Disclosure of Invention
The invention provides a combined polypeptide, which is formed by linking oligopeptide with thrombolytic function and carnosine, anserine or snake carnosine and the like, and forms a series of polypeptide compounds with the characteristics of protective function of the carnosine, the anserine or the snake carnosine and thrombolytic function of the oligopeptide with thrombolytic function. The polypeptide fragment B (such as Ala-Arg-Pro-Ala-Lys, Arg-Pro-Ala-Lys and the like) is related to the degradation or metabolite (P6A) of the fibrinoprotein beta chain of hemolytic active oligopeptide, the polypeptide fragment A has a promoting effect on the polypeptide fragment B, the TAT transmembrane peptide Tyr-Gly-Arg-Lys-Arg-Arg-Gln-Arg-Arg-Arg is adopted to further improve the polypeptide with the application number of CN202110266153.0, and the polypeptide fragment B also has the bioactivity of the work, and the activity is further promoted according to the number of single molecules. The peptides unexpectedly and easily permeate blood brain barrier, and show good biological activity by intravenous administration, thereby showing wide prospect in the aspect of treating nervous system diseases, particularly brain injury and cerebral apoplexy. The technical scheme is as follows:
in one aspect, the present invention provides a combination polypeptide comprising a polypeptide fragment A and a polypeptide fragment B, wherein the polypeptide fragment A is Tyr-Gly-Arg-Lys-Arg-Arg-Gln-Arg-Arg-Arg, and the polypeptide fragment B is Pro-Ala-Lys, Ala-Lys-Pro, Lys-Ala-Pro, Pro-Ala, Ala-Lys, Lys-Pro, Lys-Ala, Ala-Pro, Ala-Arg-Pro-Ala-Lys, Ala-Arg-Ala-Lys-Pro, Ala-Lys-Ala-Pro, Arg-Ala-Lys-Pro, Arg-Lys-Ala-Pro, Gly-Arg-Pro-Ala-Lys, Arg-Ala-Pro, One or more of Gly-Arg-Ala-Lys-Pro, Gly-Arg-Lys-Ala-Pro, Gln-Arg-Pro-Ala-Lys, Gln-Arg-Ala-Lys-Pro, and Gln-Arg-Lys-Ala-Pro, and the like, and the C terminal and/or N terminal of the peptide has carnosine, anserine, or serosine.
Wherein the polypeptide fragment B consists of one or more of Pro-Ala-Lys, Ala-Lys-Pro, Lys-Ala-Pro, Pro-Ala, Ala-Lys, Lys-Pro, Lys-Ala and Ala-Pro, and the C end and/or N end of the polypeptide fragment B is provided with carnosine, anserine or serosine; the polypeptide fragment B preferably consists of one Pro-Ala-Lys, Ala-Lys-Pro or Lys-Ala-Pro and has carnosine, anserine or snake carnosine at the C-terminal and/or N-terminal; the polypeptide fragment B is preferably pentapeptide composed of one of Pro-Ala-Lys, Ala-Lys-Pro and Lys-Ala-Pro and one of Pro-Ala, Ala-Lys, Lys-Pro, Lys-Ala and Ala-Pro, and has carnosine, anserine or serosine at C-terminal and/or N-terminal. The method comprises the following steps:
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Pro-Ala-Lys,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Lys-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Ala-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Ala-Lys-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Ala-Lys-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Ala-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Pro-Ala,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Lys,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Ala,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Ala-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Ala-Lys-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Ala-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Ala-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Pro-Ala-Lys-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Lys-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Ala-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Pro-Ala-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Lys-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Ala-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Pro-Ala-Lys-Pro-Ala,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Pro-Ala-Pro-Ala-Lys,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Pro-Ala-Lys-Ala-Lys,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Lys-Pro-Ala-Lys,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Pro-Ala-Lys-Lys-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Pro-Pro-Ala-Lys,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Pro-Ala-Lys-Lys-Ala,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Ala-Pro-Ala-Lys,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Pro-Ala-Lys-Ala-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Pro-Pro-Ala-Lys,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Lys-Pro-Pro-Ala,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Pro-Ala-Ala-Lys-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Lys-Pro-Ala-Lys,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Lys-Ala-Lys-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Lys-Pro-Lys-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Pro-Ala-Lys-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Lys-Pro-Lys-Ala,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Ala-Ala-Lys-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Lys-Pro-Ala-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Pro-Ala-Lys-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Ala-Pro-Pro-Ala,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Pro-Ala-Lys-Ala-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Ala-Pro-Ala-Lys,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Lys-Lys-Ala-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Ala-Pro-Lys-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Pro-Lys-Ala-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Ala-Pro-Lys-Ala,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Ala-Lys-Ala-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Ala-Pro-Ala-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Pro-Lys-Ala-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Ala-Lys-Pro-Ala-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Ala-Pro-Ala-Lys-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Ala-Lys-Ala-Lys-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Ala-Lys-Pro-Ala-Lys-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Ala-Lys-Lys-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Pro-Pro-Ala-Lys-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Ala-Lys-Lys-Ala-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Ala-Pro-Ala-Lys-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Ala-Lys-Ala-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Ala-Pro-Pro-Ala-Lys-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Ala-Lys-Pro-Pro-Ala-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Ala-Ala-Lys-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Ala-Lys-Pro-Ala-Lys-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Ala-Lys-Ala-Lys-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Ala-Lys-Pro-Lys-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Pro-Ala-Lys-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Ala-Lys-Pro-Lys-Ala-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Ala-Ala-Lys-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Ala-Lys-Pro-Ala-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Ala-Pro-Ala-Lys-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Ala-Pro-Pro-Ala-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Ala-Lys-Ala-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Ala-Pro-Ala-Lys-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Ala-Lys-Lys-Ala-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Ala-Pro-Lys-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Pro-Lys-Ala-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Ala-Pro-Lys-Ala-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Ala-Lys-Ala-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Ala-Pro-Ala-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Ala-Pro-Lys-Ala-Pro-β-Ala-His,
β-Ala-His-Pro-Ala-Lys-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Lys-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Ala-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Pro-Ala-Lys-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Ala-Lys-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Lys-Ala-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Pro-Ala-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Lys-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Ala-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Pro-Ala-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Ala-Lys-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Lys-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Lys-Ala-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Ala-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Pro-Ala-Lys-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Lys-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Ala-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Pro-Ala-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Lys-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Ala-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Pro-Ala-Lys-Pro-Ala-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Pro-Ala-Pro-Ala-Lys-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Pro-Ala-Lys-Ala-Lys-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Lys-Pro-Ala-Lys-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Pro-Ala-Lys-Lys-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Pro-Pro-Ala-Lys-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Pro-Ala-Lys-Lys-Ala-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Ala-Pro-Ala-Lys-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Pro-Ala-Lys-Ala-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Pro-Pro-Ala-Lys-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Lys-Pro-Pro-Ala-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Pro-Ala-Ala-Lys-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Lys-Pro-Ala-Lys-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Lys-Ala-Lys-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Lys-Pro-Lys-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Pro-Ala-Lys-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Lys-Pro-Lys-Ala-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Ala-Ala-Lys-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Lys-Pro-Ala-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Pro-Ala-Lys-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Ala-Pro-Pro-Ala-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Pro-Ala-Lys-Ala-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Ala-Pro-Ala-Lys-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Lys-Lys-Ala-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Ala-Pro-Lys-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Pro-Lys-Ala-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Ala-Pro-Lys-Ala-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Ala-Lys-Ala-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Ala-Pro-Ala-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Pro-Lys-Ala-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Pro-Ala-Lys-Pro-Ala-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Pro-Ala-Pro-Ala-Lys-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Pro-Ala-Lys-Ala-Lys-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Ala-Lys-Pro-Ala-Lys-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Pro-Ala-Lys-Lys-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Lys-Pro-Pro-Ala-Lys-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Pro-Ala-Lys-Lys-Ala-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Lys-Ala-Pro-Ala-Lys-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Pro-Ala-Lys-Ala-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Ala-Pro-Pro-Ala-Lys-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Ala-Lys-Pro-Pro-Ala-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Pro-Ala-Ala-Lys-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Ala-Lys-Pro-Ala-Lys-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Ala-Lys-Ala-Lys-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Ala-Lys-Pro-Lys-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Lys-Pro-Ala-Lys-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Ala-Lys-Pro-Lys-Ala-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Lys-Ala-Ala-Lys-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Ala-Lys-Pro-Ala-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Ala-Pro-Ala-Lys-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Lys-Ala-Pro-Pro-Ala-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Pro-Ala-Lys-Ala-Pro-β-Ala-Hi-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Args,
Lys-Ala-Pro-Ala-Lys-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Ala-Lys-Lys-Ala-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Lys-Ala-Pro-Lys-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Lys-Pro-Lys-Ala-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Lys-Ala-Pro-Lys-Ala-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Lys-Ala-Lys-Ala-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Lys-Ala-Pro-Ala-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Ala-Pro-Lys-Ala-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
wherein His is His, 1-Methyl-His or 3-Methyl-His corresponding to carnosine, anserine and snake carnosine respectively.
Wherein the polypeptide fragment B is hexapeptide consisting of one or two of Pro-Ala-Lys, Ala-Lys-Pro and Lys-Ala-Pro (consisting of two Pro-Ala-Lys, two Ala-Lys-Pro or two Lys-Ala-Pro) and has carnosine, anserine or serosine at the C end and/or N end, and comprises:
Pro-Ala-Lys-Ala-Lys-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Pro-Ala-Lys-Lys-Ala-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Ala-Lys-Pro-Pro-Ala-Lys-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Lys-Ala-Pro-Pro-Ala-Lys-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Ala-Lys-Pro-Lys-Ala-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Pro-Ala-Lys-Ala-Lys-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Lys-Ala-Pro-Ala-Lys-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Lys-Ala-Pro-Pro-Ala-Lys-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Lys-Ala-Pro-Lys-Ala-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Pro-Ala-Lys-Ala-Lys-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Pro-Ala-Lys-Lys-Ala-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Lys-Pro-Pro-Ala-Lys-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Ala-Pro-Pro-Ala-Lys-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Lys-Pro-Lys-Ala-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Pro-Ala-Lys-Ala-Lys-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Ala-Pro-Ala-Lys-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Ala-Pro-Pro-Ala-Lys-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Ala-Pro-Lys-Ala-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Ala-Lys-Ala-Lys-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Ala-Lys-Lys-Ala-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Ala-Lys-Pro-Pro-Ala-Lys-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Ala-Pro-Pro-Ala-Lys-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Ala-Lys-Pro-Lys-Ala-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Ala-Lys-Ala-Lys-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Ala-Pro-Ala-Lys-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Ala-Pro-Pro-Ala-Lys-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Ala-Pro-Lys-Ala-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His -Pro-Ala-Lys-Ala-Lys-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Pro-Ala-Lys-Lys-Ala-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Lys-Pro-Pro-Ala-Lys,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Ala-Pro-Pro-Ala-Lys,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Lys-Pro-Lys-Ala-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Pro-Ala-Lys-Ala-Lys-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His -Lys-Ala-Pro-Ala-Lys-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His -Lys-Ala-Pro-Pro-Ala-Lys,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Ala-Pro-Lys-Ala-Pro,
β-Ala-His-Pro-Ala-Lys-Pro-Ala-Lys-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Pro-Ala-Lys-Pro-Ala-Lys-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Lys-Pro-Ala-Lys-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Ala-Lys-Pro-Ala-Lys-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Ala-Pro-Lys-Ala-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Lys-Ala-Pro-Lys-Ala-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Pro-Ala-Lys-Pro-Ala-Lys,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Ala-Lys-Pro-Ala-Lys-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Lys-Pro-Ala-Lys-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Ala-Lys-Pro-Ala-Lys-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Ala-Pro-Lys-Ala-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Ala-Pro-Lys-Ala-Pro-β-Ala-His,
wherein His is His, 1-Methyl-His or 3-Methyl-His corresponding to carnosine, anserine and snake carnosine respectively.
Among them, the combined polypeptide of the present invention includes:
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Pro-Ala-Lys,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Lys-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Ala-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Ala-Lys-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Ala-Lys-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Ala-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Pro-Ala-Lys-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Lys-Pro-β-Ala-His,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Ala-Pro-β-Ala-His,
β-Ala-His-Pro-Ala-Lys-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Lys-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Ala-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Pro-Ala-Lys-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Ala-Lys-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Lys-Ala-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Pro-Ala-Lys-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Ala-Lys-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
β-Ala-His-Lys-Ala-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
wherein His is His, 1-Methyl-His or 3-Methyl-His corresponding to carnosine, anserine and snake carnosine respectively.
Specifically, the combined polypeptide of the present invention includes (the polypeptide fragment B is Pro-Ala-Lys and has carnosine, anserine, or serosine at the C-terminus and/or N-terminus):
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Pro-Ala-Lys,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Ala-Lys-β-Ala-His,
β-Ala-His-Pro-Ala-Lys-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Pro-Ala-Lys-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
wherein His is His, 1-Methyl-His or 3-Methyl-His corresponding to carnosine, anserine and snake carnosine respectively.
Specifically, the combined polypeptide of the invention comprises (the polypeptide fragment B is Ala-Lys-Pro and has carnosine, anserine or snake carnosine at the C terminal and/or N terminal):
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Ala-Lys-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Ala-Lys-Pro-β-Ala-His,
β-Ala-His-Ala-Lys-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Ala-Lys-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
wherein His is His, 1-Methyl-His or 3-Methyl-His corresponding to carnosine, anserine and snake carnosine respectively.
Specifically, the combined polypeptide of the present invention includes (the polypeptide fragment B is Lys-Ala-Pro and has carnosine, anserine, or serosine at the C-terminus and/or N-terminus):
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Ala-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Ala-Pro-β-Ala-His,
β-Ala-His-Lys-Ala-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
Lys-Ala-Pro-β-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg,
wherein His is His, 1-Methyl-His or 3-Methyl-His corresponding to carnosine, anserine and snake carnosine respectively.
Preferably, the combined polypeptide of the invention comprises:
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Ala-Pro,
Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Ala-Lys-β-Ala-His;
wherein His is only His.
In another aspect, the invention also provides the application of the combined polypeptide and the salt thereof in preparing medicaments (especially medicaments for treating nervous system diseases).
Specifically, the combined polypeptide and the salt thereof are applied to the preparation of medicines for treating ischemic stroke, hemorrhagic stroke, cerebral trauma, Alzheimer disease, Parkinson disease or other neurodegenerative diseases and the like. Preferably, the combined polypeptide is applied to preparing a medicine for treating cerebral arterial thrombosis.
Among them, the above-mentioned drugs are injections, oral administration, sublingual administration, spray administration, anal administration, etc., and injections are preferred. Specifically, the injection is powder injection or injection. Further, the aforementioned drugs are administered intravenously. The medicine can also be used as an active ingredient to prepare other dosage forms so as to facilitate corresponding medical application. The developed preparation can be taken as neuroprotective medicine, oral administration and sublingual administration preparation, and can be taken as emergency medicine for cerebral apoplexy, and the developed preparation can be taken as spray administration, anal administration and other preparations, so that the patient without mobility can be treated.
Further, the medicament comprises a pharmaceutically acceptable diluent or/and a carrier and the like.
In yet another aspect, the invention provides methods for preparing various classes of combinatorial polypeptides of the invention by solid phase synthesis, but some of the peptides are more conveniently synthesized in liquid phase. The salification of polypeptide drugs is one of the common means for improving the physicochemical properties of drug molecules and improving the pharmaceutical properties of the drugs, and the drugs can be salts in any form.
In order to determine the application of the synthetic peptide in the aspect of nervous system diseases, SD rats are used as experimental objects, a cerebral ischemia rat model is prepared by adopting a cerebral middle artery occlusion Method (MCAO), a medicine is injected intravenously after 1-2 hours of ischemia, and behavioral observation and scoring are carried out on each animal at 22-24 hours. After the behavioral observation, the experimental rats were euthanized and their brains were removed, sectioned in brain tissue, stained with TTC and then analyzed quantitatively to calculate the% cerebral infarction volume.
The combined peptide creatively combines hemolytic peptide, carnosine, anserine or snake carnosine and the like, and combines with TAT peptide, so that the biological activity is improved, and the blood brain barrier is improved. The synthetic peptide is preferably applied to treating ischemic stroke, hemorrhagic stroke, brain trauma, Alzheimer disease, Parkinson disease and other neurodegenerative diseases. The invention only needs 3mg/kg of synthetic polypeptide intravenous injection dosage and can achieve remarkable treatment effect.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention will be described in further detail with reference to the accompanying drawings.
Example 1: synthesis of Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg- β -Ala-His-Lys-Ala-Pro:
1. Fmoc-Pro-CTC resin was obtained by coupling solid support 2-CTC resin and Fmoc-Pro-OH in the presence of an activator system (HoBT, DIC).
2. And (3) removing the Fmoc protecting group on the Fmoc-Pro-CTC by using 20% piperidine, and washing the Fmoc protecting group by using DMF after the Fmoc protecting group is completely removed.
3. Weighing 3-time excess Fmoc-Ala-OH, adding a small amount of DMF with three-time excess activating agent, fully dissolving, adding into the washed resin after dissolving, reacting for 1h, and washing with DMF.
4. And repeating the second step and the third step, and coupling the amino acids with the N-terminal Fmoc protection and the side chain protection in sequence from Lys to Tyr according to the main chain sequence.
5. After the synthesis is finished, the cracking is carried out, and the proportion of a cracking reagent is TFA: EDT (electro-thermal transfer coating): and Tis: TA: anisole: h2O = 80: 5: 1: 5: 5: 4 (volume ratio), 1g of peptide resin needs 10ml of cracking reagent, cracking for about 2h (120 r/min) at room temperature, precipitating with glacial methyl tert-butyl ether after cracking, and obtaining crude product as lower precipitate.
6. The crude peptide from the previous step was dissolved and purified on preparative HPLC with 0.1% TFA/acetonitrile.
7. And (4) freeze-drying after purification, taking out powder after freeze-drying, and performing subpackage quality inspection to obtain the target polypeptide with the purity of more than 95%.
Example 2: synthesis of Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg- β -Ala-His-Ala-Lys-Pro:
1. Fmoc-Pro-CTC resin was obtained by coupling solid support 2-CTC resin and Fmoc-Pro-OH in the presence of an activator system (HoBT, DIC).
2. And (3) removing the Fmoc protecting group on the Fmoc-Pro-CTC by using 20% piperidine, and washing the Fmoc protecting group by using DMF after the Fmoc protecting group is completely removed.
3. Weighing 3 times excess Fmoc-Lys (Boc) -OH and three times excess activating agent, adding a small amount of DMF to fully dissolve, adding the solution into a clean resin after the solution is completely dissolved, and washing the resin with DMF after reacting for 1 h.
4. And repeating the second step and the third step, and coupling the amino acids with the Fmoc protection at the N end and the protected side chains in sequence from Ala to Tyr according to the main chain sequence.
5. After the synthesis is finished, the cracking is carried out, and the proportion of a cracking reagent is TFA: EDT (electro-thermal transfer coating): and Tis: TA: anisole: h2O = 80: 5: 1: 5: 5: 4 (volume ratio), 1g of peptide resin needs 10ml of cracking reagent, cracking for about 2h (120 r/min) at room temperature, precipitating with glacial methyl tert-butyl ether after cracking, and obtaining crude product as lower precipitate.
6. The crude peptide from the previous step was dissolved and purified on preparative HPLC with 0.1% TFA/acetonitrile.
7. And (4) freeze-drying after purification, taking out powder after freeze-drying, and performing subpackage quality inspection to obtain the target polypeptide with the purity of more than 95%.
Example 3: synthesis of Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg- β -Ala-His-Pro-Ala-Lys:
1. Fmoc-Lys (Boc) -CTC resin was obtained by coupling solid support 2-CTC resin with Fmoc-Lys (Boc) -OH in the presence of an activator system (HoBT, DIC).
2. The Fmoc protecting group on Fmoc-Lys (Boc) -CTC was removed with 20% piperidine and washed clean with DMF.
3. Weighing 3-time excess Fmoc-Ala-OH, adding a small amount of DMF into three-time excess activating agent, fully dissolving, adding into the washed resin after dissolving, and washing with DMF after reaction.
4. And repeating the second step and the third step, and coupling the amino acids with the N-terminal Fmoc protection and the side chain protection in sequence from Pro to Tyr according to the main chain sequence.
5. After the synthesis is finished, the cracking is carried out, and the proportion of a cracking reagent is TFA: EDT (electro-thermal transfer coating): and Tis: TA: anisole: h2O = 80: 5: 1: 5: 5: 4 (volume ratio), 1g of peptide resin needs 10ml of cracking reagent, cracking for about 2h (120 r/min) at room temperature, precipitating with glacial methyl tert-butyl ether after cracking, and obtaining crude product as lower precipitate.
6. The crude peptide from the previous step was dissolved and purified on preparative HPLC with 0.1% TFA/acetonitrile.
7. And (4) freeze-drying after purification, taking out powder after freeze-drying, and performing subpackage quality inspection to obtain the target polypeptide with the purity of more than 95%.
Example 4: synthesis of Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Ala-Lys- β -Ala-His:
1. Fmoc-His (Trt) -CTC resin was obtained by coupling solid phase support 2-CTC resin with Fmoc-His (Trt) -OH in the presence of an activator system (HoBT, DIC).
2. The Fmoc protecting group on Fmoc-His (Trt) -CTC was removed with 20% piperidine, and washed clean with DMF.
3. Weighing 3-time excess Fmoc-Ala-OH, adding a small amount of DMF with three-time excess activating agent, fully dissolving, adding into the washed resin after dissolving, reacting for 1h, and washing with DMF.
4. And repeating the second step and the third step, and coupling the amino acids with the N-terminal Fmoc protection and the side chain protection in sequence from Lys to Tyr according to the main chain sequence.
5. After the synthesis is finished, the cracking is carried out, and the proportion of a cracking reagent is TFA: EDT (electro-thermal transfer coating): and Tis: TA: anisole: h2O = 80: 5: 1: 5: 5: 4 (volume ratio), 1g of peptide resin needs 10ml of cracking reagent, cracking for about 2h (120 r/min) at room temperature, precipitating with glacial methyl tert-butyl ether after cracking, and obtaining crude product as lower precipitate.
6. The crude peptide from the previous step was dissolved and purified on preparative HPLC with 0.1% TFA/acetonitrile.
7. And (4) freeze-drying after purification, taking out powder after freeze-drying, and subpackaging for quality inspection.
Example 5: synthesis of Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Ala-Lys-Pro- β -Ala-His:
1. Fmoc-His (Trt) -CTC resin was obtained by coupling solid phase support 2-CTC resin with Fmoc-His (Trt) -OH in the presence of an activator system (HoBT, DIC).
2. The Fmoc protecting group on Fmoc-His (Trt) -CTC was removed with 20% piperidine, and washed clean with DMF.
3. Weighing 3-time excess Fmoc-Ala-OH, adding a small amount of DMF with three-time excess activating agent, fully dissolving, adding into the washed resin after dissolving, reacting for 1h, and washing with DMF.
4. And repeating the second step and the third step, and coupling the amino acids with the N-terminal Fmoc protection and the side chain protection in sequence from Lys to Tyr according to the main chain sequence.
5. After the synthesis is finished, the cracking is carried out, and the proportion of a cracking reagent is TFA: EDT (electro-thermal transfer coating): and Tis: TA: anisole: h2O = 80: 5: 1: 5: 5: 4 (volume ratio), prepared by mixing 1g peptide resin with 10ml cracking reagent, cracking at room temperature for about 2h (120 r/min), and then using iceAnd (3) precipitating methyl tert-butyl ether, wherein the lower precipitate is a crude product.
6. The crude peptide from the previous step was dissolved and purified on preparative HPLC with 0.1% TFA/acetonitrile.
7. And (4) freeze-drying after purification, taking out powder after freeze-drying, and subpackaging for quality inspection.
Example 6: synthesis of Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Ala-Pro- β -Ala-His:
1. Fmoc-His (Trt) -CTC resin was obtained by coupling solid phase support 2-CTC resin with Fmoc-His (Trt) -OH in the presence of an activator system (HoBT, DIC).
2. The Fmoc protecting group on Fmoc-His (Trt) -CTC was removed with 20% piperidine, and washed clean with DMF.
3. Weighing 3-time excess Fmoc-Ala-OH, adding a small amount of DMF with three-time excess activating agent, fully dissolving, adding into the washed resin after dissolving, reacting for 1h, and washing with DMF.
4. And repeating the second step and the third step, and coupling the amino acids with the N-terminal Fmoc protection and the side chain protection in sequence from Lys to Tyr according to the main chain sequence.
5. After the synthesis is finished, the cracking is carried out, and the proportion of a cracking reagent is TFA: EDT (electro-thermal transfer coating): and Tis: TA: anisole: h2O = 80: 5: 1: 5: 5: 4 (volume ratio), 1g of peptide resin needs 10ml of cracking reagent, cracking for about 2h (120 r/min) at room temperature, precipitating with glacial methyl tert-butyl ether after cracking, and obtaining crude product as lower precipitate.
6. The crude peptide from the previous step was dissolved and purified on preparative HPLC with 0.1% TFA/acetonitrile.
7. And (4) freeze-drying after purification, taking out powder after freeze-drying, and subpackaging for quality inspection.
Example 7: synthesis of β -Ala-His-Lys-Ala-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg:
1. Fmoc-Arg (pbf) -CTC resin was obtained by coupling solid phase support 2-CTC resin with Fmoc-Arg (pbf) -OH in the presence of an activator system (HoBT, DIC).
2. The Fmoc protecting group on Fmoc-Arg (pbf) -CTC was removed with 20% piperidine and washed clean with DMF.
3. Weighing 3 times excess Fmoc-Arg (pbf) -OH and three times excess activating agent, adding a small amount of DMF to fully dissolve, adding the solution into a clean resin after the solution is completely dissolved, reacting for 1h, and washing with DMF.
4. And repeating the second step and the third step, and sequentially coupling amino acids with Fmoc protection at the N end and protected side chains from Arg to Ala in the main chain sequence.
5. After the synthesis is finished, the cracking is carried out, and the proportion of a cracking reagent is TFA: EDT (electro-thermal transfer coating): and Tis: TA: anisole: h2O = 80: 5: 1: 5: 5: 4 (volume ratio), 1g of peptide resin needs 10ml of cracking reagent, cracking for about 2h (120 r/min) at room temperature, precipitating with glacial methyl tert-butyl ether after cracking, and obtaining crude product as lower precipitate.
6. The crude peptide from the previous step was dissolved and purified on preparative HPLC with 0.1% TFA/acetonitrile.
7. And (4) freeze-drying after purification, taking out powder after freeze-drying, and performing subpackage quality inspection to obtain the target polypeptide with the purity of more than 95%.
The method of example 7 can also be used for the synthesis of the following polypeptides:
β-Ala-His-Ala-Lys-Pro-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg;
β-Ala-His-Pro-Ala-Lys-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg。
example 8: Pro-Ala-Lys- β -Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg:
1. Fmoc-Arg (pbf) -CTC resin was obtained by coupling solid phase support 2-CTC resin with Fmoc-Arg (pbf) -OH in the presence of an activator system (HoBT, DIC).
2. The Fmoc protecting group on Fmoc-Arg (pbf) -CTC was removed with 20% piperidine and washed clean with DMF.
3. Weighing 3 times excess Fmoc-Arg (pbf) -OH and three times excess activating agent, adding a small amount of DMF to fully dissolve, adding the solution into a clean resin after the solution is completely dissolved, reacting for 1h, and washing with DMF.
4. And repeating the second step and the third step, and coupling the amino acids with the N-terminal Fmoc protection and the side chain protection in sequence from Arg to Pro according to the main chain sequence.
5. After the synthesis is finished, the cracking is carried out, and the proportion of a cracking reagent is TFA: EDT (electro-thermal transfer coating): and Tis: TA: anisole: h2O = 80: 5: 1: 5: 5: 4 (volume ratio), 1g of peptide resin needs 10ml of cracking reagent, cracking for about 2h (120 r/min) at room temperature, precipitating with glacial methyl tert-butyl ether after cracking, and obtaining crude product as lower precipitate.
6. The crude peptide from the previous step was dissolved and purified on preparative HPLC with 0.1% TFA/acetonitrile.
7. And (4) freeze-drying after purification, taking out powder after freeze-drying, and performing subpackage quality inspection to obtain the target polypeptide with the purity of more than 95%.
Example 9: synthesis of Ala-Lys-Pro-beta-Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg:
1. Fmoc-Arg (pbf) -CTC resin was obtained by coupling solid phase support 2-CTC resin with Fmoc-Arg (pbf) -OH in the presence of an activator system (HoBT, DIC).
2. The Fmoc protecting group on Fmoc-Arg (pbf) -CTC was removed with 20% piperidine and washed clean with DMF.
3. Weighing 3 times excess Fmoc-Arg (pbf) -OH and three times excess activating agent, adding a small amount of DMF to fully dissolve, adding the solution into a clean resin after the solution is completely dissolved, reacting for 1h, and washing with DMF.
4. And repeating the second step and the third step, and sequentially coupling amino acids with Fmoc protection at the N end and protected side chains from Arg to Ala in the main chain sequence.
5. After the synthesis is finished, the cracking is carried out, and the proportion of a cracking reagent is TFA: EDT (electro-thermal transfer coating): and Tis: TA: anisole: h2O = 80: 5: 1: 5: 5: 4 (volume ratio), 1g of peptide resin needs 10ml of cracking reagent, cracking for about 2h (120 r/min) at room temperature, precipitating with glacial methyl tert-butyl ether after cracking, and obtaining crude product as lower precipitate.
6. The crude peptide from the previous step was dissolved and purified on preparative HPLC with 0.1% TFA/acetonitrile.
7. And (4) freeze-drying after purification, taking out powder after freeze-drying, and performing subpackage quality inspection to obtain the target polypeptide with the purity of more than 95%.
Example 10: synthesis of Lys-Ala-Pro- β -Ala-His-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg:
1. Fmoc-Arg (pbf) -CTC resin was obtained by coupling solid phase support 2-CTC resin with Fmoc-Arg (pbf) -OH in the presence of an activator system (HoBT, DIC).
2. The Fmoc protecting group on Fmoc-Arg (pbf) -CTC was removed with 20% piperidine and washed clean with DMF.
3. Weighing 3 times excess Fmoc-Arg (pbf) -OH and three times excess activating agent, adding a small amount of DMF to fully dissolve, adding the solution into a clean resin after the solution is completely dissolved, reacting for 1h, and washing with DMF.
4. And repeating the second step and the third step, and coupling the amino acids with the N-terminal Fmoc protection and the side chain protection in the sequence from Arg to Lys in the main chain sequence.
5. After the synthesis is finished, the cracking is carried out, and the proportion of a cracking reagent is TFA: EDT (electro-thermal transfer coating): and Tis: TA: anisole: h2O = 80: 5: 1: 5: 5: 4 (volume ratio), 1g of peptide resin needs 10ml of cracking reagent, cracking for about 2h (120 r/min) at room temperature, precipitating with glacial methyl tert-butyl ether after cracking, and obtaining crude product as lower precipitate.
6. The crude peptide from the previous step was dissolved and purified on preparative HPLC with 0.1% TFA/acetonitrile.
7. And (4) freeze-drying after purification, taking out powder after freeze-drying, and performing subpackage quality inspection to obtain the target polypeptide with the purity of more than 95%.
Example 11: synthesis of comparative polypeptides is described in patent application No.: 202110266153.0 (Lijiangxiong, Chinese patent, 2021).
Example 12: animal experiment method
The small animal monitor comprises: shenzhen, Shen honor Zhi science and technology Limited, VT 200.
SD rat: 180-200g of Chinese institute for food and drug identification.
Wire tying: meyer organism (M8507).
TTC staining solution: a source leaf organism (R24053).
Animal model operation steps:
experimental SD rats were weighed and anesthetized with chloral hydrate. After anesthesia, the four limbs of the rat are fixed and lie on the back, and the small animal monitor is connected to monitor important physiological indexes of the rat, such as body temperature, blood pressure, heart rate and the like. The rat neck was dehaired and a median incision of about 2cm length was made after sterilization with a 75% alcohol cotton ball, rat submandibular glands were dissected blunt, gland destruction was avoided as much as possible during dissection, then Common Carotid Artery (CCA) on the left side of the experimental rat was dissected blunt, and Internal Carotid Artery (ICA) and External Carotid Artery (ECA) were carefully dissected up along CCA. Damage to the vagus nerve was avoided during isolation. The CCA and the ICA are clamped and closed by two artery clamps respectively, the distal end of the ECA is cut off, a silica gel line bolt is inserted from an ECA 'port', the artery clamp is loosened briefly when the ICA is inserted to the ICA artery clamp, the ICA is clamped and closed again after the head end of the line bolt is inserted through the artery clamp, then the artery clamp on the ICA is loosened slightly and the line bolt is inserted continuously until the black mark of the line bolt is inserted through the bifurcation of the ECA and the ICA, and the ECA 'port' and the line bolt are tightly fastened by a suture after the head end of the line bolt is blocked on the middle cerebral artery so as to prevent the line bolt from 'withdrawing' or bleeding after the rat wakes up. The clamps on the CCA and ICA were loosened and removed to allow the tissue to recover in situ and an appropriate amount of penicillin was added dropwise to prevent wound infection. The suture is made with a medical suture needle with thread, sealed and sterilized again with iodophor. And observing the small animal monitor to judge whether the index of the experimental rat is normal, and then putting the rat on an electric blanket of the small animal to keep the body temperature until the rat is awakened and putting the rat in an animal cage.
The administration process comprises the following steps:
the drug to be tested is prepared into a solution of 3 mg/mL. The tail vein was dosed 1-2h after ligation.
When in administration, the rat is fixed by a fixer, a 1mL injector is used for absorbing the drug to be detected according to the dose of 3mg/kg, then the tail vein of the rat is injected, and the injection is slowly injected to reduce the load of the heart and lung of the experimental rat.
Animals were divided into different groups of six animals each.
Model group: after ligation, the tail vein is given with the same amount of normal saline;
the drug group S1 Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Leu-Ser-Ser-Ile-Glu-Ser-Asp-Val,
S2 Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Ala-Pro,
S4 β-Ala-His-Lys-Ala-Pro,
S5 Pro-Ala-Lys-β-Ala-His,
S6 Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Ala-Lys-βAla-His,
s1-2 and 4-6, and the tail vein is administered after ligation;
the sham operation group: after isolating the Internal Carotid Artery (ICA) and the External Carotid Artery (ECA), ligation was not performed, and the tail vein was given an equal amount of physiological saline.
TTC staining and quantitative analysis:
after the behavioral observations, the experimental rats were euthanized and their brains were removed. The brain tissue is transversely cut into 6 slices with the thickness of 2mm, then the slices are transferred into TTC staining solution, incubated in an incubator at 37 ℃ for 10min in dark place, and photographed. The TTC stained brain tissue and the remaining small amount of brain tissue that was not subjected to TTC staining were then stored at-20 ℃.
Images after TTC staining were quantified using Image J software.
Cerebral infarction volume% = (total infarct area slice thickness)/(total brain slice area slice thickness) × 100%.
The experimental results are as follows:
1. the TTC quantification results are shown in table 1:
table 1: TTC quantitative results
| Numbering
|
1
|
2
|
3
|
4
|
5
|
6
|
average
|
STDEV
|
| Model set
|
0.41
|
0.40
|
0.39
|
0.42
|
0.38
|
0.34
|
0.39
|
0.03
|
| S1
|
0.19
|
0.22
|
0.15
|
0.15
|
0.11
|
0.13
|
0.16
|
0.04
|
| S2
|
0.34
|
0.25
|
0.22
|
0.12
|
0.14
|
0.10
|
0.20
|
0.09
|
| S4
|
0.23
|
0.16
|
0.14
|
0.17
|
0.12
|
0.12
|
0.16
|
0.04
|
| S5
|
0.12
|
0.14
|
0.11
|
0.18
|
0.09
|
0.23
|
0.15
|
0.05
|
| S6
|
0.16
|
0.13
|
0.11
|
0.19
|
0.14
|
0.18
|
0.15
|
0.03
|
| Artificial operation group
|
0.05
|
0.04
|
0.04
|
0.05
|
0.04
|
0.04
|
0.04
|
0.01 |
S1: Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Leu-Ser-Ser-Ile-Glu-Ser-Asp-Val;
S2:Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-β-Ala-His-Lys-Ala-Pro;
S4:β-Ala-His-Lys-Ala-Pro;
S5:Pro-Ala-Lys-β-Ala-His;
S6:Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Ala-Lys-β-Ala-His。
As can be seen from the results in table 1, the cerebral ischemic rats of the model group had infarct volumes of 0.39 ± 0.03; cerebral ischemic rats injected with 3mg/kg Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-beta-Ala-His-Lys-Ala-Pro (S2) had infarct volume of 0.20 + -0.09, with no statistical difference compared to the results of 0.16 + -0.04 for Tyr-Gly-Arg-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Lys-Leu-Ser-Ser-Ile-Glu-Ser-Asp-Val (S1, NA1) and 0.16 + -0.04 for beta-Ala-His-Lys-Ala-Pro (S4). Compared with the Model group, S2 has obvious bioactivity and S2 is not statistically different from S1 and S4, wherein NA1 (Nerinetide) is a neuroprotective agent (Michael Tymianski and Jonathan D. Garman. Model systems and treatment reagents for treatment of neurological disease. 2015, US Patent, US8940699B2), can interfere with postsynaptic Density protein 95 (PSD-95), is realized by stopping the generation of intracellular NO free radicals, can reduce the infarct area of animal experimental (macaque) cerebral ischemia reperfusion in a preclinical ischemic stroke Model, and improves the functional prognosis, and is a good positive control product. Phll doctor studied the efficacy and safety of intravenous administration of the novel neuropeptide NA-1 (2.6 mg/kg) in patients with Acute Ischemic Stroke (AIS) following intravascular thrombectomy, and the results indicated that treatment with NA1 improved patient prognosis. (Michael D Hill et al, effectiveness and safety of a nitrile for the treatment of an acid electrochemical stress (ESCAPE-NA 1): a multicentre, double-blind, random controlled trial. Lance. Published connected February 20,2020). S2 is the combination of S4 and TAT polypeptide, and the activity of single molecule of S2 is improved from the molecular level.
As can also be seen from the results in table 1, the infarct volume in the saline-injected cerebral ischemic rats was 0.39 ± 0.03; cerebral ischemic rats injected with 3mg/kg Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Ala-Lys- β -Ala-His (S6) had infarct volume of 0.15. + -. 0.03, and were not statistically different from the results of 0.16. + -. 0.04 for Tyr-Gly-Arg-Lys-Arg-Arg-Gln-Arg-Arg-Lys-Leu-Ser-Ser-Ile-Glu-Ser-Asp-Val (S1, NA1) and 0.15. + -. 0.05 for Pro-Ala-Lys- β Ala-His (S5). Compared with the sham group, S6 had significant bioactivity and S6 was not statistically different from S1 and S5. S6 is the binding of S5 to TAT polypeptide, which also indicates that, on a molecular level, the activity of S6 as a single molecule is increased.
The above description is only for the purpose of illustrating the preferred embodiments of the present invention and is not to be construed as limiting the invention, and any modifications, equivalents, improvements and the like that fall within the spirit and principle of the present invention are intended to be included therein.