[go: up one dir, main page]

CN113717874B - 一种耐高温、耐高糖的酿酒酵母菌株及其构建方法和应用 - Google Patents

一种耐高温、耐高糖的酿酒酵母菌株及其构建方法和应用 Download PDF

Info

Publication number
CN113717874B
CN113717874B CN202111137904.5A CN202111137904A CN113717874B CN 113717874 B CN113717874 B CN 113717874B CN 202111137904 A CN202111137904 A CN 202111137904A CN 113717874 B CN113717874 B CN 113717874B
Authority
CN
China
Prior art keywords
strain
high temperature
saccharomyces cerevisiae
seb19
seb4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111137904.5A
Other languages
English (en)
Other versions
CN113717874A (zh
Inventor
汤岳琴
王莉
谢采芸
苟敏
孙照勇
夏子渊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202111137904.5A priority Critical patent/CN113717874B/zh
Publication of CN113717874A publication Critical patent/CN113717874A/zh
Application granted granted Critical
Publication of CN113717874B publication Critical patent/CN113717874B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • C12N9/82Asparaginase (3.5.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/01Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
    • C12Y305/01001Asparaginase (3.5.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPR]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种耐高温、耐高糖的酿酒酵母菌株及其构建方法和应用,所述酿酒酵母菌株SEB19保藏于中国微生物菌种管理委员会普通微生物中心,保藏名称为SEB19,其保藏号为:CGMCC NO.22589,构建方法为:以菌株SEB4为出发菌株,利用CRISPR/Case9基因编辑技术将菌株SEB4的功能基因ASP3敲除获得工程菌株SEB19。本发明所述菌株SEB19能够耐高温、耐高糖,确保纤维素的酶解和微生物发酵可以同步进行,且能够提高乙醇产量。

Description

一种耐高温、耐高糖的酿酒酵母菌株及其构建方法和应用
技术领域
本发明涉及生物工程技术领域,具体涉及一种耐高温、耐高糖的酿酒酵母菌株及其构建方法和应用。
背景技术
近年来,随着全球环境的恶化及化石能源的日益枯竭,越来越多的国家开始关注可再生清洁能源燃料乙醇的开发和利用。燃料乙醇的生产通常采用酿酒酵母(Saccharomyces cerevisiae)进行发酵,酿酒酵母最适生长温度为30-32℃。然而,在工业生产中,同步糖化发酵(SSF)过程存在一个重要问题,即最佳酶解温度(45-50℃)和最佳微生物乙醇发酵温度(25-35℃)存在较大差异,导致纤维素的酶解和微生物发酵过程难以同步进行。同时,在工业生产中随着菌株的代谢和机械搅拌等常导致发酵体系温度升高(时常可达35-37℃)。高温会引起酵母细胞内各种成分的理化性质发生变化,从而影响细胞正常的生命活动。为了减少冷却水的使用和染菌的风险,选育耐高温酿酒酵母可实现在较为宽泛的控温前提下保证燃料乙醇生产的稳定性,减少冷却成本。此外,在超高浓度(VHG)发酵过程中,需要酵母能够耐受高糖胁迫从而提高乙醇产量。
因此,构建耐高温、耐高糖的酿酒酵母很有必要,具有一定经济价值。
发明内容
本发明的目的在于提供一种耐高温、耐高糖的酿酒酵母菌株,该菌株能够耐高温、耐高糖,确保纤维素的酶解和微生物发酵可以同步进行,且能够提高乙醇产量。
此外,本发明还提供一种耐高温、耐高糖的酿酒酵母菌株的构建方法和应用。
本发明通过下述技术方案实现:
一种耐高温、耐高糖的酿酒酵母菌株,所述酿酒酵母菌株保藏于中国微生物菌种管理委员会普通微生物中心(CGMCC),保藏名称为SEB19,其保藏号为:CGMCC NO.22589,分类命名为Saccharomyces cerevisiae,保藏日期为2021年5月24日,保藏地址:中国北京市朝阳区北辰西路1号院3号,邮编:100101。
本发明所述菌株SEB19具有多重耐受性,能够耐高温、耐高糖,确保纤维素的酶解和微生物发酵可以同步进行,且能够提高乙醇产量,能够适用于多种环境胁迫下物料发酵。
一种耐高温、耐高糖的酿酒酵母菌株的构建方法,以具有良好耐受性的工业酿酒菌株SEB4为出发菌株,利用CRISPR/Case9基因编辑技术将功能基因ASP3敲除获得工程菌株SEB19。
本发明前期基于转录组学的研究发现在高温、高温乙醇双胁迫和高糖等多种胁迫条件下,工业酿酒酵母菌株SEB4中基因ASP3(编码L-天冬酰胺酶II)均显著下调。目前,仅有研究表明在酵母细胞氮饥饿期间会诱导ASP3的表达,而该基因与细胞表型之间的关系并未得到证实。本发明首次发现,敲除该基因可以显著提高酵母的高温、高温乙醇和高糖等耐受性。
具体地:
出发菌株:
出发菌株SEB4保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏号为CGMCCNo.11324。
培养基:
所用培养基如表1所示。若培养基为固体培养基,则在灭菌前加入2.0%的琼脂粉。灭菌条件为121℃,15min。所有的抗生素均在培养基灭菌后,待冷却至50~60℃后添加。
表1培养基组成
Figure BDA0003282759650000021
质粒、菌株及引物:
以菌株SEB4(菌株保藏号:CGMCCNo.11324)为出发菌株,通过CRISPR/Cas9方法,敲除ASP3获得菌株SEB19,其中所用质粒和菌株见表2;菌株转化所用引物及片段见表3;用于构建gRNA质粒的所需的同源壁序列和PAM位点(NGG)上游的20bp目标序列如表4所示。
表2构建菌株SEB19过程中所用质粒及菌株信息
Figure BDA0003282759650000022
Figure BDA0003282759650000031
注:TG:gRNA加同源臂引物,RF:修复片段,Vp:验证引物;F:上游引物;R:下游引物ASP3 TG F的序列号为SEQ ID No.1,ASP3 TG R的序列号为SEQ ID No.2,ASP3 RF F的序列号为SEQ ID No.3,ASP3 RF R的序列号为SEQ ID No.4,ASP3 VP F的序列号为SEQ IDNo.5,ASP3 VP R的序列号为SEQ ID No.6,Cas9-dg-F的序列号为SEQ ID No.7,Cas9-dg-R的序列号为SEQ ID No.8,6006-F的序列号为SEQ ID No.9,6005-R序列号为SEQ ID No.10。
表4构建gRNA所需的同源臂序列和PAM位点(NGG)上游的20bp目标序列
Figure BDA0003282759650000032
注:N20:gRNA所含的PAM位点(NGG)上游的20bp的目标序列;下划线:PAM位点(NGG)
tgR F的序列号为SEQ ID No.11,tgR R的序列号为SEQ ID No.12,ENA5的序列号为SEQ ID No.13。
菌株SEB19的构建:
1)、修复片段的合成
基因ASP3的修复片段为目标基因编码序列上游60bp和下游60bp,该片段由金唯智公司合成(序列见表3),待合成之后,用灭菌水稀释至10μM,后将两条互补链溶液按1:1混合(体积比),于水浴锅中95℃热击5min,获得敲除菌株的修复片段。
2)、构建双链gRNA片段:
在Saccharomyces Genome Database网站上查询目标基因CDS区域的碱基序列。再将该序列输入到Yeastriction,查找目标片段上PAM位点(NGG)上游的20bp目标序列。将包含上下游50bp同源臂和20bp目标序列(共120bp)的gRNA片段进行合成(片段序列见表3)。待合成之后,用灭菌水稀释至10μM,后将两条互补链溶液按1:1混合(体积比),于水浴锅中95℃热击5min,获得双链gRNA片段。
3)、扩增gRNA线性骨架
以pMEL13质粒为模板,扩增gRNA的线性骨架,PCR反应体系和反应条件如表5。利用1.5%的琼脂糖凝胶对PCR产物进行电泳(100V,32min),于EB染液中染色40min,紫外灯下观察是否有目标条带。将所得PCR产物保存于-20℃冰箱,备用。
表5 PCR扩增gRNA线性骨架
Figure BDA0003282759650000041
4)、纯化gRNA线性骨架
由于PCR扩增产物中含有模板、DNA聚合酶和buffer,需要利用
Figure BDA0003282759650000042
PCRPurification Kit纯化试剂盒进行纯化。具体步骤如下:
(1)取50-70μL PCR产物,加入5倍体积的溶液BB混匀,加入离心柱中,10000×g离心1min,弃流出液。
(2)加入650μL溶液WB,10000×g离心1min,弃流出液。
(3)10000×g离心2min,彻底去除残留的WB。
(4)将离心柱放置于1.5mL离心管中,向柱中央加入30-50μL灭菌水,室温静置1-2min,10000×g离心1min,洗脱DNA。将所得DNA于-20℃保存。
5)、gRNA线性骨架模板消化
酶切消化体系和反应条件见表6。反应体系中所加的Quick cut Dpn1依据扩增gRNA线性骨架时所加的pMEL13模板量确定。经纯化获得gRNA线性骨架。
表6 gRNA线性骨架模板消化体系
Figure BDA0003282759650000051
6)、Gibson连接gRNA片段和gRNA线性骨架
将所得的gRNA片段和gRNA线性骨架通过Gibson Assembly试剂盒描述的方法进行Gibson连接,反应体系见表7。gRNA(120bp)和pMEL13-bachbone按质量比5:1加入连接体系中。将反应体系液于PCR仪上,50℃连接15min。取全部反应液转化至大肠杆菌中。然后,将菌液涂布于LB-Amp抗生素平板上。待菌株长出后,将其划线在LB-Kana抗生素平板上,37℃培养24h。将克隆子转接于含5mL LB+Kana液体培养基的试管中培养12-16h(160rpm,37℃)。收集菌体,利用SanPrep柱式质粒DNA小量抽提试剂盒,从大肠杆菌中提取gRNA质粒。利用1.5%的琼脂糖凝胶,对gRNA质粒进行电泳(100V,32min),于EB中染色40min,紫外灯下观察是否有目标条带。将所得的gRNA质粒进行测序确认,获得序列正确的gRNA质粒。
表7 Gibson连接的反应体系
Figure BDA0003282759650000052
7)、Cas9质粒
从-80℃冰箱取出含Cas9质粒(Case9-NAT)的大肠杆菌菌保,将其划线于LB+NAT固体平板上,于37℃恒温培养箱中培养1d。用牙签挑取菌体于含5mL LB+NAT液体培养基中培养12-16h(160rpm,37℃)。收集菌体,利用SanPrep柱式质粒DNA小量抽提试剂盒,从大肠杆菌中提取Cas9质粒。在1.5%的琼脂糖凝胶对Cas9质粒进行电泳(100V,32min),于EB染液中染色40min,紫外灯下观察条带。
8)、Cas9质粒转入目标酿酒酵母菌株
(1)将目标菌株于2%YPD固体平板上活化24h,取适量菌体接种于含5mL 2%YPD液体培养基中培养16h(160rpm,30℃);
(2)取2-3mL菌液至300mL 2%YPD液体培养基中,29℃,180rpm培养2-3h。期间每隔1h取样,8,000×g离心2min,去培养液,将菌体用0.05mmol/L的EDTA-2Na溶液分散后,测定其在600nm下的吸光度;
(3)当OD600达到0.2~0.3时,8,000×g离心2min收集菌体,用灭菌水将菌体洗涤2-3次,离心弃上清。然后用0.6mL灭菌水分散菌体,置于冰上备用;
(4)取配制好的鲑鱼精DNA(来源于鲑鱼睾丸),于沸水浴中加热5min,立即置于冰上,备用;
(5)取1.5mL离心管,分别向其中加入60%PEG4000(110μL)、4M的醋酸锂溶液(5μL)和鲑鱼精DNA(12μL)。实验组中加入100ng Cas9质粒,对照组中加等量的无菌水,振荡混匀;
(6)向上述离心管中加入50μL步骤(3)准备的宿主细胞,振荡混匀;
(7)42℃金属浴热击40-60min,期间每20min取出离心管并上下颠倒;
(8)8,000×g离心2min,弃转化液。用灭菌水将细胞洗涤2-3次,然后向离心管中加入1mL 2%YPD液体培养基,30℃、160rpm摇床培养4h;
(9)8,000×g离心2min,弃培养液,用灭菌水洗涤2-3次。加1mL灭菌水分散菌体,取100μL菌悬液,涂布于含0.005%NAT的2%YPD平板上,置于恒温培养箱中30℃培养1~2天。
9)、Cas9质粒转化菌落PCR验证:
挑取2%YPD+NAT平板上的单个转化子,划线于2%YPD+NAT固体平板上,30℃培养24h,进行菌落PCR验证。具体步骤如下:
(1)从2%YPD+NAT平板上,挑取适量菌体于含95μL1%SDS和5μL 4mol/L的醋酸锂溶液的1.5mL离心管中,涡旋振荡;
(2)75℃热击10min;
(3)向离心管中添加300μL的无水乙醇,涡旋振荡;
(4)室温13000rpm离心3min,弃上清液,于37℃条件下干燥10min;
(5)加入100μL灭菌水,涡旋振荡,室温13000rpm离心1min;
(6)取1μL以上清液作为模板进行PCR验证,PCR反应体系和反应条件如表8所示;
(7)利用1.5%的琼脂糖凝胶对PCR产物进行电泳(100V,32min),于EB染液中染色40min,紫外灯下观察是否有目标条带。
表8 Cas9质粒验证PCR体系
Figure BDA0003282759650000071
10)、酵母转化
酵母转化的具体方法同8)、Cas9质粒转入目标酿酒酵母菌株,只是将步骤(5)改为:取若干个1.5mL离心管,分别向其中加入60%PEG4000(240μL)、4M的醋酸锂(9μL)和鲑鱼精DNA(25μL)。实验组中加入gRNA质粒(300-600ng)和修复片段(600-1400ng),对照组中加入等量的灭菌水,振荡混匀。
11)、目标菌株转化菌落PCR验证
从2%YPD+NAT+G418平板上随机挑取转化子,划线于2%YPD+NAT+G418固体平板上,30℃培养24h,参见Cas9质粒转化菌落PCR验证中方法进行菌落PCR验证。利用目标基因的验证引物(表3),扩增目标片段。其中,PCR反应体系和反应条件见表10,退火温度和片段延伸时间由具体的验证引物决定。
12)、质粒去除
经过菌落PCR验证,选取正确的转化子,将其中的Cas9质粒和gRNA质粒全部去除。具体步骤如下:
(1)挑取正确的转化子划线于2%YPD固体平板上,30℃培养24h;
(2)将菌体接种于含5mL2%YPD液体培养基中,30℃,160rpm培养16h;
(3)吸取1mL菌液,8000×g离心2min,弃上清;
(4)用灭菌水梯度稀释105倍,取100μL菌液涂布于2%YPD固体平板上,于30℃恒温培养箱中培养1d;
(5)挑取单菌落依次在2%YPD、2%YPD+NAT和2%YPD+G418的平板上点板,于30℃恒温培养箱中培养1-2d。若该菌落只可以在2%YPD上生长,说明该菌落中质粒已脱除。
采用菌株SEB19制备的菌剂。
一种耐高温、耐高糖的酿酒酵母菌株在制备菌剂中的应用。
一种耐高温、耐高糖的酿酒酵母菌株在胁迫条件下物料发酵中的应用。
进一步地,胁迫条件包括至少包高温和高糖中的一种。
本发明的高温为42-44℃,高糖为250-300g/L。
一种耐高温、耐高糖的酿酒酵母菌株在有机物料发酵中的应用。
本发明与现有技术相比,具有如下的优点和有益效果:
1、本发明的菌株SEB19菌株能够耐高温、耐高糖,确保纤维素的酶解和微生物发酵可以同步进行,且能够提高乙醇产量。
2、本发明首次发现敲除基因ASP3可以显著提高工业酿酒酵母菌株SEB4的高温、高糖等耐受性。特别地,该基因的敲除对菌株高温耐受性的提升十分重要,该发明表明菌株SEB19在利用实际物料进行高温同步糖化发酵和热带地区的乙醇生产具有较好的应用潜力。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为菌株SEB19和SEB4高温发酵结果对比图;
图2为菌株SEB19和SEB4高温乙醇共发酵结果对比图;
图3为菌株SEB19和SEB4 VHG发酵结果对比图;
图4为菌株SEB19和SEB4利用预处理秸秆同步糖化发酵结果对比图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例1:
高温发酵:
本实施例探究菌株SEB19的高温耐受性,如图1所示,在44℃、100.65g/L葡萄糖发酵的整个过程中,菌株SEB19的乙醇浓度和葡萄糖消耗速率均显著高于SEB4(图1)。发酵72h后,SEB19的乙醇浓度和葡萄糖浓度分别为44.37±1.86g/L和5.89±2.90g/L。相比SEB4提高了41.35%,减少了80.04%(表9)。该结果表明,敲除基因ASP3可以显著提高菌株SEB4的高温耐受性。
表9 44℃条件下菌株发酵72h结果比较
Figure BDA0003282759650000091
注:同一列中相同字母表示差异不显著,不同字母表示差异显著,P<0.05(t-test)。SEB19:菌株SEB4敲除基因ASP3。
实施例2:
高温乙醇共发酵:
提高酵母对高温乙醇的双重胁迫对于SSF发酵后期的高效产乙醇十分重要。本实施例发现菌株SEB19在初始添加3%乙醇和43℃高温共同发酵条件下,发酵性能同样优于出发菌株SEB4(图2)。发酵至72h,SEB19终点产乙醇浓度达25.91±2.24g/L,相比出发菌株SEB4提高了99.31%,该结果表明,敲除基因ASP3对于菌株SEB4的高温乙醇双重胁迫耐受性的提升至关重要(表10)。
表10初始添加3%乙醇、43℃条件下菌株发酵72h结果比较
Figure BDA0003282759650000092
注:同一列中相同字母表示差异不显著,不同字母表示差异显著,P<0.05(t-test)。43℃+3%乙醇:初始培养基为21.28g/L乙醇。SEB19:菌株SEB4敲除基因ASP3。
实施例3:
VHG发酵:
为了进一步探究菌株SEB19在高糖条件下的发酵性能,结果表明,在270.86g/L葡萄糖发酵条件下(初始OD660为1.5),前24h,两株菌乙醇浓度差异不大,发酵至96h,SEB19终点乙醇浓度高于出发菌株SEB4(图3),达128.19±0.69g/L。此外,两株菌株的乙醇收率均达到0.50,具有较强的乙醇代谢能力(表11)。以上结果表明,敲除ASP3可以在一定程度上提高菌株的高糖耐受性。
表11 270.86g/L葡萄糖条件下菌株发酵96h结果比较
Figure BDA0003282759650000093
注:同一列中相同字母表示差异不显著,不同字母表示差异显著,P<0.05(t-test)。SEB19:菌株SEB4敲除基因ASP3。
实施例4:
秸秆预处理物料预糖化-同步糖化发酵:
当以秸秆预处理物料为发酵基质时,如图4所示,经过8h预糖化后,在42℃高温同步糖化发酵中,前24h,发酵液中的葡萄糖及时被酵母利用,且菌株SEB19乙醇浓度显著高于SEB4,发酵48h后,两株菌乙醇浓度趋于稳定,发酵至96h,菌株SEB19终点乙醇浓度达65.44±2.94g/L,相比SEB4提高了17.09%(55.89±2.68g/L)。
综上所述,本发明首次发现敲除基因ASP3可以显著提高工业酿酒酵母菌株SEB4的高温、高糖等耐受性。特别地,该基因的敲除对菌株高温耐受性的提升十分重要,该发明表明菌株SEB19在利用实际物料进行高温同步糖化发酵和热带地区的乙醇生产具有较好的应用潜力。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
序列表
<110> 四川大学
<120> 一种耐高温、耐高糖的酿酒酵母菌株及其构建方法和应用
<160> 13
<170> SIPOSequenceListing 1.0
<210> 1
<211> 120
<212> DNA
<213> 人工序列1(人工序列)
<400> 1
tgcgcatgtt tcggcgttcg aaacttctcc gcagtgaaag ataaatgatc gctacggcat 60
ggatcagatt gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac 120
<210> 2
<211> 120
<212> DNA
<213> 人工序列2(人工序列)
<400> 2
gttgataacg gactagcctt attttaactt gctatttcta gctctaaaac aatctgatcc 60
atgccgtagc gatcatttat ctttcactgc ggagaagttt cgaacgccga aacatgcgca 120
<210> 3
<211> 120
<212> DNA
<213> 人工序列3(人工序列)
<400> 3
agagcaaatg ttggctcgct attcttttgt aagcaatctg gtactcacca acctccaact 60
agcctgatca gtgacttttc atcacactgt gtttttatat agttcttagt agtaaatata 120
<210> 4
<211> 120
<212> DNA
<213> 人工序列4(人工序列)
<400> 4
tatatttact actaagaact atataaaaac acagtgtgat gaaaagtcac tgatcaggct 60
agttggaggt tggtgagtac cagattgctt acaaaagaat agcgagccaa catttgctct 120
<210> 5
<211> 20
<212> DNA
<213> 人工序列5(人工序列)
<400> 5
tatcagaccc ttcagcacgt 20
<210> 6
<211> 20
<212> DNA
<213> 人工序列6(人工序列)
<400> 6
tgacactgct caagggataa 20
<210> 7
<211> 20
<212> DNA
<213> 人工序列7(人工序列)
<400> 7
tcacccttac gttgtttgaa 20
<210> 8
<211> 20
<212> DNA
<213> 人工序列8(人工序列)
<400> 8
aggggacgtt atcactcttc 20
<210> 9
<211> 40
<212> DNA
<213> 人工序列9(人工序列)
<400> 9
gttttagagc tagaaatagc aagttaaaat aaggctagtc 40
<210> 10
<211> 27
<212> DNA
<213> 人工序列10(人工序列)
<400> 10
gatcatttat ctttcactgc ggagaag 27
<210> 11
<211> 101
<212> DNA
<213> 人工序列11(人工序列)
<400> 11
tgcgcatgtt tcggcgttcg aaacttctcc gcagtgaaag ataaatgatc ngttttagag 60
ctagaaatag caagttaaaa taaggctagt ccgttatcaa c 101
<210> 12
<211> 101
<212> DNA
<213> 人工序列12(人工序列)
<400> 12
gttgataacg gactagcctt attttaactt gctatttcta gctctaaaac ngatcattta 60
tctttcactg cggagaagtt tcgaacgccg aaacatgcgc a 101
<210> 13
<211> 23
<212> DNA
<213> 人工序列13(人工序列)
<400> 13
gctacggcat ggatcagatt agg 23

Claims (6)

1.一种耐高温、耐高糖的酿酒酵母(Saccharomyces cerevisiae)菌株,其特征在于,所述酿酒酵母菌株保藏于中国微生物菌种管理委员会普通微生物中心,保藏名称为SEB19,其保藏号为:CGMCC NO. 22589。
2.如权利要求1所述的一种耐高温、耐高糖的酿酒酵母菌株的构建方法,其特征在于,以菌株SEB4为出发菌株,利用CRISPR/Cas9基因编辑技术将菌株SEB4的功能基因ASP3敲除获得工程菌株SEB19;出发菌株SEB4保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏号为CGMCCNo. 11324。
3.采用权利要求1所述的一种耐高温、耐高糖的酿酒酵母菌株制备的菌剂。
4.如权利要求1所述的一种耐高温、耐高糖的酿酒酵母菌株在制备菌剂中的应用。
5.如权利要求1所述的一种耐高温、耐高糖的酿酒酵母菌株在胁迫条件下物料发酵中的应用,胁迫条件为高温和乙醇的双重胁迫、高温胁迫或高糖胁迫。
6.如权利要求1所述的一种耐高温、耐高糖的酿酒酵母菌株在有机物料发酵中的应用。
CN202111137904.5A 2021-09-27 2021-09-27 一种耐高温、耐高糖的酿酒酵母菌株及其构建方法和应用 Active CN113717874B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111137904.5A CN113717874B (zh) 2021-09-27 2021-09-27 一种耐高温、耐高糖的酿酒酵母菌株及其构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111137904.5A CN113717874B (zh) 2021-09-27 2021-09-27 一种耐高温、耐高糖的酿酒酵母菌株及其构建方法和应用

Publications (2)

Publication Number Publication Date
CN113717874A CN113717874A (zh) 2021-11-30
CN113717874B true CN113717874B (zh) 2023-04-11

Family

ID=78685163

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111137904.5A Active CN113717874B (zh) 2021-09-27 2021-09-27 一种耐高温、耐高糖的酿酒酵母菌株及其构建方法和应用

Country Status (1)

Country Link
CN (1) CN113717874B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113881586B (zh) * 2021-09-27 2023-03-10 四川大学 耐高温、耐高糖、耐高盐酿酒酵母菌株及构建方法和应用
CN113717873B (zh) * 2021-09-27 2023-04-14 四川大学 一种多重耐受性酿酒酵母菌株及其构建方法和应用
CN116574621B (zh) * 2023-04-23 2024-04-16 四川大学 一种桑葚果酒用耐低温酿酒酵母及其培养方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7169600A (en) * 1993-03-31 2001-10-25 Cadus Pharmaceutical Corporation Yeast cells engineered to produce pheromone system protein surrogates, and uses therefor
EP1790661A2 (en) * 2005-11-24 2007-05-30 National Institute of Advanced Industrial Science and Technology A highly efficient secretory signal peptide and a protein expression system using the peptide thereof
CN103849576A (zh) * 2014-03-19 2014-06-11 大连理工大学 一株具有胁迫耐受性的重组酿酒酵母菌株
CN105368729A (zh) * 2015-11-10 2016-03-02 四川大学 一株耐酸絮凝性工业酿酒酵母菌株及构建方法
CN105368732A (zh) * 2015-11-10 2016-03-02 四川大学 一株产木糖醇的工业酿酒酵母菌株及构建方法
CN106029886A (zh) * 2013-12-19 2016-10-12 阿迈瑞斯公司 基因组整合的方法
CN108026505A (zh) * 2015-07-07 2018-05-11 复兴生物科技公司 通过适应性进化开发减少天冬酰胺的酵母的开发及所述酵母降低丙烯酰胺形成的用途
CN113717873A (zh) * 2021-09-27 2021-11-30 四川大学 一种多重耐受性酿酒酵母菌株及其构建方法和应用
CN113736900A (zh) * 2021-08-30 2021-12-03 华南农业大学 一种筛选单拷贝t-dna转基因植株的方法
CN113881586A (zh) * 2021-09-27 2022-01-04 四川大学 耐高温、耐高糖、耐高盐酿酒酵母菌株及构建方法和应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2692907B1 (fr) * 1992-06-25 1995-06-30 Rhone Poulenc Rorer Sa Levures kluyveromyces modifiees, preparation et utilisation.
EP0758392A1 (en) * 1994-04-26 1997-02-19 Cadus Pharmaceutical Corporation Functional expression of mammalian adenylyl cyclase in yeast
US7751981B2 (en) * 2001-10-26 2010-07-06 The Regents Of The University Of California Articles of manufacture and methods for modeling Saccharomyces cerevisiae metabolism
BRPI0406168B1 (pt) * 2004-12-09 2022-05-10 Universidade Federal Do Rio De Janeiro Processo para produção da enzima antileucêmica asparaginase a partir da clonagem do gene asp3 de saccharomyces cerevisiae em uma levedura metilotrófica
US9353173B2 (en) * 2010-03-02 2016-05-31 Renaissance Bioscience Corp. Functional enhancement of microorganisms to minimize production of acrylamide
GB201014715D0 (en) * 2010-09-06 2010-10-20 Vib Vzw Nanobodies stabilizing functional conformational states of GPCRS
TWI608015B (zh) * 2015-01-16 2017-12-11 中央研究院 具有組織標的功能的抗發炎分子
GB201620658D0 (en) * 2016-12-05 2017-01-18 Univ Stellenbosch Recombinant yeast and use thereof
CN108102940B (zh) * 2017-10-12 2021-07-13 中石化上海工程有限公司 一株利用CRISPR/Cas9系统敲除XKS1基因的工业酿酒酵母菌株及构建方法
CN108300671A (zh) * 2018-01-30 2018-07-20 中石化上海工程有限公司 一株共发酵木糖和葡萄糖以高产木糖醇及乙醇的工业酿酒酵母菌株及构建方法
CN112852649B (zh) * 2019-11-28 2022-08-23 华东理工大学 一株耐高温的生产纤维素乙醇的酿酒酵母菌株及其发酵应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7169600A (en) * 1993-03-31 2001-10-25 Cadus Pharmaceutical Corporation Yeast cells engineered to produce pheromone system protein surrogates, and uses therefor
EP1790661A2 (en) * 2005-11-24 2007-05-30 National Institute of Advanced Industrial Science and Technology A highly efficient secretory signal peptide and a protein expression system using the peptide thereof
CN106029886A (zh) * 2013-12-19 2016-10-12 阿迈瑞斯公司 基因组整合的方法
CN103849576A (zh) * 2014-03-19 2014-06-11 大连理工大学 一株具有胁迫耐受性的重组酿酒酵母菌株
CN108026505A (zh) * 2015-07-07 2018-05-11 复兴生物科技公司 通过适应性进化开发减少天冬酰胺的酵母的开发及所述酵母降低丙烯酰胺形成的用途
CN105368729A (zh) * 2015-11-10 2016-03-02 四川大学 一株耐酸絮凝性工业酿酒酵母菌株及构建方法
CN105368732A (zh) * 2015-11-10 2016-03-02 四川大学 一株产木糖醇的工业酿酒酵母菌株及构建方法
CN113736900A (zh) * 2021-08-30 2021-12-03 华南农业大学 一种筛选单拷贝t-dna转基因植株的方法
CN113717873A (zh) * 2021-09-27 2021-11-30 四川大学 一种多重耐受性酿酒酵母菌株及其构建方法和应用
CN113881586A (zh) * 2021-09-27 2022-01-04 四川大学 耐高温、耐高糖、耐高盐酿酒酵母菌株及构建方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蔡艳青 ; 齐显尼 ; 齐奇 ; 蔺玉萍 ; 王正祥 ; 王钦宏 ; .敲除MIG1和SNF1基因对酿酒酵母共利用葡萄糖和木糖的影响.生物工程学报.(第01期),全文. *

Also Published As

Publication number Publication date
CN113717874A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
CN113717874B (zh) 一种耐高温、耐高糖的酿酒酵母菌株及其构建方法和应用
CN113881586B (zh) 耐高温、耐高糖、耐高盐酿酒酵母菌株及构建方法和应用
CN113717873B (zh) 一种多重耐受性酿酒酵母菌株及其构建方法和应用
CN100569938C (zh) 能产白藜芦醇的枝孢霉属内生真菌
CN110358720B (zh) 一种生产异丁醇的运动发酵单胞菌重组菌株、构建方法及其应用
CN111733179A (zh) 产油微生物耶氏解脂酵母合成白藜芦醇的方法
CN103849576B (zh) 一株具有胁迫耐受性的重组酿酒酵母菌株
CN104031854A (zh) 一株提高对乙醇耐受性的酿酒酵母基因工程菌株及其构建方法
CN112280700B (zh) 一株耐乙酸和甲酸的发酵菌株及其构建方法
CN105368732A (zh) 一株产木糖醇的工业酿酒酵母菌株及构建方法
CN103820367B (zh) 一种高产丁醇的基因工程菌株及其应用
CN107937296B (zh) 一种具有乙酸、糠醛和香草醛耐受性重组酿酒酵母及制备方法、应用
CN118755596A (zh) 引入IUP代谢途径高产β-榄香烯的重组解脂耶氏酵母菌及应用
CN104974945B (zh) 一种过表达mig1基因的酿酒酵母及其制备方法与应用
CN116286560B (zh) 一株拉乌尔菌hc6及其低温生产2,3-丁二醇的应用
CN117363500A (zh) 一种酿酒酵母seb21及其构建方法与应用
CN108624707A (zh) 一种灵芝80-3菌株的特异性分子标记及其获得方法与应用
CN105586280B (zh) 肌醇用于增强菌株耐受性的用途、基因的用途、表达载体及其用途、菌株及其用途
CN101525580B (zh) 一种双倍体组氨酸营养缺陷型酿酒酵母及其构建方法
CN101423814B (zh) 合成谷胱甘肽的梭菌及其构建方法与应用
CN101519638A (zh) 一种生产酒精的方法及其专用克鲁斯假丝酵母菌株
CN106957853B (zh) 一种提高酵母细胞对复合抑制剂耐受能力的方法
CN110591933A (zh) 一种高效利用木糖发酵生产乙醇和木糖醇的工程菌株
CN120005790A (zh) 用于降解蟹壳的重组菌及其构建方法和应用
CN112322513A (zh) 一株耐乙酸和糠醛的发酵菌株及其构建方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant