[go: up one dir, main page]

CN113703093B - Ultra-low loss silicon waveguide and its preparation method - Google Patents

Ultra-low loss silicon waveguide and its preparation method Download PDF

Info

Publication number
CN113703093B
CN113703093B CN202111017770.3A CN202111017770A CN113703093B CN 113703093 B CN113703093 B CN 113703093B CN 202111017770 A CN202111017770 A CN 202111017770A CN 113703093 B CN113703093 B CN 113703093B
Authority
CN
China
Prior art keywords
layer
silicon
silicon dioxide
dioxide layer
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111017770.3A
Other languages
Chinese (zh)
Other versions
CN113703093A (en
Inventor
文花顺
许博蕊
孙甲政
翟鲲鹏
陈伟
祝宁华
李明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN202111017770.3A priority Critical patent/CN113703093B/en
Publication of CN113703093A publication Critical patent/CN113703093A/en
Application granted granted Critical
Publication of CN113703093B publication Critical patent/CN113703093B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1347Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using ion implantation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12061Silicon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12169Annealing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12176Etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12188Ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本公开提供了一种超低损耗硅波导及其的制备方法,制备方法包括以下几个步骤:挑选作为衬底的SOI晶圆;热氧化第一硅层的上部;刻蚀第二二氧化硅层;沉积二氧化硅,形成第三二氧化硅层;在第三二氧化硅层上方注入氧离子,形成富氧离子层;刻蚀除去第二二氧化硅层与第三二氧化硅层;在第一硅层的上方沉积二氧化硅,形成第四二氧化硅层;高温退火,使得富氧离子层反应形成第五二氧化硅层;刻蚀除去第四二氧化硅层,制得成品,成品中第五二氧化硅层下方的第一硅层即为波导层,而第三凸起部下方的第一硅层即为硅波导。本公开将波导图案转移至埋层,避免了常规制备硅波导方案中刻蚀所带来的侧壁粗糙度高的问题,所制备的硅波导具有超低损耗的优点。

Figure 202111017770

The disclosure provides an ultra-low loss silicon waveguide and its preparation method. The preparation method includes the following steps: selecting an SOI wafer as a substrate; thermally oxidizing the upper part of the first silicon layer; etching the second silicon dioxide layer; deposit silicon dioxide to form a third silicon dioxide layer; implant oxygen ions above the third silicon dioxide layer to form an oxygen-rich ion layer; etch to remove the second silicon dioxide layer and the third silicon dioxide layer; Deposit silicon dioxide on top of the first silicon layer to form the fourth silicon dioxide layer; anneal at high temperature to make the oxygen-rich ion layer react to form the fifth silicon dioxide layer; etch to remove the fourth silicon dioxide layer to obtain a finished product , the first silicon layer below the fifth silicon dioxide layer in the finished product is the waveguide layer, and the first silicon layer below the third protrusion is the silicon waveguide. The disclosure transfers the waveguide pattern to the buried layer, avoiding the problem of high side wall roughness caused by etching in the conventional silicon waveguide preparation scheme, and the prepared silicon waveguide has the advantage of ultra-low loss.

Figure 202111017770

Description

超低损耗硅波导及其制备方法Ultra-low loss silicon waveguide and its preparation method

技术领域technical field

本公开涉及光电子芯片及集成领域,具体涉及一种超低损耗硅波导及其制备方法。The disclosure relates to the field of optoelectronic chips and integration, in particular to an ultra-low loss silicon waveguide and a preparation method thereof.

背景技术Background technique

光电子芯片及集成技术具有低功耗、高速率、高可靠、小体积等突出优势,这些优势是突破信息网络所面临的速率带宽、能耗体积、智能化与可重构等方面瓶颈的核心关键技术,在光通信、传感、计算、生物、医药、农业等领域也有着广泛的应用。Optoelectronic chips and integrated technology have outstanding advantages such as low power consumption, high speed, high reliability, and small size. These advantages are the core key to breaking through the bottlenecks faced by information networks in terms of speed bandwidth, energy consumption volume, intelligence, and reconfigurability. It also has a wide range of applications in optical communication, sensing, computing, biology, medicine, agriculture and other fields.

制备光电子集成芯片的载体包括硅基、磷化铟、铌酸锂、氮化硅、二氧化硅、聚合物等材料,其中,硅基具有尺寸小、能耗低、CMOS工艺兼容以及便于与现有的电子器件和光子器件实现单片、微纳集成等优点,是制备光电子集成芯片最常用的材料。利用硅基实现光的产生、调制、传输、操控以及探测等功能的硅光子学,已被公认为突破计算机和通信超大容量、超高速信息传输和处理瓶颈的理想技术之一,硅光子学受到研究者的高度关注,成为近年光电子研究领域的热点。The carrier for preparing optoelectronic integrated chips includes silicon base, indium phosphide, lithium niobate, silicon nitride, silicon dioxide, polymer and other materials. Among them, silicon base has the advantages of small size, low energy consumption, CMOS process compatibility and easy integration with existing Some electronic devices and photonic devices have the advantages of monolithic and micro-nano integration, and are the most commonly used materials for preparing optoelectronic integrated chips. Silicon photonics, which uses silicon to realize the functions of light generation, modulation, transmission, manipulation, and detection, has been recognized as one of the ideal technologies to break through the bottleneck of super-large capacity, ultra-high-speed information transmission and processing of computers and communications. The high attention of researchers has become a hot spot in the field of optoelectronics research in recent years.

硅基光波导是引导光波在其中传播的介质,是光电子芯片及集成技术中最基础的单元结构,主要作用包括限制、传输、耦合光波等。光波导的种类包括矩形波导、脊形波导,制备这两种波导都需要采用刻蚀工艺,刻蚀形成的波导侧壁粗糙,波导的传输损耗与波导外表面(包括侧壁和上表面)粗糙度有着密切关系,粗糙度越大,光的散射越严重,光在波导内部的传输损耗就越大,从而限制了大规模光电子芯片集成。Silicon-based optical waveguide is the medium that guides light waves to propagate in it. It is the most basic unit structure in optoelectronic chips and integration technology. Its main functions include confinement, transmission, and coupling of light waves. The types of optical waveguides include rectangular waveguides and ridge waveguides. Both types of waveguides require an etching process. The sidewalls of the waveguides formed by etching are rough. The greater the roughness, the more serious the scattering of light, and the greater the transmission loss of light inside the waveguide, which limits the integration of large-scale optoelectronic chips.

发明内容Contents of the invention

针对现有技术存在的上述缺陷,提供了一种超低损耗硅波导及其制备方法,其将波导图案转移至埋层,避免了常规制备硅波导方案中刻蚀所带来的侧壁粗糙度高的问题,所制备的硅波导具有超低损耗的优点。同时,利用该方案制备的硅波导可以与顶层硅进行垂直集成,具有3D光子集成的优点。In view of the above defects in the prior art, an ultra-low loss silicon waveguide and its preparation method are provided, which transfers the waveguide pattern to the buried layer, avoiding the sidewall roughness caused by etching in the conventional preparation of silicon waveguide solutions High problem, the prepared silicon waveguide has the advantage of ultra-low loss. At the same time, the silicon waveguide prepared by this scheme can be vertically integrated with the top silicon, which has the advantage of 3D photonic integration.

一种超低损耗硅波导的制备方法,包括以下几个步骤:A method for preparing an ultra-low loss silicon waveguide, comprising the following steps:

S1挑选作为衬底的SOI晶圆,所述SOI晶圆包括由上至下依次设置的第一硅层、第一二氧化硅层和第二硅层,第一硅层和第二硅层的组成材料为硅,第一二氧化硅层的组成材料为二氧化硅;S1 selects an SOI wafer as a substrate, the SOI wafer includes a first silicon layer, a first silicon dioxide layer, and a second silicon layer arranged in sequence from top to bottom, the first silicon layer and the second silicon layer The constituent material is silicon, and the constituent material of the first silicon dioxide layer is silicon dioxide;

S2热氧化第一硅层的上部,形成第二二氧化硅层;S2 thermally oxidizing the upper part of the first silicon layer to form a second silicon dioxide layer;

S3刻蚀第二二氧化硅层,使得第二二氧化硅层被刻蚀区域形成第一凹陷部,其余区域为第一凸起部;S3 etching the second silicon dioxide layer, so that the etched area of the second silicon dioxide layer forms a first depression, and the remaining area is a first protrusion;

S4在第一凹陷部与第一凸起部上方沉积相同厚度的二氧化硅,形成第三二氧化硅层;S4 depositing silicon dioxide with the same thickness on the first depression and the first protrusion to form a third silicon dioxide layer;

S5在第三二氧化硅层上方注入氧离子,使得第一硅层内形成富氧离子层,富氧离子层将第一硅层的下部分隔为上下两层,所述富氧离子层对应所述第一凸起部形成第二凸起部,且对应所述第一凹陷部形成第二凹陷部;S5 implants oxygen ions above the third silicon dioxide layer, so that an oxygen-rich ion layer is formed in the first silicon layer, and the oxygen-rich ion layer separates the lower part of the first silicon layer into upper and lower layers, and the oxygen-rich ion layer corresponds to the The first protrusion forms a second protrusion, and a second depression is formed corresponding to the first depression;

S6使用刻蚀工艺除去第二二氧化硅层与第三二氧化硅层;S6 using an etching process to remove the second silicon dioxide layer and the third silicon dioxide layer;

S7在第一硅层的上方沉积二氧化硅,形成第四二氧化硅层;S7 depositing silicon dioxide on the first silicon layer to form a fourth silicon dioxide layer;

S8高温退火,使得富氧离子层中的氧离子与硅原子反应形成第五二氧化硅层,所述第二凸起部转换形成第三凸起部,所述第二凹陷部转换形成第三凹陷部;S8 high-temperature annealing, so that oxygen ions in the oxygen ion-rich layer react with silicon atoms to form a fifth silicon dioxide layer, the second protrusions are converted to form third protrusions, and the second depressions are converted to form third depression;

S9使用刻蚀工艺除去第四二氧化硅层,制得成品,成品中第五二氧化硅层下方的第一硅层即为波导层,而第三凸起部下方的第一硅层即为硅波导。S9 uses an etching process to remove the fourth silicon dioxide layer to obtain a finished product. In the finished product, the first silicon layer below the fifth silicon dioxide layer is the waveguide layer, and the first silicon layer below the third raised portion is the waveguide layer. Silicon waveguide.

可选地,所述步骤S1中第一硅层的厚度为600nm;所述步骤S2中第二二氧化硅层的厚度为100nm。Optionally, the thickness of the first silicon layer in the step S1 is 600 nm; the thickness of the second silicon dioxide layer in the step S2 is 100 nm.

可选地,所述步骤S3中刻蚀第二二氧化硅层直至第二二氧化硅层下方的第一硅层露出,停止刻蚀操作;和/或,所述步骤S3中刻蚀方法选用等离子刻蚀或反应离子刻蚀的干法刻蚀或者湿法刻蚀。Optionally, in the step S3, the second silicon dioxide layer is etched until the first silicon layer below the second silicon dioxide layer is exposed, and the etching operation is stopped; and/or, the etching method in the step S3 is selected Dry etching or wet etching of plasma etching or reactive ion etching.

可选地,所述步骤S4中第三二氧化硅层的厚度为50nm;和/或,所述步骤S4中沉淀方法选用等离子体增强化学(PECVD)的气相沉积。Optionally, the thickness of the third silicon dioxide layer in the step S4 is 50 nm; and/or, the deposition method in the step S4 is plasma-enhanced chemical (PECVD) vapor deposition.

可选地,所述步骤S5中,氧离子注入的剂量范围为每平方厘米2×1017~7×1017个。Optionally, in the step S5, the oxygen ion implantation dose ranges from 2×10 17 to 7×10 17 per square centimeter.

可选地,所述步骤S5中,离子注入能量范围为150-200KeV。Optionally, in the step S5, the ion implantation energy range is 150-200KeV.

可选地,所述步骤S5中,每注入氧离子总剂量的四分之一剂量,将晶圆绕晶圆圆心向同一方向旋转90°。Optionally, in the step S5, the wafer is rotated 90° around the center of the wafer in the same direction for every quarter of the total dose of oxygen ions implanted.

可选地,所述步骤S7中,第四二氧化硅层的厚度为350nm;和/或,所述步骤S7中沉积方法选用感应耦合等离子体增强化学气相沉积。Optionally, in the step S7, the thickness of the fourth silicon dioxide layer is 350 nm; and/or, the deposition method in the step S7 is inductively coupled plasma enhanced chemical vapor deposition.

可选地,所述步骤S8中,退火温度为1300~1350℃,退火时间为5~8小时。Optionally, in the step S8, the annealing temperature is 1300-1350° C., and the annealing time is 5-8 hours.

一种采用上述制备方法制得的超低损耗硅波导,其特征在于:包括由上至下依次设置的第一硅层、第五二氧化硅层、波导层、第一二氧化硅层和第二硅层;所述第五二氧化硅层的中部向上方凸起,第五二氧化硅层凸起下方的波导层为硅波导。An ultra-low-loss silicon waveguide prepared by the above-mentioned preparation method is characterized in that it includes a first silicon layer, a fifth silicon dioxide layer, a waveguide layer, a first silicon dioxide layer and a second silicon dioxide layer arranged in sequence from top to bottom. Two silicon layers; the middle part of the fifth silicon dioxide layer protrudes upwards, and the waveguide layer below the protrusions of the fifth silicon dioxide layer is a silicon waveguide.

本发明中所公开的一种超低损耗硅波导的制备方法,通过氧离子注入与高温退火,将波导图案转移至埋层,避免了常规制备硅波导方案中刻蚀所带来的侧壁粗糙度高的问题,所制备的硅波导具有超低损耗的优点。同时,利用该方案制备的硅波导可以与顶层硅进行垂直集成,具有3D光子集成的优点。The preparation method of an ultra-low loss silicon waveguide disclosed in the present invention transfers the waveguide pattern to the buried layer through oxygen ion implantation and high-temperature annealing, avoiding the roughness of the side wall caused by etching in the conventional preparation of silicon waveguides To solve the problem of high density, the prepared silicon waveguide has the advantage of ultra-low loss. At the same time, the silicon waveguide prepared by this scheme can be vertically integrated with the top silicon, which has the advantage of 3D photonic integration.

附图说明Description of drawings

图1示意性示出了根据本公开实施例的一种超低损耗硅波导的制备方法的流程图;FIG. 1 schematically shows a flow chart of a method for manufacturing an ultra-low loss silicon waveguide according to an embodiment of the present disclosure;

图2示意性示出了根据本公开实施例的不同厚度的第三二氧化硅层条件下富氧离子层中氧离子浓度随注入深度的分布图;Fig. 2 schematically shows the distribution diagram of the concentration of oxygen ions in the oxygen ion-rich layer with the implantation depth under the condition of the third silicon dioxide layer with different thicknesses according to an embodiment of the present disclosure;

图3示意性示出了根据本公开实施例的一种超低损耗硅波导的结构示意图;Fig. 3 schematically shows a schematic structural diagram of an ultra-low loss silicon waveguide according to an embodiment of the present disclosure;

图中,第一硅层-1、第一二氧化硅层-2、第二硅层-3、第二二氧化硅层-4、第一凸起部-5、第三二氧化硅层-6、富氧离子层-7、第四二氧化硅层-8、第五二氧化硅层-9、硅波导-10、波导层-11。In the figure, the first silicon layer-1, the first silicon dioxide layer-2, the second silicon layer-3, the second silicon dioxide layer-4, the first raised portion-5, the third silicon dioxide layer- 6. Oxygen-rich ion layer-7, fourth silicon dioxide layer-8, fifth silicon dioxide layer-9, silicon waveguide-10, waveguide layer-11.

具体实施方式Detailed ways

以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本公开实施例的全面理解。然而,明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. It should be understood, however, that these descriptions are exemplary only, and are not intended to limit the scope of the present disclosure. In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the embodiments of the present disclosure. It may be evident, however, that one or more embodiments may be practiced without these specific details. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concept of the present disclosure.

在此使用的术语仅仅是为了描述具体实施例,而并非意在限制本公开。在此使用的术语“包括”、“包含”等表明了所述特征、步骤、操作和/或部件的存在,但是并不排除存在或添加一个或多个其他特征、步骤、操作或部件。The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting of the present disclosure. The terms "comprising", "comprising", etc. used herein indicate the presence of stated features, steps, operations and/or components, but do not exclude the presence or addition of one or more other features, steps, operations or components.

实施例1Example 1

本公开的实施例提供一种超低损耗硅波导及其制备方法。Embodiments of the present disclosure provide an ultra-low loss silicon waveguide and a manufacturing method thereof.

图1示意性示出了根据本公开实施例的一种超低损耗硅波导的制备方法的流程图;FIG. 1 schematically shows a flow chart of a method for manufacturing an ultra-low loss silicon waveguide according to an embodiment of the present disclosure;

一种超低损耗硅波导的制备方法,包括以下几个步骤:A method for preparing an ultra-low loss silicon waveguide, comprising the following steps:

S1挑选作为衬底的SOI晶圆,所述SOI晶圆包括由上至下依次设置的第一硅层1、第一二氧化硅层2和第二硅层3,第一硅层1和第二硅层3的组成材料为硅,第一二氧化硅层2的组成材料为二氧化硅;S1 selects the SOI wafer as the substrate, the SOI wafer includes the first silicon layer 1, the first silicon dioxide layer 2 and the second silicon layer 3 arranged in sequence from top to bottom, the first silicon layer 1 and the second silicon layer The composition material of the disilicon layer 3 is silicon, and the composition material of the first silicon dioxide layer 2 is silicon dioxide;

S2热氧化第一硅层1的上部,形成第二二氧化硅层4;S2 thermally oxidizes the upper part of the first silicon layer 1 to form a second silicon dioxide layer 4;

S3刻蚀第二二氧化硅层4,使得第二二氧化硅层4被刻蚀区域形成第一凹陷部,其余区域为第一凸起部5;S3 etching the second silicon dioxide layer 4, so that the etched area of the second silicon dioxide layer 4 forms a first depression, and the remaining area is a first protrusion 5;

S4在第一凹陷部与第一凸起部5上方沉积相同厚度的二氧化硅,形成第三二氧化硅层6;S4 depositing silicon dioxide with the same thickness above the first concave portion and the first protruding portion 5 to form a third silicon dioxide layer 6;

S5在第三二氧化硅层6上方注入氧离子,使得第一硅层1内形成富氧离子层7,富氧离子层7将第一硅层1的下部分隔为上下两层,所述富氧离子层7包括第二凸起部和第二凹陷部,第一凸起部5下方对应为第二凸起部,第一凹陷部下方对应为第二凹陷部;S5 implants oxygen ions above the third silicon dioxide layer 6, so that an oxygen-rich ion layer 7 is formed in the first silicon layer 1, and the oxygen-rich ion layer 7 separates the lower part of the first silicon layer 1 into upper and lower layers. The oxygen ion layer 7 includes a second protrusion and a second depression, the second protrusion below the first protrusion 5 corresponds to the second depression below the first depression;

S6使用刻蚀工艺除去第二二氧化硅层4与第三二氧化硅层6;S6 using an etching process to remove the second silicon dioxide layer 4 and the third silicon dioxide layer 6;

S7在第一硅层1的上方沉积二氧化硅,形成第四二氧化硅层8;S7 deposits silicon dioxide on the first silicon layer 1 to form a fourth silicon dioxide layer 8;

S8高温退火,使得富氧离子层7里的氧离子与硅原子进行反应,反应后的富氧离子层7为第五二氧化硅层9,第二凸起部转换为第三凸起部,第二凹陷部转换为第三凹陷部;S8 high-temperature annealing, so that the oxygen ions in the oxygen-rich ion layer 7 react with silicon atoms, and the oxygen-rich ion layer 7 after the reaction is the fifth silicon dioxide layer 9, and the second raised portion is converted into a third raised portion, the second recess is converted into a third recess;

S9使用刻蚀工艺除去第四二氧化硅层8,制得成品,成品中第五二氧化硅层9下方的第一硅层1即为波导层11,而第三凸起部下方的第一硅层1即为硅波导10。S9 uses an etching process to remove the fourth silicon dioxide layer 8 to produce a finished product. In the finished product, the first silicon layer 1 below the fifth silicon dioxide layer 9 is the waveguide layer 11, and the first silicon layer 1 below the third raised portion is The silicon layer 1 is the silicon waveguide 10 .

进一步地,所述步骤S1中第一硅层1的厚度为600nm。Further, the thickness of the first silicon layer 1 in the step S1 is 600 nm.

选择600nm厚度的第一硅层1,在形成埋层硅波导10的同时,可以剩余足够厚度的剩余第一硅层1用于制备其它光电子器件,从而实现3D光子集成。By selecting the first silicon layer 1 with a thickness of 600nm, while forming the buried silicon waveguide 10, a sufficient thickness of the remaining first silicon layer 1 can be left for preparing other optoelectronic devices, thereby realizing 3D photonic integration.

进一步地,所述步骤S2中第二二氧化硅层4的厚度为100nm。Further, the thickness of the second silicon dioxide layer 4 in the step S2 is 100 nm.

进一步地,所述步骤S2中刻蚀第二二氧化硅层4直至第二二氧化硅层4下方的第一硅层1露出,停止刻蚀操作。Further, in the step S2, the second silicon dioxide layer 4 is etched until the first silicon layer 1 under the second silicon dioxide layer 4 is exposed, and the etching operation is stopped.

进一步地,所述刻蚀方法选用等离子刻蚀或反应离子刻蚀的干法刻蚀或者湿法刻蚀。Further, the etching method is dry etching or wet etching of plasma etching or reactive ion etching.

一般来说,第二二氧化硅层4的厚度即为硅波导10的脊形高度,即第二凸起部的厚度即为硅波导10的脊形高度,这样的设计,可以根据需要制作不同厚度的硅波导10。Generally speaking, the thickness of the second silicon dioxide layer 4 is the height of the ridge of the silicon waveguide 10, that is, the thickness of the second raised portion is the height of the ridge of the silicon waveguide 10. Such a design can be made according to requirements. thickness of the silicon waveguide 10 .

进一步地,所述步骤S4中第三二氧化硅层6的厚度为50nm。Further, the thickness of the third silicon dioxide layer 6 in the step S4 is 50 nm.

进一步地,所述沉淀方法选用等离子体增强化学的气相沉积。Further, the deposition method is plasma-enhanced chemical vapor deposition.

进一步地,所述步骤S5中,氧离子注入的剂量范围为每平方厘米2×1017个。Further, in the step S5, the dose range of oxygen ion implantation is 2×10 17 per square centimeter.

进一步地,所述步骤S5中,离子注入能量为150KeV。Further, in the step S5, the ion implantation energy is 150KeV.

进一步地,所述步骤S5中,每注入氧离子总剂量的四分之一剂量,将晶圆绕晶圆圆心向同一方向旋转90°。Further, in the step S5, the wafer is rotated 90° around the center of the wafer in the same direction for every quarter of the total dose of oxygen ions implanted.

图2示意性示出了根据本公开实施例的厚度分别为0nm、50nm、100nm和150nm的第三二氧化硅层条件下富氧离子层中氧离子浓度随注入深度的分布图;2 schematically shows the distribution of oxygen ion concentration in the oxygen ion-rich layer with implantation depth under the condition of the third silicon dioxide layer with thicknesses of 0nm, 50nm, 100nm and 150nm respectively according to an embodiment of the present disclosure;

由于第二二氧化硅层4被刻蚀后形成的第一凹陷部和第一凸起部5的厚度不一,其与第三二氧化硅层6结合后形成的二氧化硅阻挡层各区域厚度也不一致。二氧化硅阻挡层会降低氧离子注入速度,从而影响氧离子注入深度,二氧化硅阻挡层越厚的区域,氧离子注入深度越浅,这使得处于第一凸起部5正下方的富氧离子层7比第一凹陷部下方的富氧离子层7浅。Since the thicknesses of the first recessed portion and the first protruding portion 5 formed after the second silicon dioxide layer 4 are etched are different, each region of the silicon dioxide barrier layer formed after it is combined with the third silicon dioxide layer 6 The thickness is also inconsistent. The silicon dioxide barrier layer will reduce the oxygen ion implantation speed, thereby affecting the oxygen ion implantation depth, the thicker the silicon dioxide barrier layer, the shallower the oxygen ion implantation depth, which makes the oxygen-rich area directly below the first raised portion 5 The ion layer 7 is shallower than the oxygen-rich ion layer 7 below the first recess.

进一步地,所述步骤S6中,刻蚀方法选用等离子刻蚀。Further, in the step S6, the etching method is plasma etching.

进一步地,所述步骤S7中,第四二氧化硅层8的厚度为350nm,所述沉积方法选用感应耦合等离子体增强化学气相沉积。Further, in the step S7, the thickness of the fourth silicon dioxide layer 8 is 350 nm, and the deposition method is inductively coupled plasma enhanced chemical vapor deposition.

第四二氧化硅层8的设置防止第一硅层1在后续高温退火过程中被氧化。The provision of the fourth silicon dioxide layer 8 prevents the first silicon layer 1 from being oxidized during the subsequent high temperature annealing process.

进一步地,所述步骤S8中,退火温度为1300℃,退火时间为5小时。Further, in the step S8, the annealing temperature is 1300° C., and the annealing time is 5 hours.

硅的熔点为1410℃,二氧化硅的熔点为1723℃,将退火温度设定为1300℃,使得硅与二氧化硅介于固体与液体的状态,使得硅波导10与第五二氧化硅层9的界面光滑,从而降低硅波导10的损耗;优选地,退火时间为5小时;退火过程中,氧离子与硅原子发生反应缓慢,包括二氧化硅沉淀物成核、生长、合并以及最后形成均匀一致的第五二氧化硅层9,退火时间太短,不能形成均匀的第五二氧化硅层9,退火时间为5小时是形成均匀的第五二氧化硅层9的最佳时间。The melting point of silicon is 1410°C, the melting point of silicon dioxide is 1723°C, and the annealing temperature is set to 1300°C, so that silicon and silicon dioxide are in a state between solid and liquid, so that the silicon waveguide 10 and the fifth silicon dioxide layer The interface of 9 is smooth, thereby reducing the loss of the silicon waveguide 10; preferably, the annealing time is 5 hours; during the annealing process, the reaction between oxygen ions and silicon atoms is slow, including the nucleation, growth, merging and final formation of silicon dioxide precipitates For a uniform fifth silicon dioxide layer 9 , the annealing time is too short to form a uniform fifth silicon dioxide layer 9 , and an annealing time of 5 hours is the optimum time for forming a uniform fifth silicon dioxide layer 9 .

由于处于第一凸起部5正下方的氧离子注入深度比其他区域的浅,第一凸起部5正下方的第五二氧化硅层9向上凸起,从而形成硅波导10。Since the oxygen ion implantation depth directly below the first raised portion 5 is shallower than that of other regions, the fifth silicon dioxide layer 9 directly below the first raised portion 5 protrudes upward, thereby forming a silicon waveguide 10 .

由于退火温度高、退火时间长,硅与二氧化硅介于固体与液体的状态,其粘性降低,其原子与分子几乎处于流动状态,从而形成非常光滑的硅与二氧化硅界面,避免了常规制备方法中刻蚀所带来的侧壁粗糙的问题,从而硅波导10具有超低损耗特性;第一硅层1中由于离子注入带来的损伤在高温退火中被修复,可以用来制备其他的光电子器件,从而与所形成的超低损耗硅波导10进行垂直集成,实现3D集成,适应未来大规模光电子集成。Due to the high annealing temperature and long annealing time, silicon and silicon dioxide are in the state of solid and liquid, their viscosity is reduced, and their atoms and molecules are almost in a fluid state, thus forming a very smooth interface between silicon and silicon dioxide, avoiding the conventional Due to the problem of rough side walls caused by etching in the preparation method, the silicon waveguide 10 has ultra-low loss characteristics; the damage caused by ion implantation in the first silicon layer 1 is repaired in high temperature annealing, and can be used to prepare other The optoelectronic device can be vertically integrated with the formed ultra-low loss silicon waveguide 10 to realize 3D integration and adapt to large-scale optoelectronic integration in the future.

图3示意性示出了根据本公开实施例的一种超低损耗硅波导的结构示意图。Fig. 3 schematically shows a schematic structural view of an ultra-low loss silicon waveguide according to an embodiment of the present disclosure.

一种采用上述制备方法制得的超低损耗硅波导,其特征在于:包括由上至下依次设置的第一硅层1、第五二氧化硅层9、波导层11、第一二氧化硅层2和第二硅层3;所述第五二氧化硅层9的中部向上方凸起,第五二氧化硅层9凸起下方的波导层11为硅波导10。An ultra-low-loss silicon waveguide prepared by the above-mentioned preparation method is characterized in that it includes a first silicon layer 1, a fifth silicon dioxide layer 9, a waveguide layer 11, a first silicon dioxide layer arranged in sequence from top to bottom layer 2 and the second silicon layer 3; the middle part of the fifth silicon dioxide layer 9 protrudes upwards, and the waveguide layer 11 below the fifth silicon dioxide layer 9 is a silicon waveguide 10 .

实施例2Example 2

本公开的实施例提供一种超低损耗硅波导及其制备方法。Embodiments of the present disclosure provide an ultra-low loss silicon waveguide and a manufacturing method thereof.

图1示意性示出了根据本公开实施例的一种超低损耗硅波导的制备方法的流程图;FIG. 1 schematically shows a flow chart of a method for manufacturing an ultra-low loss silicon waveguide according to an embodiment of the present disclosure;

一种超低损耗硅波导的制备方法,包括以下几个步骤:A method for preparing an ultra-low loss silicon waveguide, comprising the following steps:

S1挑选作为衬底的SOI晶圆,所述SOI晶圆包括由上至下依次设置的第一硅层1、第一二氧化硅层2和第二硅层3,第一硅层1和第二硅层3的组成材料为硅,第一二氧化硅层2的组成材料为二氧化硅;S1 selects the SOI wafer as the substrate, the SOI wafer includes the first silicon layer 1, the first silicon dioxide layer 2 and the second silicon layer 3 arranged in sequence from top to bottom, the first silicon layer 1 and the second silicon layer The composition material of the disilicon layer 3 is silicon, and the composition material of the first silicon dioxide layer 2 is silicon dioxide;

S2热氧化第一硅层1的上部,形成第二二氧化硅层4;S2 thermally oxidizes the upper part of the first silicon layer 1 to form a second silicon dioxide layer 4;

S3刻蚀第二二氧化硅层4,使得第二二氧化硅层4被刻蚀区域形成第一凹陷部,其余区域为第一凸起部5;S3 etching the second silicon dioxide layer 4, so that the etched area of the second silicon dioxide layer 4 forms a first depression, and the remaining area is a first protrusion 5;

S4在第一凹陷部与第一凸起部5上方沉积相同厚度的二氧化硅,形成第三二氧化硅层6;S4 depositing silicon dioxide with the same thickness above the first concave portion and the first protruding portion 5 to form a third silicon dioxide layer 6;

S5在第三二氧化硅层6上方注入氧离子,使得第一硅层1内形成富氧离子层7,富氧离子层7将第一硅层1的下部分隔为上下两层,所述富氧离子层7包括第二凸起部和第二凹陷部,第一凸起部5下方对应为第二凸起部,第一凹陷部下方对应为第二凹陷部;S5 implants oxygen ions above the third silicon dioxide layer 6, so that an oxygen-rich ion layer 7 is formed in the first silicon layer 1, and the oxygen-rich ion layer 7 separates the lower part of the first silicon layer 1 into upper and lower layers. The oxygen ion layer 7 includes a second protrusion and a second depression, the second protrusion below the first protrusion 5 corresponds to the second depression below the first depression;

S6使用刻蚀工艺除去第二二氧化硅层4与第三二氧化硅层6;S6 using an etching process to remove the second silicon dioxide layer 4 and the third silicon dioxide layer 6;

S7在第一硅层1的上方沉积二氧化硅,形成第四二氧化硅层8;S7 deposits silicon dioxide on the first silicon layer 1 to form a fourth silicon dioxide layer 8;

S8高温退火,使得富氧离子层7里的氧离子与硅原子进行反应,反应后的富氧离子层7为第五二氧化硅层9,第二凸起部转换为第三凸起部,第二凹陷部转换为第三凹陷部;S8 high-temperature annealing, so that the oxygen ions in the oxygen-rich ion layer 7 react with silicon atoms, and the oxygen-rich ion layer 7 after the reaction is the fifth silicon dioxide layer 9, and the second raised portion is converted into a third raised portion, the second recess is converted into a third recess;

S9使用刻蚀工艺除去第四二氧化硅层8,制得成品,成品中第五二氧化硅层9下方的第一硅层1即为波导层11,而第三凸起部下方的第一硅层1即为硅波导10。S9 uses an etching process to remove the fourth silicon dioxide layer 8 to produce a finished product. In the finished product, the first silicon layer 1 below the fifth silicon dioxide layer 9 is the waveguide layer 11, and the first silicon layer 1 below the third raised portion is The silicon layer 1 is the silicon waveguide 10 .

进一步地,所述步骤S1中第一硅层1的厚度为600nm。Further, the thickness of the first silicon layer 1 in the step S1 is 600 nm.

选择600nm厚度的第一硅层1,在形成埋层硅波导10的同时,可以剩余足够厚度的剩余第一硅层1用于制备其它光电子器件,从而实现3D光子集成。By selecting the first silicon layer 1 with a thickness of 600nm, while forming the buried silicon waveguide 10, a sufficient thickness of the remaining first silicon layer 1 can be left for preparing other optoelectronic devices, thereby realizing 3D photonic integration.

进一步地,所述步骤S2中第二二氧化硅层4的厚度为100nm。Further, the thickness of the second silicon dioxide layer 4 in the step S2 is 100 nm.

进一步地,所述步骤S2中刻蚀第二二氧化硅层4直至第二二氧化硅层4下方的第一硅层1露出,停止刻蚀操作。Further, in the step S2, the second silicon dioxide layer 4 is etched until the first silicon layer 1 under the second silicon dioxide layer 4 is exposed, and the etching operation is stopped.

进一步地,所述刻蚀方法选用等离子刻蚀或反应离子刻蚀的干法刻蚀或者湿法刻蚀。Further, the etching method is dry etching or wet etching of plasma etching or reactive ion etching.

一般来说,第二二氧化硅层4的厚度即为硅波导10的脊形高度,即第二凸起部的厚度即为硅波导10的脊形高度,这样的设计,可以根据需要制作不同厚度的硅波导10。Generally speaking, the thickness of the second silicon dioxide layer 4 is the height of the ridge of the silicon waveguide 10, that is, the thickness of the second raised portion is the height of the ridge of the silicon waveguide 10. Such a design can be made according to requirements. thickness of the silicon waveguide 10 .

进一步地,所述步骤S4中第三二氧化硅层6的厚度为50nm。Further, the thickness of the third silicon dioxide layer 6 in the step S4 is 50 nm.

进一步地,所述沉淀方法选用等离子体增强化学的气相沉积。Further, the deposition method is plasma-enhanced chemical vapor deposition.

进一步地,所述步骤S5中,氧离子注入的剂量范围为每平方厘米7×1017个。Further, in the step S5, the dose range of oxygen ion implantation is 7×10 17 per square centimeter.

进一步地,所述步骤S5中,离子注入能量范围为200KeV。Further, in the step S5, the ion implantation energy range is 200KeV.

进一步地,所述步骤S5中,每注入氧离子总剂量的四分之一剂量,将晶圆绕晶圆圆心向同一方向旋转90°。Further, in the step S5, the wafer is rotated 90° around the center of the wafer in the same direction for every quarter of the total dose of oxygen ions implanted.

图2示意性示出了根据本公开实施例的厚度分别为0nm、50nm、100nm和150nm的第三二氧化硅层条件下富氧离子层中氧离子浓度随注入深度的分布图;2 schematically shows the distribution of oxygen ion concentration in the oxygen ion-rich layer with implantation depth under the condition of the third silicon dioxide layer with thicknesses of 0nm, 50nm, 100nm and 150nm respectively according to an embodiment of the present disclosure;

由于第二二氧化硅层4被刻蚀后形成的第一凹陷部和第一凸起部5的厚度不一,其与第三二氧化硅层6结合后形成的二氧化硅阻挡层各区域厚度也不一致。二氧化硅阻挡层会降低氧离子注入速度,从而影响氧离子注入深度,二氧化硅阻挡层越厚的区域,氧离子注入深度越浅,这使得处于第一凸起部5正下方的富氧离子层7比第一凹陷部下方的富氧离子层7浅。Since the thicknesses of the first recessed portion and the first protruding portion 5 formed after the second silicon dioxide layer 4 are etched are different, each region of the silicon dioxide barrier layer formed after it is combined with the third silicon dioxide layer 6 The thickness is also inconsistent. The silicon dioxide barrier layer will reduce the oxygen ion implantation speed, thereby affecting the oxygen ion implantation depth, the thicker the silicon dioxide barrier layer, the shallower the oxygen ion implantation depth, which makes the oxygen-rich area directly below the first raised portion 5 The ion layer 7 is shallower than the oxygen-rich ion layer 7 below the first recess.

进一步地,所述步骤S6中,刻蚀方法选用等离子刻蚀。Further, in the step S6, the etching method is plasma etching.

进一步地,所述步骤S7中,第四二氧化硅层8的厚度为350nm,所述沉积方法选用感应耦合等离子体增强化学气相沉积。Further, in the step S7, the thickness of the fourth silicon dioxide layer 8 is 350 nm, and the deposition method is inductively coupled plasma enhanced chemical vapor deposition.

第四二氧化硅层8的设置防止第一硅层1在后续高温退火过程中被氧化The setting of the fourth silicon dioxide layer 8 prevents the first silicon layer 1 from being oxidized during the subsequent high temperature annealing process

进一步地,所述步骤S8中,退火温度为1350℃,退火时间为8小时。Further, in the step S8, the annealing temperature is 1350° C., and the annealing time is 8 hours.

硅的熔点为1410℃,二氧化硅的熔点为1723℃,将退火温度设定为1350℃,使得硅与二氧化硅介于固体与液体的状态,使得硅波导10与第五二氧化硅层9的界面光滑,从而降低硅波导10的损耗;优选地,退火时间为8小时;退火过程中,氧离子与硅原子发生反应缓慢,包括二氧化硅沉淀物成核、生长、合并以及最后形成均匀一致的第五二氧化硅层9,退火时间太短,不能形成均匀的第五二氧化硅层9,退火时间为8小时是形成均匀的第五二氧化硅层9的最佳时间。The melting point of silicon is 1410°C, the melting point of silicon dioxide is 1723°C, and the annealing temperature is set to 1350°C, so that silicon and silicon dioxide are in a state between solid and liquid, so that the silicon waveguide 10 and the fifth silicon dioxide layer The interface of 9 is smooth, thereby reducing the loss of the silicon waveguide 10; preferably, the annealing time is 8 hours; during the annealing process, the reaction between oxygen ions and silicon atoms is slow, including the nucleation, growth, merging and final formation of silicon dioxide precipitates. For a uniform fifth silicon dioxide layer 9 , the annealing time is too short to form a uniform fifth silicon dioxide layer 9 , and an annealing time of 8 hours is the optimum time for forming a uniform fifth silicon dioxide layer 9 .

由于处于第一凸起部5正下方的氧离子注入深度比其他区域的浅,第一凸起部5正下方的第五二氧化硅层9向上凸起,从而形成硅波导10。Since the oxygen ion implantation depth directly below the first raised portion 5 is shallower than that of other regions, the fifth silicon dioxide layer 9 directly below the first raised portion 5 protrudes upward, thereby forming a silicon waveguide 10 .

由于退火温度高、退火时间长,硅与二氧化硅介于固体与液体的状态,其粘性降低,其原子与分子几乎处于流动状态,从而形成非常光滑的硅与二氧化硅界面,避免了常规制备方法中刻蚀所带来的侧壁粗糙的问题,从而硅波导10具有超低损耗特性;第一硅层1中由于离子注入带来的损伤在高温退火中被修复,可以用来制备其他的光电子器件,从而与所形成的超低损耗硅波导10进行垂直集成,实现3D集成,适应未来大规模光电子集成。Due to the high annealing temperature and long annealing time, silicon and silicon dioxide are in the state of solid and liquid, their viscosity is reduced, and their atoms and molecules are almost in a fluid state, thus forming a very smooth interface between silicon and silicon dioxide, avoiding the conventional Due to the problem of rough side walls caused by etching in the preparation method, the silicon waveguide 10 has ultra-low loss characteristics; the damage caused by ion implantation in the first silicon layer 1 is repaired in high temperature annealing, and can be used to prepare other The optoelectronic device can be vertically integrated with the formed ultra-low loss silicon waveguide 10 to realize 3D integration and adapt to large-scale optoelectronic integration in the future.

图3示意性示出了根据本公开实施例的一种超低损耗硅波导的结构示意图。Fig. 3 schematically shows a schematic structural view of an ultra-low loss silicon waveguide according to an embodiment of the present disclosure.

一种采用上述制备方法制得的超低损耗硅波导,其特征在于:包括由上至下依次设置的第一硅层1、第五二氧化硅层9、波导层11、第一二氧化硅层2和第二硅层3;所述第五二氧化硅层9的中部向上方凸起,第五二氧化硅层9凸起下方的波导层11为硅波导10。An ultra-low-loss silicon waveguide prepared by the above-mentioned preparation method is characterized in that it includes a first silicon layer 1, a fifth silicon dioxide layer 9, a waveguide layer 11, a first silicon dioxide layer arranged in sequence from top to bottom layer 2 and the second silicon layer 3; the middle part of the fifth silicon dioxide layer 9 protrudes upwards, and the waveguide layer 11 below the fifth silicon dioxide layer 9 is a silicon waveguide 10 .

实施例3Example 3

本公开的实施例提供一种超低损耗硅波导及其制备方法。Embodiments of the present disclosure provide an ultra-low loss silicon waveguide and a manufacturing method thereof.

图1示意性示出了根据本公开实施例的一种超低损耗硅波导的制备方法的流程图;FIG. 1 schematically shows a flow chart of a method for manufacturing an ultra-low loss silicon waveguide according to an embodiment of the present disclosure;

一种超低损耗硅波导的制备方法,包括以下几个步骤:A method for preparing an ultra-low loss silicon waveguide, comprising the following steps:

S1挑选作为衬底的SOI晶圆,所述SOI晶圆包括由上至下依次设置的第一硅层1、第一二氧化硅层2和第二硅层3,第一硅层1和第二硅层3的组成材料为硅,第一二氧化硅层2的组成材料为二氧化硅;S1 selects the SOI wafer as the substrate, the SOI wafer includes the first silicon layer 1, the first silicon dioxide layer 2 and the second silicon layer 3 arranged in sequence from top to bottom, the first silicon layer 1 and the second silicon layer The composition material of the disilicon layer 3 is silicon, and the composition material of the first silicon dioxide layer 2 is silicon dioxide;

S2热氧化第一硅层1的上部,形成第二二氧化硅层4;S2 thermally oxidizes the upper part of the first silicon layer 1 to form a second silicon dioxide layer 4;

S3刻蚀第二二氧化硅层4,使得第二二氧化硅层4被刻蚀区域形成第一凹陷部,其余区域为第一凸起部5;S3 etching the second silicon dioxide layer 4, so that the etched area of the second silicon dioxide layer 4 forms a first depression, and the remaining area is a first protrusion 5;

S4在第一凹陷部与第一凸起部5上方沉积相同厚度的二氧化硅,形成第三二氧化硅层6;S4 depositing silicon dioxide with the same thickness above the first concave portion and the first protruding portion 5 to form a third silicon dioxide layer 6;

S5在第三二氧化硅层6上方注入氧离子,使得第一硅层1内形成富氧离子层7,富氧离子层7将第一硅层1的下部分隔为上下两层,所述富氧离子层7包括第二凸起部和第二凹陷部,第一凸起部5下方对应为第二凸起部,第一凹陷部下方对应为第二凹陷部;S5 implants oxygen ions above the third silicon dioxide layer 6, so that an oxygen-rich ion layer 7 is formed in the first silicon layer 1, and the oxygen-rich ion layer 7 separates the lower part of the first silicon layer 1 into upper and lower layers. The oxygen ion layer 7 includes a second protrusion and a second depression, the second protrusion below the first protrusion 5 corresponds to the second depression below the first depression;

S6使用刻蚀工艺除去第二二氧化硅层4与第三二氧化硅层6;S6 using an etching process to remove the second silicon dioxide layer 4 and the third silicon dioxide layer 6;

S7在第一硅层1的上方沉积二氧化硅,形成第四二氧化硅层8;S7 deposits silicon dioxide on the first silicon layer 1 to form a fourth silicon dioxide layer 8;

S8高温退火,使得富氧离子层7里的氧离子与硅原子进行反应,反应后的富氧离子层7为第五二氧化硅层9,第二凸起部转换为第三凸起部,第二凹陷部转换为第三凹陷部;S8 high-temperature annealing, so that the oxygen ions in the oxygen-rich ion layer 7 react with silicon atoms, and the oxygen-rich ion layer 7 after the reaction is the fifth silicon dioxide layer 9, and the second raised portion is converted into a third raised portion, the second recess is converted into a third recess;

S9使用刻蚀工艺除去第四二氧化硅层8,制得成品,成品中第五二氧化硅层9下方的第一硅层1即为波导层11,而第三凸起部下方的第一硅层1即为硅波导10S9 uses an etching process to remove the fourth silicon dioxide layer 8 to produce a finished product. In the finished product, the first silicon layer 1 below the fifth silicon dioxide layer 9 is the waveguide layer 11, and the first silicon layer 1 below the third raised portion is The silicon layer 1 is the silicon waveguide 10

进一步地,所述步骤S1中第一硅层1的厚度为600nm。Further, the thickness of the first silicon layer 1 in the step S1 is 600 nm.

选择600nm厚度的第一硅层1,在形成埋层硅波导10的同时,可以剩余足够厚度的剩余第一硅层1用于制备其它光电子器件,从而实现3D光子集成。By selecting the first silicon layer 1 with a thickness of 600nm, while forming the buried silicon waveguide 10, a sufficient thickness of the remaining first silicon layer 1 can be left for preparing other optoelectronic devices, thereby realizing 3D photonic integration.

进一步地,所述步骤S2中第二二氧化硅层4的厚度为100nm。Further, the thickness of the second silicon dioxide layer 4 in the step S2 is 100 nm.

进一步地,所述步骤S2中刻蚀第二二氧化硅层4直至第二二氧化硅层4下方的第一硅层1露出,停止刻蚀操作。Further, in the step S2, the second silicon dioxide layer 4 is etched until the first silicon layer 1 under the second silicon dioxide layer 4 is exposed, and the etching operation is stopped.

进一步地,所述刻蚀方法选用等离子刻蚀或反应离子刻蚀的干法刻蚀或者湿法刻蚀。Further, the etching method is dry etching or wet etching of plasma etching or reactive ion etching.

一般来说,第二二氧化硅层4的厚度即为硅波导10的脊形高度,即第二凸起部的厚度即为硅波导10的脊形高度,这样的设计,可以根据需要制作不同厚度的硅波导10。Generally speaking, the thickness of the second silicon dioxide layer 4 is the height of the ridge of the silicon waveguide 10, that is, the thickness of the second raised portion is the height of the ridge of the silicon waveguide 10. Such a design can be made according to requirements. thickness of the silicon waveguide 10 .

进一步地,所述步骤S4中第三二氧化硅层6的厚度为50nm。Further, the thickness of the third silicon dioxide layer 6 in the step S4 is 50 nm.

进一步地,所述沉淀方法选用等离子体增强化学的气相沉积。Further, the deposition method is plasma-enhanced chemical vapor deposition.

进一步地,所述步骤S5中,氧离子注入的剂量范围为每平方厘米5×1017个。Further, in the step S5, the dose range of oxygen ion implantation is 5×10 17 per square centimeter.

进一步地,所述步骤S5中,离子注入能量范围为180KeV。Further, in the step S5, the ion implantation energy range is 180KeV.

进一步地,所述步骤S5中,每注入氧离子总剂量的四分之一剂量,将晶圆绕晶圆圆心向同一方向旋转90°。Further, in the step S5, the wafer is rotated 90° around the center of the wafer in the same direction for every quarter of the total dose of oxygen ions implanted.

图2示意性示出了根据本公开实施例的厚度分别为0nm、50nm、100nm和150nm的第三二氧化硅层条件下富氧离子层中氧离子浓度随注入深度的分布图;2 schematically shows the distribution of oxygen ion concentration in the oxygen ion-rich layer with implantation depth under the condition of the third silicon dioxide layer with thicknesses of 0nm, 50nm, 100nm and 150nm respectively according to an embodiment of the present disclosure;

由于第二二氧化硅层4被刻蚀后形成的第一凹陷部和第一凸起部5的厚度不一,其与第三二氧化硅层6结合后形成的二氧化硅阻挡层各区域厚度也不一致。二氧化硅阻挡层会降低氧离子注入速度,从而影响氧离子注入深度,二氧化硅阻挡层越厚的区域,氧离子注入深度越浅,这使得处于第一凸起部5正下方的富氧离子层7比第一凹陷部下方的富氧离子层7浅。Since the thicknesses of the first recessed portion and the first protruding portion 5 formed after the second silicon dioxide layer 4 are etched are different, each region of the silicon dioxide barrier layer formed after it is combined with the third silicon dioxide layer 6 The thickness is also inconsistent. The silicon dioxide barrier layer will reduce the oxygen ion implantation speed, thereby affecting the oxygen ion implantation depth, the thicker the silicon dioxide barrier layer, the shallower the oxygen ion implantation depth, which makes the oxygen-rich area directly below the first raised portion 5 The ion layer 7 is shallower than the oxygen-rich ion layer 7 below the first recess.

氧离子注入剂量和能量分别决定富氧离子层7的厚度和深度,为了获得低缺陷密度、高质量、连续的二氧化硅埋层在此图中氧离子注入总剂量D为5×1017/cm2,离子注入能量为180KeV,在第三二氧化硅层6厚度为50nm情况下,氧离子浓度主要在深度为380nm处分布,该深度既可以易于形成硅波导10,也可以剩余足够的顶层硅,故第三二氧化硅层6厚度设定为50nm。The oxygen ion implantation dose and energy determine the thickness and depth of the oxygen ion-rich layer 7 respectively. In order to obtain a low defect density, high quality, continuous silicon dioxide buried layer in this figure, the total oxygen ion implantation dose D is 5×10 17 / cm 2 , the ion implantation energy is 180KeV, and when the thickness of the third silicon dioxide layer 6 is 50nm, the concentration of oxygen ions is mainly distributed at a depth of 380nm, which can easily form the silicon waveguide 10 and leave enough top layer Silicon, so the thickness of the third silicon dioxide layer 6 is set to 50 nm.

进一步地,所述步骤S6中,刻蚀方法选用等离子刻蚀。Further, in the step S6, the etching method is plasma etching.

进一步地,所述步骤S7中,第四二氧化硅层8的厚度为350nm,所述沉积方法选用感应耦合等离子体增强化学气相沉积。Further, in the step S7, the thickness of the fourth silicon dioxide layer 8 is 350 nm, and the deposition method is inductively coupled plasma enhanced chemical vapor deposition.

第四二氧化硅层8的设置防止第一硅层1在后续高温退火过程中被氧化The setting of the fourth silicon dioxide layer 8 prevents the first silicon layer 1 from being oxidized during the subsequent high temperature annealing process

进一步地,所述步骤S8中,退火温度为1325℃,退火时间为6.5小时。Further, in the step S8, the annealing temperature is 1325° C., and the annealing time is 6.5 hours.

硅的熔点为1410℃,二氧化硅的熔点为1723℃,将退火温度设定为1300~1350℃,使得硅与二氧化硅介于固体与液体的状态,使得硅波导10与第五二氧化硅层9的界面光滑,从而降低硅波导10的损耗;优选地,退火时间为5~8小时;退火过程中,氧离子与硅原子发生反应缓慢,包括二氧化硅沉淀物成核、生长、合并以及最后形成均匀一致的第五二氧化硅层9,退火时间太短,不能形成均匀的第五二氧化硅层9,退火时间为5~8小时是形成均匀的第五二氧化硅层9的最佳时间。The melting point of silicon is 1410°C, the melting point of silicon dioxide is 1723°C, and the annealing temperature is set at 1300-1350°C, so that silicon and silicon dioxide are in the state of solid and liquid, so that the silicon waveguide 10 and the fifth dioxide The interface of the silicon layer 9 is smooth, thereby reducing the loss of the silicon waveguide 10; preferably, the annealing time is 5 to 8 hours; during the annealing process, the reaction between oxygen ions and silicon atoms is slow, including the nucleation, growth, and Merge and finally form a uniform fifth silicon dioxide layer 9. The annealing time is too short to form a uniform fifth silicon dioxide layer 9. The annealing time is 5 to 8 hours to form a uniform fifth silicon dioxide layer 9 best time.

由于处于第一凸起部5正下方的氧离子注入深度比其他区域的浅,第一凸起部5正下方的第五二氧化硅层9向上凸起,从而形成硅波导10。Since the oxygen ion implantation depth directly below the first raised portion 5 is shallower than that of other regions, the fifth silicon dioxide layer 9 directly below the first raised portion 5 protrudes upward, thereby forming a silicon waveguide 10 .

由于退火温度高、退火时间长,硅与二氧化硅介于固体与液体的状态,其粘性降低,其原子与分子几乎处于流动状态,从而形成非常光滑的硅与二氧化硅界面,避免了常规制备方法中刻蚀所带来的侧壁粗糙的问题,从而硅波导10具有超低损耗特性;第一硅层1中由于离子注入带来的损伤在高温退火中被修复,可以用来制备其他的光电子器件,从而与所形成的超低损耗硅波导10进行垂直集成,实现3D集成,适应未来大规模光电子集成。Due to the high annealing temperature and long annealing time, silicon and silicon dioxide are in the state of solid and liquid, their viscosity is reduced, and their atoms and molecules are almost in a fluid state, thus forming a very smooth interface between silicon and silicon dioxide, avoiding the conventional Due to the problem of rough side walls caused by etching in the preparation method, the silicon waveguide 10 has ultra-low loss characteristics; the damage caused by ion implantation in the first silicon layer 1 is repaired in high temperature annealing, and can be used to prepare other The optoelectronic device can be vertically integrated with the formed ultra-low loss silicon waveguide 10 to realize 3D integration and adapt to large-scale optoelectronic integration in the future.

图3示意性示出了根据本公开实施例的一种超低损耗硅波导的结构示意图。Fig. 3 schematically shows a schematic structural view of an ultra-low loss silicon waveguide according to an embodiment of the present disclosure.

一种采用上述制备方法制得的超低损耗硅波导,其特征在于:包括由上至下依次设置的第一硅层1、第五二氧化硅层9、波导层11、第一二氧化硅层2和第二硅层3;所述第五二氧化硅层9的中部向上方凸起,第五二氧化硅层9凸起下方的波导层11为硅波导10,此时第一硅层1的厚度为220nm。An ultra-low-loss silicon waveguide prepared by the above-mentioned preparation method is characterized in that it includes a first silicon layer 1, a fifth silicon dioxide layer 9, a waveguide layer 11, a first silicon dioxide layer arranged in sequence from top to bottom Layer 2 and the second silicon layer 3; the middle part of the fifth silicon dioxide layer 9 protrudes upwards, and the waveguide layer 11 below the fifth silicon dioxide layer 9 is a silicon waveguide 10. At this time, the first silicon layer 1 has a thickness of 220 nm.

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (10)

1. A preparation method of an ultra-low loss silicon waveguide is characterized by comprising the following steps:
s1, selecting an SOI wafer as a substrate, wherein the SOI wafer comprises a first silicon layer (1), a first silicon dioxide layer (2) and a second silicon layer (3) which are sequentially arranged from top to bottom, and the first silicon layer (1) is made of silicon;
s2, thermally oxidizing the upper part of the first silicon layer (1) to form a second silicon dioxide layer (4);
s3, etching the second silicon dioxide layer (4) to enable the etched area of the second silicon dioxide layer (4) to form a first concave part, and enabling the rest area to be a first convex part (5);
s4, depositing silicon dioxide with the same thickness above the first concave part and the first convex part (5) to form a third silicon dioxide layer (6);
s5, injecting oxygen ions above the third silicon dioxide layer (6) to form an oxygen-enriched ion layer (7) in the first silicon layer (1), wherein the oxygen-enriched ion layer (7) divides the lower part of the first silicon layer (1) into an upper layer and a lower layer, the oxygen-enriched ion layer (7) forms a second protruding part corresponding to the first protruding part (5) and a second recessed part corresponding to the first recessed part;
s6, removing the second silicon dioxide layer (4) and the third silicon dioxide layer (6) by using an etching process;
s7, depositing silicon dioxide above the first silicon layer (1) to form a fourth silicon dioxide layer (8);
s8, annealing at high temperature, so that oxygen ions in the oxygen-rich ion layer (7) react with silicon atoms to form a fifth silicon dioxide layer (9), the second convex parts are converted to form third convex parts, and the second concave parts are converted to form third concave parts;
and S9, removing the fourth silicon dioxide layer (8) by using an etching process to obtain a finished product, wherein the first silicon layer (1) below the fifth silicon dioxide layer (9) in the finished product is the waveguide layer (11), and the first silicon layer (1) below the third bulge is the silicon waveguide (10).
2. The production method according to claim 1, wherein the thickness of the first silicon layer (1) in step S1 is 600nm; the thickness of the second silicon dioxide layer (4) in the step S2 is 100nm.
3. The manufacturing method according to claim 1, wherein the etching operation is stopped in the step S3 until the second silicon oxide layer (4) is etched until the first silicon layer (1) under the second silicon oxide layer (4) is exposed; and/or the etching method in the step S3 is dry etching or wet etching of plasma etching or reactive ion etching.
4. The method according to claim 1, wherein the thickness of the third silicon dioxide layer (6) in step S4 is 50nm; and/or the deposition method in the step S4 is plasma enhanced chemical vapor deposition.
5. The method according to claim 1, wherein the dose of the oxygen ion implantation in step S5 is in a range of 2 x 10 per square centimeter 17 ~7×10 17 And (4) respectively.
6. The method according to claim 1, wherein in step S5, the ion implantation energy is in a range of 150-200KeV.
7. The method as claimed in claim 1, wherein in step S5, the wafer is rotated 90 ° in the same direction around the center of the wafer for every one-fourth of the total implanted oxygen ion dose.
8. The production method according to claim 1, wherein in the step S7, the thickness of the fourth silicon dioxide layer (8) is 350nm; and/or the deposition method adopts inductively coupled plasma enhanced chemical vapor deposition.
9. The method according to claim 1, wherein in the step S8, the annealing temperature is 1300 to 1350 ℃ and the annealing time is 5 to 8 hours.
10. An ultra-low loss silicon waveguide produced by the production method according to any one of claims 1 to 9, characterized in that: the waveguide structure comprises a first silicon layer (1), a fifth silicon dioxide layer (9), a waveguide layer (11), a first silicon dioxide layer (2) and a second silicon layer (3) which are arranged from top to bottom in sequence; the middle part of the fifth silicon dioxide layer (9) protrudes upwards, and the waveguide layer (11) below the protrusion of the fifth silicon dioxide layer (9) is a silicon waveguide (10).
CN202111017770.3A 2021-08-31 2021-08-31 Ultra-low loss silicon waveguide and its preparation method Active CN113703093B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111017770.3A CN113703093B (en) 2021-08-31 2021-08-31 Ultra-low loss silicon waveguide and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111017770.3A CN113703093B (en) 2021-08-31 2021-08-31 Ultra-low loss silicon waveguide and its preparation method

Publications (2)

Publication Number Publication Date
CN113703093A CN113703093A (en) 2021-11-26
CN113703093B true CN113703093B (en) 2023-02-24

Family

ID=78658494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111017770.3A Active CN113703093B (en) 2021-08-31 2021-08-31 Ultra-low loss silicon waveguide and its preparation method

Country Status (1)

Country Link
CN (1) CN113703093B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105849606A (en) * 2013-12-25 2016-08-10 日本电气株式会社 Optical waveguide element and method for manufacturing optical waveguide element
CN106291990A (en) * 2016-08-29 2017-01-04 上海交通大学 Silica-based note oxygen capacitor type electrooptic modulator
CN107037534A (en) * 2017-05-23 2017-08-11 深圳信息职业技术学院 Can integrated optoelectronic device and preparation method thereof, the integrated approach of multiple photoelectric devices
US10468849B1 (en) * 2018-11-30 2019-11-05 Mcmaster University Hybrid optical waveguides of tellurium-oxide-coated silicon nitride and methods of fabrication thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415625B1 (en) * 2001-08-06 2004-01-24 한국전자통신연구원 Method for manufacturing a planar type waveguide using an ion exchange method
US8269931B2 (en) * 2009-09-14 2012-09-18 The Aerospace Corporation Systems and methods for preparing films using sequential ion implantation, and films formed using same
FR3105455A1 (en) * 2019-12-20 2021-06-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Waveguide manufacturing process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105849606A (en) * 2013-12-25 2016-08-10 日本电气株式会社 Optical waveguide element and method for manufacturing optical waveguide element
CN106291990A (en) * 2016-08-29 2017-01-04 上海交通大学 Silica-based note oxygen capacitor type electrooptic modulator
CN107037534A (en) * 2017-05-23 2017-08-11 深圳信息职业技术学院 Can integrated optoelectronic device and preparation method thereof, the integrated approach of multiple photoelectric devices
US10468849B1 (en) * 2018-11-30 2019-11-05 Mcmaster University Hybrid optical waveguides of tellurium-oxide-coated silicon nitride and methods of fabrication thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The independence burial-depth ion-exchanged glass waveguides and;L. B. Zhou;《SPIE》;981-986 *

Also Published As

Publication number Publication date
CN113703093A (en) 2021-11-26

Similar Documents

Publication Publication Date Title
CN113568105B (en) Waveguide interlayer coupling structure and preparation method thereof
JP2001021744A (en) Manufacturing method of optical waveguide substrate
CN102944911A (en) Optical waveguide and manufacture methods thereof
JP2002540451A (en) Waveguide structure and method of forming waveguide structure
CN112540428B (en) Lithium niobate single crystal thin film chip and manufacturing method thereof
CN115685598B (en) Waveguide structure with core-coated electro-optic material layer, preparation method and application
CN113703093B (en) Ultra-low loss silicon waveguide and its preparation method
CN115373082B (en) End face coupler based on silicon and lithium niobate composite film
CN104862784A (en) Method for manufacturing monocrystalline film with near stoichiometric ratio
JP5137278B2 (en) Optical device manufacturing method
CN114400236B (en) Silicon photonic integrated chip integrating silicon photonic modulator and silicon germanium detector and preparation method thereof
CN111239900B (en) Forming SiO based on wafer bonding2Method for realizing spot-size conversion by waveguide and spot-size converter
CN112612078B (en) High-efficiency coupling waveguide based on GOI or SOI and preparation method thereof
CN113687530B (en) Silicon-based electro-optic modulator and preparation method thereof
CN100447596C (en) Optical waveguide and method of fabricating the same
CN1440052A (en) Preparation for silicon material on thick film insulative layers
CN114883313A (en) Silicon optical monolithic integrated chip containing silicon nitride waveguide and preparation method thereof
JP3245347B2 (en) Manufacturing method of optical waveguide device
CN115951454A (en) Lithium niobate-silicon nitride waveguide and laser heterogeneous integrated structure and preparation method thereof
CN117826320A (en) End face coupler structure and method for manufacturing end face coupler
CN111077607A (en) Manufacturing method of silicon-based optical waveguide device
CN106098745B (en) A kind of LNOI chip of embedded duplicature and preparation method thereof
CN113281921A (en) First-order electro-optical effect silicon modulator and preparation process thereof
CN222259620U (en) Selective epitaxial silicon-based ridge optical waveguide
JPH10133047A (en) Method of forming optical waveguide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant