[go: up one dir, main page]

CN113740394A - Qualitative identification method of doped bovine colostrum based on dielectric spectrum technology - Google Patents

Qualitative identification method of doped bovine colostrum based on dielectric spectrum technology Download PDF

Info

Publication number
CN113740394A
CN113740394A CN202111209944.6A CN202111209944A CN113740394A CN 113740394 A CN113740394 A CN 113740394A CN 202111209944 A CN202111209944 A CN 202111209944A CN 113740394 A CN113740394 A CN 113740394A
Authority
CN
China
Prior art keywords
bovine colostrum
model
doped
dielectric spectrum
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111209944.6A
Other languages
Chinese (zh)
Other versions
CN113740394B (en
Inventor
朱新华
安长青
方东根
王旭东
朱杰亮
陆畅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest A&F University
Original Assignee
Northwest A&F University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest A&F University filed Critical Northwest A&F University
Priority to CN202111209944.6A priority Critical patent/CN113740394B/en
Publication of CN113740394A publication Critical patent/CN113740394A/en
Application granted granted Critical
Publication of CN113740394B publication Critical patent/CN113740394B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种基于介电谱技术的掺杂牛初乳定性识别方法,属于食品快速检测领域。该方法采用介电特性测量系统测量一批牛初乳及掺杂牛初乳的介电参数。首先对样品介电谱进行预处理,以提高模型预测精度,其中噪声消除类预处理方法明显优于散射消除类,且Savitzky‑Golay平滑与二阶导数组合的效果最优。进而以全谱和经主成分分析提取的介电谱数据为模型输入,分别建立2种线性模型和2种非线性模型。其中基于全谱建立的线性判别分析模型为最优模型,其测试集识别准确率为97.37%。该模型对其他来源的验证牛乳样品的识别准确率为93.18%。本发明基于介电谱技术定性识别掺杂牛初乳,具有成本低、精度高、检测迅速、可用于现场检测等优点。

Figure 202111209944

The invention discloses a qualitative identification method of doped bovine colostrum based on a dielectric spectrum technology, which belongs to the field of food rapid detection. The method uses a dielectric property measurement system to measure the dielectric parameters of a batch of bovine colostrum and doped bovine colostrum. Firstly, the sample dielectric spectrum is preprocessed to improve the prediction accuracy of the model. The noise removal preprocessing method is obviously better than the scattering removal method, and the combination of Savitzky‑Golay smoothing and second derivative is the best. Then, using the full spectrum and the dielectric spectrum data extracted by principal component analysis as the model input, two linear models and two nonlinear models are established respectively. Among them, the linear discriminant analysis model based on the full spectrum is the optimal model, and its test set recognition accuracy rate is 97.37%. The model identified 93.18% of validated milk samples from other sources. The invention qualitatively identifies adulterated bovine colostrum based on the dielectric spectrum technology, and has the advantages of low cost, high precision, rapid detection, and can be used for on-site detection and the like.

Figure 202111209944

Description

Qualitative identification method of doped bovine colostrum based on dielectric spectrum technology
Technical Field
The invention belongs to the field of rapid detection of foods, and particularly relates to a qualitative identification method of doped bovine colostrum based on a dielectric spectrum technology.
Background
Bovine colostrum refers to the milk secreted by healthy cows within 3 days after delivery. Bovine colostrum is rich in nutritional ingredients such as protein and fat, and immunoglobulin for improving human immunity, and has higher nutritional value, so that the bovine colostrum is popular among consumers. However, the production of bovine colostrum is very low and therefore much more expensive than normal milk. In order to obtain a high profit, some cow milk vendors often add a certain amount of milk to the cow colostrum. This behavior not only seriously affects the quality and nutritional value of bovine colostrum and its dairy products, but also infringes the legitimate rights and interests of consumers. Therefore, the detection of common milk adulteration in the bovine colostrum has important significance.
Compared with normal milk, the contents of fat, protein and the like in the bovine colostrum are higher, the particle size distribution is larger, the identification difficulty of the colostrum is further increased by the strong heterogeneous characteristic, and the quality of the bovine colostrum is difficult to accurately judge only by the physical characteristics of color, density, viscosity and the like. Although the detection precision can be improved by the chemical analysis methods commonly used in laboratories, such as the radioimmunodiffusion method, the enzyme analysis method, the immunotransmission turbidimetry method and the like, the problems of time and labor waste in detection, high cost, high technical requirements on operators and the like exist. The near infrared spectrum technology has certain possibility in the aspect of evaluating the quality of the bovine colostrum, but the technology is easily influenced by fat, protein and other large particles in the bovine colostrum, and has a strong scattering effect, so that the detection precision is difficult to satisfy. Therefore, the exploration of a method which has low cost, high precision and rapid detection and can be used for on-site detection has important significance for the guarantee of the quality of the bovine colostrum and the product thereof.
The dielectric spectroscopy technology is a technology for acquiring the electrical characteristics of a substance in a wider frequency range, and can acquire more composition and structure information of a sample. In addition, the dielectric spectroscopy technique has the advantage of being fast, and applicable to both field and on-line detection. Therefore, the method is widely applied to the detection of milk quality, such as the detection of fat, protein, lactose and water in milk. In addition, the dielectric spectrum has a larger wavelength range and a deeper penetration depth, is not easily influenced by scattering of large particles such as fat globules and the like, and has certain advantages for heterogeneous milk detection. However, no identification method for bovine colostrum doping based on the dielectric spectrum technology is available at present, so that a qualitative identification method for doped bovine colostrum based on the dielectric spectrum technology is needed to be developed, the key point is to select a proper pretreatment and modeling method to improve the identification accuracy, and a qualitative identification technology which is low in cost, high in precision, rapid in detection and capable of being used for field detection is provided for bovine colostrum doping.
Disclosure of Invention
Aiming at the defects and shortcomings in the prior art, the invention aims to provide a qualitative identification method of doped bovine colostrum. The dielectric spectrum measuring instrument is used for collecting a batch of bovine colostrum and the dielectric spectrum doped with the bovine colostrum, and a noise elimination method and a scattering elimination method are selected for preprocessing according to the characteristic of strong heterogeneity of the bovine colostrum so as to eliminate noise interference generated in the dielectric spectrum measuring process or scattering influence generated by the heterogeneous characteristic of the bovine colostrum. After the cow milk sample is preprocessed by a preferred method through a dielectric spectrum, a linear or nonlinear model for qualitatively identifying the doped cow colostrum is further established, the model identification accuracy is contrasted and analyzed, and the optimal model is determined. And substituting the dielectric spectrum data of the pretreated unknown bovine colostrum sample into the optimal model to qualitatively identify the unknown bovine colostrum sample.
A qualitative identification method of doped bovine colostrum based on a dielectric spectrum technology is characterized by comprising the following steps:
the method comprises the following steps: collecting milk samples of different cows from different regions, seasons and feeding conditions; the bovine colostrum sample is milk of a cow in 3 days of parturition, and the common milk sample is milk of a cow in a normal lactation period; storing bovine colostrum and normal milk samples at room temperature, and mixing the bovine colostrum samples with the normal milk samples according to the proportion of 10%, 20%, 30%, 40% and 50% of the doped mass fraction before the test to obtain the doped bovine colostrum samples; dividing each bovine colostrum sample and the prepared doped bovine colostrum sample into 3 parts for later use;
step two: the network analyzer was preheated for 1h before testing and then sequentially calibrated for open circuit, short circuit and 50 Ω load. Setting instrument measurement parameters which mainly comprise a frequency measurement range and measurement points, and finally calibrating a coaxial probe with an open circuit at the tail end; before measuring the sample dielectric spectrum, the prepared sample is placed on an oscillator and shaken for about 2 min, so that the milk components are uniformly distributed. Each sample was measured 3 times in duplicate, with the average of the 3 results being the final result. During the measurement, the temperature of the sample is 25 +/-1 ℃;
step three: according to the characteristic of strong heterogeneity of bovine colostrum, a noise elimination method, namely Savitzky-Golay smoothing, a second derivative and a combination method thereof, and a scattering elimination method, namely standard normal variable transformation, multivariate scattering correction and a combination method thereof are selected for preprocessing, so that noise interference generated in the dielectric spectrum measurement process or scattering influence generated due to the heterogeneous characteristic of bovine colostrum are eliminated; dividing the pretreated bovine colostrum and the doped bovine colostrum at each ratio into a correction set and a test set by a classical sample division method Kennard-Stone according to a ratio of 3: 1;
step four: based on a noise elimination type and scattering elimination type preprocessing method, comparing the accuracy of linear partial least squares discriminant analysis and nonlinear support vector machine model identification of bovine colostrum and doped bovine colostrum, and preferably selecting a dielectric spectrum preprocessing method combining Savitzky-Golay smoothing and second derivative;
step five: original dielectric spectrum data are processed by a preferred Savitzky-Golay smoothing and second derivative combined preprocessing method, full spectrum and dielectric spectrum data subjected to principal component analysis dimensionality reduction extraction are used as model input, and two linear models of partial least squares discriminant analysis and linear discriminant analysis and two nonlinear models of a support vector machine and a multilayer perceptron are established. Based on the recognition accuracy of the linear model and the nonlinear model, comparing and determining the optimal model as a linear discriminant analysis model based on a full spectrum;
step six: and for unknown bovine colostrum samples from different sources, completing the collection of dielectric spectrums according to the second step, and substituting collected dielectric spectrum data of the unknown bovine colostrum samples into the linear discriminant analysis model determined in the fifth step after combined pretreatment of Savitzky-Golay smoothing and second-order derivative determined in the fourth step to quickly and accurately identify the samples.
The noise elimination pretreatment in the fourth step is obviously superior to the scattering elimination pretreatment, which shows that the adverse effect of doped bovine colostrum is identified as noise interference based on a dielectric spectrum method, rather than scattering caused by heterogeneous characteristics of the bovine colostrum; and fifthly, the prediction effect of a linear model established by identifying the doped bovine colostrum based on the dielectric spectrum technology is obviously superior to that of a nonlinear model.
The pretreatment method and the model selection method provided by the invention do not exclude qualitative identification of doping of colostrum of mammals with the common milk, wherein the colostrum and the common milk are from the same animal.
The invention has the following beneficial technical effects:
(1) the detection is rapid, the operation is simple, and the on-line measurement is convenient. The method provided by the invention only needs to measure the dielectric spectrum of the unknown bovine colostrum sample, and can identify the dielectric spectrum through the corresponding model after preprocessing the dielectric spectrum. The method provided by the invention is beneficial to developing a special detection instrument and realizes the online rapid detection of the doped bovine colostrum;
(2) the identification accuracy is high. After the noise reduction pretreatment is carried out on the dielectric spectrum of the bovine colostrum sample, the accuracy of a correction set and the accuracy of a test set of the established linear discriminant analysis model doped with the qualitative identification of the bovine colostrum are respectively 99.14 percent and 97.37 percent. The model has 93.18% of identification accuracy on verified milk samples from other sources. Therefore, the qualitative identification method of the doped bovine colostrum based on the invention can obtain higher identification precision and has stronger practicability.
Drawings
FIG. 1 is a flow chart of a qualitative identification method of doped bovine colostrum based on dielectric spectrum technology;
FIG. 2 is a schematic diagram of a dielectric property measurement system;
FIG. 3 is a graph of the mean dielectric spectrum of bovine colostrum spiked at different ratios used in the experiment;
FIG. 4 is a graph of the results of a preferred noise cancellation type method on sample dielectric spectrum preprocessing;
FIG. 5 is the identification result of unknown cow's milk samples based on the optimal model established by the dielectric spectrum technique;
reference numerals:
1. the system comprises a network analyzer, 2, a coaxial probe, 3, a thermometer, 4, a water bath, 5, a lifting device and 6, a computer.
Detailed Description
The method has good adaptability to qualitative identification of the doped bovine colostrum of different varieties of dairy cows; due to more varieties of dairy cows, the method takes bovine colostrum produced by 'Holstein' dairy cows within 3 days of parturition and normal milk samples produced by dairy cows in a normal lactation period as an example, and qualitative identification of other dairy cows mixed with bovine colostrum can be carried out by referring to the method of the example. Specifically, according to the measured bovine colostrum sample, a dielectric spectrum pretreatment method and a modeling method are reasonably selected, so that the bovine colostrum sample can be rapidly and accurately judged.
The qualitative identification method of the doped bovine colostrum based on the dielectric spectrum technology is further explained by combining the drawings and the embodiments of the specification given by the inventor.
The method according to the embodiment of the invention comprises the following steps:
the method comprises the following steps: the method comprises the steps of collecting cow milk samples of different cows from different regions, seasons and feeding conditions, wherein the cow colostrum sample is milk of the cows in 3 days of delivery, and the normal milk sample is milk of the cows in normal lactation period. In the embodiment, the milk samples for establishing the model are all collected from 'Holstein' cows fed in three different milk farms in the Yangling area of Shaanxi province, and the milk samples for verifying the model are collected from another different milk farm in the Yangling area.
The indexes of the main components of bovine colostrum and normal milk are shown in table 1. The contents of protein and non-fat milk solid of the bovine colostrum are far larger than normal milk, the fat content is slightly larger than normal milk, but the lactose content and the water content are smaller than normal milk. The higher particle concentration of bovine colostrum enhances its heterogeneous properties. It should be noted that, because of differences in breeding conditions, cow individuals, lactation time and the like, the components of the bovine colostrum and the normal milk sample used for the test have a wide range, which also indicates that the test bovine milk sample has better representativeness.
TABLE 1 test of the content of the principal ingredients of bovine colostrum and milk samples, (g/100 g)
Milk sample Fat Protein Non-fat solids Lactose Water (W)
Colostrum of cow 4.20±1.03 9.70±1.45 14.63±1.40 3.49±0.29 80.35±1.39
Regular milk 4.06±0.52 3.61±0.27 9.11±0.21 4.71±0.16 86.70±0.95
The particle size distribution of the bovine colostrum and the normal milk is shown in Table 2, the average values of D (0.5) and D [3,2] of the bovine colostrum are respectively 2.435 and 1.710 μm, which are slightly larger than the normal milk; the average values of D (0.9) and D (4,3) of the bovine colostrum are 7.394 and 3.270 mu m respectively, which are obviously higher than that of normal milk. This indicates a larger particle size distribution range in bovine colostrum and a stronger heterogeneous character.
TABLE 2 particle size distribution of bovine colostrum and normal milk
Particle size distribution parameter (. mu.m) d(0.5) d(0.9) D[4,3] D[3,2]
Colostrum of cow 2.435±0.225 7.394±0.796 3.270±0.471 1.710±0.102
Regular milk 2.425±0.055 5.459±0.169 2.689±0.150 1.700±0.034
The symbols in table 2 illustrate: d (0.5) and d (0.9) represent the particle sizes corresponding to the cumulative percent particle size distribution of the sample at 50% and 90%, respectively; d4, 3 and D3, 2 respectively represent the volume moment of the particles and the surface volume mean diameter.
By analyzing the main components and the particle size distribution of the bovine colostrum and the normal milk, the contents of protein, fat, non-fat solid and other components in the bovine colostrum are higher, the water content is lower, and the standard deviation of the contents of the components is far greater than that of the normal milk; on the other hand, the particle size distribution parameters D (0.9) and D4, 3 in the bovine colostrum are far larger than that of normal colostrum, and both of the parameters influence the dielectric property of the bovine colostrum, thereby providing a strong proof for the feasibility of applying the dielectric spectrum technology to qualitatively identify the doped bovine colostrum.
In the embodiment, the doped bovine colostrum samples are prepared from different bovine colostrum and normal milk samples according to the doped mass fraction of 10%, 20%, 30%, 40% and 50%. Each time 3 parts of bovine colostrum and 3 parts of normal milk were collected, the original bovine colostrum sample was mixed with the normal milk sample in the proportions of 10%, 20%, 30%, 40% and 50% by doping mass fraction to obtain 15 doped bovine colostrums, wherein each 3 replicates at each doping level. To obtain more bovine colostrum samples, 3 different cows of the original bovine colostrum samples were mixed in equal amounts per trial to obtain 4 new mixed bovine colostrum samples, i.e. a total of 7 bovine colostrum samples per trial. The tests for establishing the model were carried out 7 times in total, and finally 154 samples were obtained. The test for verifying the model was performed 2 times in total, and finally 44 samples were obtained. Preserving bovine colostrum and normal milk samples at room temperature, and completing sample configuration and dielectric spectrum acquisition within 5 h; each bovine colostrum sample and the formulated adulterated bovine colostrum sample were divided into 3 portions for use.
Step two: in this example, the dielectric parameters of the samples were measured using a grid analyzer, coaxial probe and 85070 software from Agilent technology, Malaysia. Fig. 2 shows a schematic diagram of a dielectric parameter measurement system, which is preheated for 1h before testing and then subjected to open circuit, short circuit and 50 Ω load calibration in sequence. After 85070 software is started, the measuring frequency range is set to be 20-4500 MHz, and the number of measuring frequency points is 201. And finally, carrying out open circuit, short circuit and 25-DEG C deionized water calibration on the coaxial probe. Before measuring the dielectric spectrum, the prepared sample is placed on an oscillator and shaken for about 2 min, so that the milk components are uniformly distributed. Each sample was measured 3 times in duplicate, with the average of 3 measurements being the final result. During the measurement, the sample temperature was 25. + -. 1 ℃.
FIG. 3 is a graph of the mean dielectric spectrum of bovine colostrum spiked at different ratios used in the experiment; FIG. 3(a) shows the average dielectric spectrum for the sampleε′Curve of the bovine colostrum sample over most of the frequency band investigated (above about 50 MHz)ε′The values increase with increasing milk doping level. Water is a polar molecule, bovineOf colostrumε′Mainly dominated by water. With the incorporation of normal milk, free water molecules in the sample increase, and the molecular orientation polarization effect is gradually enhanced and appears in a dielectric spectrumε′The value of (a) increases. FIG. 3(b) is the average dielectric spectrum corresponding to 20% and 50% of the bovine colostrum and the normal milk mixed thereinε"Curve line.ε"The change occurred at about 2000 MHz with increasing levels of incorporation of normal milk, decreasing first and increasing second.
Step three: the raw dielectric spectrum curve is preprocessed. In order to find out main influence factors of heterogeneous characteristics on the identification of the doped bovine colostrum based on the dielectric spectrum method, eliminate noise interference generated in the dielectric spectrum measurement process or scattering influence due to the heterogeneous characteristics of the bovine colostrum and improve the model prediction performance, and by combining the heterogeneous characteristics of the bovine colostrum, two preprocessing methods of a noise elimination method, namely Savitzky-Golay smoothing, a second derivative method and a combination method thereof, and a scattering elimination method, namely standard normal variable transformation, multivariate scattering correction and a combination method thereof are adopted. Meanwhile, the influence of combined preprocessing of Savitzky-Golay smoothing and standard normal variable transformation on the recognition effect is contrastively analyzed.
Wherein the Savitzky-Golay smoothing is Savitzky-Golay, the second derivative is second derivative, the standard normal variable is transformed to a standard normal variable, and the multivariate scattering is corrected to a multivariate scatter correction. Savitzky-Golay smoothing and second derivative preprocessing can reduce random noise caused by electric signal interference and the like and improve the signal-to-noise ratio. The influence of scattering on spectral lines caused by uneven distribution of sample particles and different particle sizes can be eliminated by standard normal variable transformation and multivariate scattering correction preprocessing.
Dividing the pretreated bovine colostrum and the doped bovine colostrum at each ratio into a correction set and a test set by a classical sample division method Kennard-Stone method according to a ratio of 3: 1.
Step four: based on different dielectric spectrum preprocessing, the accuracy of recognizing the bovine colostrum and the doped bovine colostrum by comparing partial least squares discriminant analysis and a support vector machine model, and the dielectric spectrum preprocessing method combining Savitzky-Golay smoothing and a second derivative is preferably selected. Table 3 lists the results of linear partial least squares discriminant analysis and nonlinear support vector machine model identification after 154 sample dielectric spectrum data are respectively preprocessed by noise elimination preprocessing, Savitzky-Golay smoothing, second derivative and combination thereof, and scattering elimination preprocessing method, standard normal variable transformation, multivariate scattering correction and combination thereof, and 7 preprocessing modes of Savitzky-Golay smoothing and standard normal variable transformation combination, and lists the prediction results without dielectric spectrum preprocessing as comparison. As can be seen from table 3, when the sample division ratio is 3:1, the improvement effect of the model precision by three preprocessing, namely Savitzky-Golay smoothing, second-order derivative and combination of Savitzky-Golay smoothing and second-order derivative based on the noise elimination method is better than that by standard normal variable transformation, multivariate scattering correction and combination preprocessing of standard normal variable transformation and multivariate scattering correction based on the scattering elimination method, and the recognition accuracy of the two models, namely linear partial least squares discriminant analysis and nonlinear support vector machine, is improved, which indicates that the main influences of the heterogeneous characteristics of bovine colostrum on the adverse influence of the dielectric spectrum prediction are noise, baseline drift and the like, rather than the scattering effect caused by the heterogeneous characteristics. This phenomenon is particularly pronounced in non-linear support vector machine models. In addition, the effect of Savitzky-Golay smoothing and standard normal variable transformation, which are combined preprocessing of the noise elimination method and the scattering elimination method, is superior to that of standard normal variable transformation, and further shows that the elimination of noise interference in the dielectric spectrum can improve the model prediction performance. Meanwhile, as can be seen from table 3, the preprocessing method is that the accuracy of the test set of the Savitzky-Golay smoothing and second derivative combined time-biased least squares discriminant analysis model is the highest, reaching 97.37%. Therefore, a dielectric spectrum preprocessing method combining Savitzky-Golay smoothing with second derivative is preferred.
TABLE 3 accuracy of two models under different combination methods
Figure 465978DEST_PATH_IMAGE001
The symbols in table 3 illustrate:
untreated means that the dielectric spectrum has not been pre-processed; S-G represents Savitzky-Golay smoothing preprocessing; SD represents second derivative preprocessing; S-G + SD represents the combined preprocessing of Savitzky-Golay smoothing and second derivative; SNV represents standard normal variable transformation preprocessing; MSC represents multivariate scatter correction preprocessing; SNV + MSC represents the pretreatment of the combination of standard normal variable transformation and multivariate scattering correction; S-G + SNV represents Savitzky-Golay smoothing combined with standard normal variable transformation preprocessing.
FIG. 4 is a diagram of the results of a preferred noise cancellation-like approach to sample dielectric spectrum preprocessing, i.e., Savitzky-Golay smoothing, second derivative, and samples preprocessed by a combination of Savitzky-Golay smoothing and second derivativeε′Andε"curve line. FIG. 4 (a) shows that Savitzky-Golay smoothing removes the noise effects present in the original dielectric spectrum, resulting in a smoother, more stationary dielectric spectrum curve; the dielectric spectrum after the second derivative processing in fig. 4 (b) is more obvious in characteristic, and meanwhile, the interferences such as noise, baseline drift and the like in the original dielectric spectrum are removed. In FIG. 4 (c), Savitzky-Golay smoothing and second derivative have good complementarity, and the combined processing of the Savitzky-Golay smoothing and the second derivative reduces noise interference in the original dielectric spectrum, highlights component difference information in the dielectric spectrum and enhances the signal-to-noise ratio of the dielectric spectrum.
Symbolic illustration in fig. 4: S-G represents Savitzky-Golay smoothing; SD represents the second derivative; S-G + SD represents a Savitzky-Golay smoothing combined with a second derivative.
Step five: original dielectric spectrum data are processed by a preferred Savitzky-Golay smoothing and second derivative combined preprocessing method, the characteristics of dielectric spectra of bovine colostrum and doped bovine colostrum are combined, full spectra and dielectric spectrum data extracted by principal component analysis dimensionality reduction are used as input, two linear models of partial least squares discriminant analysis and linear discriminant analysis and two nonlinear models of a support vector machine and a multilayer perceptron are established, and the optimal model for qualitatively identifying the bovine colostrum and the doped bovine colostrum is determined. The partial least squares discriminant analysis is partial least squares discriminant analysis, and is a discriminant analysis method based on partial least squares regression. The linear discriminant analysis is linear discriminant analysis, and the principle is that the distance between two types of samples after projection is as large as possible by finding out the classified effective projection direction. The support vector machine is a support vector machine, and is a classification method based on a risk minimization idea, and the principle is to establish an optimal classification hyperplane so as to maximize blank areas among different samples. The multi-layer perceptron is a multi-layer perceptron, a feedforward artificial neural network model that maps multiple input datasets onto a single output dataset. The qualitative identification of the spiked bovine colostrum is shown in table 4.
And comprehensively evaluating the recognition performance of the linear and nonlinear models by sensitivity, specificity and accuracy. The sensitivity refers to the proportion,%, of the bovine colostrum sample which is correctly judged as the bovine colostrum sample; the specificity refers to the proportion,%, of the doped bovine colostrum sample correctly judged as the doped bovine colostrum sample; the accuracy rate is the ratio of the bovine colostrum and the adulterated bovine colostrum sample which are correctly judged in percent.
By comparing the qualitative identification accuracy of the doped bovine colostrum of the linear model and the nonlinear model, the identification accuracy of the linear model and the nonlinear model which are established based on the full frequency is higher than that of the model which is established based on the principal component analysis, namely, the accuracy of the model which is established by analyzing and extracting the principal component of the principal component shows that the variables related to the bovine colostrum sample information are removed in the process of analyzing and extracting the principal component of the principal component, and the noise interference, the baseline drift and the like are removed from the full spectrum data through Savitzky-Golay smoothing and second derivative preprocessing, so that a better identification effect is obtained. The recognition accuracy of the full-spectrum-based linear model test set is 97.37 percent, which is higher than 94.74 percent of the full-spectrum-based nonlinear model. This indicates that the linear model is more favorable for the identification of adulterated bovine colostrum. The linear discriminant analysis model based on the full spectrum has the best recognition performance, and the accuracy rates of a correction set and a test set are respectively 99.14% and 97.37%. Thus, for this example, the best model for qualitatively identifying adulterated bovine colostrum was a full spectrum based linear discriminant analysis model. The result shows that the reasonable selection of the dielectric spectrum pretreatment method and the model has important significance for improving the accuracy of the dielectric spectrum technology-based identification of the doped bovine colostrum model.
TABLE 4 qualitative discrimination of doped bovine colostrum by linear and nonlinear models
Figure 454663DEST_PATH_IMAGE002
The symbols in table 4 illustrate: PLS-DA, LDA, SVM and MLP respectively represent partial least square discriminant analysis, linear discriminant analysis, support vector machine and multilayer perceptron model; FS represents the full spectrum, PCA represents the characteristic wavelength extracted from the full spectrum by principal component analysis.
Step six: and for unknown bovine colostrum samples from different sources, completing the collection of dielectric spectrums according to the second step, and substituting collected dielectric spectrum data of the unknown bovine colostrum samples into the linear discriminant analysis model determined in the fifth step after combined pretreatment of Savitzky-Golay smoothing and second-order derivative determined in the fourth step to quickly and accurately identify the samples.
The unknown samples used for model verification in the embodiment are 44 samples, wherein 14 bovine colostrums are used, and 30 doped bovine colostrums are used for further verifying the performance of the established dielectric spectrum technology-based identification doped bovine colostrums model. FIG. 5 shows the identification result of unknown cow milk samples based on the optimal model established by the dielectric spectrum technique. The sensitivity, specificity and identification accuracy of the established linear discrimination model to samples in unknown samples are respectively 85.71%, 96.67% and 93.18%, which shows that the method has good identification performance and applicability to milk samples from different sources. The accuracy of the model established for the identification of unknown samples is lower than the accuracy of the identification of the samples used for modeling, mainly because of the different sample sources and acquisition times.
The embodiments show that the invention can rapidly and accurately carry out qualitative identification on the doped bovine colostrum by utilizing the dielectric spectrum technology.
It should be noted that the above-mentioned contents are only for illustrating one technical solution of the present invention, and not for limiting the scope of the present invention, and that the simple modifications or equivalent substitutions of the technical solution of the present invention by those skilled in the art do not exceed the scope of the present invention.

Claims (4)

1.一种基于介电谱技术的掺杂牛初乳定性识别方法,其特征在于,包括以下步骤:1. a qualitative identification method of doped bovine colostrum based on dielectric spectrum technology, is characterized in that, comprises the following steps: 步骤一:采集来自不同地区、季节、饲养条件的不同奶牛牛乳样本;牛初乳样品为奶牛分娩3天内的乳,常乳样品为正常泌乳期奶牛的乳;在室温下保存牛初乳及常乳样品,试验前依次将牛初乳样品按掺杂质量分数为10%、20%、30%、40%及50%的比例与常乳样品混合得到掺杂牛初乳样品;将每个牛初乳样品和配制的掺杂牛初乳样品分为3份备用;Step 1: Collect milk samples from different dairy cows in different regions, seasons and feeding conditions; Colostrum samples are the milk of dairy cows within 3 days of giving birth, and regular milk samples are the milk of normal lactating cows; Milk samples, before the test, the bovine colostrum samples were mixed with the normal milk samples in the proportion of doping mass fraction of 10%, 20%, 30%, 40% and 50% to obtain the adulterated bovine colostrum samples; The colostrum sample and the prepared mixed bovine colostrum sample are divided into 3 parts for use; 步骤二:测试前预热网络分析仪1h,然后对其依次进行开路、短路和50 Ω 负载校准;设置仪器测量参数,主要包括测量频率范围、测量点数,最后校准末端开路的同轴探头;测量样品介电谱前,将制备好的样品放于振荡器上摇匀2 min左右,使乳成分分布均匀;每个样品重复测量3次,3次测量的平均值为最终结果;测量期间,样品温度为25±1ºC;Step 2: Preheat the network analyzer for 1h before testing, and then perform open-circuit, short-circuit and 50 Ω load calibration in sequence; set the instrument's measurement parameters, mainly including the measurement frequency range, the number of measurement points, and finally calibrate the coaxial probe with an open end; measure Before the sample dielectric spectrum, the prepared sample was placed on the shaker and shaken for about 2 minutes to make the milk components evenly distributed; each sample was measured 3 times, and the average value of the 3 measurements was the final result; during the measurement, the sample The temperature is 25±1ºC; 步骤三:根据牛初乳强非均质的特点,选择噪声消除类方法—Savitzky-Golay平滑、二阶导数及其组合方法和散射消除类方法—标准正态变量变换、多元散射校正及其组合方法进行预处理,以消除介电谱测量过程中产生的噪声干扰或由于牛初乳非均质特性产生的散射影响;利用经典样本划分方法Kennard-Stone按3:1的比例将预处理后的牛初乳及各个比例下掺杂牛初乳划分为校正集和测试集;Step 3: According to the strong heterogeneity of bovine colostrum, select noise elimination methods—Savitzky-Golay smoothing, second derivative and its combination method, and scattering elimination methods—standard normal variable transformation, multivariate scattering correction and its combination The method performs preprocessing to eliminate the noise interference generated during the dielectric spectrum measurement or the scattering effect due to the heterogeneous characteristics of bovine colostrum. The bovine colostrum and adulterated bovine colostrum in various proportions are divided into calibration set and test set; 步骤四:基于噪声消除类及散射消除类预处理方法,对比线性偏最小二乘判别分析与非线性支持向量机模型识别牛初乳及掺杂牛初乳的准确率,优选出Savitzky-Golay平滑与二阶导数组合的介电谱预处理方法;Step 4: Based on the preprocessing methods of noise elimination and scattering elimination, compare the accuracy of linear partial least squares discriminant analysis and nonlinear support vector machine model to identify bovine colostrum and doped bovine colostrum, and optimize the Savitzky-Golay smoothing Dielectric spectrum preprocessing method combined with second derivative; 步骤五:以优选的Savitzky-Golay平滑与二阶导数组合预处理方法处理原始介电谱数据,以全谱和经主成分分析降维提取后的介电谱数据作为模型输入,建立偏最小二乘判别分析和线性判别分析两种线性模型以及支持向量机和多层感知机两种非线性模型;基于线性模型及非线性模型的识别准确率,对比确定最优模型为基于全谱的线性判别分析模型;Step 5: Process the original dielectric spectrum data with the preferred Savitzky-Golay smoothing and second-order derivative combined preprocessing method, and use the full spectrum and the dielectric spectrum data extracted by the principal component analysis to reduce the dimension as the model input to establish the partial least squares. Two linear models, multiplicative discriminant analysis and linear discriminant analysis, and two nonlinear models, support vector machine and multilayer perceptron; based on the recognition accuracy of the linear model and the nonlinear model, the optimal model is determined as the full-spectrum-based linear discriminant. Analytical model; 步骤六:对于不同来源的未知牛初乳样品,按照步骤二完成介电谱的采集,将采集的未知样品介电谱数据经步骤四确定的Savitzky-Golay平滑与二阶导数组合预处理后,代入步骤五确定的线性判别分析模型中,对该样品快速准确识别。Step 6: For unknown bovine colostrum samples from different sources, complete the acquisition of the dielectric spectrum according to step 2, and preprocess the collected dielectric spectrum data of the unknown sample through the combination of Savitzky-Golay smoothing and second derivative determined in step 4. Substitute into the linear discriminant analysis model determined in step 5 to quickly and accurately identify the sample. 2.根据权利要求1所述的一种基于介电谱技术的掺杂牛初乳定性识别方法,其特征在于,步骤四中噪声消除类预处理明显优于散射消除类预处理,表明基于介电谱法识别掺杂牛初乳的不利影响为噪声干扰,而非由牛初乳非均质特性引起的散射效应。2. a kind of qualitative identification method of doped bovine colostrum based on dielectric spectrum technology according to claim 1, is characterized in that, in step 4, noise elimination preprocessing is obviously better than scattering elimination preprocessing, indicating that based on the Electrospectroscopy identified the adverse effects of doped bovine colostrum as noise interference rather than scattering effects caused by the heterogeneous nature of bovine colostrum. 3.根据权利要求1所述的一种基于介电谱技术的掺杂牛初乳定性识别方法,其特征在于,步骤五中基于介电谱技术识别掺杂牛初乳所建立的线性模型预测效果明显优于非线性模型。3. a kind of qualitative identification method of doped bovine colostrum based on dielectric spectrum technology according to claim 1, is characterized in that, in step 5, the linear model prediction established based on dielectric spectrum technology identification of doped bovine colostrum The effect is significantly better than the nonlinear model. 4.根据权利要求1所述的一种基于介电谱技术的掺杂牛初乳定性识别方法,其特征在于,该预处理方法及模型选择方法不排除用于哺乳类动物初乳掺杂常乳的定性识别。4. a kind of qualitative identification method of doped bovine colostrum based on dielectric spectrum technology according to claim 1, is characterized in that, this pretreatment method and model selection method do not exclude the normal use for mammalian colostrum doped. Qualitative identification of milk.
CN202111209944.6A 2021-10-18 2021-10-18 Qualitative identification method of doped bovine coloctrum based on dielectric spectrum technology Expired - Fee Related CN113740394B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111209944.6A CN113740394B (en) 2021-10-18 2021-10-18 Qualitative identification method of doped bovine coloctrum based on dielectric spectrum technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111209944.6A CN113740394B (en) 2021-10-18 2021-10-18 Qualitative identification method of doped bovine coloctrum based on dielectric spectrum technology

Publications (2)

Publication Number Publication Date
CN113740394A true CN113740394A (en) 2021-12-03
CN113740394B CN113740394B (en) 2024-03-01

Family

ID=78726903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111209944.6A Expired - Fee Related CN113740394B (en) 2021-10-18 2021-10-18 Qualitative identification method of doped bovine coloctrum based on dielectric spectrum technology

Country Status (1)

Country Link
CN (1) CN113740394B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115096958A (en) * 2022-07-14 2022-09-23 西北农林科技大学 Flowing liquid internal information rapid detection method based on dielectric spectrum and model transmission

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106248746A (en) * 2016-09-25 2016-12-21 西北农林科技大学 A kind of milk protein method for quickly detecting contents based on dielectric and magnetic technology
CN108318442A (en) * 2018-02-06 2018-07-24 江苏康缘药业股份有限公司 A kind of detection method suitable for Chinese medicine suspending system
CN108562622A (en) * 2018-02-05 2018-09-21 西北农林科技大学 A kind of fresh sheep breast fast detecting method for total number of bacterial colony based on dielectric property technology
AU2020101607A4 (en) * 2019-08-28 2020-09-10 Agro-environmental Protection Institute, Ministry Of Agriculture And Rural Affairs Method for rapidly predicting nitrogen and phosphorus content in slurry movement routes of multiple different large-scale dairy farms by comprehensively integrating all factors
CN112730312A (en) * 2021-02-03 2021-04-30 西北农林科技大学 Doped bovine colostrum qualitative identification method based on near infrared spectrum technology

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106248746A (en) * 2016-09-25 2016-12-21 西北农林科技大学 A kind of milk protein method for quickly detecting contents based on dielectric and magnetic technology
CN108562622A (en) * 2018-02-05 2018-09-21 西北农林科技大学 A kind of fresh sheep breast fast detecting method for total number of bacterial colony based on dielectric property technology
CN108318442A (en) * 2018-02-06 2018-07-24 江苏康缘药业股份有限公司 A kind of detection method suitable for Chinese medicine suspending system
AU2020101607A4 (en) * 2019-08-28 2020-09-10 Agro-environmental Protection Institute, Ministry Of Agriculture And Rural Affairs Method for rapidly predicting nitrogen and phosphorus content in slurry movement routes of multiple different large-scale dairy farms by comprehensively integrating all factors
CN112730312A (en) * 2021-02-03 2021-04-30 西北农林科技大学 Doped bovine colostrum qualitative identification method based on near infrared spectrum technology

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
任东;沈俊;任顺;王纪华;陆安祥;: "一种面向土壤重金属含量检测的X射线荧光光谱预处理方法研究", 光谱学与光谱分析, no. 12 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115096958A (en) * 2022-07-14 2022-09-23 西北农林科技大学 Flowing liquid internal information rapid detection method based on dielectric spectrum and model transmission
CN115096958B (en) * 2022-07-14 2024-08-20 西北农林科技大学 Method for rapidly detecting internal information of flowing liquid based on dielectric spectrum and model transfer

Also Published As

Publication number Publication date
CN113740394B (en) 2024-03-01

Similar Documents

Publication Publication Date Title
An et al. Effect of spectral pretreatment on qualitative identification of adulterated bovine colostrum by near-infrared spectroscopy
CN106483166A (en) A kind of method based on dielectric spectra technology quick detection cow's milk fat content
JP6339244B2 (en) Method for predicting sugar content and acidity of fruit using multivariate statistical analysis of FT-IR spectrum data
CN102879353B (en) The method of content of protein components near infrared detection peanut
Scavarda et al. Cocoa smoky off-flavour: A MS-based analytical decision maker for routine controls
CN106248746B (en) A kind of milk protein method for quickly detecting contents based on dielectric and magnetic technology
CN109540838B (en) Method for rapidly detecting acidity in fermented milk
Wang et al. Effect of homogenisation on detection of milk protein content based on NIR diffuse reflectance spectroscopy
CN112730312A (en) Doped bovine colostrum qualitative identification method based on near infrared spectrum technology
CN105891147A (en) Near infrared spectrum information extraction method based on canonical correlation coefficients
CN107917897A (en) The method of the special doctor's food multicomponent content of near infrared ray
He et al. Rapid detection of adulteration of goat milk and goat infant formulas using near-infrared spectroscopy fingerprints
CN116649533B (en) Quality optimization method for millet flour production
CN114324233A (en) Near-infrared nondestructive online quality detection method and system for nutritional ingredients of agricultural products
CN113324940A (en) Spectrum grading method for super-high-quality milk, high-protein special milk, high-milk-fat special milk and common milk
CN113310930A (en) Spectral identification method of high-temperature sterilized milk, pasteurized milk and pasteurized milk mixed with high-temperature sterilized milk
Yang et al. Comparison of near-infrared and dielectric spectra for quantitative identification of bovine colostrum adulterated with mature milk
Lolli et al. How nuclear magnetic resonance contributes to food authentication: Current trends and perspectives
CN110672578A (en) Model universality and stability verification method for polar component detection of frying oil
Strani et al. Milk renneting: Study of process factor influences by FT-NIR spectroscopy and chemometrics
CN113310929A (en) Soybean powder doped in high-temperature sterilized milk and spectral identification method of doping proportion thereof
González‐Martín et al. Discrimination of seasonality in cheeses by near‐infrared technology
CN113310938A (en) Method for rapidly identifying pasteurized fresh buffalo milk and fresh dairy cow milk
CN113740394A (en) Qualitative identification method of doped bovine colostrum based on dielectric spectrum technology
CN113310934A (en) Method for quickly identifying milk cow milk mixed in camel milk and mixing proportion thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20240301