceIdentifier, Uniform Resource Identifier), HTTP response time HTTP (HyperText Transfer Protocol, Hypertext Transfer Protocol) Response Time, host name HOST, HTTP content type HTTP_content_type, service component flag Service Comp Flag, service behavior flag Service Behavior Flag, service time Service Time, video download time VideoDownTime, initial buffer duration InitbufferDuration, uplink duration updura, downlink duration downdura, UL disorder IP packet UL Disorder IP Packet, DL disorder IP packet DLDisorder IP Packet, UL re Transmission IP packet UL Retrans IP Packet, DL retransmission IP packet DLRetrans IP Packet, TCP response time TCP (Transmission Control Protocol, Transmission Control Protocol) Response Time, TCP confirmation time TCP ACK Time, request time Req Time, UL_AVG_RTT, DW_AVG_RTT and other fields .

MR数据通过平台对接实现,包括用户级与小区级MR。其中用户级MR采集数据主要包括时间戳Time、MME UE S1AP ID、定位经度Location-longitude、定位纬度Location-latitude、eNB ID、Cell ID、MR类型MR type、AoA(Angle-of-Arrival,到达角度测距)、Serving RSRP(Reference Signal Received Power,参考信号接收功率)、CQI(ChannelQuality Indication,信道质量指示)、邻区信息等。小区级MR采集数据主要包括eNB ID、Cell ID、时间戳Time、eNB Received Interfere、UL包丢失量UL Packet Loss、DL包丢失量DL Packet Loss、空口用户面上行业务字节数、空口用户面下行业务字节数、上行和下行业务信道PRB占用率和同时在线用户数等字段。MR data is realized through platform docking, including user-level and community-level MR. The user-level MR collection data mainly includes timestamp Time, MME UE S1AP ID, location-longitude, location-latitude, eNB ID, Cell ID, MR type, MR type, AoA (Angle-of-Arrival, angle of arrival) Ranging), Serving RSRP (Reference Signal Received Power, Reference Signal Received Power), CQI (ChannelQuality Indication, Channel Quality Indication), neighboring cell information, etc. Cell-level MR collection data mainly includes eNB ID, Cell ID, timestamp Time, eNB Received Interfere, UL Packet Loss, DL Packet Loss, air interface user plane uplink service bytes, and air interface user plane downlink Fields such as the number of service bytes, PRB occupancy rate of uplink and downlink service channels, and the number of simultaneous online users.

用户投诉数据采集通过平台对接实现,采集数据主要包括投诉类型、投诉时间、IMEI、设备类型等字段。数据处理单元主要对上述步骤采集的海量数据进行解析、格式转化和归一化处理等操作。将上述步骤获取的可用于分析目标用户网络感知的数据存储到数据存储单元。User complaint data collection is realized through platform docking. The collected data mainly includes fields such as complaint type, complaint time, IMEI, and device type. The data processing unit mainly performs operations such as analysis, format conversion, and normalization processing of the massive data collected in the above steps. Store the data obtained in the above steps that can be used to analyze the target user's network perception in a data storage unit.

需要采集的数据来源现有平台条件均能满足,平台对接完成后无需额外进行数据采集相关工作,现有平台自动推送所需采集数据,节省大量人力和设备成本。The existing platform conditions for the data sources that need to be collected can be met. After the platform docking is completed, no additional data collection related work is required. The existing platform automatically pushes the required collected data, saving a lot of manpower and equipment costs.

从采集的用户上网行为数据中解析出表征目标用户网络感知的性能数据,主要包括响应时间数据、帧率和流畅度数据,如SM(应用绘制轮询频率)、FPS(Frames Per Second,每秒钟填充图像的帧率)和SF(Skipped Frames,应用跳帧次数、幅度),以及日志数据等。Parse the performance data that characterizes the target user's network perception from the collected user online behavior data, mainly including response time data, frame rate and fluency data, such as SM (application drawing polling frequency), FPS (Frames Per Second, per second) The frame rate of the clock-filled image) and SF (Skipped Frames, the number and amplitude of application skipped frames), as well as log data, etc.

S102,将所述性能数据、XDR数据、MR数据和投诉数据进行关联,获取所述目标用户的感知融合信息,并根据所述感知融合信息获取所述感知融合信息的业务类型;S102, associate the performance data, XDR data, MR data and complaint data to obtain the perceptual fusion information of the target user, and obtain the service type of the perceptual fusion information according to the perceptual fusion information;

如图4所示,在进行后续分析之前,需要对采集海量的用户样本数据进行清洗及融合关联,构建用户感知融合数据库。使用用户感知融合数据库对用户感知画像模型进行训练,从而建立精准的用户感知画像模型。对采集的目标用户的数据进行关联获取目标用户的感知融合信息,以根据感知融合信息基于训练好的感知画像模型对目标用户的网络感知进行画像。As shown in Figure 4, before subsequent analysis, it is necessary to clean and fuse the collected user sample data to build a user perception fusion database. Use the user perception fusion database to train the user perception portrait model to establish an accurate user perception portrait model. Correlate the collected data of the target user to obtain the target user's perception fusion information, and use the perception fusion information to profile the target user's network perception based on the trained perception portrait model.

对进行数据进行清洗的目的是消除异常值、缺失值等对后续分析的影响。可选地,可使用直接删除、平均值修正等方法处理异常值,可使用回归插补、拉格朗日插补、多重插补法等对缺失值进行插补。The purpose of data cleaning is to eliminate the impact of outliers, missing values, etc. on subsequent analysis. Optionally, methods such as direct deletion and mean correction can be used to deal with outliers, and regression interpolation, Lagrangian interpolation, multiple imputation methods, etc. can be used to impute missing values.

S103,根据所述业务类型从所述感知融合信息中选择所述业务类型对应的数据;将选择的数据输入用户感知画像模型,输出所述目标用户的网络感知评分,并获取所述网络感知评分对应的用户网络感知描述;S103: Select data corresponding to the service type from the perception fusion information according to the service type; input the selected data into the user perception portrait model, output the network perception score of the target user, and obtain the network perception score Corresponding user network awareness description;

用户感知画像模型可以为支持向量机、神经网络和随机森林等,本实施例不限于用户感知画像模型的类型。The user perception portrait model can be a support vector machine, a neural network, a random forest, etc. This embodiment is not limited to the type of user perception portrait model.

其中,所述业务类型和所述业务类型对应的数据预先关联存储;所述网络感知评分和所述用户网络感知描述预先关联存储;所述用户感知画像模型根据用户样本的感知融合信息和所述用户样本的网络感知评分进行训练获取。Wherein, the service type and the data corresponding to the service type are stored in association in advance; the network perception score and the user network perception description are stored in association in advance; the user perception portrait model is based on the perception fusion information of user samples and the The network perception scores of user samples are obtained through training.

常见的影响用户网络感知的现象主要包括卡顿和崩溃等。本实施例通过用户上网行为数据可解析出秒级业务流畅度,如SM数据,进一步结合用户投诉数据,基于用户上网行为数据进行感知满意度评分,并将用户样本的感知满意度评分数据存储至用户感知融合信息库。由于各种业务特性不同,不同用户行为对于网络质量的要求差异明显。因此,本实施例建立一种基于不同用户行为的用户感知满意度评分标准,如表1所示。Common phenomena that affect users' network perception mainly include freezes and crashes. This embodiment can parse second-level service fluency through user online behavior data, such as SM data, and further combine with user complaint data to perform perceived satisfaction ratings based on user online behavior data, and store the perceived satisfaction rating data of user samples in User perception fusion information base. Due to the different characteristics of various services, different user behaviors have obviously different requirements for network quality. Therefore, this embodiment establishes a user-perceived satisfaction rating standard based on different user behaviors, as shown in Table 1.

表1用户的网络感知评分标准Table 1 User’s network perception scoring criteria

本实施例通过采集用户上网行为数据、XDR数据、MR数据和投诉数据,并将从用户上网行为数据中解析出表征用户网络感知的性能数据与XDR数据、MR数据和投诉数据进行关联,根据用户网络感知的业务类型从关联数据中选择相应的数据进行网络感知评分,从而实现精准的用户网络感知画像。This embodiment collects user online behavior data, XDR data, MR data and complaint data, and parses the user online behavior data to correlate the performance data representing the user's network perception with the XDR data, MR data and complaint data. According to the user Network-aware business types select corresponding data from associated data for network-aware scoring, thereby achieving an accurate user network-aware portrait.

在上述实施例的基础上,本实施例中将所述性能数据、XDR数据、MR数据和投诉数据进行关联,获取所述目标用户的感知融合信息的步骤包括:根据所述XDR数据、MR数据和投诉数据中均存在的时间戳、IMEI、IMSI、MME UE S1AP ID、Cell ID和eNB ID字段,将所述XDR数据、MR数据和投诉数据进行关联,获取所述目标用户的关联融合数据;On the basis of the above embodiment, in this embodiment, the performance data, XDR data, MR data and complaint data are associated, and the step of obtaining the perceptual fusion information of the target user includes: according to the XDR data, MR data and the timestamp, IMEI, IMSI, MME UE S1AP ID, Cell ID and eNB ID fields that all exist in the complaint data, associate the XDR data, MR data and complaint data to obtain the associated fusion data of the target user;

对于目标用户和用户样本的数据均进行关联,最终获得包含时间戳、GPS(GlobalPositioning System,全球定位系统)级经纬度信息、占用小区信息、网络性能指标、用户信息和用户行为信息的关联融合数据。其中,用户信息包括IMEI、IMSI、设备型号和IP等,用户行为信息包括url、日志log和PID等。The data of target users and user samples are all correlated, and finally the correlation and fusion data including timestamps, GPS (Global Positioning System, Global Positioning System) level longitude and latitude information, occupied cell information, network performance indicators, user information and user behavior information are obtained. Among them, user information includes IMEI, IMSI, device model and IP, etc., and user behavior information includes URL, log, PID, etc.

根据所述性能数据和关联融合数据中均存在的时间戳、App Type、App Sub-type和IMEI字段,将所述性能数据和关联融合数据进行关联,获取所述目标用户的感知融合信息。According to the timestamp, App Type, App Sub-type and IMEI fields that exist in the performance data and the associated fusion data, the performance data and the associated fusion data are associated to obtain the perceptual fusion information of the target user.

最终获取的目标用户和用户样本的感知融合信息为粒度可达秒级的用户级网络感知融合信息。The finally obtained perceptual fusion information of the target user and user sample is user-level network perceptual fusion information with a granularity of up to seconds.

在上述实施例的基础上,本实施例中将选择的数据输入用户感知画像模型,输出所述目标用户的网络感知评分的步骤之前还包括:根据每个用户样本的感知融合信息获取每个用户样本的感知融合信息的业务类型;根据所有所述用户样本的感知融合信息的业务类型,将所有所述用户样本的感知融合信息划分为多个数据子集;对于任一所述数据子集,根据该数据子集所属的业务类型,从该数据子集中选择所述业务类型对应的数据;根据从该数据子集中选择的数据对所述用户感知画像模型进行训练,获取该数据子集所属的业务类型对应的用户感知画像模型;On the basis of the above embodiment, in this embodiment, the selected data is input into the user perception portrait model, and the step of outputting the network perception score of the target user also includes: obtaining each user according to the perception fusion information of each user sample. The service type of the perceptual fusion information of the sample; according to the service type of the perceptual fusion information of all the user samples, the perceptual fusion information of all the user samples is divided into multiple data subsets; for any of the data subsets, According to the business type to which the data subset belongs, data corresponding to the business type is selected from the data subset; the user perception portrait model is trained according to the data selected from the data subset to obtain the data to which the data subset belongs. User perception portrait model corresponding to business type;

本实施例建立分业务、用户级的感知关联融合信息库。如图5所示,基于用户感知融合信息库进行分业务的用户感知画像模型训练。感知融合信息的业务类型可通过AppType、App Sub-type和PID字段进行区分。具体地将用户感知评分作为进行预测的变量,即用户感知画像模型的输出,将不同类型的业务数据划分为多个数据子集。其中,对每一个所述子集,可选择适合该业务类型的网络性能指标、设备类型、用户XDR数据作为训练数据用于用户感知画像模型的训练。This embodiment establishes a service-level and user-level perceptual correlation fusion information database. As shown in Figure 5, user perception portrait model training for different services is performed based on the user perception fusion information database. The service type of perception fusion information can be distinguished by the AppType, App Sub-type and PID fields. Specifically, the user perception score is used as a prediction variable, that is, the output of the user perception profile model, and different types of business data are divided into multiple data subsets. For each of the subsets, network performance indicators, device types, and user XDR data suitable for the service type can be selected as training data for training the user perception profile model.

相应地,将选择的数据输入用户感知画像模型,输出所述目标用户的网络感知评分的步骤包括:根据所述目标用户的感知融合信息的业务类型,获取所述业务类型对应的用户感知画像模型;将从所述目标用户的感知融合信息选择的数据输入所述业务类型对应的用户感知画像模型,输出所述目标用户的网络感知评分。Correspondingly, the step of inputting the selected data into the user perception profile model and outputting the network perception score of the target user includes: according to the service type of the target user's perception fusion information, obtaining the user perception profile model corresponding to the service type. ; Input the data selected from the target user's perception fusion information into the user perception portrait model corresponding to the service type, and output the network perception score of the target user.

在根据目标用户的感知融合信息进行网络感知评分时,根据感知融合信息的类型选择相应的用户感知画像模型进行分析。When performing network perception scoring based on the perceptual fusion information of the target user, the corresponding user perceptual portrait model is selected for analysis based on the type of perceptual fusion information.

本实施例通过建立分业务、用户级的秒级感知关联融合信息库,相比传统方案依赖网元测量指标准确度更高,更切合用户体验;感知关联融合信息库中包含海量用户行为数据,样本丰富且可以避免网元级指标的表征机制不足的问题;通过大数据与机器学习构建精准的用户感知画像模型,从而提高用户网络感知画像的准确度。This embodiment establishes a second-level perceptual correlation fusion information database at the business and user levels. Compared with traditional solutions that rely on network element measurement indicators, this embodiment is more accurate and more suitable for user experience. The perceptual correlation fusion information database contains massive user behavior data. The samples are rich and can avoid the problem of insufficient representation mechanism of network element-level indicators; an accurate user perception portrait model is constructed through big data and machine learning, thereby improving the accuracy of user network perception portraits.

在上述实施例的基础上,本实施例中根据从该数据子集中选择的数据对所述用户感知画像模型进行训练,获取该数据子集所属的业务类型对应的用户感知画像模型的步骤包括:根据从该数据子集中选择的数据对多种用户感知画像模型进行训练;统计每种训练好的用户感知画像模型的准确率,选择所述准确率最高的用户感知画像模型作为该数据子集所属的业务类型对应的用户感知画像模型。On the basis of the above embodiment, in this embodiment, the user perception profile model is trained based on the data selected from the data subset. The step of obtaining the user perception profile model corresponding to the business type to which the data subset belongs includes: Train multiple user perception portrait models based on the data selected from the data subset; count the accuracy of each trained user perception profile model, and select the user perception profile model with the highest accuracy as the data subset to which it belongs The user perception portrait model corresponding to the business type.

具体地,使用每个数据子集同时对多种用户感知画像模型进行训练,如支持向量机、神经网络和随机森林等。统计每种模型的准确率等,从中选择综合性能最优的用户感知画像模型作为用于用户网络感知画像的模型。Specifically, each data subset is used to simultaneously train multiple user perception portrait models, such as support vector machines, neural networks, and random forests. Calculate the accuracy of each model, etc., and select the user perception profile model with the best comprehensive performance as the model for user network perception profile.

在上述各实施例的基础上,本实施例中获取所述网络感知评分对应的用户网络感知描述的步骤之后还包括:若根据所述网络感知评分对应的用户网络感知描述获知所述目标用户存在网络感知差问题,则根据所述目标用户的感知融合信息中的时间戳获取所述网络感知差问题的持续时间;从所述目标用户的感知融合信息中获取所述持续时间内所述目标用户的位置信息,如经纬度信息,以及占用的网元信息或小区信息。On the basis of the above embodiments, in this embodiment, the step of obtaining the user network awareness description corresponding to the network awareness score further includes: if it is learned that the target user exists according to the user network awareness description corresponding to the network awareness score If the network perception difference problem is detected, the duration of the network perception difference problem is obtained according to the timestamp in the perception fusion information of the target user; and the target user within the duration is obtained from the perception fusion information of the target user. Location information, such as latitude and longitude information, and occupied network element information or cell information.

具体地,获得所述用户感知画像模型后,可以实现秒粒度的用户级精准感知评估。对于感知差用户,需要进一步定位导致感知差的质差问题以便后续处理,其实现步骤图6所示。将获取的位置信息,以及占用的网元信息或小区信息作为感知差问题定位分析数据输出。Specifically, after obtaining the user perception portrait model, user-level accurate perception evaluation with second granularity can be achieved. For users with poor perception, it is necessary to further locate the quality problem that leads to poor perception for subsequent processing. The implementation steps are shown in Figure 6. The obtained location information, as well as occupied network element information or cell information are output as location analysis data for poor perception problems.

在上述实施例的基础上,如图6所示,本实施例中从所述目标用户的感知融合信息中获取所述持续时间内所述目标用户的位置信息,以及占用的网元信息或小区信息的步骤之后还包括:根据所述目标用户的感知融合信息的业务类型的重要性、用户星级和网络感知差问题的持续时间,判断所述网络感知差问题的严重程度;On the basis of the above embodiment, as shown in Figure 6, in this embodiment, the location information of the target user within the duration and the occupied network element information or cells are obtained from the perceptual fusion information of the target user. The step of information further includes: judging the severity of the poor network perception problem based on the importance of the service type of the target user's perception fusion information, the user's star rating and the duration of the poor network perception problem;

根据所述目标用户占用的网元的用户数、流量和场景标签,或者或小区的用户数、流量和场景标签,判断所述目标用户占用的网元或小区的重要等级;Determine the importance level of the network element or cell occupied by the target user based on the number of users, traffic volume, and scenario labels of the network element occupied by the target user, or the number of users, traffic volume, and scenario labels of the cell;

将所述网络感知差问题的严重程度和所述目标用户占用的网元或小区的重要等级进行加权,获取所述网络感知差问题的处理优先级;Weight the severity of the poor network perception problem and the importance level of the network element or cell occupied by the target user to obtain the processing priority of the poor network perception problem;

若所述处理优先级达到预设阈值,则对所述目标用户占用的网元或小区通过核查关键指标、工参等手段进行排查,确定导致所述网络感知差问题的原因。同时基于GPS级精准位置信息实现质差小区地理化呈现。If the processing priority reaches the preset threshold, the network element or cell occupied by the target user is checked by checking key indicators, work parameters and other means to determine the cause of the poor network perception problem. At the same time, based on GPS-level precise location information, the geographical presentation of poor quality communities is realized.

通过训练好的用户感知画像模型,可精准实现秒级分业务的用户感知评估画像,进一步结合融合信息库中的GPS级精准位置信息,可动态反映全网感知情况并GIS(Geographic Information System,地理信息系统)化呈现。此外,可进一步及时定位用户感知差原因及涉及网元或小区,形成维护处理信息并推送相关单位及部门,也可通过各种网络媒体及时发送用户关怀信息或处理进度信息等。Through the trained user perception portrait model, user perception assessment portraits for different services can be accurately realized in seconds. Further combined with the GPS-level precise location information in the fusion information database, it can dynamically reflect the perception situation of the entire network and GIS (Geographic Information System, geography). Information system) presentation. In addition, the causes of poor user perception and related network elements or communities can be further located in a timely manner, maintenance processing information can be generated and pushed to relevant units and departments, and user care information or processing progress information can also be sent in a timely manner through various network media.

由于本实施例用户感知融合数据库可提供GPS级位置信息,因此可更准确地实现位置定位,相比传统方案仅依靠用户投诉与工参,精度更高。Since the user perception fusion database in this embodiment can provide GPS-level location information, location positioning can be achieved more accurately. Compared with the traditional solution that only relies on user complaints and work parameters, the accuracy is higher.

在本发明的另一个实施例中提供一种用户网络感知画像装置,该装置用于实现前述各实施例中的方法。因此,在前述用户网络感知画像方法的各实施例中的描述和定义,可以用于本发明实施例中各个执行模块的理解。图7为本发明实施例提供的用户网络感知画像装置整体结构示意图,该装置包括采集模块701、关联模块702和画像模块703;其中,Another embodiment of the present invention provides a user network perception profiling device, which is used to implement the methods in the foregoing embodiments. Therefore, the descriptions and definitions in the foregoing embodiments of the user network awareness profiling method can be used to understand each execution module in the embodiments of the present invention. Figure 7 is a schematic diagram of the overall structure of a user network perception profiling device provided by an embodiment of the present invention. The device includes a collection module 701, an association module 702 and a profiling module 703; wherein,

采集模块701用于采集目标用户的上网行为数据、XDR数据、MR数据和投诉数据,并从所述上网行为数据中解析出表征所述目标用户的网络感知的性能数据;The collection module 701 is used to collect the target user's online behavior data, XDR data, MR data and complaint data, and parse the performance data that characterizes the target user's network perception from the online behavior data;

关联模块702用于将所述性能数据、XDR数据、MR数据和投诉数据进行关联,获取所述目标用户的感知融合信息,并根据所述感知融合信息获取所述感知融合信息的业务类型;The association module 702 is used to associate the performance data, XDR data, MR data and complaint data, obtain the perceptual fusion information of the target user, and obtain the service type of the perceptual fusion information according to the perceptual fusion information;

画像模块703用于根据所述业务类型从所述感知融合信息中选择所述业务类型对应的数据;将选择的数据输入用户感知画像模型,输出所述目标用户的网络感知评分,并获取所述网络感知评分对应的用户网络感知描述;The profiling module 703 is configured to select data corresponding to the service type from the perception fusion information according to the service type; input the selected data into the user perception profile model, output the network perception score of the target user, and obtain the User network perception description corresponding to network perception score;

其中,所述业务类型和所述业务类型对应的数据预先关联存储;所述网络感知评分和所述用户网络感知描述预先关联存储;所述用户感知画像模型根据用户样本的感知融合信息和所述用户样本的网络感知评分进行训练获取。Wherein, the service type and the data corresponding to the service type are stored in association in advance; the network perception score and the user network perception description are stored in association in advance; the user perception portrait model is based on the perception fusion information of user samples and the The network perception scores of user samples are obtained through training.

本实施例通过采集用户上网行为数据、XDR数据、MR数据和投诉数据,并将从用户上网行为数据中解析出表征用户网络感知的性能数据与XDR数据、MR数据和投诉数据进行关联,根据用户网络感知的业务类型从关联数据中选择相应的数据进行网络感知评分,从而实现精准的用户网络感知画像。This embodiment collects user online behavior data, XDR data, MR data and complaint data, and parses the user online behavior data to correlate the performance data representing the user's network perception with the XDR data, MR data and complaint data. According to the user Network-aware business types select corresponding data from associated data for network-aware scoring, thereby achieving an accurate user network-aware portrait.

图8示例了一种电子设备的实体结构示意图,如图8所示,该电子设备可以包括:处理器(processor)801、通信接口(Communications Interface)802、存储器(memory)803和通信总线804,其中,处理器801,通信接口802,存储器803通过通信总线804完成相互间的通信。处理器801可以调用存储器803中的逻辑指令,以执行如下方法:采集目标用户的上网行为数据、XDR数据、MR数据和投诉数据,并从所述上网行为数据中解析出表征所述目标用户的网络感知的性能数据;将所述性能数据、XDR数据、MR数据和投诉数据进行关联,获取所述目标用户的感知融合信息,并根据所述感知融合信息获取所述感知融合信息的业务类型;根据所述业务类型从所述感知融合信息中选择所述业务类型对应的数据;将选择的数据输入用户感知画像模型,输出所述目标用户的网络感知评分,并获取所述网络感知评分对应的用户网络感知描述。Figure 8 illustrates a schematic diagram of the physical structure of an electronic device. As shown in Figure 8, the electronic device may include: a processor (processor) 801, a communications interface (Communications Interface) 802, a memory (memory) 803, and a communication bus 804. Among them, the processor 801, the communication interface 802, and the memory 803 complete communication with each other through the communication bus 804. The processor 801 can call the logical instructions in the memory 803 to perform the following method: collect the target user's online behavior data, XDR data, MR data and complaint data, and parse out the characteristics of the target user from the online behavior data. Network-perceived performance data; associate the performance data, XDR data, MR data and complaint data to obtain the perceptual fusion information of the target user, and obtain the service type of the perceptual fusion information according to the perceptual fusion information; Select the data corresponding to the service type from the perception fusion information according to the service type; input the selected data into the user perception portrait model, output the network perception score of the target user, and obtain the network perception score corresponding to the network perception score. User network awareness description.

此外,上述的存储器803中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。In addition, the above-mentioned logical instructions in the memory 803 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product. Based on this understanding, the technical solution of the present invention essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product. The computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present invention. The aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .

本实施例提供一种非暂态计算机可读存储介质,非暂态计算机可读存储介质存储计算机指令,计算机指令使计算机执行上述各方法实施例所提供的方法,例如包括:采集目标用户的上网行为数据、XDR数据、MR数据和投诉数据,并从所述上网行为数据中解析出表征所述目标用户的网络感知的性能数据;将所述性能数据、XDR数据、MR数据和投诉数据进行关联,获取所述目标用户的感知融合信息,并根据所述感知融合信息获取所述感知融合信息的业务类型;根据所述业务类型从所述感知融合信息中选择所述业务类型对应的数据;将选择的数据输入用户感知画像模型,输出所述目标用户的网络感知评分,并获取所述网络感知评分对应的用户网络感知描述。This embodiment provides a non-transitory computer-readable storage medium. The non-transitory computer-readable storage medium stores computer instructions. The computer instructions cause the computer to execute the methods provided by the above method embodiments. For example, it includes: collecting the Internet access of the target user. Behavior data, XDR data, MR data and complaint data, and parse the performance data representing the network perception of the target user from the Internet surfing behavior data; correlate the performance data, XDR data, MR data and complaint data , obtain the perceptual fusion information of the target user, and obtain the service type of the perceptual fusion information according to the perceptual fusion information; select the data corresponding to the service type from the perceptual fusion information according to the service type; The selected data is input into the user perception portrait model, the network perception score of the target user is output, and the user network perception description corresponding to the network perception score is obtained.

本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。Those of ordinary skill in the art can understand that all or part of the steps to implement the above method embodiments can be completed by hardware related to program instructions. The aforementioned program can be stored in a computer-readable storage medium. When the program is executed, It includes the steps of the above method embodiment; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other various media that can store program codes.

以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。The device embodiments described above are only illustrative. The units described as separate components may or may not be physically separated. The components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.

通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。Through the above description of the embodiments, those skilled in the art can clearly understand that each embodiment can be implemented by software plus a necessary general hardware platform, and of course, it can also be implemented by hardware. Based on this understanding, the part of the above technical solution that essentially contributes to the existing technology can be embodied in the form of a software product. The computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disk, optical disk, etc., including a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments or certain parts of the embodiments.

最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solution of the present invention, but not to limit it; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that it can still be used Modifications are made to the technical solutions described in the foregoing embodiments, or equivalent substitutions are made to some of the technical features; however, these modifications or substitutions do not cause the essence of the corresponding technical solutions to deviate from the spirit and scope of the technical solutions of the embodiments of the present invention.

Claims (8)

1.一种用户网络感知画像方法,其特征在于,包括:1. A user network perception profiling method, which is characterized by including: 采集目标用户的上网行为数据、XDR数据、MR数据和投诉数据,并从所述上网行为数据中解析出表征所述目标用户的网络感知的性能数据;Collect the target user's online behavior data, XDR data, MR data and complaint data, and parse the performance data that characterizes the target user's network perception from the online behavior data; 将所述性能数据、XDR数据、MR数据和投诉数据进行关联,获取所述目标用户的感知融合信息,并根据所述感知融合信息获取所述感知融合信息的业务类型;Correlate the performance data, XDR data, MR data and complaint data to obtain the perceptual fusion information of the target user, and obtain the service type of the perceptual fusion information according to the perceptual fusion information; 根据所述业务类型从所述感知融合信息中选择所述业务类型对应的数据;将选择的数据输入用户感知画像模型,输出所述目标用户的网络感知评分,并获取所述网络感知评分对应的用户网络感知描述;Select the data corresponding to the service type from the perception fusion information according to the service type; input the selected data into the user perception portrait model, output the network perception score of the target user, and obtain the network perception score corresponding to the network perception score. User network awareness description; 其中,所述业务类型和所述业务类型对应的数据预先关联存储;Wherein, the service type and the data corresponding to the service type are stored in association in advance; 所述网络感知评分和所述用户网络感知描述预先关联存储;The network awareness score and the user network awareness description are stored in association in advance; 所述用户感知画像模型根据用户样本的感知融合信息和所述用户样本的网络感知评分进行训练获取;The user perception portrait model is trained and acquired based on the perception fusion information of the user sample and the network perception score of the user sample; 获取所述网络感知评分对应的用户网络感知描述的步骤之后还包括:The step of obtaining the user's network awareness description corresponding to the network awareness score also includes: 若根据所述网络感知评分对应的用户网络感知描述获知所述目标用户存在网络感知差问题,则根据所述目标用户的感知融合信息中的时间戳获取所述网络感知差问题的持续时间;If it is learned that the target user has a poor network perception problem according to the user network perception description corresponding to the network awareness score, then obtain the duration of the poor network perception problem according to the timestamp in the perception fusion information of the target user; 从所述目标用户的感知融合信息中获取所述持续时间内所述目标用户的位置信息,以及占用的网元信息或小区信息;Obtain the location information of the target user within the duration and occupied network element information or cell information from the perceptual fusion information of the target user; 从所述目标用户的感知融合信息中获取所述持续时间内所述目标用户的位置信息,以及占用的网元信息或小区信息的步骤之后还包括:The step of obtaining the location information of the target user within the duration and the occupied network element information or cell information from the perceptual fusion information of the target user also includes: 根据所述目标用户的感知融合信息的业务类型的重要性、用户星级和网络感知差问题的持续时间,判断所述网络感知差问题的严重程度;Determine the severity of the poor network perception problem according to the importance of the service type of the target user's perception fusion information, user star rating and the duration of the poor network perception problem; 根据所述目标用户占用的网元的用户数、流量和场景标签,或者或小区的用户数、流量和场景标签,判断所述目标用户占用的网元或小区的重要等级;Determine the importance level of the network element or cell occupied by the target user based on the number of users, traffic volume, and scenario labels of the network element occupied by the target user, or the number of users, traffic volume, and scenario labels of the cell; 将所述网络感知差问题的严重程度和所述目标用户占用的网元或小区的重要等级进行加权,获取所述网络感知差问题的处理优先级;Weight the severity of the poor network perception problem and the importance level of the network element or cell occupied by the target user to obtain the processing priority of the poor network perception problem; 若所述处理优先级达到预设阈值,则对所述目标用户占用的网元或小区进行排查,确定导致所述网络感知差问题的原因。If the processing priority reaches a preset threshold, the network element or cell occupied by the target user is investigated to determine the cause of the poor network perception problem. 2.根据权利要求1所述的用户网络感知画像方法,其特征在于,采集目标用户的上网行为数据的步骤包括:2. The user network perception profiling method according to claim 1, characterized in that the step of collecting the target user's online behavior data includes: 通过SDK埋点方式采集所述目标用户的日志数据;Collect log data of the target users through SDK burying method; 通过网络爬虫或公共API抓取所述目标用户的网络数据;Crawl the network data of the target user through a web crawler or public API; 将采集的日志数据和抓取的网络数据作为所述目标用户的上网行为数据。The collected log data and captured network data are used as the target user's online behavior data. 3.根据权利要求1所述的用户网络感知画像方法,其特征在于,将所述性能数据、XDR数据、MR数据和投诉数据进行关联,获取所述目标用户的感知融合信息的步骤包括:3. The user network perception profiling method according to claim 1, characterized in that the step of correlating the performance data, XDR data, MR data and complaint data to obtain the perception fusion information of the target user includes: 根据所述XDR数据、MR数据和投诉数据中均存在的时间戳、IMEI、IMSI、MME UE S1APID、CellID和eNBID字段,将所述XDR数据、MR数据和投诉数据进行关联,获取所述目标用户的关联融合数据;According to the timestamp, IMEI, IMSI, MME UE S1APID, CellID and eNBID fields that exist in the XDR data, MR data and complaint data, associate the XDR data, MR data and complaint data to obtain the target user associated fusion data; 根据所述性能数据和关联融合数据中均存在的时间戳、App Type、App Sub-type和IMEI字段,将所述性能数据和关联融合数据进行关联,获取所述目标用户的感知融合信息。According to the timestamp, App Type, App Sub-type and IMEI fields that exist in the performance data and the associated fusion data, the performance data and the associated fusion data are associated to obtain the perceptual fusion information of the target user. 4.根据权利要求1所述的用户网络感知画像方法,其特征在于,将选择的数据输入用户感知画像模型,输出所述目标用户的网络感知评分的步骤之前还包括:4. The user network awareness profiling method according to claim 1, wherein the step of inputting the selected data into the user awareness profiling model and outputting the network awareness score of the target user further includes: 根据每个用户样本的感知融合信息获取每个用户样本的感知融合信息的业务类型;The business type of obtaining the perceptual fusion information of each user sample based on the perceptual fusion information of each user sample; 根据所有所述用户样本的感知融合信息的业务类型,将所有所述用户样本的感知融合信息划分为多个数据子集;According to the service type of the perceptual fusion information of all the user samples, divide the perceptual fusion information of all the user samples into multiple data subsets; 对于任一所述数据子集,根据该数据子集所属的业务类型,从该数据子集中选择所述业务类型对应的数据;For any of the data subsets, select the data corresponding to the business type from the data subset according to the business type to which the data subset belongs; 根据从该数据子集中选择的数据对所述用户感知画像模型进行训练,获取该数据子集所属的业务类型对应的用户感知画像模型;Train the user perception profile model based on the data selected from the data subset, and obtain the user perception profile model corresponding to the business type to which the data subset belongs; 相应地,将选择的数据输入用户感知画像模型,输出所述目标用户的网络感知评分的步骤包括:Accordingly, the step of inputting the selected data into the user perception portrait model and outputting the network perception score of the target user includes: 根据所述目标用户的感知融合信息的业务类型,获取所述业务类型对应的用户感知画像模型;According to the service type of the target user's perception fusion information, obtain the user perception portrait model corresponding to the service type; 将从所述目标用户的感知融合信息选择的数据输入所述业务类型对应的用户感知画像模型,输出所述目标用户的网络感知评分。The data selected from the perceptual fusion information of the target user is input into the user perceptual portrait model corresponding to the service type, and the network perceptual score of the target user is output. 5.根据权利要求4所述的用户网络感知画像方法,其特征在于,根据从该数据子集中选择的数据对所述用户感知画像模型进行训练,获取该数据子集所属的业务类型对应的用户感知画像模型的步骤包括:5. The user network-aware profiling method according to claim 4, characterized in that, the user-aware profiling model is trained according to the data selected from the data subset, and the users corresponding to the business types to which the data subset belongs are obtained. The steps of perceptual portrait model include: 根据从该数据子集中选择的数据对多种用户感知画像模型进行训练;Train multiple user perception profiling models based on data selected from this data subset; 统计每种训练好的用户感知画像模型的准确率,选择所述准确率最高的用户感知画像模型作为该数据子集所属的业务类型对应的用户感知画像模型。The accuracy of each trained user perception profile model is counted, and the user perception profile model with the highest accuracy is selected as the user perception profile model corresponding to the business type to which the data subset belongs. 6.一种用户网络感知画像装置,其特征在于,执行权利要求1-5任一所述的用户网络感知画像方法,包括:6. A user network-aware profiling device, characterized in that executing the user network-aware profiling method according to any one of claims 1 to 5 includes: 采集模块,用于采集目标用户的上网行为数据、XDR数据、MR数据和投诉数据,并从所述上网行为数据中解析出表征所述目标用户的网络感知的性能数据;A collection module, used to collect the target user's online behavior data, XDR data, MR data and complaint data, and parse the performance data that characterizes the target user's network perception from the online behavior data; 关联模块,用于将所述性能数据、XDR数据、MR数据和投诉数据进行关联,获取所述目标用户的感知融合信息,并根据所述感知融合信息获取所述感知融合信息的业务类型;An association module, used to associate the performance data, XDR data, MR data and complaint data, obtain the perceptual fusion information of the target user, and obtain the service type of the perceptual fusion information according to the perceptual fusion information; 画像模块,用于根据所述业务类型从所述感知融合信息中选择所述业务类型对应的数据;将选择的数据输入用户感知画像模型,输出所述目标用户的网络感知评分,并获取所述网络感知评分对应的用户网络感知描述;A profiling module, configured to select data corresponding to the service type from the perceptual fusion information according to the service type; input the selected data into the user perceptual profiling model, output the network perceptual score of the target user, and obtain the User network perception description corresponding to network perception score; 其中,所述业务类型和所述业务类型对应的数据预先关联存储;Wherein, the service type and the data corresponding to the service type are stored in association in advance; 所述网络感知评分和所述用户网络感知描述预先关联存储;The network awareness score and the user network awareness description are stored in association in advance; 所述用户感知画像模型根据用户样本的感知融合信息和所述用户样本的网络感知评分进行训练获取。The user perception portrait model is trained and acquired based on the perception fusion information of the user sample and the network perception score of the user sample. 7.一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至5任一项所述用户网络感知画像方法的步骤。7. An electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, characterized in that when the processor executes the program, it implements any one of claims 1 to 5 The steps of the user network awareness profiling method described in the item. 8.一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1至5任一项所述用户网络感知画像方法的步骤。8. A non-transitory computer-readable storage medium with a computer program stored thereon, characterized in that when the computer program is executed by a processor, the user network-aware profiling method according to any one of claims 1 to 5 is implemented. step.
CN202010413096.XA 2020-05-15 2020-05-15 User network perception profiling method and device Active CN113676926B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010413096.XA CN113676926B (en) 2020-05-15 2020-05-15 User network perception profiling method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010413096.XA CN113676926B (en) 2020-05-15 2020-05-15 User network perception profiling method and device

Publications (2)

Publication Number Publication Date
CN113676926A CN113676926A (en) 2021-11-19
CN113676926B true CN113676926B (en) 2024-03-19

Family

ID=78537745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010413096.XA Active CN113676926B (en) 2020-05-15 2020-05-15 User network perception profiling method and device

Country Status (1)

Country Link
CN (1) CN113676926B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114866433B (en) * 2022-04-21 2024-03-22 中国移动通信集团陕西有限公司 User service perception evaluation method, device, equipment and computer storage medium
CN115134260A (en) * 2022-07-12 2022-09-30 北京东土拓明科技有限公司 User perception improving method and device, computing equipment and storage medium
CN115567966A (en) * 2022-09-27 2023-01-03 杭州东方通信软件技术有限公司 A method and system for accurately identifying potential home broadband users with poor quality
CN116634485A (en) * 2023-06-02 2023-08-22 中国联合网络通信集团有限公司 User perception evaluation method and device and computer readable storage medium
CN119766669A (en) * 2023-09-26 2025-04-04 中兴通讯股份有限公司 Network quality perception prediction method, device and storage medium

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013029214A1 (en) * 2011-08-26 2013-03-07 Huawei Technologies Co., Ltd. Video quality monitor and method for determining a network video quality measure in a communication network
CN104244307A (en) * 2014-09-18 2014-12-24 大唐移动通信设备有限公司 Anomalous event reporting and processing method and device, base station and management server
CN105357699A (en) * 2015-12-15 2016-02-24 珠海市经纬天地通讯技术有限公司 Wireless network quality monitoring system and method
CN105791034A (en) * 2016-05-15 2016-07-20 北京联合大学 Browse type service perception analysis method
CN106332138A (en) * 2016-08-31 2017-01-11 四川亨通网智科技有限公司 Method for obtaining MRO user information based on S1-MME signalling association
CN106572495A (en) * 2016-09-29 2017-04-19 中国普天信息产业北京通信规划设计院 Network quality monitoring method based on signalling and MR data and coverage assessment method based on signalling and MR data
CN107371183A (en) * 2016-05-11 2017-11-21 大唐移动通信设备有限公司 A kind of output intent and device of network quality report
CN108683527A (en) * 2018-04-25 2018-10-19 武汉虹信技术服务有限责任公司 A kind of user's perceived depth detection method based on MR and XDR
CN109391513A (en) * 2018-10-11 2019-02-26 西安海润通信技术有限公司 A kind of network aware intelligent early-warning and method for improving based on big data
CN109862580A (en) * 2017-11-30 2019-06-07 华为技术有限公司 A kind of network optimization method and device
CN109982366A (en) * 2017-12-28 2019-07-05 中国移动通信集团河北有限公司 Target value area analysis method, device, equipment and medium based on big data
CN109996278A (en) * 2017-12-30 2019-07-09 中国移动通信集团四川有限公司 Road network method for evaluating quality, device, equipment and medium
CN110535684A (en) * 2019-07-24 2019-12-03 武汉绿色网络信息服务有限责任公司 A kind of method and apparatus that web-browsing service perception assessment is realized based on DPI
WO2020062789A1 (en) * 2018-09-27 2020-04-02 中兴通讯股份有限公司 Video service quality assessment method, apparatus and device, and readable storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103138963B (en) * 2011-11-25 2016-08-03 华为技术有限公司 Network problem positioning method and device based on user perception
US8838134B2 (en) * 2012-07-20 2014-09-16 Telefonia, S.A. Method and computer programs for the construction of communting matrices using call detail records and a use for providing user's mobility information
US10177964B2 (en) * 2017-04-19 2019-01-08 Netscout Systems, Inc System and method for accurate reporting of fault for failed internet protocol-based calls

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013029214A1 (en) * 2011-08-26 2013-03-07 Huawei Technologies Co., Ltd. Video quality monitor and method for determining a network video quality measure in a communication network
CN104244307A (en) * 2014-09-18 2014-12-24 大唐移动通信设备有限公司 Anomalous event reporting and processing method and device, base station and management server
CN105357699A (en) * 2015-12-15 2016-02-24 珠海市经纬天地通讯技术有限公司 Wireless network quality monitoring system and method
CN107371183A (en) * 2016-05-11 2017-11-21 大唐移动通信设备有限公司 A kind of output intent and device of network quality report
CN105791034A (en) * 2016-05-15 2016-07-20 北京联合大学 Browse type service perception analysis method
CN106332138A (en) * 2016-08-31 2017-01-11 四川亨通网智科技有限公司 Method for obtaining MRO user information based on S1-MME signalling association
CN106572495A (en) * 2016-09-29 2017-04-19 中国普天信息产业北京通信规划设计院 Network quality monitoring method based on signalling and MR data and coverage assessment method based on signalling and MR data
CN109862580A (en) * 2017-11-30 2019-06-07 华为技术有限公司 A kind of network optimization method and device
CN109982366A (en) * 2017-12-28 2019-07-05 中国移动通信集团河北有限公司 Target value area analysis method, device, equipment and medium based on big data
CN109996278A (en) * 2017-12-30 2019-07-09 中国移动通信集团四川有限公司 Road network method for evaluating quality, device, equipment and medium
CN108683527A (en) * 2018-04-25 2018-10-19 武汉虹信技术服务有限责任公司 A kind of user's perceived depth detection method based on MR and XDR
WO2020062789A1 (en) * 2018-09-27 2020-04-02 中兴通讯股份有限公司 Video service quality assessment method, apparatus and device, and readable storage medium
CN109391513A (en) * 2018-10-11 2019-02-26 西安海润通信技术有限公司 A kind of network aware intelligent early-warning and method for improving based on big data
CN110535684A (en) * 2019-07-24 2019-12-03 武汉绿色网络信息服务有限责任公司 A kind of method and apparatus that web-browsing service perception assessment is realized based on DPI

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
TD-LTE信令数据准确性核查方法;李宝磊;沈亮;戴鹏程;任晓华;;电信工程技术与标准化(02);全文 *
XDR与MR数据关联与应用;刘韬;吴涛;王斌;;电信科学(04);全文 *
一种基于多维度排序的TD-LTE优化方法;段卫国;;电信工程技术与标准化(05);全文 *
基于MR的LTE网络结构优化分析;黄友亮;;电信技术(09);全文 *
基于互联网+的"众筹式"网络优化模式研究;杨锐雄;韦劭高;李冉;;邮电设计技术(02);全文 *
基于信令关联与用户识别的LTE高铁感知优化;郭宝;刘毅;张阳;;现代电信科技(05);全文 *
基于大数据分析的4G无线网精准投资研究;李华文;;通信与信息技术(05);全文 *
基于机器学习的细分业务用户感知评估方法;马敏;李威;陈洁;;电信工程技术与标准化(05);全文 *

Also Published As

Publication number Publication date
CN113676926A (en) 2021-11-19

Similar Documents

Publication Publication Date Title
CN113676926B (en) User network perception profiling method and device
US11438781B2 (en) Contextual quality of user experience analysis using equipment dynamics
US10349297B2 (en) Quality of user experience analysis
US9398475B2 (en) Method, device, and system for monitoring quality of internet access service of mobile terminal
US10440675B2 (en) Method and apparatus to determine a wireless network coverage and responsiveness
CN105264859B (en) Method and apparatus for generating insights into customer experience of web-based applications
US10412550B2 (en) Remote driving of mobile device diagnostic applications
US20160344606A1 (en) Method and apparatus to determine network quality
CN105357699B (en) Quality of wireless network monitors system and method
CN110535684A (en) A kind of method and apparatus that web-browsing service perception assessment is realized based on DPI
US10952091B2 (en) Quality of user experience analysis
CN111327539B (en) Service scheduling method, device and equipment
CN104754630A (en) A network quality assessment method, device and processing platform
CN105828376A (en) Service quality monitoring method and equipment based on user perception
WO2017116853A1 (en) Contextual quality of user experience analysis using equipment dynamics
CN104640125A (en) Method and device for assessing quality of WLAN (wireless local area network) business
CN107786992A (en) A kind of method and apparatus for detecting mobile communication network quality
EP3414870B1 (en) Calculating service performance indicators
WO2019239004A1 (en) Method for determining a performance indicator of a wireless telecommunications network
CN109039715A (en) User's web page browsing experience evaluation method and system, network base station configuration method
JP2015192239A (en) information sharing system
CN114640600A (en) Network service quality analysis method, system and storage medium
CN109121073B (en) Mobile communication service quality monitoring method, device and device
CN114579648B (en) Data verification method, device, equipment and readable storage medium
CN109714798B (en) Backward QoS guarantee method, acceleration platform and communication system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant