[go: up one dir, main page]

CN113814014B - Digital polymerase chain reaction microfluidic device and preparation method thereof - Google Patents

Digital polymerase chain reaction microfluidic device and preparation method thereof Download PDF

Info

Publication number
CN113814014B
CN113814014B CN202111117340.9A CN202111117340A CN113814014B CN 113814014 B CN113814014 B CN 113814014B CN 202111117340 A CN202111117340 A CN 202111117340A CN 113814014 B CN113814014 B CN 113814014B
Authority
CN
China
Prior art keywords
substrate
modification layer
groove
layer
modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111117340.9A
Other languages
Chinese (zh)
Other versions
CN113814014A (en
Inventor
邓睿君
邓林
刘祝凯
丁丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Beijing BOE Technology Development Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Beijing BOE Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd, Beijing BOE Technology Development Co Ltd filed Critical BOE Technology Group Co Ltd
Priority to CN202111117340.9A priority Critical patent/CN113814014B/en
Publication of CN113814014A publication Critical patent/CN113814014A/en
Application granted granted Critical
Publication of CN113814014B publication Critical patent/CN113814014B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Clinical Laboratory Science (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本公开示例性实施例提供了一种数字聚合酶链式反应微流控装置及其制备方法。数字聚合酶链式反应微流控装置包括相对设置的第一基板和第二基板;所述第一基板包括第一基底、设置在所述第一基底朝向所述第二基板一侧的微腔限定层以及设置在所述微腔限定层远离所述第一基底一侧的第一表面修饰层;所述微腔限定层包括多个作为微反应腔的凹槽和位于相邻凹槽之间的限定坝,至少一个凹槽内的所述第一表面修饰层设置有第一修饰结构,所述第一修饰结构被配置为增加微反应腔内部的亲水特性。本公开通过在微反应腔的内部和外部分别进行亲水结构和疏水结构设计,提高了自吸液进样和油封性能。

Figure 202111117340

Exemplary embodiments of the present disclosure provide a digital polymerase chain reaction microfluidic device and a preparation method thereof. The digital polymerase chain reaction microfluidic device includes a first substrate and a second substrate oppositely arranged; the first substrate includes a first substrate, a microcavity arranged on the side of the first substrate facing the second substrate A confining layer and a first surface modification layer disposed on the side of the microcavity confining layer away from the first substrate; the microcavity confining layer includes a plurality of grooves as microreaction chambers and is located between adjacent grooves The first surface modification layer in at least one groove is provided with a first modification structure, and the first modification structure is configured to increase the hydrophilic property inside the micro-reaction chamber. The disclosure improves the self-absorbing liquid sampling and oil sealing performance by respectively designing a hydrophilic structure and a hydrophobic structure inside and outside the micro-reaction chamber.

Figure 202111117340

Description

数字聚合酶链式反应微流控装置及其制备方法Digital polymerase chain reaction microfluidic device and preparation method thereof

技术领域technical field

本公开涉及但不限于数字化荧光检测技术领域,具体涉及一种数字聚合酶链式反应微流控装置及其制备方法。The present disclosure relates to but not limited to the technical field of digital fluorescence detection, and specifically relates to a digital polymerase chain reaction microfluidic device and a preparation method thereof.

背景技术Background technique

数字聚合酶链式反应(Digital Polymerase Chain Reaction,简称dPCR),dPCR是一种提供数字化DNA量化信息的定量分析方法,采用分而治之(divide and conquer)的检测策略,利用微流控技术将样品和PCR试剂的混合物分散在芯片中一个个微型微反应腔内,对每个腔室中的目标分子进行独立PCR扩增。Digital Polymerase Chain Reaction (Digital Polymerase Chain Reaction, referred to as dPCR), dPCR is a quantitative analysis method that provides digital DNA quantification information. The mixture of reagents is dispersed in each miniature micro-reaction chamber in the chip, and the target molecule in each chamber is subjected to independent PCR amplification.

经本申请发明人研究发现,现有数字聚合酶链式反应微流控装置存在进样及扩增过程中反应液未完全填充或填充后出现窜扰等问题。The inventors of the present application have found that the existing digital polymerase chain reaction microfluidic devices have problems such as incomplete filling of the reaction solution during sample injection and amplification or crosstalk after filling.

公开内容public content

以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。The following is an overview of the topics described in detail in this article. This summary is not intended to limit the scope of the claims.

本公开示例性实施例所要解决的技术问题是,提供一种数字聚合酶链式反应微流控装置及其制备方法,以解决现有结构存在反应液未完全填充或填充后出现窜扰等问题。The technical problem to be solved by the exemplary embodiments of the present disclosure is to provide a digital polymerase chain reaction microfluidic device and a preparation method thereof, so as to solve the problems of the existing structure that the reaction liquid is not completely filled or cross-talk occurs after filling.

为了解决上述技术问题,本公开示例性实施例提供了一种数字聚合酶链式反应微流控装置,包括相对设置的第一基板和第二基板;所述第一基板包括第一基底、设置在所述第一基底朝向所述第二基板一侧的微腔限定层以及设置在所述微腔限定层远离所述第一基底一侧的第一表面修饰层;所述微腔限定层包括多个作为微反应腔的凹槽和位于相邻凹槽之间的限定坝,至少一个凹槽内的所述第一表面修饰层设置有第一修饰结构,所述第一修饰结构被配置为增加微反应腔内部的亲水特性。In order to solve the above technical problems, an exemplary embodiment of the present disclosure provides a digital polymerase chain reaction microfluidic device, including a first substrate and a second substrate oppositely arranged; the first substrate includes a first substrate, a set A microcavity-defining layer on the side of the first substrate facing the second substrate and a first surface modification layer disposed on the side of the microcavity-defining layer away from the first substrate; the microcavity-defining layer includes A plurality of grooves as micro-reaction chambers and defined dams between adjacent grooves, the first surface modification layer in at least one groove is provided with a first modification structure, and the first modification structure is configured as Increase the hydrophilic properties inside the micro-reaction chamber.

在示例性实施方式中,所述第一表面修饰层包括覆盖所述凹槽中槽底壁的槽底壁修饰层和覆盖所述凹槽中槽侧壁的槽侧壁修饰层,所述第一修饰结构设置在所述槽底壁修饰层远离所述第一基底一侧的表面上。In an exemplary embodiment, the first surface modification layer includes a groove bottom wall modification layer covering the groove bottom wall in the groove and a groove side wall modification layer covering the groove side walls in the groove, the first surface modification layer A modification structure is disposed on the surface of the groove bottom wall modification layer away from the first base.

在示例性实施方式中,所述第一修饰结构包括在所述槽底壁修饰层远离所述第一基底一侧表面上设置的至少一个第一凸起。In an exemplary embodiment, the first modification structure includes at least one first protrusion disposed on a surface of the groove bottom wall modification layer away from the first substrate.

在示例性实施方式中,在平行于所述第一基底的平面内,所述第一凸起的第一特征长度为0.5μm至2μm,相邻第一凸起之间的第一间距为0.5倍至2.0倍的第一特征长度,所述第一特征长度为所述第一凸起的最大尺寸;在垂直于所述第一基底的平面内,所述第一凸起的第一高度为0.1μm至20μm。In an exemplary embodiment, in a plane parallel to the first substrate, the first characteristic length of the first protrusion is 0.5 μm to 2 μm, and the first distance between adjacent first protrusions is 0.5 μm. times to 2.0 times the first characteristic length, the first characteristic length being the maximum dimension of the first protrusion; in a plane perpendicular to the first base, the first height of the first protrusion is 0.1μm to 20μm.

在示例性实施方式中,所述限定坝远离所述第一基底的一侧设置有第二修饰结构,所述第二修饰结构被配置为增加微反应腔外部的疏水特性。In an exemplary embodiment, the side of the limiting dam away from the first substrate is provided with a second modification structure, and the second modification structure is configured to increase the hydrophobicity of the exterior of the micro-reaction chamber.

在示例性实施方式中,所述第一表面修饰层包括覆盖所述凹槽中槽底壁的槽底壁修饰层、覆盖所述凹槽中槽侧壁的槽侧壁修饰层以及覆盖所述限定坝中坝顶壁的坝顶壁修饰层;至少一个坝顶壁修饰层远离所述第一基底的一侧设置有第二表面修饰层,所述第二修饰结构设置在所述第二表面修饰层远离所述第一基底一侧的表面上。In an exemplary embodiment, the first surface modification layer includes a groove bottom wall modification layer covering the groove bottom wall in the groove, a groove side wall modification layer covering the groove side wall in the groove, and a groove side wall modification layer covering the groove. A dam crest finish layer defining the dam crest wall in the dam; at least one dam crest finish layer is provided with a second surface finish layer on a side away from the first base, and the second finish structure is set on the second surface The modification layer is on the surface of the side away from the first base.

在示例性实施方式中,所述第一表面修饰层包括覆盖所述凹槽中槽底壁的槽底壁修饰层和覆盖所述凹槽中槽侧壁的槽侧壁修饰层;所述第二修饰结构设置在所述限定坝中坝顶壁远离所述第一基底一侧的表面上。In an exemplary embodiment, the first surface modification layer includes a groove bottom wall modification layer covering the groove bottom wall in the groove and a groove side wall modification layer covering the groove side walls in the groove; the second The second modification structure is arranged on the surface of the top wall of the defined dam on the side away from the first base.

在示例性实施方式中,所述第二修饰结构包括在第二表面修饰层或限定坝中坝顶壁远离所述第一基底一侧表面上设置的至少一个第二凸起。In an exemplary embodiment, the second modification structure includes at least one second protrusion disposed on the surface of the second surface modification layer or the top wall of the defined dam on a side away from the first base.

在示例性实施方式中,在平行于所述第一基底的平面内,所述第二凸起的第二特征长度为0.5μm至2μm,相邻第二凸起之间的第二间距为0.5倍至2.0倍的第一特征长度,所述第二特征长度是所述第二凸起的最大尺寸;在垂直于所述第一基底的平面内,所述第二凸起的第二高度为0.1μm至20μm。In an exemplary embodiment, in a plane parallel to the first substrate, the second characteristic length of the second protrusions is 0.5 μm to 2 μm, and the second distance between adjacent second protrusions is 0.5 μm. times to 2.0 times the first characteristic length, the second characteristic length is the maximum dimension of the second protrusion; in a plane perpendicular to the first base, the second height of the second protrusion is 0.1μm to 20μm.

在示例性实施方式中,所述第一表面修饰层包括覆盖所述凹槽中槽底壁的槽底壁修饰层、覆盖所述凹槽中槽侧壁的槽侧壁修饰层以及覆盖所述限定坝中坝顶壁的坝顶壁修饰层;至少一个坝顶壁修饰层远离所述第一基底一侧的表面上设置有导流结构,所述导流结构位于所述坝顶壁修饰层靠近所述凹槽的一侧,所述导流结构被配置为提高反应液进入所述微反应腔的效率。In an exemplary embodiment, the first surface modification layer includes a groove bottom wall modification layer covering the groove bottom wall in the groove, a groove side wall modification layer covering the groove side wall in the groove, and a groove side wall modification layer covering the groove. A dam crest finishing layer defining the dam crest in the dam; at least one dam crest finishing layer is provided with a flow guide structure on the surface of the side away from the first base, and the flow guiding structure is located in the dam crest finishing layer Near the side of the groove, the flow guide structure is configured to improve the efficiency of the reaction liquid entering the micro-reaction chamber.

在示例性实施方式中,所述导流结构包括在所述坝顶壁修饰层远离所述第一基底一侧表面上设置的至少一个导流柱。In an exemplary embodiment, the diversion structure includes at least one diversion column disposed on a surface of the top wall finishing layer away from the first base.

在示例性实施方式中,在平行于所述第一基底的平面内,所述导流柱的导流特征长度为0.5μm至2μm,相邻导流柱之间的导流间距为0.5倍至2.0倍的导流特征长度,所述导流特征长度是所述导流柱的最大尺寸;在垂直于所述第一基底的平面内,所述导流柱的导流高度为0.1μm至20μm。In an exemplary embodiment, in a plane parallel to the first substrate, the guide column has a guide feature length of 0.5 μm to 2 μm, and the guide distance between adjacent guide posts is 0.5 times to 2 μm. 2.0 times the diversion characteristic length, where the diversion characteristic length is the maximum dimension of the diversion column; in a plane perpendicular to the first substrate, the diversion height of the diversion column is 0.1 μm to 20 μm .

在示例性实施方式中,所述导流结构中导流柱的导流高度大于所述第一修饰结构中第一凸起的第一高度,和/或,所述导流结构中导流柱的导流间距大于第一修饰结构中第一凸起的第一间距。In an exemplary embodiment, the guide height of the guide post in the guide structure is greater than the first height of the first protrusion in the first modification structure, and/or, the guide post in the guide structure The diversion distance is greater than the first distance between the first protrusions in the first modified structure.

在示例性实施方式中,所述第二基板包括第二基底和设置在所述第二基底朝向所述第一基板一侧的第三表面修饰层,所述第三表面修饰层朝向所述第一基板一侧的表面上设置有第三修饰结构,所述第三修饰结构被配置为增加微反应腔外部的疏水特性。In an exemplary embodiment, the second substrate includes a second base and a third surface modification layer disposed on a side of the second base facing the first substrate, and the third surface modification layer faces the first substrate. A third modification structure is arranged on the surface of one side of the substrate, and the third modification structure is configured to increase the hydrophobicity of the exterior of the micro-reaction chamber.

在示例性实施方式中,所述第三修饰结构包括在所述第三表面修饰层朝向所述第一基板一侧的表面上设置的至少一个第三凸起。In an exemplary embodiment, the third modification structure includes at least one third protrusion provided on a surface of the third surface modification layer facing the first substrate.

在示例性实施方式中,在平行于所述第一基底的平面内,所述第三凸起的第三特征长度为0.5μm至2μm,相邻第三凸起之间的第二间距为0.5倍至2.0倍的第三特征长度,所述第三特征长度是所述第三凸起的最大尺寸;在垂直于所述第一基底的平面内,所述第三凸起的第三高度为0.1μm至20μm。In an exemplary embodiment, in a plane parallel to the first substrate, the third characteristic length of the third protrusions is 0.5 μm to 2 μm, and the second distance between adjacent third protrusions is 0.5 μm. times to 2.0 times the third characteristic length, the third characteristic length is the maximum dimension of the third protrusion; in a plane perpendicular to the first base, the third height of the third protrusion is 0.1μm to 20μm.

在示例性实施方式中,所述第三修饰结构中第三凸起的第三高度大于第二修饰结构中第二凸起的第二高度,和/或,所述第三修饰结构中第三凸起的第三间距大于第二修饰结构中第二凸起的第二间距。In an exemplary embodiment, the third height of the third protrusion in the third modified structure is greater than the second height of the second protrusion in the second modified structure, and/or, the third height of the third protrusion in the third modified structure The third pitch of the protrusions is greater than the second pitch of the second protrusions in the second modified structure.

本公开示例性实施例还提供了一种数字聚合酶链式反应微流控装置的制备方法,包括:Exemplary embodiments of the present disclosure also provide a method for preparing a digital polymerase chain reaction microfluidic device, including:

分别制备第一基板和第二基板;所述第一基板包括第一基底、设置在所述第一基底朝向所述第二基板一侧的微腔限定层以及设置在所述微腔限定层远离所述第一基底一侧的第一表面修饰层;所述微腔限定层包括多个作为微反应腔的凹槽和位于相邻凹槽之间的限定坝,至少一个凹槽内的所述第一表面修饰层设置有第一修饰结构,所述第一修饰结构被配置为增加微反应腔内部的亲水特性;Prepare a first substrate and a second substrate respectively; the first substrate includes a first substrate, a microcavity defining layer disposed on the first substrate facing the second substrate, and a microcavity defining layer disposed on a side away from the microcavity defining layer The first surface modification layer on one side of the first substrate; the microcavity-defining layer includes a plurality of grooves as micro-reaction chambers and a limit dam between adjacent grooves, the at least one groove in the groove The first surface modification layer is provided with a first modification structure, and the first modification structure is configured to increase the hydrophilic property inside the micro-reaction chamber;

通过封装处理将所述第一基板和第二基板对盒封装。The first substrate and the second substrate are packaged into a box through a packaging process.

在示例性实施方式中,制备第一基板包括:In an exemplary embodiment, preparing the first substrate includes:

在所述第一基底上形成微腔限定层,所述微腔限定层包括多个作为微反应腔的凹槽和位于相邻凹槽之间的限定坝;Forming a microcavity-defining layer on the first substrate, the microcavity-defining layer comprising a plurality of grooves serving as microreaction chambers and limiting dams between adjacent grooves;

形成第一表面修饰层,所述第一表面修饰层包括覆盖所述凹槽中槽底壁的槽底壁修饰层、覆盖所述凹槽中槽侧壁的槽侧壁修饰层以及覆盖所述限定坝远离所述第一基底一侧的坝顶壁修饰层,至少一个槽底壁修饰层远离所述第一基底一侧的表面上形成有第一修饰结构,所述第一修饰结构包括至少一个第一凸起;Forming a first surface modification layer, the first surface modification layer includes a groove bottom wall modification layer covering the groove bottom wall in the groove, a groove side wall modification layer covering the groove side wall in the groove, and a groove side wall modification layer covering the groove The dam top wall modification layer on the side away from the first base is defined, and at least one groove bottom wall modification layer has a first modification structure formed on the surface of the side away from the first base, and the first modification structure includes at least a first bump;

形成第二表面修饰层,所述第二表面修饰层形成在至少一个坝顶壁修饰层远离所述第一基底的一侧,所述第二表面修饰层远离所述第一基底一侧的表面上形成有第二修饰结构,所述第二修饰结构包括至少一个第二凸起。forming a second surface modification layer, the second surface modification layer is formed on the side of at least one dam top wall modification layer away from the first base, and the second surface modification layer is on the surface of the side away from the first base A second modification structure is formed on the top, and the second modification structure includes at least one second protrusion.

在示例性实施方式中,制备第二基板包括:In an exemplary embodiment, preparing the second substrate includes:

在第二基底朝向所述第一基板的一侧形成第三表面修饰层,所述第三表面修饰层朝向所述第一基板一侧的表面上形成有第三修饰结构,所述第三修饰结构包括至少一个第三凸起。A third surface modification layer is formed on the side of the second substrate facing the first substrate, a third modification structure is formed on the surface of the third surface modification layer facing the first substrate, and the third modification The structure includes at least one third protrusion.

本公开示例性实施例提供了一种数字聚合酶链式反应微流控装置及其制备方法,通过在微反应腔的内部和外部分别进行亲水结构和疏水结构设计,有效避免了进样及扩增过程中反应液未完全填充或填充后出现窜扰等不良,提高了自吸液进样和油封性能。Exemplary embodiments of the present disclosure provide a digital polymerase chain reaction microfluidic device and a preparation method thereof. By designing a hydrophilic structure and a hydrophobic structure on the inside and outside of the micro-reaction chamber, it effectively avoids sample injection and During the amplification process, the reaction liquid is not completely filled or cross-talk occurs after filling, which improves the performance of self-absorbing liquid sampling and oil sealing.

当然,实施本公开的任一产品或方法并不一定需要同时达到以上所述的所有优点。本公开的其它特征和优点将在随后的说明书实施例中阐述,并且,部分地从说明书实施例中变得显而易见,或者通过实施本公开而了解。本公开示例性实施例的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。Of course, implementing any product or method of the present disclosure does not necessarily need to achieve all the advantages described above at the same time. Additional features and advantages of the disclosure will be set forth in the description which follows, and, in part, will be apparent from the description, or can be learned by practice of the disclosure. The objectives and other advantages of the exemplary embodiments of the present disclosure may be realized and attained by the structure particularly pointed out in the written description, claims hereof as well as the appended drawings.

在阅读并理解了附图和详细描述后,可以明白其他方面。Other aspects will be apparent to others upon reading and understanding the drawings and detailed description.

附图说明Description of drawings

附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。附图中各部件的形状和大小不反映真实比例,目的只是示意说明本公开内容。The accompanying drawings are used to provide a further understanding of the technical solutions of the present disclosure, and constitute a part of the specification, and are used together with the embodiments of the present disclosure to explain the technical solutions of the present disclosure, and do not constitute limitations to the technical solutions of the present disclosure. The shapes and sizes of the various components in the drawings do not reflect true scale, but are only intended to illustrate the present disclosure.

图1为本公开示例性实施例一种dPCR微流控装置的结构示意图;FIG. 1 is a schematic structural diagram of a dPCR microfluidic device according to an exemplary embodiment of the present disclosure;

图2为本公开实施例形成第一导电层图案后的结构示意图;2 is a schematic structural view of an embodiment of the present disclosure after forming a first conductive layer pattern;

图3为本公开实施例形成第一绝缘层图案后的结构示意图;3 is a schematic structural view of an embodiment of the present disclosure after forming a first insulating layer pattern;

图4为本公开实施例形成第二导电层图案后的结构示意图;4 is a schematic structural view of an embodiment of the present disclosure after forming a second conductive layer pattern;

图5为本公开实施例形成第二绝缘层图案后的结构示意图;5 is a schematic structural view of an embodiment of the present disclosure after forming a second insulating layer pattern;

图6a和图6b为本公开实施例形成微腔限定层图案后的结构示意图;Fig. 6a and Fig. 6b are structural schematic diagrams of the microcavity-defining layer pattern formed in the embodiment of the present disclosure;

图7a和图7b为本公开形成第一表面修饰层图案后的结构示意图;Fig. 7a and Fig. 7b are structural schematic diagrams of the present disclosure after the formation of the first surface modification layer pattern;

图8a和图8b为本公开形成第二表面修饰层图案后的结构示意图;Fig. 8a and Fig. 8b are structural schematic diagrams of the present disclosure after forming the pattern of the second surface modification layer;

图9为本公开实施例形成第三表面修饰层图案后的结构示意图;9 is a schematic structural view of an embodiment of the present disclosure after forming a pattern of a third surface modification layer;

图10a和图10b为本公开实施例另一种dPCR微流控装置的结构示意图;FIG. 10a and FIG. 10b are structural schematic diagrams of another dPCR microfluidic device according to an embodiment of the present disclosure;

图11a和图11b为本公开实施例又一种dPCR微流控装置的结构示意图;FIG. 11a and FIG. 11b are structural schematic diagrams of another dPCR microfluidic device according to an embodiment of the present disclosure;

图12为本公开示例性实施例一种反应区域的平面结构示意图。Fig. 12 is a schematic plan view of a reaction area according to an exemplary embodiment of the present disclosure.

附图标记说明:Explanation of reference signs:

10—第一基底;           11—控制电极;           12—第一绝缘层;10—the first substrate; 11—the control electrode; 12—the first insulating layer;

13—加热电极;           14—第二绝缘层;         20—第二基底;13—heating electrode; 14—second insulating layer; 20—second substrate;

30—微腔限定层;         31—限定坝;             32—坝顶壁;30—microcavity confinement layer; 31—limited dam; 32—dam crest wall;

33—坝侧壁;             40—第一表面修饰层;     41—第一修饰结构;33—dam side wall; 40—the first surface modification layer; 41—the first modification structure;

50—第二表面修饰层;     51—第二修饰结构;       60—凹槽;50—the second surface modification layer; 51—the second modification structure; 60—the groove;

61—槽底壁;             62—槽侧壁;             70—导流结构;61—the bottom wall of the groove; 62—the side wall of the groove; 70—the diversion structure;

80—第三表面修饰层;     81—第三修饰结构;       82—进液口;80—the third surface modification layer; 81—the third modification structure; 82—liquid inlet;

90—封框胶;             100—第一基板;          110—反应区域;90—sealant; 100—first substrate; 110—reaction area;

120—周边区域;          200—第二基板。120—peripheral area; 200—second substrate.

具体实施方式Detailed ways

为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。注意,实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为各种各样的形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。In order to make the purpose, technical solution and advantages of the present disclosure clearer, the embodiments of the present disclosure will be described in detail below in conjunction with the accompanying drawings. Note that an embodiment may be embodied in many different forms. Those skilled in the art can easily understand the fact that the means and contents can be changed into various forms without departing from the gist and scope of the present disclosure. Therefore, the present disclosure should not be interpreted as being limited only to the contents described in the following embodiments. In the case of no conflict, the embodiments in the present disclosure and the features in the embodiments can be combined arbitrarily with each other.

本公开中的附图比例可以作为实际工艺中的参考,但不限于此。本公开中所描述的附图仅是结构示意图,本公开的一个方式不局限于附图所示的形状或数值等。The proportions of the drawings in the present disclosure can be used as a reference in the actual process, but are not limited thereto. The drawings described in the present disclosure are only structural schematic diagrams, and an aspect of the present disclosure is not limited to the shapes or numerical values shown in the drawings.

本说明书中的“第一”、“第二”、“第三”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。Ordinal numerals such as "first", "second", and "third" in this specification are provided to avoid confusion of constituent elements, and are not intended to limit the number.

在本说明书中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述各构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。In this specification, for convenience, "middle", "upper", "lower", "front", "rear", "vertical", "horizontal", "top", "bottom", "inner" are used , "external" and other words indicating the orientation or positional relationship are used to illustrate the positional relationship of the constituent elements with reference to the drawings, which are only for the convenience of describing this specification and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation , are constructed and operate in a particular orientation and therefore are not to be construed as limitations on the present disclosure. The positional relationship of the constituent elements changes appropriately according to the direction in which each constituent element is described. Therefore, it is not limited to the words and phrases described in the specification, and may be appropriately replaced according to circumstances.

在本说明书中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。In this specification, unless otherwise specified and limited, the terms "installation", "connection" and "connection" should be interpreted in a broad sense. For example, it may be a fixed connection, or a detachable connection, or an integral connection; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediate piece, or an internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present disclosure in specific situations.

在本说明书中,“平行”是指两条直线形成的角度为-10°以上且10°以下的状态,因此,也包括该角度为-5°以上且5°以下的状态。另外,“垂直”是指两条直线形成的角度为80°以上且100°以下的状态,因此,也包括85°以上且95°以下的角度的状态。In the present specification, "parallel" refers to a state where the angle formed by two straight lines is -10° to 10°, and therefore includes a state where the angle is -5° to 5°. In addition, "perpendicular" means a state in which the angle formed by two straight lines is 80° to 100°, and therefore also includes an angle of 85° to 95°.

本说明书中三角形、矩形、梯形、五边形或六边形等并非严格意义上的,可以是近似三角形、矩形、梯形、五边形或六边形等,可以存在公差导致的一些小变形,可以存在导角、弧边以及变形等。The triangle, rectangle, trapezoid, pentagon, or hexagon in this specification are not strictly defined, and may be approximate triangles, rectangles, trapezoids, pentagons, or hexagons, etc., and there may be some small deformations caused by tolerances. There can be chamfers, arc edges, deformations, etc.

本公开中的“约”,是指不严格限定界限,允许工艺和测量误差范围内的数值。"About" in the present disclosure refers to a numerical value that is not strictly limited, and is within the range of process and measurement errors.

数字聚合酶链式反应dPCR是一种提供数字化DNA量化信息的定量分析方法,是分子生物学检测分析的重要技术,其精确定量DNA拷贝数是现代分子生物学和医学的重要应用之一。近年来,随着微流控(MicroFluidics)技术的高速发展,结合微流控技术的dPCR微流控装置使得灵敏度和精确度有了很大提高。dPCR微流控装置采用分而治之的检测策略,利用微流控技术将样品和PCR试剂的混合物分散在芯片中一个个微反应腔内,对每个微反应腔中的目标分子进行独立PCR扩增。通常,dPCR采用二次进样进行油封,即样本和dPCR试剂位于微反应腔内,利用微流道的亲疏水性及毛细作用,油相进样后填充微反应腔外流道,从而实现对微反应腔内的样本液体进行分割。经本申请发明人研究发现,这种油相液封的方式需要微反应腔内部和外部均进行亲疏水性设计,才能保证较好的二次进样效果,才能保证油相完全填充微反应腔外流道,而现有装置通常仅对微反应腔内部进行亲水性设计,因而导致现有结构存在进样及扩增过程中反应液未完全填充或填充后出现窜扰等问题。Digital polymerase chain reaction dPCR is a quantitative analysis method that provides digital DNA quantification information, and is an important technology for molecular biology detection and analysis. Its accurate quantitative DNA copy number is one of the important applications of modern molecular biology and medicine. In recent years, with the rapid development of microfluidics technology, the dPCR microfluidics device combined with microfluidics technology has greatly improved the sensitivity and accuracy. The dPCR microfluidic device adopts a divide-and-conquer detection strategy, using microfluidic technology to disperse the mixture of samples and PCR reagents in the micro-reaction chambers of the chip, and independently PCR amplifies the target molecules in each micro-reaction chamber. Usually, dPCR uses secondary injection for oil sealing, that is, the sample and dPCR reagents are located in the micro-reaction chamber, and the micro-reaction chamber is filled with the oil-phase sample after the hydrophilic and hydrophobic properties and capillary action of the micro-channel, so as to realize micro-reaction. The sample liquid in the cavity is divided. The inventors of the present application found that this method of oil phase liquid seal requires hydrophilic and hydrophobic design inside and outside the micro-reaction chamber, so as to ensure a better secondary injection effect and ensure that the oil phase completely fills the micro-reaction chamber and flows out. However, the existing devices usually only have a hydrophilic design for the interior of the micro-reaction chamber, which leads to problems such as incomplete filling of the reaction solution during sample injection and amplification or cross-talk after filling in the existing structure.

为了解决现有结构存在进样及扩增过程中反应液未完全填充或填充后出现窜扰等问题,本公开示例性实施例提供了一种数字聚合酶链式反应微流控装置。数字聚合酶链式反应微流控装置可以包括相对设置的第一基板和第二基板,所述第一基板可以包括第一基底、设置在所述第一基底朝向所述第二基板一侧的微腔限定层以及设置在所述微腔限定层远离所述第一基底一侧的第一表面修饰层,所述微腔限定层可以包括多个作为微反应腔的凹槽和位于相邻凹槽之间的限定坝,至少一个凹槽内的所述第一表面修饰层可以设置有第一修饰结构,所述第一修饰结构被配置为增加微反应腔内部的亲水特性。In order to solve the problems of the existing structure that the reaction liquid is not completely filled or disturbed after filling during the sample injection and amplification process, an exemplary embodiment of the present disclosure provides a digital polymerase chain reaction microfluidic device. The digital polymerase chain reaction microfluidic device may include a first substrate and a second substrate oppositely arranged, and the first substrate may include a first substrate, a substrate disposed on a side of the first substrate facing the second substrate The microcavity-defining layer and the first surface modification layer arranged on the side of the microcavity-defining layer away from the first substrate, the microcavity-defining layer may include a plurality of grooves as micro-reaction chambers and adjacent grooves Defining dams between grooves, the first surface modification layer within at least one groove may be provided with a first modification structure configured to increase the hydrophilic properties of the interior of the microreaction chamber.

在示例性实施方式中,所述限定坝远离所述第一基底的一侧可以设置有第二修饰结构,所述第二修饰结构被配置为增加微反应腔外部的疏水特性。In an exemplary embodiment, the side of the limiting dam away from the first substrate may be provided with a second modification structure configured to increase the hydrophobicity of the exterior of the micro-reaction chamber.

在示例性实施方式中,所述第二基板可以包括第二基底和设置在所述第二基底朝向所述第一基板一侧的第三表面修饰层,所述第三表面修饰层朝向所述第一基板一侧的表面上设置有第三修饰结构,所述第三修饰结构被配置为增加微反应腔外部的疏水特性。In an exemplary embodiment, the second substrate may include a second base and a third surface modification layer disposed on a side of the second base facing the first substrate, and the third surface modification layer faces the A third modification structure is arranged on the surface of one side of the first substrate, and the third modification structure is configured to increase the hydrophobicity of the outside of the micro-reaction chamber.

图1为本公开示例性实施例一种dPCR微流控装置的结构示意图。在示例性实施方式中,本公开数字聚合酶链式反应微流控装置可以用于进行数字聚合酶链式反应,并且可以用于反应之后的检测过程。如图1所示,数字聚合酶链式反应微流控装置的主体结构可以包括相对设置的第一基板100和第二基板200,第一基板100可以包括第一基底10、设置在第一基底10靠近第二基板200一侧的微腔限定层30和设置在微腔限定层30靠近第二基板200一侧的第一表面修饰层40。第二基板200可以包括第二基底20和设置在第二基底20靠近第一基底10一侧的第三表面修饰层80。在示例性实施方式中,第一基板100和第二基板200之间设置有封框胶90,第一基板100和第二基板200通过封框胶90连接在一起。Fig. 1 is a schematic structural diagram of a dPCR microfluidic device according to an exemplary embodiment of the present disclosure. In an exemplary embodiment, the digital polymerase chain reaction microfluidic device of the present disclosure can be used to perform a digital polymerase chain reaction, and can be used for a detection process after the reaction. As shown in FIG. 1 , the main body structure of the digital polymerase chain reaction microfluidic device may include a first substrate 100 and a second substrate 200 oppositely arranged, and the first substrate 100 may include a first substrate 10 and be arranged on the first substrate. 10 the microcavity defining layer 30 on the side close to the second substrate 200 and the first surface modification layer 40 disposed on the side of the microcavity defining layer 30 close to the second substrate 200 . The second substrate 200 may include a second base 20 and a third surface modification layer 80 disposed on a side of the second base 20 close to the first base 10 . In an exemplary embodiment, a sealant 90 is disposed between the first substrate 100 and the second substrate 200 , and the first substrate 100 and the second substrate 200 are connected together through the sealant 90 .

在示例性实施方式中,微腔限定层30可以包括多个凹槽60和位于相邻凹槽60之间的限定坝31,限定坝31限定出多个凹槽60,多个凹槽60可以作为进行数字聚合酶链式反应的微反应腔。In an exemplary embodiment, the microcavity-defining layer 30 may include a plurality of grooves 60 and confinement dams 31 between adjacent grooves 60, the confinement dams 31 define a plurality of grooves 60, and the plurality of grooves 60 may be As a micro-reaction chamber for digital polymerase chain reaction.

在示例性实施方式中,第一表面修饰层40具有亲水特征,至少一个凹槽60内的第一表面修饰层40可以设置有第一修饰结构41,第一修饰结构41被配置为增加微反应腔内部的亲水特性。In an exemplary embodiment, the first surface modification layer 40 has a hydrophilic feature, and the first surface modification layer 40 in at least one groove 60 can be provided with a first modification structure 41, and the first modification structure 41 is configured to increase microscopic Hydrophilic properties of the interior of the reaction chamber.

在示例性实施方式中,凹槽60可以包括靠近第一基底一侧的槽底壁和位于槽底壁周边的槽侧壁。至少一个凹槽60内,第一表面修饰层40可以包括覆盖凹槽60中槽底壁的槽底壁修饰层和覆盖凹槽60中槽侧壁的槽侧壁修饰层,第一修饰结构41可以设置在槽底壁修饰层远离第一基底一侧的表面上。In an exemplary embodiment, the groove 60 may include a groove bottom wall near a side of the first substrate and a groove side wall located at a periphery of the groove bottom wall. In at least one groove 60, the first surface modification layer 40 may include a groove bottom wall modification layer covering the groove bottom wall in the groove 60 and a groove side wall modification layer covering the groove side walls in the groove 60, the first modification structure 41 It can be arranged on the surface of the groove bottom wall modification layer away from the first base.

在示例性实施方式中,第一修饰结构41可以包括在槽底壁修饰层远离第一基底一侧表面上设置的至少一个第一凸起,至少一个第一凸起被配置为增加槽底壁修饰层远离第一基底一侧表面的粗糙度。In an exemplary embodiment, the first modification structure 41 may include at least one first protrusion disposed on the surface of the groove bottom wall modification layer away from the first substrate, and the at least one first protrusion is configured to increase the thickness of the groove bottom wall. modifying the roughness of the surface of the side away from the first substrate.

在示例性实施方式中,限定坝31可以包括远离第一基底一侧的坝顶壁和位于周边的坝侧壁。第一表面修饰层40还可以包括覆盖至少一个限定坝31中坝顶壁的坝顶壁修饰层,坝顶壁修饰层远离第一基底的一侧设置有第二表面修饰层50,第二表面修饰层50可以设置有第二修饰结构51,第二修饰结构51被配置为增加微反应腔外部的疏水特性。In an exemplary embodiment, the defining dam 31 may include a crest wall on a side away from the first base and a side wall of the dam on the periphery. The first surface modification layer 40 can also include a dam crest wall modification layer covering at least one of the dam crest walls that define the dam 31, and a second surface modification layer 50 is provided on the side of the dam top wall modification layer away from the first base, and the second surface The modification layer 50 may be provided with a second modification structure 51 configured to increase the hydrophobicity of the exterior of the micro-reaction chamber.

在示例性实施方式中,第二表面修饰层50具有疏水特性,第二修饰结构51可以设置在第二表面修饰层50远离第一基底一侧的表面上。In an exemplary embodiment, the second surface modification layer 50 has a hydrophobic property, and the second modification structure 51 may be disposed on the surface of the second surface modification layer 50 away from the first substrate.

在示例性实施方式中,第二修饰结构51可以包括在第二表面修饰层50远离第一基底一侧表面上设置的至少一个第二凸起,至少一个第二凸起被配置为增加第二表面修饰层50远离第一基底一侧表面的粗糙度。In an exemplary embodiment, the second modification structure 51 may include at least one second protrusion provided on the surface of the second surface modification layer 50 away from the first substrate, and the at least one second protrusion is configured to increase the second The roughness of the surface of the surface modification layer 50 away from the first substrate.

在示例性实施方式中,第三表面修饰层80可以设置有第三修饰结构81,第三修饰结构81被配置为增加微反应腔外部的疏水特性。In an exemplary embodiment, the third surface modification layer 80 may be provided with a third modification structure 81 configured to increase the hydrophobic property of the exterior of the micro-reaction chamber.

在示例性实施方式中,第三表面修饰层80具有疏水特性,第三修饰结构81可以设置在第三表面修饰层80远离第二基底一侧(朝向第一基底一侧)的表面上。In an exemplary embodiment, the third surface modification layer 80 has a hydrophobic property, and the third modification structure 81 may be disposed on the surface of the third surface modification layer 80 on a side away from the second substrate (a side toward the first substrate).

在示例性实施方式中,第三修饰结构81可以包括在第三表面修饰层80远离第二基底一侧表面上设置的至少一个第三凸起,至少一个第三凸起被配置为增加第三表面修饰层80远离第二基底一侧表面的粗糙度。In an exemplary embodiment, the third modification structure 81 may include at least one third protrusion provided on the surface of the third surface modification layer 80 away from the second substrate, the at least one third protrusion is configured to increase the third The roughness of the surface of the surface modification layer 80 away from the second substrate.

在示例性实施方式中,第一基底10可以包括反应区域110和周边区域120,周边区域120可以围绕反应区域110,即周边区域120位于反应区域110的外侧。第二基底20可以与第一基底10上的反应区域110相对设置,并通过封框胶90与第一基底10上的反应区域110形成封闭的反应腔室,多个作为微反应腔的凹槽位于封闭的反应腔室内。In an exemplary embodiment, the first substrate 10 may include a reaction area 110 and a peripheral area 120 , and the peripheral area 120 may surround the reaction area 110 , that is, the peripheral area 120 is located outside the reaction area 110 . The second substrate 20 can be arranged opposite to the reaction region 110 on the first substrate 10, and form a closed reaction chamber with the reaction region 110 on the first substrate 10 through the sealant 90, and a plurality of grooves as micro reaction chambers Located in a closed reaction chamber.

在示例性实施方式中,第一基板100还可以包括加热结构层,加热结构层可以设置在第一基底10和微腔限定层30之间。In an exemplary embodiment, the first substrate 100 may further include a heating structure layer, and the heating structure layer may be disposed between the first substrate 10 and the microcavity defining layer 30 .

在示例性实施方式中,加热结构层可以包括设置在第一基底10上的控制电极11、覆盖控制电极11的第一绝缘层12、设置在第一绝缘层12上的加热电极13和设置在加热电极13上的第二绝缘层14,加热电极13可以通过连接过孔与控制电极11连接,微腔限定层30可以设置在第二绝缘层14上。In an exemplary embodiment, the heating structure layer may include a control electrode 11 disposed on the first substrate 10, a first insulating layer 12 covering the control electrode 11, a heating electrode 13 disposed on the first insulating layer 12, and a heating electrode 13 disposed on the first substrate 10. The second insulating layer 14 on the heating electrode 13 , the heating electrode 13 may be connected to the control electrode 11 through a connection via hole, and the microcavity defining layer 30 may be disposed on the second insulating layer 14 .

在示例性实施方式中,第二基板200还可以设置有进液口82,进液口82为贯通第二基底20和第三修饰结构81的通孔。In an exemplary embodiment, the second substrate 200 may also be provided with a liquid inlet 82 , which is a through hole penetrating through the second substrate 20 and the third modification structure 81 .

在示例性实施方式中,第一基底和第二基底可以采用玻璃,第一基底和第二基底的形状可以为矩形,第二基底的尺寸可以小于第一基底的尺寸。例如,第一基底的尺寸可以约为3.2cm*4.5cm,第二基底的尺寸可以约为3.2cm*3.0cm。In an exemplary embodiment, glass may be used for the first substrate and the second substrate, the shapes of the first substrate and the second substrate may be rectangular, and the size of the second substrate may be smaller than that of the first substrate. For example, the size of the first base may be about 3.2 cm*4.5 cm, and the size of the second base may be about 3.2 cm*3.0 cm.

在示例性实施方式中,在平行于第一基底的平面内,多个凹槽60的形状可以包括如下任意一种或多种:三角形、正方形、矩形、五边形、六边形、多边形、圆形和椭圆形。在垂直于第一基底的平面内,多个凹槽的截面形状可以包括如下任意一种或多种:矩形、梯形和多边形,凹槽的槽侧壁可以是直线、折线或者弧线。In an exemplary embodiment, in a plane parallel to the first substrate, the shapes of the plurality of grooves 60 may include any one or more of the following: triangle, square, rectangle, pentagon, hexagon, polygon, Round and oval. In a plane perpendicular to the first substrate, the cross-sectional shapes of the plurality of grooves may include any one or more of the following: rectangle, trapezoid and polygon, and the groove sidewalls of the grooves may be straight lines, broken lines or arcs.

在示例性实施方式中,在平行于第一基底的平面内,凹槽60的特征长度可以约为1μm至100μm,凹槽的特征长度可以是凹槽的最大尺寸。In an exemplary embodiment, the groove 60 may have a characteristic length of about 1 μm to 100 μm in a plane parallel to the first substrate, which may be the largest dimension of the groove.

在示例性实施方式中,在垂直于第一基底的平面内,凹槽60的深度可以约为5μm至100μm。例如,凹槽60的深度可以约为9.8μm。In an exemplary embodiment, the groove 60 may have a depth of about 5 μm to 100 μm in a plane perpendicular to the first substrate. For example, the depth of groove 60 may be about 9.8 μm.

在示例性实施方式中,多个作为微反应腔的凹槽60的数量可以约为2000个至1000000个。例如,凹槽60的数量可以约为40000个至100000个。In an exemplary embodiment, the number of the plurality of grooves 60 serving as micro-reaction chambers may be about 2,000 to 1,000,000. For example, the number of grooves 60 may be about 40,000 to 100,000.

在示例性实施方式中,在平行于第一基底的平面内,多个第一凸起、第二凸起和第三凸起的形状可以包括如下任意一种或多种:三角形、正方形、矩形、五边形、六边形、多边形、圆形和椭圆形。在垂直于第一基底的平面内,多个第一凸起、第二凸起和第三凸起的截面形状可以包括如下任意一种或多种:矩形、梯形和多边形,凸起的侧壁可以是直线、折线或者弧线。In an exemplary embodiment, in a plane parallel to the first base, the shapes of the plurality of first protrusions, second protrusions and third protrusions may include any one or more of the following: triangle, square, rectangle , pentagon, hexagon, polygon, circle and ellipse. In a plane perpendicular to the first base, the cross-sectional shapes of the plurality of first protrusions, second protrusions and third protrusions may include any one or more of the following: rectangle, trapezoid and polygon, the side walls of the protrusions Can be straight line, polyline or arc.

在示例性实施方式中,在平行于第一基底的平面内,多个第一凸起、第二凸起和第三凸起的特征长度可以约为0.5μm至2μm,凸起的特征长度可以是凸起的最大尺寸。In an exemplary embodiment, in a plane parallel to the first substrate, the characteristic lengths of the plurality of first protrusions, second protrusions, and third protrusions may be about 0.5 μm to 2 μm, and the characteristic lengths of the protrusions may be is the maximum size of the bump.

在示例性实施方式中,在垂直于第一基底的平面内,多个第一凸起、第二凸起和第三凸起的高度可以约为0.1μm至20μm。In an exemplary embodiment, the plurality of first protrusions, second protrusions, and third protrusions may have a height of about 0.1 μm to 20 μm in a plane perpendicular to the first substrate.

在示例性实施方式中,数字聚合酶链式反应微流控装置还可以包括温度感应器件和程序控制器件,温度感应器件可以设置在第一基板远离第二基板的一侧,程序控制器件可以分别与温度感应器件、控制电极和加热电极连接,本公开在此不做限定。In an exemplary embodiment, the digital polymerase chain reaction microfluidic device may further include a temperature sensing device and a program control device, the temperature sensing device may be arranged on the side of the first substrate away from the second substrate, and the program control device may be respectively It is connected with the temperature sensing device, the control electrode and the heating electrode, which is not limited in this disclosure.

下面通过数字聚合酶链式反应微流控装置的制备过程进行示例性说明。本公开所说的“图案化工艺”,对于金属材料、无机材料或透明导电材料,包括涂覆光刻胶、掩模曝光、显影、刻蚀、剥离光刻胶等处理,对于有机材料,包括涂覆有机材料、掩模曝光和显影等处理。沉积可以采用溅射、蒸镀、化学气相沉积中的任意一种或多种,涂覆可以采用喷涂、旋涂和喷墨打印中的任意一种或多种,刻蚀可以采用干刻和湿刻中的任意一种或多种,本公开不做限定。“薄膜”是指将某一种材料在基底上利用沉积、涂覆或其它工艺制作出的一层薄膜。若在整个制作过程当中该“薄膜”无需图案化工艺,则该“薄膜”还可以称为“层”。若在整个制作过程当中该“薄膜”需图案化工艺,则在图案化工艺前称为“薄膜”,图案化工艺后称为“层”。经过图案化工艺后的“层”中包含至少一个“图案”。本公开所说的“A和B同层设置”是指,A和B通过同一次图案化工艺同时形成,膜层的“厚度”为膜层在垂直于显示基板方向上的尺寸。本公开示例性实施例中,“B的正投影位于A的正投影的范围之内”或者“A的正投影包含B的正投影”是指,B的正投影的边界落入A的正投影的边界范围内,或者A的正投影的边界与B的正投影的边界重叠。The following is an exemplary illustration through the preparation process of the digital polymerase chain reaction microfluidic device. The "patterning process" mentioned in this disclosure includes coating photoresist, mask exposure, development, etching, stripping photoresist and other treatments for metal materials, inorganic materials or transparent conductive materials, and for organic materials, including Coating of organic materials, mask exposure and development, etc. Deposition can use any one or more of sputtering, evaporation, chemical vapor deposition, coating can use any one or more of spray coating, spin coating and inkjet printing, etching can use dry etching and wet Any one or more of the engravings is not limited in the present disclosure. "Thin film" refers to a layer of thin film made of a certain material on a substrate by deposition, coating or other processes. If the "thin film" does not require a patterning process during the entire manufacturing process, the "thin film" can also be called a "layer". If the "thin film" requires a patterning process during the entire production process, it is called a "film" before the patterning process, and it is called a "layer" after the patterning process. The "layer" after the patterning process includes at least one "pattern". "A and B are arranged in the same layer" in this disclosure means that A and B are formed simultaneously through the same patterning process, and the "thickness" of the film layer is the dimension of the film layer in the direction perpendicular to the display substrate. In an exemplary embodiment of the present disclosure, "the orthographic projection of B is within the range of the orthographic projection of A" or "the orthographic projection of A includes the orthographic projection of B" means that the boundary of the orthographic projection of B falls within the orthographic projection of A , or the boundary of A's orthographic projection overlaps the boundary of B's orthographic projection.

在示例性实施方式中,数字聚合酶链式反应微流控装置的制备可以包括三部分,分别为第一基板制备、第二基板制备和封装处理。其中,第一基板制备和第二基板制备两者没有先后次序要求,可以同时进行,而封装处理则需要在第一基板和第二基板制备完成后进行。下面分别说明三部分的制备过程。In an exemplary embodiment, the preparation of the digital polymerase chain reaction microfluidic device may include three parts, which are first substrate preparation, second substrate preparation and encapsulation treatment. Wherein, the preparation of the first substrate and the preparation of the second substrate have no order requirement and can be carried out at the same time, while the encapsulation process needs to be carried out after the preparation of the first substrate and the second substrate is completed. The preparation process of the three parts is described respectively below.

第一部分、第一基板制备The first part, the first substrate preparation

在示例性实施方式中,第一基板制备可以包括如下操作。In an exemplary embodiment, the first substrate preparation may include the following operations.

(11)形成第一导电层图案。在示例性实施方式中,形成第一导电层图案可以包括:在第一基底沉积第一导电薄膜,通过图案化工艺对第一导电薄膜进行图案化,形成设置在第一基底10上的第一导电层图案,第一导电层图案可以包括至少一个控制电极11,如图2所示。(11) Forming a first conductive layer pattern. In an exemplary embodiment, forming the first conductive layer pattern may include: depositing a first conductive film on the first substrate, patterning the first conductive film through a patterning process, and forming a first conductive film disposed on the first substrate 10. The conductive layer pattern, the first conductive layer pattern may include at least one control electrode 11 , as shown in FIG. 2 .

在示例性实施方式中,至少一个控制电极11可以位于周边区域120。控制电极11被配置为向后续形成的加热电极施加电信号(例如电压信号),使得加热电极在电信号的作用下产生热量,从而对微反应腔进行加热。In exemplary embodiments, at least one control electrode 11 may be located in the peripheral area 120 . The control electrode 11 is configured to apply an electrical signal (such as a voltage signal) to the subsequently formed heating electrode, so that the heating electrode generates heat under the action of the electrical signal, thereby heating the micro-reaction chamber.

在示例性实施方式中,第一导电层可以采用金属材料,如银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的任意一种或更多种,或上述金属的合金材料,可以是单层结构,或者多层复合结构。例如,第一导电层可以为多层复合结构,包括叠设的第一子层、第二子层和第三子层,第一子层和第三子层的材料可以采用金属钼,第二子层的材料可以采用金属铝,形成Mo/Al/Mo的多层复合结构。在示例性实施方式中,第一子层的厚度可以约为10nm至30nm,第二子层的厚度可以约为200nm至400nm,第三子层的厚度可以约为70nm至90nm。例如,第一子层的厚度可以约为20nm左右,第二子层的厚度可以约为300nm左右,第三子层的厚度可以约为80nm左右。In an exemplary embodiment, the first conductive layer may be a metal material, such as any one or more of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum (Mo). , or alloy materials of the above metals, may be a single-layer structure, or a multi-layer composite structure. For example, the first conductive layer can be a multi-layer composite structure, including the stacked first sublayer, second sublayer and third sublayer, the material of the first sublayer and the third sublayer can be metal molybdenum, the second The material of the sub-layer can be metal aluminum to form a multi-layer composite structure of Mo/Al/Mo. In an exemplary embodiment, the first sublayer may have a thickness of about 10nm to 30nm, the second sublayer may have a thickness of about 200nm to 400nm, and the third sublayer may have a thickness of about 70nm to 90nm. For example, the thickness of the first sublayer may be about 20 nm, the thickness of the second sublayer may be about 300 nm, and the thickness of the third sublayer may be about 80 nm.

在示例性实施方式中,沉积第一导电薄膜的温度可以约为100℃至150℃。例如,沉积第一导电薄膜的温度可以约为125℃左右。In exemplary embodiments, the temperature for depositing the first conductive film may be about 100°C to 150°C. For example, the temperature for depositing the first conductive film may be about 125°C.

(12)形成第一绝缘层图案。在示例性实施方式中,形成第一绝缘层图案可以包括:在形成前述图案的第一基底上沉积第一绝缘薄膜,通过图案化工艺对第一绝缘薄膜进行图案化,形成覆盖第一导电层图案的第一绝缘层12,第一绝缘层12上形成至少一个连接过孔,连接过孔在第一基底上的正投影位于控制电极11在第一基底上的正投影的范围之内,连接过孔内的第一绝缘薄膜被去掉,暴露出控制电极11的表面,如图3所示。(12) Forming a first insulating layer pattern. In an exemplary embodiment, forming the first insulating layer pattern may include: depositing a first insulating film on the first substrate on which the aforementioned pattern is formed, and patterning the first insulating film through a patterning process to form a layer covering the first conductive layer. Patterned first insulating layer 12, at least one connection via hole is formed on the first insulating layer 12, the orthographic projection of the connection via hole on the first substrate is within the range of the orthographic projection of the control electrode 11 on the first substrate, and the connection The first insulating film in the via hole is removed to expose the surface of the control electrode 11 , as shown in FIG. 3 .

在示例性实施方式中,第一绝缘层可以采用无机材料或者有机材料,无机材料可以是硅氧化物(SiOx)、硅氮化物(SiNx)和氮氧化硅(SiON)中的任意一种或更多种,可以是单层、多层或复合层,有机材料可以是树脂等。In an exemplary embodiment, the first insulating layer may be an inorganic material or an organic material, and the inorganic material may be any one or more of silicon oxide (SiOx), silicon nitride (SiNx) and silicon oxynitride (SiON) Various, can be single layer, multi-layer or composite layer, organic material can be resin etc.

在示例性实施方式中,第一绝缘层可以采用二氧化硅(SiO2),第一绝缘层的厚度可以约为250nm至350nm。例如,第一绝缘层的厚度可以约为300nm左右。In an exemplary embodiment, silicon dioxide (SiO 2 ) may be used as the first insulating layer, and the thickness of the first insulating layer may be about 250 nm to 350 nm. For example, the thickness of the first insulating layer may be about 300 nm.

在示例性实施方式中,沉积第一绝缘薄膜的温度可以约为150℃至250℃。例如,沉积第一绝缘薄膜的温度可以约为200℃左右。In exemplary embodiments, the temperature for depositing the first insulating film may be about 150°C to 250°C. For example, the temperature for depositing the first insulating film may be about 200°C.

(13)形成第二导电层图案。在示例性实施方式中,形成第二导电层图案可以包括:在形成前述图案的第一基底上沉积第二导电薄膜,通过图案化工艺对第二导电薄膜进行图案化,形成设置在第一绝缘层12上的第二导电层图案,第二导电层图案可以包括至少一个加热电极13,加热电极13通过连接过孔与控制电极11连接,如图4所示。(13) Forming a second conductive layer pattern. In an exemplary embodiment, forming the second conductive layer pattern may include: depositing a second conductive film on the first substrate on which the aforementioned pattern is formed, patterning the second conductive film through a patterning process, and forming a layer disposed on the first insulating layer. The second conductive layer pattern on the layer 12 may include at least one heating electrode 13, and the heating electrode 13 is connected to the control electrode 11 through a connection via hole, as shown in FIG. 4 .

在示例性实施方式中,加热电极13可以位于反应区域110和周边区域120,加热电极13被配置为对后续形成的多个微反应腔进行加热。由于加热电极13通过过孔与控制电极11连接,因而加热电极13可以接收控制电极11施加的电信号,加热电极13因电流流过而产生热量,该热量被传导至后续形成的多个微反应腔中。In an exemplary embodiment, the heating electrode 13 may be located in the reaction area 110 and the peripheral area 120, and the heating electrode 13 is configured to heat a plurality of micro reaction chambers formed subsequently. Since the heating electrode 13 is connected to the control electrode 11 through the via hole, the heating electrode 13 can receive the electrical signal applied by the control electrode 11, and the heating electrode 13 generates heat due to the flow of current, and the heat is conducted to a plurality of subsequent micro-reactions cavity.

在示例性实施方式中,本公开通过在第一基底上集成加热电极,可以有效实现对微反应腔进行加热,进而实现对微反应腔的温度控制,无需外部加热设备,具有集成度高的特点。此外,相比于一些需要驱动液滴移动并依次通过多个温度区域的数字聚合酶链式反应微流控装置,本公开数字聚合酶链式反应微流控装置无需对液滴进行驱动操作即可实现温度循环,操作简单,生产成本低。In an exemplary embodiment, the present disclosure can effectively realize the heating of the micro-reaction chamber by integrating the heating electrode on the first substrate, and then realize the temperature control of the micro-reaction chamber, without the need for external heating equipment, and has the characteristics of high integration . In addition, compared with some digital polymerase chain reaction microfluidic devices that need to drive droplets to move and sequentially pass through multiple temperature regions, the digital polymerase chain reaction microfluidic device of the present disclosure does not need to drive droplets to operate. The temperature cycle can be realized, the operation is simple, and the production cost is low.

在示例性实施方式中,第二导电层可以采用电阻率较大的导电材料,从而使加热电极在提供较小的电信号下产生较大的热量,以提高能量转化率。In an exemplary embodiment, the second conductive layer may use a conductive material with a relatively high resistivity, so that the heating electrode generates a large amount of heat when a small electrical signal is provided, so as to improve the energy conversion rate.

在示例性实施方式中,第二导电层可以采用透明导电材料,如氧化铟锡(ITO)或氧化铟锌(IZO)。第二导电层采用透明导电材料可以便于激光可以从第一基底远离第二导电层的一侧入射至微反应腔中。In an exemplary embodiment, the second conductive layer may use a transparent conductive material, such as indium tin oxide (ITO) or indium zinc oxide (IZO). The use of a transparent conductive material for the second conductive layer facilitates the incident of laser light into the micro reaction cavity from the side of the first substrate away from the second conductive layer.

在示例性实施方式中,第二导电层可以采用金属材料,如银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的任意一种或更多种。此时,激光可以从第一基底设置第二导电层的一侧入射至微反应腔中。In an exemplary embodiment, the second conductive layer may be a metal material, such as any one or more of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum (Mo) . At this time, the laser light can be incident into the micro-reaction cavity from the side of the first substrate where the second conductive layer is disposed.

在示例性实施方式中,加热电极13可以为面状电极,以使反应区域110内的多个微反应腔受热均匀。In an exemplary embodiment, the heating electrode 13 may be a planar electrode, so that the multiple micro-reaction chambers in the reaction area 110 are evenly heated.

(14)形成第二绝缘层图案。在示例性实施方式中,形成第二绝缘层图案可以包括:在形成前述图案的第一基底上沉积第二绝缘薄膜,通过图案化工艺对第二绝缘薄膜进行图案化,在第二导电层图案上形成第二绝缘层14,如图5所示。(14) Forming a second insulating layer pattern. In an exemplary embodiment, forming the second insulating layer pattern may include: depositing a second insulating film on the first substrate on which the foregoing pattern is formed, patterning the second insulating film through a patterning process, and forming the second insulating film on the second conductive layer pattern. A second insulating layer 14 is formed on it, as shown in FIG. 5 .

在示例性实施方式中,第二绝缘层14可以位于反应区域110内,第二绝缘层14被配置为保护加热电极13,并具有绝缘作用,可以防止液体侵蚀加热电极13,减缓加热电极13的老化,并且可以起到平坦化的作用。In an exemplary embodiment, the second insulating layer 14 may be located in the reaction region 110, the second insulating layer 14 is configured to protect the heating electrode 13, and has an insulating effect, which can prevent the liquid from corroding the heating electrode 13 and slow down the heating electrode 13. Aging, and can play a role in planarization.

在示例性实施方式中,第二绝缘层可以采用无机材料或者有机材料,无机材料可以是硅氧化物(SiOx)、硅氮化物(SiNx)和氮氧化硅(SiON)中的任意一种或更多种,可以是单层、多层或复合层,有机材料可以是树脂等。In an exemplary embodiment, the second insulating layer may be an inorganic material or an organic material, and the inorganic material may be any one or more of silicon oxide (SiOx), silicon nitride (SiNx) and silicon oxynitride (SiON) Various, can be single layer, multi-layer or composite layer, organic material can be resin etc.

在示例性实施方式中,第二绝缘层可以多层结构,第二绝缘层可以包括叠设的第一绝缘子层和第二绝缘子层,第一绝缘子层可以采用二氧化硅(SiO2),第二绝缘子层可以采用氮化硅(SiNx)。In an exemplary embodiment, the second insulating layer may have a multi-layer structure, and the second insulating layer may include a stacked first insulating sublayer and a second insulating sublayer, the first insulating sublayer may be made of silicon dioxide (SiO 2 ), and the second insulating layer Silicon nitride (SiNx) can be used for the second insulator layer.

在示例性实施方式中,第一绝缘子层的厚度可以约为50nm至150nm,第二绝缘子层的厚度可以约为150nm至250nm。例如,第一绝缘子层的厚度可以约为100nm左右,第二绝缘子层的厚度可以约为200nm左右。In an exemplary embodiment, the first insulating sublayer may have a thickness of about 50nm to 150nm, and the second insulating sublayer may have a thickness of about 150nm to 250nm. For example, the thickness of the first insulating sublayer may be about 100 nm, and the thickness of the second insulating sublayer may be about 200 nm.

(15)形成微腔限定层图案。在示例性实施方式中,形成微腔限定层图案可以包括:在形成前述图案的第一基底上涂覆微腔限定薄膜,通过图案化工艺对微腔限定薄膜进行图案化,在第二绝缘层14上形成微腔限定层30图案,微腔限定层30可以包括多个凹槽60和位于相邻凹槽60之间的限定坝31,多个凹槽60可以作为进行聚合酶链式反应的微反应腔,如图6a和图6b所示,图6b为图6a中一个凹槽的放大图。(15) Forming a microcavity defining layer pattern. In an exemplary embodiment, forming the pattern of the microcavity-defining layer may include: coating the microcavity-defining film on the first substrate on which the aforementioned pattern is formed, patterning the microcavity-defining film through a patterning process, and forming the microcavity-defining film on the second insulating layer Form the pattern of microcavity-defining layer 30 on 14, and microcavity-defining layer 30 can comprise a plurality of grooves 60 and be positioned at the limit dam 31 between adjacent grooves 60, and a plurality of grooves 60 can be used as carrying out polymerase chain reaction. The micro reaction chamber is shown in Figure 6a and Figure 6b, and Figure 6b is an enlarged view of a groove in Figure 6a.

在示例性实施方式中,微腔限定层30图案可以位于反应区域110,微腔限定层30上形成的凹槽60的数量可以约为2000个至1000000个。例如,凹槽60的数量可以约为40000个至100000个。In an exemplary embodiment, the pattern of the microcavity-defining layer 30 may be located in the reaction region 110, and the number of grooves 60 formed on the microcavity-defining layer 30 may be about 2,000 to 1,000,000. For example, the number of grooves 60 may be about 40,000 to 100,000.

在示例性实施方式中,多个凹槽60在第一基底上的正投影可以位于加热电极13在第一基底上的正投影的范围之内,以保证加热电极13可以对所有的微反应腔进行加热。In an exemplary embodiment, the orthographic projections of the plurality of grooves 60 on the first substrate can be within the range of the orthographic projections of the heating electrodes 13 on the first substrate, so as to ensure that the heating electrodes 13 can control all the micro reaction chambers. for heating.

在示例性实施方式中,多个作为微反应腔的凹槽60可以分别沿第一方向和第二方向依次设置,第一方向和第二方向交叉。例如,第一方向和第二方向可以相互垂直,多个凹槽60呈阵列排布,这种排布方式可以使后续检测阶段得到的图像较为规则和整齐,以便于快速、准确地得到检测结果。In an exemplary embodiment, a plurality of grooves 60 serving as micro-reaction chambers may be arranged sequentially along a first direction and a second direction respectively, and the first direction and the second direction intersect. For example, the first direction and the second direction can be perpendicular to each other, and a plurality of grooves 60 are arranged in an array. This arrangement can make the images obtained in the subsequent detection stage more regular and orderly, so as to obtain detection results quickly and accurately. .

在示例性实施方式中,凹槽60可以包括靠近第一基底一侧的槽底壁61和位于槽底壁61周边的槽侧壁62。在一种可能的实施方式中,凹槽60可以是贯通微腔限定层30的通孔,凹槽60内全部厚度的微腔限定薄膜被去掉,凹槽60暴露出第二绝缘层14的表面,即槽底壁61是第二绝缘层14的表面,槽侧壁62是微腔限定层30的表面。在另一种可能的实施方式中,凹槽60可以是在微腔限定层30上开设的盲孔,凹槽60内部分厚度的微腔限定薄膜被去掉,凹槽60暴露出微腔限定层30的表面,即槽底壁61和槽侧壁62均是微腔限定层30的表面。In an exemplary embodiment, the groove 60 may include a groove bottom wall 61 near the side of the first substrate and a groove side wall 62 located around the groove bottom wall 61 . In a possible implementation manner, the groove 60 may be a through hole penetrating through the microcavity defining layer 30, the entire thickness of the microcavity defining film in the groove 60 is removed, and the groove 60 exposes the surface of the second insulating layer 14 , that is, the groove bottom wall 61 is the surface of the second insulating layer 14 , and the groove sidewall 62 is the surface of the microcavity-defining layer 30 . In another possible implementation, the groove 60 can be a blind hole opened on the microcavity defining layer 30, the microcavity defining film of part thickness in the groove 60 is removed, and the groove 60 exposes the microcavity defining layer The surface of the microcavity-defining layer 30 , that is, the groove bottom wall 61 and the groove sidewall 62 are both surfaces of the microcavity-defining layer 30 .

在示例性实施方式中,在平行于第一基底的平面内,凹槽60的形状可以包括如下任意一种或多种:三角形、正方形、矩形、五边形、六边形、多边形、圆形和椭圆形。In an exemplary embodiment, in a plane parallel to the first substrate, the shape of the groove 60 may include any one or more of the following: triangle, square, rectangle, pentagon, hexagon, polygon, circle and oval.

在示例性实施方式中,在平行于第一基底的平面内,凹槽60的特征长度L可以约为1μm至100μm。本公开中,特征长度L可以是凹槽形状的最大尺寸。例如,凹槽60的形状为圆形时,圆形的直径可以约为1μm至100μm。又如,凹槽60的形状矩形时,矩形的长边可以约为1μm至100μm。再如,凹槽60的形状为椭圆形时,椭圆形的长轴可以约为1μm至100μm。In an exemplary embodiment, the groove 60 may have a characteristic length L of about 1 μm to 100 μm in a plane parallel to the first substrate. In the present disclosure, the characteristic length L may be the largest dimension of the groove shape. For example, when the shape of the groove 60 is a circle, the diameter of the circle may be about 1 μm to 100 μm. As another example, when the shape of the groove 60 is rectangular, the long side of the rectangle may be about 1 μm to 100 μm. For another example, when the shape of the groove 60 is an ellipse, the major axis of the ellipse may be about 1 μm to 100 μm.

在示例性实施方式中,凹槽60的形状可以为圆形,圆形的直径可以约为8μm左右。In an exemplary embodiment, the shape of the groove 60 may be a circle, and the diameter of the circle may be about 8 μm.

在示例性实施方式中,在垂直于第一基底的平面内,凹槽60的截面形状可以包括如下任意一种或多种:矩形、梯形和多边形,凹槽60的槽侧壁62可以是直线、折线或者弧线形。In an exemplary embodiment, in a plane perpendicular to the first substrate, the cross-sectional shape of the groove 60 may include any one or more of the following: rectangle, trapezoid and polygon, and the groove side wall 62 of the groove 60 may be a straight line , polyline or arc.

在示例性实施方式中,在垂直于第一基底的平面内,凹槽60的深度H可以约为5μm至100μm。例如,凹槽60的深度可以约为9.8μm。In an exemplary embodiment, the depth H of the groove 60 may be about 5 μm to 100 μm in a plane perpendicular to the first substrate. For example, the depth of groove 60 may be about 9.8 μm.

在示例性实施方式中,可以理解成微腔限定层30包括多个限定坝31,多个限定坝31可以分别沿着第一方向延伸和沿着第二方向延伸,沿着第一方向延伸的多个限定坝31与沿着第二方向延伸的多个限定坝31相互交叉,限定出多个凹槽60。限定坝31可以包括远离第一基底一侧的坝顶壁32和位于坝顶壁32周边的坝侧壁33,朝向凹槽60一侧的坝侧壁33同时作为凹槽的槽侧壁62。需要说明的是,限定坝不仅包括相邻凹槽之间的区域,还可以包括位于边缘凹槽远离内部凹槽一侧的区域,限定坝不仅可以环绕内部的凹槽,也可以环绕边缘的凹槽。In an exemplary embodiment, it can be understood that the microcavity defining layer 30 includes a plurality of defining dams 31, and the plurality of defining dams 31 can respectively extend along the first direction and along the second direction, and the ones extending along the first direction The plurality of limiting dams 31 intersect with the plurality of limiting dams 31 extending along the second direction to define a plurality of grooves 60 . The limiting dam 31 may include a crest wall 32 away from the first base and a sidewall 33 located around the crest wall 32 , and the sidewall 33 facing the groove 60 also serves as a groove sidewall 62 of the groove. It should be noted that the limiting dam includes not only the area between adjacent grooves, but also the area on the side of the edge groove away from the inner groove, and the limiting dam can not only surround the inner groove, but also surround the edge groove. groove.

在示例性实施方式中,微腔限定层可以采用无机材料,如光刻胶。光刻胶可以通过旋涂的方式形成,且厚度较大。例如,微腔限定层的厚度可以约为5μm至100μm,例如,微腔限定层的厚度可以约为9.8μm。In an exemplary embodiment, the microcavity-defining layer may use an inorganic material, such as photoresist. The photoresist can be formed by spin coating, and the thickness is relatively large. For example, the thickness of the microcavity-defining layer can be about 5 μm to 100 μm, for example, the thickness of the microcavity-defining layer can be about 9.8 μm.

(16)形成第一表面修饰层图案。在示例性实施方式中,形成第一表面修饰层可以包括:在形成前述图案的第一基底上沉积第一表面修饰薄膜,通过图案化工艺对第一表面修饰薄膜进行图案化,形成覆盖微腔限定层中限定坝31和凹槽60的第一表面修饰层40,第一表面修饰层40上形成有第一修饰结构41,如图7a和图7b所示,图7b为图7a中一个凹槽的放大图。(16) Forming a first surface modification layer pattern. In an exemplary embodiment, forming the first surface modification layer may include: depositing a first surface modification film on the first substrate forming the aforementioned pattern, and patterning the first surface modification film through a patterning process to form a covering microcavity The first surface modification layer 40 defining the dam 31 and the groove 60 in the limiting layer, the first surface modification layer 40 is formed with a first modification structure 41, as shown in Figure 7a and Figure 7b, Figure 7b is a concave in Figure 7a Enlarged view of the slot.

在示例性实施方式中,第一表面修饰层40覆盖微腔限定层是指,第一表面修饰层40一方面覆盖凹槽60的槽底壁和槽侧壁,另一方面覆盖限定坝31的坝顶壁。In an exemplary embodiment, the first surface modification layer 40 covering the microcavity-defining layer means that the first surface modification layer 40 covers the groove bottom wall and the groove sidewall of the groove 60 on the one hand, and covers the groove defining the dam 31 on the other hand. dam crest wall.

在示例性实施方式中,第一表面修饰层40的材料可以采用具有亲水特性的无机材料或有机材料,如硅氧化物等,以保证第一表面修饰层40远离第一基底一侧的表面具有亲水特性,亲水特性可以包括亲水疏油特性。在示例性实施方式中,第一表面修饰层40的材料可以采用具有二氧化硅(SiO2)。In an exemplary embodiment, the material of the first surface modification layer 40 can be an inorganic material or an organic material with hydrophilic properties, such as silicon oxide, so as to ensure that the first surface modification layer 40 is away from the surface of the first substrate. Having hydrophilic properties, which may include hydrophilic and oleophobic properties. In an exemplary embodiment, the material of the first surface modification layer 40 may be silicon dioxide (SiO 2 ).

在示例性实施方式中,第一表面修饰层40的厚度可以约为250nm至350nm。例如,第一表面修饰层40的厚度可以约为300nm。In an exemplary embodiment, the first surface modification layer 40 may have a thickness of about 250 nm to 350 nm. For example, the thickness of the first surface modification layer 40 may be about 300 nm.

在示例性实施方式中,沉积第一表面修饰薄膜的温度可以约为150℃至250℃。例如,沉积第一表面修饰薄膜的温度可以约为200℃左右。In an exemplary embodiment, the temperature for depositing the first surface modification film may be about 150°C to 250°C. For example, the temperature for depositing the first surface modification film may be about 200°C.

在示例性实施方式中,第一表面修饰层40可以包括:覆盖凹槽60的槽底壁的槽底壁修饰层40-1,覆盖凹槽60的槽侧壁的槽侧壁修饰层40-2,以及覆盖限定坝31的坝顶壁的坝顶壁修饰层40-3,槽底壁修饰层40-1、槽侧壁修饰层40-2和坝顶壁修饰层40-3为相互连接的一体结构。In an exemplary embodiment, the first surface modification layer 40 may include: a groove bottom wall modification layer 40-1 covering the groove bottom wall of the groove 60, a groove side wall modification layer 40-1 covering the groove side wall of the groove 60 2, and the dam top wall decoration layer 40-3 that covers the dam top wall that defines the dam 31, the groove bottom wall decoration layer 40-1, the groove side wall decoration layer 40-2 and the dam top wall decoration layer 40-3 are interconnected integrated structure.

在示例性实施方式中,第一修饰结构41可以位于槽底壁修饰层40-1远离第一基底一侧的表面上,第一修饰结构41被配置为增加微反应腔内部的亲水特性。在一些可能的示例性实施方式中,第一修饰结构41可以位于槽侧壁修饰层40-2上。在另一些可能的示例性实施方式中,第一修饰结构41可以同时位于槽底壁修饰层40-1和槽侧壁修饰层40-2上。In an exemplary embodiment, the first modification structure 41 may be located on the surface of the groove bottom wall modification layer 40-1 away from the first substrate, and the first modification structure 41 is configured to increase the hydrophilic property inside the micro-reaction chamber. In some possible exemplary implementations, the first modification structure 41 may be located on the groove side wall modification layer 40-2. In some other possible exemplary embodiments, the first modification structure 41 may be located on the groove bottom wall modification layer 40-1 and the groove side wall modification layer 40-2 at the same time.

在示例性实施方式中,第一修饰结构41可以包括在槽底壁修饰层40-1远离第一基底一侧表面上形成的多个第一凸起,多个第一凸起可以分别沿第一方向和第二方向依次设置。例如,第一方向和第二方向可以相互垂直,多个第一凸起呈阵列排布。In an exemplary embodiment, the first modification structure 41 may include a plurality of first protrusions formed on the surface of the groove bottom wall modification layer 40-1 away from the first base, and the plurality of first protrusions may be respectively along the first The first direction and the second direction are set in sequence. For example, the first direction and the second direction may be perpendicular to each other, and a plurality of first protrusions are arranged in an array.

在示例性实施方式中,多个第一凸起在槽底壁修饰层40-1远离第一基底一侧表面上构建圆柱、圆台、棱柱等形状的微纳结构(micro-nano structure),增加了槽底壁修饰层40-1的粗糙度,因而增加了微反应腔内部的亲水特性。In an exemplary embodiment, a plurality of first protrusions construct a micro-nano structure (micro-nano structure) in the shape of a cylinder, a circular cone, a prism, etc. on the surface of the groove bottom wall modification layer 40-1 away from the first substrate, increasing The roughness of the groove bottom wall modification layer 40-1 is improved, thereby increasing the hydrophilic property inside the micro-reaction chamber.

在示例性实施方式中,在平行于第一基底的平面内,第一凸起的形状可以包括如下任意一种或多种:三角形、正方形、矩形、五边形、六边形、多边形、圆形和椭圆形。In an exemplary embodiment, in a plane parallel to the first base, the shape of the first protrusion may include any one or more of the following: triangle, square, rectangle, pentagon, hexagon, polygon, circle shape and ellipse.

在示例性实施方式中,在平行于第一基底的平面内,第一凸起的第一特征长度L1可以约为0.5μm至2μm。本公开中,第一特征长度L1可以是第一凸起形状的最大尺寸。例如,第一凸起的形状为圆形时,圆形的直径可以约为0.5μm至2μm。又如,第一凸起的形状为矩形时,矩形的长边可以约为0.5μm至2μm。再如,第一凸起的形状为椭圆形时,椭圆形的长轴可以约为0.5μm至2μm。In an exemplary embodiment, the first characteristic length L1 of the first protrusion may be about 0.5 μm to 2 μm in a plane parallel to the first substrate. In the present disclosure, the first characteristic length L1 may be the largest dimension of the first convex shape. For example, when the shape of the first protrusion is a circle, the diameter of the circle may be about 0.5 μm to 2 μm. As another example, when the shape of the first protrusion is a rectangle, the long side of the rectangle may be about 0.5 μm to 2 μm. For another example, when the shape of the first protrusion is an ellipse, the major axis of the ellipse may be about 0.5 μm to 2 μm.

在示例性实施方式中,第一凸起的形状可以为圆形,圆形的直径可以约为1μm左右。In an exemplary embodiment, the shape of the first protrusion may be a circle, and the diameter of the circle may be about 1 μm.

在示例性实施方式中,在垂直于第一基底的平面内,第一凸起的截面形状可以包括如下任意一种或多种:矩形、梯形和多边形,第一凸起的侧壁可以是直线、折线或者弧线。In an exemplary embodiment, in a plane perpendicular to the first base, the cross-sectional shape of the first protrusion may include any one or more of the following: rectangle, trapezoid and polygon, and the sidewall of the first protrusion may be a straight line , polyline or arc.

在示例性实施方式中,在垂直于第一基底的平面内,第一凸起的第一高度H1可以约为0.1μm至20μm。例如,第一凸起的第一高度H1可以约为1μm。In an exemplary embodiment, the first height H1 of the first protrusion may be about 0.1 μm to 20 μm in a plane perpendicular to the first substrate. For example, the first height H1 of the first protrusion may be about 1 μm.

在示例性实施方式中,相邻第一凸起之间的第一间距M1可以约为0.5倍至2.0倍的第一特征长度L1。例如,第一凸起的形状可以为圆形,圆形的直径可以约为1μm左右,相邻第一凸起之间的间距可以约为1μm左右。In an exemplary embodiment, the first spacing M1 between adjacent first protrusions may be about 0.5 times to 2.0 times the first characteristic length L1. For example, the shape of the first protrusion may be a circle, the diameter of the circle may be about 1 μm, and the distance between adjacent first protrusions may be about 1 μm.

接触角是用来描述固体表面润湿行为的直接判据,对于一个平坦表面,接触角的大小是由一个液滴在固体表面上的固-液-气三相平衡点的表面张力决定的,通常接触角θ的大小由杨氏(Young)方程表示:The contact angle is a direct criterion used to describe the wetting behavior of a solid surface. For a flat surface, the size of the contact angle is determined by the surface tension of the solid-liquid-gas three-phase equilibrium point of a liquid drop on the solid surface. Usually the size of the contact angle θ is expressed by Young's equation:

Figure BDA0003275948430000191
Figure BDA0003275948430000191

其中,γsol-gas、γsol-liq和γgas-liq分别是固体-气体、固体-液体和气体-液体之间的表面张力系数。基于杨氏方程,亲液性是指液滴在固体表面上接触角小于90°,而疏液性是指液滴在固体表面上接触角大于90°。如果液体均匀分散在表面上而不形成液滴,则认为这样的表面本质上倾向于是亲水的,允许水分散。相反,水在疏液性表面上形成液滴,则认为这样的表面本质上倾向于是疏水的。对于一个粗糙表面,固液的实际接触面积要比平坦表面大,接触角的大小由Wenzel模型表示:cosθW=rcosθY,θW为粗糙面的表观接触角,θY为光滑表面的本征接触角,r为粗糙因子,表示粗糙表面的实际固/液接触面积与表观固/液接触面积之比,即实际表面积与表面投影面积之比值,r总是大于1。where γ sol-gas , γ sol-liq and γ gas-liq are the surface tension coefficients between solid-gas, solid-liquid and gas-liquid, respectively. Based on Young's equation, lyophilicity means that the contact angle of a droplet on a solid surface is less than 90°, while lyophobicity means that the contact angle of a droplet on a solid surface is greater than 90°. If a liquid spreads evenly over a surface without forming droplets, it is considered that such a surface tends to be hydrophilic in nature, allowing water to disperse. Conversely, where water forms droplets on a lyophobic surface, it is assumed that such surfaces tend to be hydrophobic in nature. For a rough surface, the actual contact area of solid-liquid is larger than that of a flat surface, and the size of the contact angle is expressed by the Wenzel model: cosθ W = rcosθ Y , θ W is the apparent contact angle of the rough surface, and θ Y is the intrinsic contact angle of the smooth surface The characteristic contact angle, r is the roughness factor, which represents the ratio of the actual solid/liquid contact area to the apparent solid/liquid contact area of the rough surface, that is, the ratio of the actual surface area to the surface projected area, and r is always greater than 1.

根据Wenzel模型可知,亲水表面的粗糙度增加,则接触角降低,即亲水性增加。本公开通过在凹槽底部形成包括多个第一凸起的第一修饰结构,增加了微反应腔底部表面的粗糙度,进而增加了微反应腔内部表面的亲水特性,在外界没有施加驱动力的情况下,反应液可以基于毛细现象而自动进入微反应腔内,不仅可以实现自动进样,而且反应液更容易进入微反应腔,提高了进样速度,提高了数字微流控芯片的自吸液进样性能。According to the Wenzel model, as the roughness of the hydrophilic surface increases, the contact angle decreases, that is, the hydrophilicity increases. The present disclosure increases the roughness of the bottom surface of the micro-reaction chamber by forming a first modification structure including a plurality of first protrusions at the bottom of the groove, thereby increasing the hydrophilic property of the inner surface of the micro-reaction chamber, without external drive Under the condition of strong force, the reaction liquid can automatically enter the micro-reaction chamber based on the capillary phenomenon, not only can realize automatic sampling, but also the reaction liquid can enter the micro-reaction chamber more easily, which improves the sampling speed and improves the performance of the digital microfluidic chip. Self-aspiration liquid sampling performance.

在示例性实施方式中,通过增加微反应腔内部表面的粗糙度,使得微反应腔内膜层比表面积增大,不仅提高了膜层的散热性能,并且有利于释放膜层的应力,提高了量产化工艺质量,提升了产品质量和使用寿命。In an exemplary embodiment, by increasing the roughness of the inner surface of the micro-reaction chamber, the specific surface area of the film layer in the micro-reaction chamber is increased, which not only improves the heat dissipation performance of the film layer, but also facilitates the release of the stress of the film layer, improving the Mass production process quality improves product quality and service life.

(17)形成第二表面修饰层图案。在示例性实施方式中,形成第二表面修饰层可以包括:在形成前述图案的第一基底上沉积第二表面修饰薄膜,通过图案化工艺对第二表面修饰薄膜进行图案化,在第一表面修饰层40中坝顶壁修饰层40-3远离第一基底的一侧形成第二表面修饰层50,第二表面修饰层50上形成有第二修饰结构51,如图8a和图8b所示,图8b为图8a中一个凹槽的放大图。(17) Forming a second surface modification layer pattern. In an exemplary embodiment, forming the second surface modification layer may include: depositing a second surface modification film on the first substrate forming the aforementioned pattern, patterning the second surface modification film through a patterning process, and forming a second surface modification film on the first surface A second surface modification layer 50 is formed on the side of the dam crest modification layer 40-3 away from the first substrate in the modification layer 40, and a second modification structure 51 is formed on the second surface modification layer 50, as shown in FIGS. 8a and 8b , Figure 8b is an enlarged view of a groove in Figure 8a.

在示例性实施方式中,第二表面修饰层50设置在覆盖限定坝31中坝顶壁的坝顶壁修饰层40-3远离第一基底的一侧,而覆盖凹槽60的槽底壁的槽底壁修饰层40-1和覆盖凹槽60的槽侧壁的槽侧壁修饰层40-2上的第二表面修饰薄膜被去掉。In an exemplary embodiment, the second surface modification layer 50 is disposed on the side away from the first base covering the crest wall modification layer 40-3 defining the crest wall of the dam 31, and covers the bottom wall of the groove 60. The second surface modification film on the groove bottom wall modification layer 40-1 and the groove side wall modification layer 40-2 covering the groove side walls of the groove 60 is removed.

在示例性实施方式中,第二表面修饰层50的材料可以采用具有疏水特性的无机材料或有机材料,如硅氮化物或树脂,以保证第二表面修饰层50远离第一基底一侧的表面具有疏水特性,疏水特性可以包括疏水亲油特性。在示例性实施方式中,无机材料可以采用具有氮化硅(SiNx),有机材料可以采用光刻胶。In an exemplary embodiment, the material of the second surface modification layer 50 can be an inorganic material or an organic material with hydrophobic properties, such as silicon nitride or resin, so as to ensure that the second surface modification layer 50 is away from the surface of the first substrate. Having hydrophobic properties, which may include hydrophobic and lipophilic properties. In an exemplary embodiment, silicon nitride (SiNx) may be used as the inorganic material, and photoresist may be used as the organic material.

在示例性实施方式中,第二表面修饰层50的厚度可以约为250nm至350nm。例如,第二表面修饰层50的厚度可以约为300nm。In an exemplary embodiment, the second surface modification layer 50 may have a thickness of about 250 nm to 350 nm. For example, the thickness of the second surface modification layer 50 may be about 300 nm.

在示例性实施方式中,第二修饰结构51可以位于第二表面修饰层50远离第一基底一侧的表面上,第二修饰结构51被配置为增加第二表面修饰层50的疏水特性。In an exemplary embodiment, the second modification structure 51 may be located on the surface of the second surface modification layer 50 away from the first substrate, and the second modification structure 51 is configured to increase the hydrophobicity of the second surface modification layer 50 .

在示例性实施方式中,第二修饰结构51可以包括在第二表面修饰层50远离第二基底一侧表面上形成的多个第二凸起,多个第二凸起可以分别沿第二方向和第二方向依次设置。例如,第二方向和第二方向可以相互垂直,多个第二凸起呈阵列排布。In an exemplary embodiment, the second modification structure 51 may include a plurality of second protrusions formed on the surface of the second surface modification layer 50 away from the second substrate, and the plurality of second protrusions may be respectively along the second direction and the second direction are set in sequence. For example, the second direction and the second direction may be perpendicular to each other, and a plurality of second protrusions are arranged in an array.

在示例性实施方式中,多个第二凸起在第二表面修饰层50远离第二基底一侧表面上构建圆柱、圆台、棱柱等形状的微纳结构,增加了第二表面修饰层50的粗糙度,增加了第二表面修饰层50的疏水特性,因而增加了微反应腔外部的疏水特性。In an exemplary embodiment, a plurality of second protrusions construct micro-nano structures in the shape of cylinders, truncated cones, prisms, etc. on the surface of the second surface modification layer 50 away from the second substrate, increasing the thickness of the second surface modification layer 50. The roughness increases the hydrophobicity of the second surface modification layer 50, thus increasing the hydrophobicity of the outside of the micro-reaction chamber.

在示例性实施方式中,在平行于第一基底的平面内,第二凸起的形状可以包括如下任意一种或多种:三角形、正方形、矩形、五边形、六边形、多边形、圆形和椭圆形。In an exemplary embodiment, in a plane parallel to the first base, the shape of the second protrusion may include any one or more of the following: triangle, square, rectangle, pentagon, hexagon, polygon, circle shape and ellipse.

在示例性实施方式中,在平行于第一基底的平面内,第二凸起的第二特征长度L2可以约为0.5μm至2μm。本公开中,第二特征长度L2可以是第二凸起形状的最大尺寸。例如,第二凸起的形状分别为圆形时,圆形的直径可以约为0.5μm至2μm。又如,第二凸起的形状为矩形时,矩形的长边可以约为0.5μm至2μm。再如,第二凸起的形状为椭圆形时,椭圆形的长轴可以约为0.5μm至2μm。In an exemplary embodiment, the second characteristic length L2 of the second protrusion may be about 0.5 μm to 2 μm in a plane parallel to the first substrate. In the present disclosure, the second characteristic length L2 may be the largest dimension of the second convex shape. For example, when the shapes of the second protrusions are circular, the diameter of the circular shape may be about 0.5 μm to 2 μm. For another example, when the shape of the second protrusion is a rectangle, the long side of the rectangle may be about 0.5 μm to 2 μm. For another example, when the shape of the second protrusion is an ellipse, the major axis of the ellipse may be about 0.5 μm to 2 μm.

在示例性实施方式中,第二凸起的形状可以为圆形,圆形的直径可以约为1μm左右。In an exemplary embodiment, the shape of the second protrusion may be a circle, and the diameter of the circle may be about 1 μm.

在示例性实施方式中,在垂直于第一基底的平面内,第二凸起的截面形状可以包括如下任意一种或多种:矩形、梯形和多边形,第二凸起的侧壁可以是直线、折线或者弧线。In an exemplary embodiment, in a plane perpendicular to the first base, the cross-sectional shape of the second protrusion may include any one or more of the following: rectangle, trapezoid and polygon, and the side wall of the second protrusion may be a straight line , polyline or arc.

在示例性实施方式中,在垂直于第二基底的平面内,第二凸起的第二高度H2可以约为0.1μm至20μm。例如,第二凸起的第二高度H2可以约为1μm。In an exemplary embodiment, the second protrusion may have a second height H2 of about 0.1 μm to 20 μm in a plane perpendicular to the second substrate. For example, the second height H2 of the second protrusion may be about 1 μm.

在示例性实施方式中,相邻第二凸起之间的间距M2可以约为0.5倍至2.0倍的第二特征长度L2。例如,第二凸起的形状可以为圆形,圆形的直径可以约为1μm左右,相邻第二凸起之间的间距可以约为1.5μm左右。In an exemplary embodiment, the distance M2 between adjacent second protrusions may be about 0.5 times to 2.0 times the second characteristic length L2. For example, the shape of the second protrusions may be a circle, the diameter of the circle may be about 1 μm, and the distance between adjacent second protrusions may be about 1.5 μm.

根据Wenzel模型可知,疏水表面的粗糙度增加,则接触角增大,即疏水性增加。本公开通过在限定坝的顶部形成包括多个第二凸起的第二修饰结构,增加了微反应腔外部表面的粗糙度,进而增加了微反应腔外部表面的疏水特性,在外界没有施加驱动力的情况下,反应液可以基于外部表面的疏水特性和毛细现象而自动进入每个微反应腔内,不仅可以实现自动进样,反应液更容易进入亲水特性的微反应腔,提高了进样速度,提高了数字微流控芯片的自吸液进样性能,而且基于微反应腔内外的亲疏水特性,反应液进入微反应腔后不会出现窜扰等现象,提高了油封的稳定性和有效性,提高了数字微流控芯片的自吸液进样和油封性能。According to the Wenzel model, as the roughness of the hydrophobic surface increases, the contact angle increases, that is, the hydrophobicity increases. The present disclosure increases the roughness of the external surface of the micro-reaction chamber by forming a second modification structure including a plurality of second protrusions on the top of the dam, thereby increasing the hydrophobicity of the external surface of the micro-reaction chamber, without external driving Under the condition of strong force, the reaction solution can automatically enter each micro-reaction chamber based on the hydrophobic characteristics and capillary phenomenon of the external surface, not only can realize automatic sample injection, but also the reaction solution can enter the micro-reaction chamber with hydrophilic characteristics more easily, which improves the process efficiency. The sampling speed improves the self-absorbing liquid sampling performance of the digital microfluidic chip, and based on the hydrophilic and hydrophobic characteristics inside and outside the micro-reaction chamber, there will be no crosstalk after the reaction liquid enters the micro-reaction chamber, which improves the stability and stability of the oil seal. The effectiveness improves the self-absorbing liquid sampling and oil sealing performance of the digital microfluidic chip.

在示例性实施方式中,通过增加微反应腔外部表面的粗糙度,使得微反应腔外部膜层比表面积增大,不仅提高了膜层的散热性能,并且有利于释放膜层的应力,提高了量产化工艺质量,提升了产品质量和使用寿命。In an exemplary embodiment, by increasing the roughness of the external surface of the micro-reaction chamber, the specific surface area of the film layer outside the micro-reaction chamber is increased, which not only improves the heat dissipation performance of the film layer, but also facilitates the release of the stress of the film layer, improving the Mass production process quality improves product quality and service life.

至此,制备完成第一基板100。在示例性实施方式中,第一基板100可以包括第一基底10,设置在第一基底10上的控制电极11,覆盖控制电极11的第一绝缘层12,设置在第一绝缘层12上的加热电极13,设置在加热电极13上的第二绝缘层14,设置在第二绝缘层14上的微腔限定层30,设置在微腔限定层30上的第一表面修饰层40,设置在第一表面修饰层40上的第二表面修饰层50,第一表面修饰层40上形成有提高亲水特性的第一修饰结构41,第二表面修饰层50上形成有提高疏水特性的第二修饰结构51。So far, the preparation of the first substrate 100 is completed. In an exemplary embodiment, the first substrate 100 may include a first substrate 10 , a control electrode 11 disposed on the first substrate 10 , a first insulating layer 12 covering the control electrode 11 , and a first insulating layer 12 disposed on the first insulating layer 12 . The heating electrode 13, the second insulating layer 14 arranged on the heating electrode 13, the microcavity defining layer 30 arranged on the second insulating layer 14, the first surface modification layer 40 arranged on the microcavity defining layer 30, arranged on The second surface modification layer 50 on the first surface modification layer 40, the first surface modification layer 40 is formed with the first modification structure 41 that improves the hydrophilic property, and the second surface modification layer 50 is formed with the second surface modification layer 50 that improves the hydrophobic property. Modify structure 51.

第二部分、第二基板制备The second part, the second substrate preparation

在示例性实施方式中,第二基板制备可以包括如下操作。In an exemplary embodiment, the second substrate preparation may include the following operations.

(21)形成第三表面修饰层图案。在示例性实施方式中,形成第三表面修饰层可以包括:在第二基底上沉积或涂覆第三表面修饰薄膜,通过图案化工艺对第三表面修饰薄膜进行图案化,在第二基底20上形成第三表面修饰层80,第三表面修饰层80上形成有第三修饰结构81,如图9所示。(21) Forming a third surface modification layer pattern. In an exemplary embodiment, forming the third surface modification layer may include: depositing or coating a third surface modification film on the second substrate, patterning the third surface modification film through a patterning process, and forming the third surface modification film on the second substrate 20 A third surface modification layer 80 is formed on the third surface modification layer 80 , and a third modification structure 81 is formed on the third surface modification layer 80 , as shown in FIG. 9 .

在示例性实施方式中,第三表面修饰层80的材料可以采用具有疏水特性的无机材料或有机材料,如硅氮化物或树脂,以保证第三表面修饰层80远离第二基底一侧的表面具有疏水特性,疏水特性可以包括疏水亲油特性。在示例性实施方式中,第三表面修饰层80的材料可以采用无机材料的光刻胶。In an exemplary embodiment, the material of the third surface modification layer 80 can be an inorganic material or an organic material with hydrophobic properties, such as silicon nitride or resin, so as to ensure that the third surface modification layer 80 is away from the surface of the second substrate. Having hydrophobic properties, which may include hydrophobic and lipophilic properties. In an exemplary embodiment, the material of the third surface modification layer 80 may be photoresist of inorganic material.

在示例性实施方式中,第三表面修饰层80的厚度可以约为250nm至350nm。例如,第三表面修饰层80的厚度可以约为300nm。In an exemplary embodiment, the third surface modification layer 80 may have a thickness of about 250 nm to 350 nm. For example, the thickness of the third surface modification layer 80 may be about 300 nm.

在示例性实施方式中,第三修饰结构81可以位于第三表面修饰层80远离第二基底一侧的表面上,第三修饰结构81被配置为增加第三表面修饰层80的疏水特性。In an exemplary embodiment, the third modification structure 81 may be located on the surface of the third surface modification layer 80 away from the second substrate, and the third modification structure 81 is configured to increase the hydrophobicity of the third surface modification layer 80 .

在示例性实施方式中,第三修饰结构81可以包括在第三表面修饰层80远离第二基底一侧表面上形成的多个第三凸起,多个第三凸起可以分别沿第三方向和第三方向依次设置。例如,第三方向和第三方向可以相互垂直,多个第三凸起呈阵列排布。In an exemplary embodiment, the third modification structure 81 may include a plurality of third protrusions formed on the surface of the third surface modification layer 80 away from the second substrate, and the plurality of third protrusions may be respectively along the third direction and the third direction are set in sequence. For example, the third direction and the third direction may be perpendicular to each other, and a plurality of third protrusions are arranged in an array.

在示例性实施方式中,多个第三凸起在第三表面修饰层80远离第三基底一侧表面上构建圆柱、圆台、棱柱等形状的微纳结构,增加了第三表面修饰层80的粗糙度,增加了第三表面修饰层80的疏水特性,因而增加了微反应腔外部的疏水特性。In an exemplary embodiment, a plurality of third protrusions construct micro-nano structures in the shape of cylinders, truncated cones, prisms, etc. on the surface of the third surface modification layer 80 away from the third substrate, increasing the thickness of the third surface modification layer 80. The roughness increases the hydrophobicity of the third surface modification layer 80, thus increasing the hydrophobicity of the outside of the micro-reaction chamber.

在示例性实施方式中,在平行于第二基底的平面内,第三凸起的形状可以包括如下任意一种或多种:三角形、正方形、矩形、五边形、六边形、多边形、圆形和椭圆形。In an exemplary embodiment, in a plane parallel to the second base, the shape of the third protrusion may include any one or more of the following: triangle, square, rectangle, pentagon, hexagon, polygon, circle shape and ellipse.

在示例性实施方式中,在平行于第二基底的平面内,第三凸起的第三特征长度L3可以约为0.5μm至2μm。本公开中,第三特征长度L3可以是第三凸起形状的最大尺寸。例如,第三凸起的形状为圆形时,圆形的直径可以约为0.5μm至2μm。又如,第三凸起的形状为矩形时,矩形的长边可以约为0.5μm至2μm。再如,第三凸起的形状为椭圆形时,椭圆形的长轴可以约为0.5μm至2μm。In an exemplary embodiment, the third characteristic length L3 of the third protrusion may be about 0.5 μm to 2 μm in a plane parallel to the second substrate. In the present disclosure, the third characteristic length L3 may be the largest dimension of the third convex shape. For example, when the shape of the third protrusion is a circle, the diameter of the circle may be about 0.5 μm to 2 μm. As another example, when the shape of the third protrusion is a rectangle, the long side of the rectangle may be about 0.5 μm to 2 μm. For another example, when the shape of the third protrusion is an ellipse, the major axis of the ellipse may be about 0.5 μm to 2 μm.

在示例性实施方式中,第三凸起的形状可以为圆形,圆形的直径可以约为1μm左右。In an exemplary embodiment, the shape of the third protrusion may be a circle, and the diameter of the circle may be about 1 μm.

在示例性实施方式中,在垂直于第二基底的平面内,第三凸起的截面形状可以包括如下任意一种或多种:矩形、梯形和多边形,第三凸起的侧壁可以是直线、折线或者弧线。In an exemplary embodiment, in a plane perpendicular to the second base, the cross-sectional shape of the third protrusion may include any one or more of the following: rectangle, trapezoid and polygon, and the side wall of the third protrusion may be a straight line , polyline or arc.

在示例性实施方式中,在垂直于第二基底的平面内,第三凸起的第三高度H3可以约为0.1μm至20μm。例如,第三凸起的第三高度H3可以约为1μm。In an exemplary embodiment, the third height H3 of the third protrusion may be about 0.1 μm to 20 μm in a plane perpendicular to the second substrate. For example, the third height H3 of the third protrusion may be about 1 μm.

在示例性实施方式中,相邻第三凸起之间的间距M3可以约为0.5倍至2.0倍的第三特征长度L3。例如,第三凸起的形状可以为圆形,圆形的直径可以约为1μm左右,相邻第三凸起之间的间距可以约为1.5μm左右。In an exemplary embodiment, the distance M3 between adjacent third protrusions may be about 0.5 times to 2.0 times the third characteristic length L3. For example, the shape of the third protrusions may be a circle, the diameter of the circle may be about 1 μm, and the distance between adjacent third protrusions may be about 1.5 μm.

在示例性实施方式中,第三修饰结构81中第三凸起的第三高度H3可以大于第二修饰结构51中第二凸起的第二高度H2,和/或,第三修饰结构81中第三凸起的第三间距M3可以大于第二修饰结构51中第二凸起的第二间距M2,以使第三修饰结构81所在区域的粗糙度大于第二修饰结构51所在区域的粗糙度,进而使第三修饰结构81所在区域的亲水特性大于第二修饰结构51所在区域的亲水特性,进一步提高了进样效率。In an exemplary embodiment, the third height H3 of the third protrusion in the third modification structure 81 may be greater than the second height H2 of the second protrusion in the second modification structure 51, and/or, the third height H3 of the third protrusion in the third modification structure 81 The third spacing M3 of the third protrusions may be greater than the second spacing M2 of the second protrusions in the second modification structure 51 , so that the roughness of the area where the third modification structure 81 is located is greater than the roughness of the area where the second modification structure 51 is located. , so that the hydrophilic property of the area where the third modification structure 81 is located is greater than that of the area where the second modification structure 51 is located, thereby further improving the sampling efficiency.

根据Wenzel模型可知,疏水表面的粗糙度增加,则接触角增大,即疏水性增加。本公开通过在第二基底上形成包括多个第三凸起的第三修饰结构,增加了微反应腔外部表面的粗糙度,进而增加了微反应腔外部表面的疏水特性,在外界没有施加驱动力的情况下,反应液可以基于外部表面的疏水特性和毛细现象而自动进入每个微反应腔内,不仅可以实现自动进样,反应液更容易进入亲水特性的微反应腔,提高了进样速度,提高了数字微流控芯片的自吸液进样性能,而且基于微反应腔内外的亲疏水特性,反应液进入微反应腔后不会出现窜扰等现象,提高了油封的稳定性和有效性,提高了数字微流控芯片的自吸液进样和油封性能。According to the Wenzel model, as the roughness of the hydrophobic surface increases, the contact angle increases, that is, the hydrophobicity increases. The present disclosure increases the roughness of the external surface of the micro-reaction chamber by forming a third modified structure including a plurality of third protrusions on the second substrate, thereby increasing the hydrophobicity of the external surface of the micro-reaction chamber, without external drive Under the condition of strong force, the reaction solution can automatically enter each micro-reaction chamber based on the hydrophobic characteristics and capillary phenomenon of the external surface, not only can realize automatic sample injection, but also the reaction solution can enter the micro-reaction chamber with hydrophilic characteristics more easily, which improves the process efficiency. The sampling speed improves the self-absorbing liquid sampling performance of the digital microfluidic chip, and based on the hydrophilic and hydrophobic characteristics inside and outside the micro-reaction chamber, there will be no crosstalk after the reaction liquid enters the micro-reaction chamber, which improves the stability and stability of the oil seal. The effectiveness improves the self-absorbing liquid sampling and oil sealing performance of the digital microfluidic chip.

至此,制备完成第二基板200。在示例性实施方式中,第二基板200可以包括第二基底20,设置在第二基底20上的第三表面修饰层80,第三表面修饰层80上形成有提高疏水特性的第三修饰结构81。So far, the preparation of the second substrate 200 is completed. In an exemplary embodiment, the second substrate 200 may include a second substrate 20, a third surface modification layer 80 disposed on the second substrate 20, and a third modification structure that improves hydrophobic properties is formed on the third surface modification layer 80. 81.

第三部分、封装处理The third part, packaging processing

在示例性实施方式中,封装处理可以采用紫外光固化,或者采用热固化。In an exemplary embodiment, the encapsulation process may employ UV curing, or thermal curing.

在示例性实施方式中,紫外光固化可以包括如下操作。将掺杂有直径约为100μm左右的隔离物(spacer)的紫外光固化胶(UV胶)放置在点胶机中,设置好封装外形、点胶速度等参数,在第一基板上实施点胶完毕后,通过吸盘移动第二基板,第二基板与第一基板对位后贴合,通过紫外光固化照射,完成第一基板和第二基板的对盒封装。In an exemplary embodiment, ultraviolet light curing may include the following operations. Place the ultraviolet curable glue (UV glue) doped with a spacer (spacer) with a diameter of about 100 μm in the dispenser, set the package shape, dispensing speed and other parameters, and implement dispensing on the first substrate After the completion, the second substrate is moved by the suction cup, the second substrate is aligned with the first substrate and then bonded, and the box-to-box packaging of the first substrate and the second substrate is completed through ultraviolet curing irradiation.

在示例性实施方式中,热固化可以包括如下操作。对直径约为100μm左右的热固胶膜材料按照第二基板的外形进行模切或者激光切割单片,揭去硬离型膜后,通过夹具贴合在第二基板上,加热到120℃使热固胶产生粘性与第二基板粘合,降温后取出并揭去软离型膜。通过吸盘移动第二基板,第二基板与第一基板对位后贴合,通过加热过程,使第一基板和第二基板通过热固胶粘结在一起,完成第一基板和第二基板的对盒封装。In an exemplary embodiment, thermal curing may include the following operations. The thermosetting adhesive film material with a diameter of about 100 μm is die-cut or laser-cut into a single piece according to the shape of the second substrate. The thermosetting adhesive is viscous and adheres to the second substrate. After cooling down, take it out and peel off the soft release film. The second substrate is moved by the suction cup, and the second substrate is aligned with the first substrate and bonded together. Through the heating process, the first substrate and the second substrate are bonded together by thermosetting glue, and the first substrate and the second substrate are completed. Packaged in a box.

至此,完成第一基板和第二基板的对盒封装,如图1所示。在示例性实施方式中,第一基板100和第二基板200通过封框胶90连接在一起,第一基板100中设置有微腔限定层的一侧朝向第二基板200,第二基板200中设置有第三表面修饰层的一侧朝向第一基板100,第一基板100、第二基板200和封框胶90形成封闭的反应腔室。So far, the box packaging of the first substrate and the second substrate is completed, as shown in FIG. 1 . In an exemplary embodiment, the first substrate 100 and the second substrate 200 are connected together by a sealant 90 , the side of the first substrate 100 provided with the microcavity defining layer faces the second substrate 200 , and the second substrate 200 The side provided with the third surface modification layer faces the first substrate 100 , and the first substrate 100 , the second substrate 200 and the sealant 90 form a closed reaction chamber.

在示例性实施方式中,第二基板的第二基底20和第三表面修饰层80上设置有进液口82,进液口82为贯通第二基底20和第三表面修饰层80的通孔。在检测时,反应液从进液口82注入反应腔室。In an exemplary embodiment, the second base 20 and the third surface modification layer 80 of the second substrate are provided with a liquid inlet 82, and the liquid inlet 82 is a through hole penetrating the second base 20 and the third surface modification layer 80 . During detection, the reaction liquid is injected into the reaction chamber from the liquid inlet 82 .

在数字聚合酶链式反应微流控装置实际应用时,先配好反应液,通过进样操作将稀释后的反应液通过进液口注入到多个微反应腔中,直至反应液充满多个微反应腔(凹槽),然后将矿物油或全氟烷类油相充满反应液的上方,完成油封后,进行热循环PCR反应。采用激发光源从第一基板远离第二基板的一侧或者从第二基板远离第一基板的一侧入射,并检测荧光,通过对采集到的荧光图像进行数据分析,以判断每个微反应腔内的反应液中的目标分子数量。由于反应液中的目标分子(即DNA模板)被充分稀释,当反应液进入各个微反应腔后,每个微反应腔中的目标分子小于或等于1,即每个微反应腔中仅包括一个目标分子或者不包括目标分子,因而可以得到准确的检测结果。In the actual application of the digital polymerase chain reaction microfluidic device, the reaction solution is prepared first, and the diluted reaction solution is injected into multiple micro-reaction chambers through the liquid inlet through the sample injection operation until the reaction solution is full of multiple micro-reaction chambers. Micro-reaction chamber (groove), then fill the upper part of the reaction solution with mineral oil or perfluoroalkane oil phase, after completing the oil seal, perform thermal cycle PCR reaction. The excitation light source is incident from the side of the first substrate away from the second substrate or from the side of the second substrate away from the first substrate, and the fluorescence is detected, and the collected fluorescence images are analyzed to determine whether each micro-reaction chamber The number of target molecules in the reaction solution. Since the target molecule (i.e. DNA template) in the reaction solution is fully diluted, when the reaction solution enters each micro-reaction chamber, the target molecule in each micro-reaction chamber is less than or equal to 1, that is, only one micro-reaction chamber is included in each micro-reaction chamber. The target molecule may or may not be included so that accurate detection results can be obtained.

通过本公开示例性实施例数字聚合酶链式反应微流控装置的结构和制备过程可以看出,本公开通过在微反应腔的内部和外部分别进行亲水结构和疏水结构设计,有效避免了进样及扩增过程中反应液未完全填充或填充后出现窜扰等不良,提高了自吸液进样和油封性能。本公开通过在微腔限定层所形成的凹槽内设置具有亲水特性的第一表面修饰层,且在第一表面修饰层的表面形成第一修饰结构,增加了微反应腔内部表面的粗糙度,进而增加了微反应腔内部的亲水特性,使得反应液更容易进入微反应腔,反应液易完全填充微反应腔,提高了自吸液进样性能。本公开通过在微腔限定层所形成的限定坝上设置具有疏水特性的第二表面修饰层,且在第二表面修饰层的表面形成第二修饰结构,增加了微反应腔外部表面的疏水特性,不仅使得反应液更容易进入并完全填充微反应腔,而且基于微反应腔内外的亲疏水特性,反应液进入微反应腔后不会出现窜扰等现象,提高了油封的稳定性和有效性,提高了自吸液进样和油封性能。本公开通过在第二基板上形成具有疏水特性的第三表面修饰层,且在第三表面修饰层的表面形成第三修饰结构,增加了微反应腔外部的疏水特性,进一步提高了自吸液进样和油封性能。Through the structure and preparation process of the digital polymerase chain reaction microfluidic device in the exemplary embodiment of the present disclosure, it can be seen that the present disclosure effectively avoids the In the process of sample injection and amplification, the reaction liquid is not completely filled or cross-talk occurs after filling, which improves the performance of self-absorbing liquid sampling and oil seal. In the present disclosure, a first surface modification layer with hydrophilic properties is arranged in the groove formed by the microcavity defining layer, and a first modification structure is formed on the surface of the first surface modification layer, thereby increasing the roughness of the inner surface of the microreaction chamber The degree increases the hydrophilic property inside the micro-reaction chamber, making it easier for the reaction liquid to enter the micro-reaction chamber, and the reaction liquid is easy to completely fill the micro-reaction chamber, which improves the performance of self-absorbing liquid sampling. The present disclosure increases the hydrophobicity of the external surface of the micro-reaction chamber by setting a second surface modification layer with hydrophobic properties on the dam formed by the micro-cavity definition layer, and forming a second modification structure on the surface of the second surface modification layer. , not only makes it easier for the reaction liquid to enter and completely fill the micro-reaction chamber, but also based on the hydrophilic and hydrophobic characteristics inside and outside the micro-reaction chamber, there will be no crosstalk after the reaction liquid enters the micro-reaction chamber, which improves the stability and effectiveness of the oil seal. Improved self-priming liquid sampling and oil seal performance. In the present disclosure, a third surface modification layer with hydrophobic properties is formed on the second substrate, and a third modification structure is formed on the surface of the third surface modification layer, thereby increasing the hydrophobic properties outside the micro-reaction chamber, and further improving the self-absorbing liquid. Injection and oil seal performance.

本公开通过同时增加微反应腔内部的亲水特性和增加微反应腔外部的疏水特性,微反应腔内部的亲水特性和微反应腔外部的疏水特性可以共同调节反应液中液滴的接触角,使反应液从微反应腔外部向微反应腔内部浸润,实现了高效进样,反应液更容易进入每个微反应腔,反应液易完全填充微反应腔且填充后不易出现窜扰,有效解决了现有结构存在进样及扩增过程中反应液未完全填充或填充后出现窜扰等问题,最大限度地提高了数字微流控芯片的自吸液进样和油封性能。The present disclosure simultaneously increases the hydrophilic property inside the micro-reaction chamber and increases the hydrophobic property outside the micro-reaction chamber, the hydrophilic property inside the micro-reaction chamber and the hydrophobic property outside the micro-reaction chamber can jointly adjust the contact angle of the droplet in the reaction solution , so that the reaction liquid infiltrates from the outside of the micro-reaction chamber to the inside of the micro-reaction chamber, realizing efficient sample injection, the reaction liquid is easier to enter each micro-reaction chamber, the reaction liquid is easy to completely fill the micro-reaction chamber and it is not easy to cross-talk after filling, effectively solving the problem It solves the problems of the existing structure that the reaction liquid is not completely filled during the sample injection and amplification process or crosstalk occurs after filling, and maximizes the self-absorbing liquid sample injection and oil seal performance of the digital microfluidic chip.

本公开通过增加表面修饰层的粗糙度,使得膜层比表面积增大,不仅提高了膜层的散热性能,并且有利于释放膜层的应力,提高了量产化工艺质量,提高了量产工艺稳定性,提高了芯片封装的有效性、稳定性和准确性,提升了产品质量和使用寿命。In the present disclosure, by increasing the roughness of the surface modification layer, the specific surface area of the film layer is increased, which not only improves the heat dissipation performance of the film layer, but also helps release the stress of the film layer, improves the mass production process quality, and improves the mass production process. Stability, which improves the effectiveness, stability and accuracy of chip packaging, and improves product quality and service life.

与采用硅基加工制备的反应系统相比,本公开数字聚合酶链式反应微流控装置采用玻璃基结合半导体工艺的微加工方式,可以实现大规模批量生产,不仅可以大幅降低制备成本,而且制备过程简单,可以有效利用半导体工艺的工艺设备,工艺改进小,兼容性强,工艺实现简单,生产效率高,生产成本低,良品率高。本公开数字聚合酶链式反应微流控装置可以更简便、更稳定、更灵敏、无创伤地检测血液、尿液等体液中提取的核酸分子,实现单细胞分析、癌症诊断、病毒分析和产前诊断等领域的辅助诊疗。Compared with the reaction system prepared by silicon-based processing, the digital polymerase chain reaction microfluidic device of the present disclosure adopts the micro-processing method of glass-based and semiconductor technology, which can realize large-scale batch production, not only can greatly reduce the preparation cost, but also The preparation process is simple, the process equipment of the semiconductor process can be effectively utilized, the process improvement is small, the compatibility is strong, the process is simple to realize, the production efficiency is high, the production cost is low, and the yield rate is high. The digital polymerase chain reaction microfluidic device of the present disclosure can detect nucleic acid molecules extracted from blood, urine and other body fluids more conveniently, more stably, more sensitively and non-invasively, and realize single cell analysis, cancer diagnosis, virus analysis and production. Auxiliary diagnosis and treatment in the fields of pre-diagnosis and other fields.

图10a为本公开示例性实施例另一种dPCR微流控装置的结构示意图,图10b为图10a中一个凹槽的放大图。在示例性实施方式中,本示例性实施例数字聚合酶链式反应微流控装置的主体结构与图1所示实施例的基本上相近,包括相对设置的第一基板100和第二基板200,第一基板100包括第一基底10以及在第一基底10上依次设置的加热结构层、微腔限定层30、第一表面修饰层40和第二表面修饰层50,第二基板200包括第二基底20和设置在第二基底20上的第三表面修饰层80,微腔限定层30可以包括多个凹槽60和位于相邻凹槽60之间的限定坝31,第一表面修饰层40上形成有提高亲水特性的第一修饰结构41,第二表面修饰层50上形成有提高疏水特性的第二修饰结构51,第三表面修饰层80上形成有提高疏水特性的第三修饰结构81。如图10a和图10b所示,与前述实施例不同的是,微腔限定层30上还设置有导流结构70,导流结构70被配置为提高反应液进入微反应腔的效率。Fig. 10a is a schematic structural diagram of another dPCR microfluidic device according to an exemplary embodiment of the present disclosure, and Fig. 10b is an enlarged view of a groove in Fig. 10a. In an exemplary embodiment, the main structure of the digital polymerase chain reaction microfluidic device of this exemplary embodiment is basically similar to that of the embodiment shown in FIG. 1 , including a first substrate 100 and a second substrate 200 disposed opposite , the first substrate 100 includes a first base 10 and a heating structure layer, a microcavity defining layer 30 , a first surface modification layer 40 and a second surface modification layer 50 sequentially arranged on the first base 10 , and the second substrate 200 includes a first Two substrates 20 and a third surface modification layer 80 disposed on the second substrate 20, the microcavity defining layer 30 may include a plurality of grooves 60 and limiting dams 31 between adjacent grooves 60, the first surface modification layer 40 is formed with a first modification structure 41 that improves hydrophilic properties, the second surface modification layer 50 is formed with a second modification structure 51 that improves hydrophobic properties, and the third surface modification layer 80 is formed with a third modification that improves hydrophobic properties. Structure 81. As shown in Fig. 10a and Fig. 10b, different from the previous embodiments, the microcavity defining layer 30 is further provided with a flow guide structure 70, and the flow guide structure 70 is configured to improve the efficiency of the reaction liquid entering the micro reaction chamber.

在示例性实施方式中,导流结构70可以设置在第一表面修饰层40远离第一基底一侧的表面上,导流结构70与第一修饰结构41可以通过同一次图案化工艺同时形成。In an exemplary embodiment, the flow guide structure 70 may be disposed on the surface of the first surface modification layer 40 away from the first substrate, and the flow guide structure 70 and the first modification structure 41 may be formed simultaneously through the same patterning process.

在示例性实施方式中,第一表面修饰层40可以包括:覆盖凹槽60的槽底壁的槽底壁修饰层40-1,覆盖凹槽60的槽侧壁的槽侧壁修饰层40-2,以及覆盖限定坝31中坝顶壁的坝顶壁修饰层40-3。第一修饰结构41可以位于槽底壁修饰层40-1远离第一基底一侧的表面上,第一修饰结构41被配置为增加微反应腔内部的亲水特性,第一修饰结构41与前述示例性实施例相近。导流结构70可以位于坝顶壁修饰层40-3远离第一基底一侧的表面上,导流结构70被配置为提高反应液进入微反应腔的效率。In an exemplary embodiment, the first surface modification layer 40 may include: a groove bottom wall modification layer 40-1 covering the groove bottom wall of the groove 60, a groove side wall modification layer 40-1 covering the groove side wall of the groove 60 2, and the crest wall finishing layer 40-3 covering the crest wall defining the dam 31. The first modification structure 41 can be located on the surface of the groove bottom wall modification layer 40-1 away from the first substrate. The first modification structure 41 is configured to increase the hydrophilic property inside the micro-reaction chamber. The first modification structure 41 is the same as the aforementioned Exemplary embodiments are similar. The flow guide structure 70 may be located on the surface of the dam top wall modification layer 40 - 3 away from the first substrate, and the flow guide structure 70 is configured to improve the efficiency of the reaction liquid entering the micro reaction chamber.

在示例性实施方式中,导流结构70可以位于坝顶壁修饰层40-3靠近凹槽60一侧的边缘,在微反应腔的外围形成环形的导流结构,环形的导流结构环绕微反应腔,提高反应液进入微反应腔的效率。In an exemplary embodiment, the flow guide structure 70 can be located on the edge of the top wall modification layer 40-3 near the groove 60, and an annular flow guide structure is formed on the periphery of the micro-reaction chamber, and the annular flow guide structure surrounds the micro-reaction cavity. The reaction chamber improves the efficiency of the reaction liquid entering the micro reaction chamber.

在示例性实施方式中,第一表面修饰层40中坝顶壁修饰层40-3远离第一基底的一侧设置有第二表面修饰层50,第二表面修饰层50可以位于坝顶壁修饰层40-3远离凹槽60的区域,第二表面修饰层50与导流结构70间隔设置,导流结构70位于坝顶壁修饰层40-3靠近凹槽60的周边区域,第二表面修饰层50位于坝顶壁修饰层40-3的中部区域,第二表面修饰层50在第一基底上的正投影与导流结构70在第一基底上的正投影没有交叠。In an exemplary embodiment, in the first surface modification layer 40, the side of the top wall modification layer 40-3 away from the first substrate is provided with a second surface modification layer 50, and the second surface modification layer 50 can be positioned on the top wall modification layer. The layer 40-3 is far away from the region of the groove 60, the second surface modification layer 50 is spaced apart from the diversion structure 70, and the diversion structure 70 is located in the peripheral region of the dam top wall modification layer 40-3 close to the groove 60, the second surface modification The layer 50 is located in the middle region of the dam crest wall modification layer 40-3, and the orthographic projection of the second surface modification layer 50 on the first substrate does not overlap with the orthographic projection of the flow guide structure 70 on the first substrate.

在示例性实施方式中,第二表面修饰层50上形成有第二修饰结构51,第二修饰结构51与前述示例性实施例相近。In an exemplary embodiment, a second modification structure 51 is formed on the second surface modification layer 50 , and the second modification structure 51 is similar to the foregoing exemplary embodiments.

在示例性实施方式中,导流结构70可以包括在坝顶壁修饰层40-3远离第一基底一侧表面上形成的多个导流柱,多个导流柱在坝顶壁修饰层40-3远离第一基底一侧表面上构建圆柱、圆台、棱柱等形状的微纳结构,增加了坝顶壁修饰层40-3靠近凹槽60区域的粗糙度,因而增加了凹槽60周边区域的亲水特性。In an exemplary embodiment, the diversion structure 70 may include a plurality of diversion pillars formed on the surface of the top wall finishing layer 40 - 3 away from the first base, and the plurality of diversion pillars are formed on the surface of the crest decoration layer 40 - 3 . -3 Micro-nano structures in the shape of cylinders, truncated cones, and prisms are constructed on the surface away from the first base, increasing the roughness of the top wall modification layer 40-3 near the groove 60, thus increasing the surrounding area of the groove 60 hydrophilic properties.

在示例性实施方式中,在平行于第一基底的平面内,导流柱的形状可以包括如下任意一种或多种:三角形、正方形、矩形、五边形、六边形、多边形、圆形和椭圆形。In an exemplary embodiment, in a plane parallel to the first base, the shape of the guide post may include any one or more of the following: triangle, square, rectangle, pentagon, hexagon, polygon, circle and oval.

在示例性实施方式中,在平行于第一基底的平面内,导流柱的第四特征长度L4可以约为0.5μm至2μm。本公开中,第四特征长度L4可以是导流柱形状的最大尺寸。例如,导流柱的形状为圆形时,圆形的直径可以约为0.5μm至2μm。又如,导流柱的形状为矩形时,矩形的长边可以约为0.5μm至2μm。再如,导流柱的形状为椭圆形时,椭圆形的长轴可以约为0.5μm至2μm。In an exemplary embodiment, the fourth characteristic length L4 of the guide post may be about 0.5 μm to 2 μm in a plane parallel to the first substrate. In the present disclosure, the fourth characteristic length L4 may be the largest dimension of the shape of the guide post. For example, when the shape of the guide column is a circle, the diameter of the circle may be about 0.5 μm to 2 μm. For another example, when the shape of the deflector column is a rectangle, the long side of the rectangle may be about 0.5 μm to 2 μm. For another example, when the shape of the guide column is ellipse, the major axis of the ellipse may be about 0.5 μm to 2 μm.

在示例性实施方式中,在垂直于第一基底的平面内,导流柱的截面形状可以包括如下任意一种或多种:矩形、梯形和多边形,导流柱的侧壁可以是直线、折线或者弧线。In an exemplary embodiment, in a plane perpendicular to the first base, the cross-sectional shape of the guide post may include any one or more of the following: rectangle, trapezoid and polygon, and the side wall of the guide post may be a straight line or a broken line. Or arcs.

在示例性实施方式中,在垂直于第一基底的平面内,导流柱的第四高度H4可以约为0.1μm至20μm。In an exemplary embodiment, the fourth height H4 of the guide post may be about 0.1 μm to 20 μm in a plane perpendicular to the first substrate.

在示例性实施方式中,相邻导流柱之间的第四间距M4可以约为0.5倍至2.0倍的第四特征长度L4。例如,导流柱的形状可以为圆形,圆形的直径可以约为1μm左右,相邻导流柱之间的间距可以约为1μm左右。In an exemplary embodiment, the fourth spacing M4 between adjacent guide posts may be about 0.5 times to 2.0 times the fourth characteristic length L4. For example, the shape of the guide posts may be circular, the diameter of the circle may be about 1 μm, and the distance between adjacent guide posts may be about 1 μm.

在示例性实施方式中,导流结构70中导流柱的第四高度H4可以大于第一修饰结构41中第一凸起的第一高度H1,和/或,导流结构70中导流柱的第四间距M4可以大于第一修饰结构41中第一凸起的第一间距M1,以使导流结构70所在区域的粗糙度大于第一修饰结构41所在区域的粗糙度,进而使导流结构70所在区域的亲水特性大于第一修饰结构41所在区域的亲水特性,提高反应液进入微反应腔的效率。In an exemplary embodiment, the fourth height H4 of the guide post in the guide structure 70 may be greater than the first height H1 of the first protrusion in the first modification structure 41, and/or, the guide post in the guide structure 70 The fourth spacing M4 of the first modification structure 41 may be greater than the first spacing M1 of the first protrusions in the first modification structure 41, so that the roughness of the area where the flow guide structure 70 is located is greater than the roughness of the area where the first modification structure 41 is located, thereby making the flow guide The hydrophilic property of the area where the structure 70 is located is greater than that of the area where the first modified structure 41 is located, which improves the efficiency of the reaction solution entering the micro-reaction chamber.

本公开示例性实施例dPCR微流控装置的制备过程与前述实施例基本上相近,所不同的是,在形成第一表面修饰层图案的工艺中,不仅在凹槽底部形成第一修饰结构,还在凹槽外侧邻近区域形成导流结构;在形成第二表面修饰层图案的工艺中,仅在导流结构以外区域形成第二修饰结构。The manufacturing process of the dPCR microfluidic device in the exemplary embodiment of the present disclosure is basically similar to the foregoing embodiments, except that in the process of forming the pattern of the first surface modification layer, not only the first modification structure is formed at the bottom of the groove, A flow guiding structure is also formed in a region adjacent to the outside of the groove; in the process of forming the pattern of the second surface modification layer, the second modification structure is only formed in the area outside the flow guiding structure.

本公开示例性实施例数字聚合酶链式反应微流控装置不仅具有前述实施例的技术效果,有效避免了进样及扩增过程中反应液未完全填充或填充后出现窜扰等不良,提高了自吸液进样和油封性能,而且通过在微反应腔的周边设置导流结构,导流结构提高了反应液进入微反应腔的效率,反应液易完全填充微反应腔且填充后不易出现窜扰,最大限度地提高了数字微流控芯片的自吸液进样和油封性能。The digital polymerase chain reaction microfluidic device in the exemplary embodiment of the present disclosure not only has the technical effects of the foregoing embodiments, but also effectively avoids defects such as incomplete filling of the reaction solution or interference after filling during the process of sample injection and amplification, and improves the Self-absorbing liquid sampling and oil seal performance, and by setting a diversion structure around the micro-reaction chamber, the diversion structure improves the efficiency of the reaction liquid entering the micro-reaction chamber, the reaction liquid is easy to completely fill the micro-reaction chamber and is not prone to cross-talk after filling , to maximize the self-aspiration liquid injection and oil seal performance of the digital microfluidic chip.

图11a为本公开示例性实施例又一种dPCR微流控装置的结构示意图,图11b为图11a中一个凹槽的放大图。在示例性实施方式中,本示例性实施例数字聚合酶链式反应微流控装置的主体结构与图1所示实施例的基本上相近,包括相对设置的第一基板100和第二基板200,第一基板100包括第一基底10以及在第一基底10上依次设置的加热结构层、微腔限定层和表面修饰层,第二基板200包括第二基底20和设置在第二基底20上的第三表面修饰层80,微腔限定层30可以包括多个凹槽60和位于相邻凹槽60之间的限定坝31。如图11a和图11b所示,与前述实施例不同的是,第一表面修饰层40仅设置在凹槽60所在区域,第二修饰结构设置在限定坝31远离第一基底的一侧。Fig. 11a is a schematic structural diagram of another dPCR microfluidic device according to an exemplary embodiment of the present disclosure, and Fig. 11b is an enlarged view of a groove in Fig. 11a. In an exemplary embodiment, the main structure of the digital polymerase chain reaction microfluidic device of this exemplary embodiment is basically similar to that of the embodiment shown in FIG. 1 , including a first substrate 100 and a second substrate 200 disposed opposite , the first substrate 100 includes a first substrate 10 and a heating structure layer, a microcavity defining layer, and a surface modification layer sequentially arranged on the first substrate 10, and the second substrate 200 includes a second substrate 20 and a layer arranged on the second substrate 20. The third surface modification layer 80 of the microcavity-defining layer 30 may include a plurality of grooves 60 and defining dams 31 between adjacent grooves 60 . As shown in FIG. 11a and FIG. 11b , different from the previous embodiments, the first surface modification layer 40 is only provided on the area where the groove 60 is located, and the second modification structure is provided on the side of the limiting dam 31 away from the first substrate.

在示例性实施方式中,第一表面修饰层40可以包括:覆盖凹槽60的槽底壁的槽底壁修饰层40-1和覆盖凹槽60的槽侧壁的槽侧壁修饰层40-2,即限定坝31中坝顶壁没有设置第一表面修饰层40。第一修饰结构41可以位于槽底壁修饰层40-1远离第一基底一侧的表面上,第一修饰结构41被配置为增加微反应腔内部的亲水特性,第一修饰结构41与前述示例性实施例相近。In an exemplary embodiment, the first surface modification layer 40 may include: a groove bottom wall modification layer 40-1 covering the groove bottom wall of the groove 60 and a groove side wall modification layer 40-1 covering the groove side wall of the groove 60. 2, that is, the top wall of the dam 31 is defined as not having the first surface modification layer 40 . The first modification structure 41 can be located on the surface of the groove bottom wall modification layer 40-1 away from the first substrate. The first modification structure 41 is configured to increase the hydrophilic property inside the micro-reaction chamber. The first modification structure 41 is the same as the aforementioned Exemplary embodiments are similar.

在示例性实施方式中,微腔限定层可以采用具有疏水特性的光刻胶等材料,限定坝31中坝顶壁远离第一基底一侧的表面上形成有第二修饰结构51,第二修饰结构51被配置为增加微反应腔外部的疏水特性,第二修饰结构51可以包括在限定坝31中坝顶壁远离第一基底一侧的表面上形成的多个第二凸起,第二凸起的结构与前述示例性实施例相近。In an exemplary embodiment, the microcavity-defining layer can be made of materials such as photoresist with hydrophobic properties, and a second modification structure 51 is formed on the surface of the dam top wall away from the first substrate in the defined dam 31, and the second modification The structure 51 is configured to increase the hydrophobicity of the outside of the microreaction chamber, and the second modified structure 51 may include a plurality of second protrusions formed on the surface of the dam top wall away from the first base in the defined dam 31, the second protrusions The starting structure is similar to the foregoing exemplary embodiment.

本公开示例性实施例数字聚合酶链式反应微流控装置的制备过程与前述实施例基本上相近,所不同的是,在形成微腔限定层图案的工艺中,不仅形成多个凹槽,还在限定坝远离第一基底一侧的表面上形成的第二修饰结构。在形成第一表面修饰层图案的工艺中,仅在凹槽所在区域形成第一表面修饰层和第一修饰结构,不需要进行形成第二表面修饰层图案的工艺。The manufacturing process of the digital polymerase chain reaction microfluidic device in the exemplary embodiment of the present disclosure is basically similar to that of the foregoing embodiments, except that in the process of forming the pattern of the microcavity-defining layer, not only a plurality of grooves are formed, A second modification structure is also formed on the surface defining the side of the dam remote from the first substrate. In the process of forming the pattern of the first surface modification layer, the first surface modification layer and the first modification structure are only formed in the region where the groove is located, and the process of forming the pattern of the second surface modification layer is not required.

在示例性实施方式中,形成微腔限定层图案的工艺可以采用半色调掩膜板(HalfTone Mask)、单缝衍射掩模板(Single Slit Mask)或灰色调掩模板(Gray Tone Mask)的图案化工艺,本公开在此不做限定。In an exemplary embodiment, the process of forming the pattern of the microcavity-defining layer may be patterned using a half-tone mask (HalfTone Mask), a single-slit diffraction mask (Single Slit Mask) or a gray-tone mask (Gray Tone Mask) process, the present disclosure is not limited here.

本公开示例性实施例数字聚合酶链式反应微流控装置可以实现前述实施例的技术效果,有效避免了进样及扩增过程中反应液未完全填充或填充后出现窜扰等不良,提高了自吸液进样和油封性能。The digital polymerase chain reaction microfluidic device in the exemplary embodiment of the present disclosure can achieve the technical effects of the foregoing embodiments, effectively avoiding defects such as incomplete filling of the reaction solution or interference after filling during the process of sample introduction and amplification, and improving the Self-priming liquid sampling and oil seal performance.

图12为本公开示例性实施例一种反应区域的平面结构示意图。在示例性实施方式中,沿着反应液的流动方向A,反应区域可以包括入液区110-1、入液过渡区110-2、反应区110-3、出液过渡区110-4和出液区110-5,反应液从入液区110-1进入反应区域,经过入液过渡区110-2后进入反应区110-3并注入到多个微反应腔中,得到检测结果后的反应液从反应区110-3流出,经过出液过渡区110-4后流到出液区110-5被排出。Fig. 12 is a schematic plan view of a reaction area according to an exemplary embodiment of the present disclosure. In an exemplary embodiment, along the flow direction A of the reaction liquid, the reaction zone may include a liquid inlet zone 110-1, a liquid inlet transition zone 110-2, a reaction zone 110-3, a liquid outlet transition zone 110-4, and a liquid outlet transition zone 110-4. Liquid zone 110-5, the reaction liquid enters the reaction zone from the liquid inlet zone 110-1, enters the reaction zone 110-3 after passing through the liquid inlet transition zone 110-2 and injects it into multiple micro-reaction chambers, and the reaction after the test results are obtained The liquid flows out from the reaction zone 110-3, passes through the liquid outlet transition zone 110-4, and then flows to the liquid outlet zone 110-5 to be discharged.

在示例性实施方式中,反应区110-3可以包括多个微反应腔和位于相邻微反应腔之间的限定坝,多个微反应腔内设置有第一修饰结构41,微反应腔之外的限定坝设置有第二修饰结构51。入液区110-1、入液过渡区110-2、出液过渡区110-4和出液区110-5均可以包括微腔限定层,微腔限定层设置有第二修饰结构51。也就是说,除了多个微反应腔内具有亲水特性,多个微反应腔之外的其它反应区域均具有疏水特性。In an exemplary embodiment, the reaction zone 110-3 may include a plurality of micro-reaction chambers and limiting dams between adjacent micro-reaction chambers, the first modification structure 41 is arranged in the plurality of micro-reaction chambers, and the micro-reaction chambers The outer limiting dam is provided with a second finishing structure 51 . The liquid inlet region 110 - 1 , the liquid inlet transition region 110 - 2 , the liquid outlet transition region 110 - 4 and the liquid outlet region 110 - 5 may all include a microcavity defining layer, and the microcavity defining layer is provided with a second modification structure 51 . That is to say, except that the multiple micro-reaction chambers have hydrophilic properties, other reaction regions other than the multiple micro-reaction chambers all have hydrophobic properties.

在示例性实施方式中,入液过渡区110-2、反应区110-3中多个微反应腔之外区域以及出液过渡区110-4的疏水特性可以相同,即入液过渡区110-2、反应区110-3和出液过渡区110-4的第二修饰结构51可以相同。In an exemplary embodiment, the hydrophobic characteristics of the liquid-entry transition zone 110-2, the regions outside the multiple micro-reaction chambers in the reaction zone 110-3, and the liquid-flow transition zone 110-4 may be the same, that is, the liquid-entry transition zone 110- 2. The second modification structure 51 of the reaction zone 110-3 and the liquid outlet transition zone 110-4 may be the same.

在示例性实施方式中,入液区110-1和/或出液区110-5的第二修饰结构51可以与其它区的第二修饰结构51不同。以入液区110-1和入液过渡区110-2的第二修饰结构51均包括多个第二凸起为例,入液区110-1中第二凸起的第二高度可以小于入液过渡区110-2中第二凸起的第二高度,和/或,入液区110-1中第二凸起的第二间距可以小于入液过渡区110-2中第二凸起的第二间距,以使入液过渡区110-2的粗糙度大于入液区110-1的粗糙度,进而使入液过渡区110-2的疏水特性大于入液区110-1的疏水特性。本公开通过增加反应区周边的疏水特性,进一步提高了进样效率。In an exemplary embodiment, the second modified structure 51 of the liquid inlet region 110-1 and/or the liquid outlet region 110-5 may be different from the second modified structure 51 of other regions. Taking the second modification structure 51 of the liquid entry zone 110-1 and the liquid entry transition zone 110-2 both including a plurality of second protrusions as an example, the second height of the second protrusions in the liquid entry zone 110-1 may be smaller than that of the entrance The second height of the second protrusions in the liquid transition area 110-2, and/or, the second spacing of the second protrusions in the liquid entry area 110-1 may be smaller than that of the second protrusions in the liquid entry transition area 110-2. The second distance is such that the roughness of the liquid-entry transition zone 110-2 is greater than that of the liquid-entrance zone 110-1, so that the hydrophobicity of the liquid-entry transition zone 110-2 is greater than that of the liquid-entry zone 110-1. The present disclosure further improves the sampling efficiency by increasing the hydrophobicity around the reaction zone.

在示例性实施方式中,沿着反应液的流动方向A,入液过渡区110-2和/或出液过渡区110-4的过渡长度可以约为800μm至1200μm。例如,入液过渡区110-2和/或出液过渡区110-4的过渡长度可以约为1000μm左右。In an exemplary embodiment, along the flow direction A of the reaction liquid, the transition length of the liquid inlet transition region 110 - 2 and/or the liquid outlet transition region 110 - 4 may be about 800 μm to 1200 μm. For example, the transition length of the liquid-entry transition region 110-2 and/or the liquid-exit transition region 110-4 may be about 1000 μm.

需要说明的是,本公开实施例所示结构及其制备过程仅仅是一种示例性说明。在示例性实施方式中,可以根据实际需要变更相应结构以及增加或减少图案化工艺。例如,dPCR微流控装置的结构可以是微腔限定层上设置有导流结构,但第二修饰结构设置在限定坝远离第一基底的一侧。又如,dPCR微流控装置的结构可以是第一表面修饰层设置在凹槽所在区域,第二表面修饰层设置在凹槽以外的区域,第一表面修饰层上设置有第一修饰结构,第二表面修饰层上设置有第二修饰结构。再如,dPCR微流控装置还可以设置其它电极、引线和结构膜层,本公开在此不做限定。It should be noted that the structures shown in the embodiments of the present disclosure and their preparation processes are merely illustrative. In exemplary embodiments, the corresponding structure may be changed and the patterning process may be increased or decreased according to actual needs. For example, the structure of the dPCR microfluidic device may be that the microcavity defining layer is provided with a flow guiding structure, but the second modifying structure is provided on the side of the defining dam away from the first substrate. For another example, the structure of the dPCR microfluidic device can be that the first surface modification layer is arranged in the area where the groove is located, the second surface modification layer is arranged in the area outside the groove, and the first surface modification layer is provided with the first modification structure, The second surface modification layer is provided with a second modification structure. For another example, the dPCR microfluidic device can also be provided with other electrodes, leads and structural membrane layers, which are not limited in this disclosure.

本公开示例性实施例还提供了一种数字聚合酶链式反应微流控装置的制备方法。在示例性实施方式中,数字聚合酶链式反应微流控装置的制备方法可以包括:Exemplary embodiments of the present disclosure also provide a method for preparing a digital polymerase chain reaction microfluidic device. In an exemplary embodiment, a method for preparing a digital polymerase chain reaction microfluidic device may include:

分别制备第一基板和第二基板;所述第一基板包括第一基底、设置在所述第一基底朝向所述第二基板一侧的微腔限定层以及设置在所述微腔限定层远离所述第一基底一侧的第一表面修饰层;所述微腔限定层包括多个作为微反应腔的凹槽和位于相邻凹槽之间的限定坝,至少一个凹槽内的所述第一表面修饰层设置有第一修饰结构,所述第一修饰结构被配置为增加微反应腔内部的亲水特性;Prepare a first substrate and a second substrate respectively; the first substrate includes a first substrate, a microcavity defining layer disposed on the first substrate facing the second substrate, and a microcavity defining layer disposed on a side away from the microcavity defining layer The first surface modification layer on one side of the first substrate; the microcavity-defining layer includes a plurality of grooves as micro-reaction chambers and a limit dam between adjacent grooves, the at least one groove in the groove The first surface modification layer is provided with a first modification structure, and the first modification structure is configured to increase the hydrophilic property inside the micro-reaction chamber;

通过封装处理将所述第一基板和第二基板对盒封装。The first substrate and the second substrate are packaged into a box through a packaging process.

在示例性实施方式中,制备第一基板可以包括:In an exemplary embodiment, preparing the first substrate may include:

在所述第一基底上形成微腔限定层,所述微腔限定层包括多个作为微反应腔的凹槽和位于相邻凹槽之间的限定坝;Forming a microcavity-defining layer on the first substrate, the microcavity-defining layer comprising a plurality of grooves serving as microreaction chambers and limiting dams between adjacent grooves;

形成第一表面修饰层,所述第一表面修饰层包括覆盖所述凹槽中槽底壁的槽底壁修饰层、覆盖所述凹槽中槽侧壁的槽侧壁修饰层以及覆盖所述限定坝远离所述第一基底一侧的坝顶壁修饰层,至少一个槽底壁修饰层远离所述第一基底一侧的表面上形成有第一修饰结构,所述第一修饰结构包括至少一个第一凸起;Forming a first surface modification layer, the first surface modification layer includes a groove bottom wall modification layer covering the groove bottom wall in the groove, a groove side wall modification layer covering the groove side wall in the groove, and a groove side wall modification layer covering the groove The dam top wall modification layer on the side away from the first base is defined, and at least one groove bottom wall modification layer has a first modification structure formed on the surface of the side away from the first base, and the first modification structure includes at least a first bump;

形成第二表面修饰层,所述第二表面修饰层形成在至少一个坝顶壁修饰层远离所述第一基底的一侧,所述第二表面修饰层远离所述第一基底一侧的表面上形成有第二修饰结构,所述第二修饰结构包括至少一个第二凸起。forming a second surface modification layer, the second surface modification layer is formed on the side of at least one dam top wall modification layer away from the first base, and the second surface modification layer is on the surface of the side away from the first base A second modification structure is formed on the top, and the second modification structure includes at least one second protrusion.

在示例性实施方式中,制备第二基板可以包括:In an exemplary embodiment, preparing the second substrate may include:

在第二基底朝向所述第一基板的一侧形成第三表面修饰层,所述第三表面修饰层朝向所述第一基板一侧的表面上形成有第三修饰结构,所述第三修饰结构包括至少一个第三凸起。A third surface modification layer is formed on the side of the second substrate facing the first substrate, a third modification structure is formed on the surface of the third surface modification layer facing the first substrate, and the third modification The structure includes at least one third protrusion.

通过本公开数字聚合酶链式反应微流控装置的制备过程可以看出,本公开通过在微反应腔的内部和外部分别进行亲水结构和疏水结构设计,有效避免了进样及扩增过程中反应液未完全填充或填充后出现窜扰等不良,提高了自吸液进样和油封性能。本公开通过在微腔限定层所形成的凹槽内设置第一表面修饰层,且在第一表面修饰层的表面形成第一修饰结构,增加了微反应腔内部表面的粗糙度,进而增加了微反应腔内部的亲水特性,使得反应液更容易进入微反应腔,反应液易完全填充微反应腔,提高了自吸液进样性能。本公开通过在微腔限定层所形成的限定坝上设置第二表面修饰层,且在第二表面修饰层的表面形成第二修饰结构,增加了微反应腔外部表面的疏水特性,不仅使得反应液更容易进入并完全填充微反应腔,而且基于微反应腔内外的亲疏水特性,反应液进入微反应腔后不会出现窜扰等现象,提高了油封的稳定性和有效性,提高了自吸液进样和油封性能。本公开通过在第二基板上形成第三表面修饰层,且在第三表面修饰层的表面形成第三修饰结构,增加了微反应腔外部的疏水特性,进一步提高了自吸液进样和油封性能。本公开通过同时增加微反应腔内部的亲水特性和增加微反应腔外部的疏水特性,微反应腔内部的亲水特性和微反应腔外部的疏水特性可以共同调节反应液中液滴的接触角,使反应液从微反应腔外部向微反应腔内部浸润,实现了高效进样,反应液更容易进入每个微反应腔,反应液易完全填充微反应腔且填充后不易出现窜扰,有效解决了现有结构存在进样及扩增过程中反应液未完全填充或填充后出现窜扰等问题,最大限度地提高了数字微流控芯片的自吸液进样和油封性能。本公开通过增加表面修饰层的粗糙度,使得膜层比表面积增大,不仅提高了膜层的散热性能,并且有利于释放膜层的应力,提高了量产化工艺质量,提升了产品质量和使用寿命。与采用硅基加工制备的反应系统相比,本公开数字聚合酶链式反应微流控装置采用玻璃基结合半导体工艺的微加工方式,可以实现大规模批量生产,不仅可以大幅降低制备成本,而且制备过程简单,可以有效利用半导体工艺的工艺设备,工艺改进小,兼容性强,工艺实现简单,生产效率高,生产成本低,良品率高。本公开数字聚合酶链式反应微流控装置可以更简便、更稳定、更灵敏、无创伤地检测血液、尿液等体液中提取的核酸分子,实现单细胞分析、癌症诊断、病毒分析和产前诊断等领域的辅助诊疗。Through the preparation process of the digital polymerase chain reaction microfluidic device of the present disclosure, it can be seen that the present disclosure effectively avoids the process of sample injection and amplification by designing the hydrophilic structure and the hydrophobic structure inside and outside the micro-reaction chamber respectively. The reaction solution in the middle is not completely filled or cross-talk occurs after filling, which improves the performance of self-absorbing liquid sampling and oil sealing. In the present disclosure, the first surface modification layer is arranged in the groove formed by the microcavity defining layer, and the first modification structure is formed on the surface of the first surface modification layer, thereby increasing the roughness of the inner surface of the microreaction chamber, thereby increasing the The hydrophilic property inside the micro-reaction chamber makes it easier for the reaction liquid to enter the micro-reaction chamber, and the reaction liquid is easy to completely fill the micro-reaction chamber, which improves the self-absorbing liquid sampling performance. In the present disclosure, a second surface modification layer is arranged on the limiting dam formed by the microcavity limiting layer, and a second modification structure is formed on the surface of the second surface modification layer, which increases the hydrophobicity of the external surface of the micro-reaction chamber, not only makes the reaction It is easier for the liquid to enter and completely fill the micro-reaction chamber, and based on the hydrophilic and hydrophobic characteristics inside and outside the micro-reaction chamber, there will be no disturbance after the reaction liquid enters the micro-reaction chamber, which improves the stability and effectiveness of the oil seal and improves the self-priming Liquid sampling and oil seal performance. In the present disclosure, the third surface modification layer is formed on the second substrate, and the third modification structure is formed on the surface of the third surface modification layer, which increases the hydrophobicity of the micro-reaction chamber, and further improves the self-absorption liquid injection and oil seal. performance. The present disclosure simultaneously increases the hydrophilic property inside the micro-reaction chamber and increases the hydrophobic property outside the micro-reaction chamber, the hydrophilic property inside the micro-reaction chamber and the hydrophobic property outside the micro-reaction chamber can jointly adjust the contact angle of the droplet in the reaction solution , so that the reaction liquid infiltrates from the outside of the micro-reaction chamber to the inside of the micro-reaction chamber, realizing efficient sample injection, the reaction liquid is easier to enter each micro-reaction chamber, the reaction liquid is easy to completely fill the micro-reaction chamber and it is not easy to cross-talk after filling, effectively solving the problem It solves the problems of the existing structure that the reaction liquid is not completely filled during the sample injection and amplification process or crosstalk occurs after filling, and maximizes the self-absorbing liquid sample injection and oil seal performance of the digital microfluidic chip. In the present disclosure, by increasing the roughness of the surface modification layer, the specific surface area of the film layer is increased, which not only improves the heat dissipation performance of the film layer, but also helps release the stress of the film layer, improves the mass production process quality, and improves product quality and service life. Compared with the reaction system prepared by silicon-based processing, the digital polymerase chain reaction microfluidic device of the present disclosure adopts the micro-processing method of glass-based and semiconductor technology, which can realize large-scale batch production, not only can greatly reduce the preparation cost, but also The preparation process is simple, the process equipment of the semiconductor process can be effectively utilized, the process improvement is small, the compatibility is strong, the process is simple to realize, the production efficiency is high, the production cost is low, and the yield rate is high. The digital polymerase chain reaction microfluidic device of the present disclosure can detect nucleic acid molecules extracted from blood, urine and other body fluids more conveniently, more stably, more sensitively and non-invasively, and realize single cell analysis, cancer diagnosis, virus analysis and production. Auxiliary diagnosis and treatment in the fields of pre-diagnosis and other fields.

虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。Although the embodiments disclosed in the present disclosure are as above, the content described is only the embodiments adopted to facilitate understanding of the present disclosure, and is not intended to limit the present disclosure. Anyone skilled in the field of this disclosure can make any modifications and changes in the form and details of implementation without departing from the spirit and scope disclosed in this disclosure, but the patent protection scope of this application is still subject to The scope defined by the appended claims shall prevail.

Claims (19)

1. The digital polymerase chain reaction microfluidic device is characterized by comprising a first substrate and a second substrate which are oppositely arranged; the first substrate comprises a first substrate, a microcavity limiting layer arranged on one side of the first substrate, which faces the second substrate, and a first surface modification layer arranged on one side of the microcavity limiting layer, which is far away from the first substrate; the microcavity defining layer comprises a plurality of grooves serving as micro-reaction chambers and defining dams positioned between the adjacent grooves, the first surface modification layer in at least one groove is provided with a first modification structure, and the first modification structure is configured to increase the hydrophilic property inside the micro-reaction chambers;
the first surface modification layer comprises a groove bottom wall modification layer covering the groove bottom wall in the groove, a groove side wall modification layer covering the groove side wall in the groove and a dam top wall modification layer covering the dam top wall in the limiting dam; and a flow guide structure is arranged on the surface of one side, far away from the first substrate, of at least one dam top wall modification layer, the flow guide structure is positioned on one side, close to the groove, of the dam top wall modification layer, and the flow guide structure is configured to improve the efficiency of reaction liquid entering the micro-reaction cavity.
2. The apparatus of claim 1, wherein the first surface modification layer comprises a bottom wall modification layer covering a bottom wall of the trench and a sidewall modification layer covering a sidewall of the trench, the first modification structure being disposed on a surface of the bottom wall modification layer on a side remote from the first substrate.
3. The apparatus of claim 2, wherein the first modification comprises at least one first protrusion disposed on a surface of the channel bottom wall modification layer on a side thereof remote from the first substrate.
4. The device of claim 3, wherein, in a plane parallel to the first substrate, the first protrusions have a first characteristic length of 0.5 μm to 2 μm, and a first spacing between adjacent first protrusions is 0.5 times to 2.0 times the first characteristic length, the first characteristic length being a maximum dimension of the first protrusions; the first protrusions have a first height of 0.1 to 20 μm in a plane perpendicular to the first substrate.
5. The apparatus of any one of claims 1 to 4, wherein a side of the confining dam remote from the first substrate is provided with a second modification configured to increase hydrophobic properties outside the micro reaction chamber.
6. The apparatus of claim 5, wherein the first surface modification layer comprises a groove bottom wall modification layer covering the groove-in-groove bottom wall, a groove side wall modification layer covering the groove-in-groove side wall, and a dam top wall modification layer covering the dam-in-dam top wall; and a second surface modification layer is arranged on one side, far away from the first substrate, of the at least one dam top wall modification layer, and the second modification structure is arranged on the surface of one side, far away from the first substrate, of the second surface modification layer.
7. The apparatus of claim 5, wherein the first surface modification layer comprises a groove bottom wall modification layer covering the groove bottom wall in the groove and a groove side wall modification layer covering the groove side wall in the groove; the second modifying structure is disposed on a surface of a side of the dam apex wall away from the first base in the defining dam.
8. The apparatus of claim 5, wherein the second modifying structure comprises at least one second protrusion provided on a surface of a second surface modifying layer or defining dam on a side of the dam apex wall remote from the first substrate.
9. The device of claim 8, wherein, in a plane parallel to the first substrate, the second protrusions have a second characteristic length of 0.5 μ ι η to 2 μ ι η, and a second spacing between adjacent second protrusions is 0.5 times to 2.0 times the first characteristic length, the second characteristic length being a maximum dimension of the second protrusions; the second protrusions have a second height of 0.1 to 20 μm in a plane perpendicular to the first substrate.
10. The apparatus of any one of claims 1 to 4, wherein the flow-directing structure comprises at least one flow-directing post disposed on a surface of the top dam wall finish distal from the first substrate.
11. The apparatus of claim 10, wherein the flow guide posts have a flow guide characteristic length of 0.5 μ ι η to 2 μ ι η and a flow guide spacing between adjacent flow guide posts is 0.5 times to 2.0 times the flow guide characteristic length in a plane parallel to the first substrate, the flow guide characteristic length being the largest dimension of the flow guide post; the flow guide height of the flow guide column in a plane perpendicular to the first substrate is 0.1-20 μm.
12. The apparatus of claim 10, wherein the flow guiding height of the flow guiding pillars in the flow guiding structure is greater than the first height of the first protrusions in the first modifying structure, and/or the flow guiding pitch of the flow guiding pillars in the flow guiding structure is greater than the first pitch of the first protrusions in the first modifying structure.
13. The apparatus of any one of claims 1 to 4, wherein the second substrate comprises a second substrate and a third surface modification layer disposed on a side of the second substrate facing the first substrate, wherein a surface of the third surface modification layer facing the first substrate has a third modification structure disposed thereon, and the third modification structure is configured to increase a hydrophobic property of an exterior of the micro reaction chamber.
14. The apparatus of claim 13, wherein the third modifying structure comprises at least one third protrusion disposed on a surface of the third surface modifying layer facing the first substrate.
15. The device of claim 14, wherein, in a plane parallel to the first substrate, a third feature length of the third protrusions is 0.5 μ ι η to 2 μ ι η, a second pitch between adjacent third protrusions is 0.5 times to 2.0 times the third feature length, the third feature length being a maximum dimension of the third protrusions; a third height of the third protrusion in a plane perpendicular to the first substrate is 0.1 to 20 μm.
16. The apparatus of claim 15, wherein a third height of the third protrusions in the third trim structure is greater than a second height of the second protrusions in the second trim structure, and/or wherein a third pitch of the third protrusions in the third trim structure is greater than a second pitch of the second protrusions in the second trim structure.
17. A method for preparing a microfluidic device for digital polymerase chain reaction, comprising:
respectively preparing a first substrate and a second substrate; the first substrate comprises a first substrate, a microcavity limiting layer arranged on one side of the first substrate, which faces the second substrate, and a first surface modification layer arranged on one side of the microcavity limiting layer, which is far away from the first substrate; the micro-cavity limiting layer comprises a plurality of grooves serving as micro-reaction cavities and limiting dams positioned between the adjacent grooves, the first surface modification layer in at least one groove is provided with a first modification structure, and the first modification structure is configured to increase the hydrophilic property inside the micro-reaction cavities; the first surface modification layer comprises a groove bottom wall modification layer covering the groove bottom wall in the groove, a groove side wall modification layer covering the groove side wall in the groove and a dam top wall modification layer covering the dam top wall in the limiting dam; a flow guide structure is arranged on the surface of one side, far away from the first substrate, of at least one dam top wall modification layer, the flow guide structure is positioned on one side, close to the groove, of the dam top wall modification layer, and the flow guide structure is configured to improve the efficiency of reaction liquid entering the micro-reaction cavity;
and packaging the first substrate and the second substrate in a box through a packaging process.
18. The method of claim 17, wherein preparing the first substrate comprises:
forming a microcavity-defining layer on the first substrate, the microcavity-defining layer including a plurality of recesses as microreaction cavities and defining dams between adjacent recesses;
forming a first surface modification layer, wherein the first surface modification layer comprises a groove bottom wall modification layer covering the groove bottom wall in the groove, a groove side wall modification layer covering the groove side wall in the groove and a dam top wall modification layer covering one side, far away from the first substrate, of the limiting dam, and a first modification structure is formed on the surface of one side, far away from the first substrate, of at least one groove bottom wall modification layer and comprises at least one first protrusion;
and forming a second surface modification layer, wherein the second surface modification layer is formed on one side of the at least one dam crest wall modification layer far away from the first substrate, a second modification structure is formed on the surface of one side of the second surface modification layer far away from the first substrate, and the second modification structure comprises at least one second protrusion.
19. The method of claim 17, wherein preparing the second substrate comprises:
and forming a third surface modification layer on one side of the second substrate facing the first substrate, wherein a third modification structure is formed on the surface of the third surface modification layer facing one side of the first substrate, and the third modification structure comprises at least one third protrusion.
CN202111117340.9A 2021-09-23 2021-09-23 Digital polymerase chain reaction microfluidic device and preparation method thereof Active CN113814014B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111117340.9A CN113814014B (en) 2021-09-23 2021-09-23 Digital polymerase chain reaction microfluidic device and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111117340.9A CN113814014B (en) 2021-09-23 2021-09-23 Digital polymerase chain reaction microfluidic device and preparation method thereof

Publications (2)

Publication Number Publication Date
CN113814014A CN113814014A (en) 2021-12-21
CN113814014B true CN113814014B (en) 2023-04-07

Family

ID=78921145

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111117340.9A Active CN113814014B (en) 2021-09-23 2021-09-23 Digital polymerase chain reaction microfluidic device and preparation method thereof

Country Status (1)

Country Link
CN (1) CN113814014B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460135B (en) * 2022-01-10 2025-08-15 成都齐碳科技有限公司 Film-forming stent, biochip, device, preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106148187A (en) * 2016-07-20 2016-11-23 国家纳米科学中心 For expressing unicellular sorting and the micro-fluidic chip of polygenic locus detection of EGFR
CN109622083A (en) * 2019-01-24 2019-04-16 京东方科技集团股份有限公司 A kind of microfluidic system and preparation method thereof
CN110520529A (en) * 2017-04-05 2019-11-29 株式会社日立高新技术 Nucleic acid amplification method and foranalysis of nucleic acids device
CN211014324U (en) * 2019-11-22 2020-07-14 京东方科技集团股份有限公司 Detection chip and detection system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10043042C2 (en) * 2000-09-01 2003-04-17 Bruker Daltonik Gmbh Method for loading a sample carrier with biomolecules for mass spectrometric analysis
US7883665B2 (en) * 2005-09-14 2011-02-08 Alcatel-Lucent Usa Inc. Chemical and biological detection arrays
EP3545076A4 (en) * 2016-11-22 2020-07-29 Roswell Biotechnologies, Inc Nucleic acid sequencing device containing graphene
CN108660068B (en) * 2018-02-13 2022-04-05 臻准生物工程(山西)有限公司 Biological reaction chip and preparation method thereof
WO2020147013A1 (en) * 2019-01-15 2020-07-23 京东方科技集团股份有限公司 Detection chip and preparation method therefor, and detection system
CN110643503B (en) * 2019-10-30 2023-03-28 北京陆桥技术股份有限公司 High-precision microorganism detection chip
CN113308351B (en) * 2020-02-26 2022-12-27 京东方科技集团股份有限公司 Detection chip, preparation method thereof and reaction system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106148187A (en) * 2016-07-20 2016-11-23 国家纳米科学中心 For expressing unicellular sorting and the micro-fluidic chip of polygenic locus detection of EGFR
CN110520529A (en) * 2017-04-05 2019-11-29 株式会社日立高新技术 Nucleic acid amplification method and foranalysis of nucleic acids device
CN109622083A (en) * 2019-01-24 2019-04-16 京东方科技集团股份有限公司 A kind of microfluidic system and preparation method thereof
CN211014324U (en) * 2019-11-22 2020-07-14 京东方科技集团股份有限公司 Detection chip and detection system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Microfluidic chip for blood cell separation and collection based on crossflow filtration;Xing Chen等;《Sensors and Actuators B: Chemical》;20080314;第216-221页 *
基于微结构光纤的温度传感器研究;耿优福等;《应用科学学报》;20200330(第02期);全文 *
连续进样的重力驱动微流控芯片流动分析系统;黄艳贞等;《高等学校化学学报》;20040915(第09期);全文 *

Also Published As

Publication number Publication date
CN113814014A (en) 2021-12-21

Similar Documents

Publication Publication Date Title
CN103170383B (en) Nano-material electrode modification based electrochemical integrated digital micro-fluidic chip
TWI461809B (en) Electrophoretic display device and method of manufacturing same
CN111699043B (en) Detection chip, use method thereof and reaction system
CN113814014B (en) Digital polymerase chain reaction microfluidic device and preparation method thereof
CN1499271A (en) Array substrate for liquid crystal display and manufacturing method thereof
CN103293661A (en) Electrowetting display element
TW201202826A (en) Electrophoretic display device and fabrication method thereof
JP7469338B2 (en) Detection chip, manufacturing method thereof, and use method, and reaction system
US9151946B2 (en) Method of manufacturing pixel walls of an electrowetting display device
US20220411732A1 (en) Detection chip and manufacturing method therefor, and reaction system
CN110591903A (en) Gene sequencing substrate, manufacturing method thereof, and gene sequencing chip
CN118142599A (en) Microfluidic chip, method for manufacturing microfluidic chip and biological detection device
CN108465492B (en) Micro-fluidic chip and manufacturing method thereof
CN113713868A (en) Microfluidic chip and manufacturing method thereof
JP2023523661A (en) Inspection chip, usage thereof, and reaction system
JP4984416B2 (en) Thin film transistor manufacturing method
CN115862490B (en) Display backplane, electronic device, and method for preparing display backplane
CN216354218U (en) Digital Microfluidic Chip
US20230158500A1 (en) Array substrate, microfluidic device, microfluidic system, and fluorescence detection method
CN102050427B (en) Preparation method of nano-fluid testing device
CN214361269U (en) Detection chip and reaction system
US20240390892A1 (en) Microfluidic substrate and microfluidic chip
CN107845647B (en) Thin film transistor array substrate, preparation method thereof and display device
CN115427150B (en) Microfluidic substrate, microfluidic chip and manufacturing method thereof
CN103956335A (en) Preparation method of array substrate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant