CN113964120B - A power semiconductor device and a method for manufacturing the same - Google Patents
A power semiconductor device and a method for manufacturing the same Download PDFInfo
- Publication number
- CN113964120B CN113964120B CN202111216204.5A CN202111216204A CN113964120B CN 113964120 B CN113964120 B CN 113964120B CN 202111216204 A CN202111216204 A CN 202111216204A CN 113964120 B CN113964120 B CN 113964120B
- Authority
- CN
- China
- Prior art keywords
- layer
- dielectric material
- source region
- polysilicon
- material layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 title claims description 44
- 239000003989 dielectric material Substances 0.000 claims abstract description 51
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 29
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 27
- 229920005591 polysilicon Polymers 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 238000005530 etching Methods 0.000 claims description 36
- 230000008569 process Effects 0.000 claims description 36
- 239000003990 capacitor Substances 0.000 claims description 29
- 238000000206 photolithography Methods 0.000 claims description 29
- 238000000151 deposition Methods 0.000 claims description 24
- 230000008021 deposition Effects 0.000 claims description 24
- 238000005275 alloying Methods 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 238000005468 ion implantation Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 4
- 238000005137 deposition process Methods 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 238000005224 laser annealing Methods 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- 230000008719 thickening Effects 0.000 claims description 4
- 230000003213 activating effect Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 78
- 230000000694 effects Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/811—Combinations of field-effect devices and one or more diodes, capacitors or resistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
本发明公开了一种功率半导体器件及其制造方法,此器件包括碳化硅N型衬底,所述碳化硅N型衬底上设有N型外延层,所述N型外延层上设有P基区,所述P基区中形成N+源区和P+源区,以形成中间器件,所述中间器件表面淀积有绝缘介质材料层和栅介质材料层,所述绝缘介质材料层和栅介质材料层上淀积有多晶硅,所述N+源区与P+源区表面形成有欧姆接触层,所述P+源区与P+源区之间的N型外延层表面形成有肖特基接触层,所述欧姆接触层和肖特基接触层上设有源极,所述多晶硅上设有栅极,所述碳化硅N型衬底的背面设有漏极。本发明具有减小栅漏电荷,提高芯片利用率,降低反并联二极管损耗,提高反并联二极管的浪涌能力等优点。
The present invention discloses a power semiconductor device and a manufacturing method thereof. The device comprises a silicon carbide N-type substrate, an N-type epitaxial layer is provided on the silicon carbide N-type substrate, a P-base region is provided on the N-type epitaxial layer, an N+ source region and a P+ source region are formed in the P-base region to form an intermediate device, an insulating dielectric material layer and a gate dielectric material layer are deposited on the surface of the intermediate device, polysilicon is deposited on the insulating dielectric material layer and the gate dielectric material layer, an ohmic contact layer is formed on the surface of the N+ source region and the P+ source region, a Schottky contact layer is formed on the surface of the N-type epitaxial layer between the P+ source region and the P+ source region, a source electrode is provided on the ohmic contact layer and the Schottky contact layer, a gate electrode is provided on the polysilicon, and a drain electrode is provided on the back of the silicon carbide N-type substrate. The present invention has the advantages of reducing gate-drain charge, improving chip utilization, reducing anti-parallel diode loss, and improving the surge capacity of the anti-parallel diode.
Description
技术领域Technical Field
本发明主要涉及半导体技术领域,具体涉及一种功率半导体器件及其制造方法。The present invention mainly relates to the field of semiconductor technology, and in particular to a power semiconductor device and a manufacturing method thereof.
背景技术Background Art
功率MOSFET器件在开关应用中,必须克服栅极电荷才能将晶体管调节到特定电压,而晶体管的开关速度在更大的栅极电荷时显著降低。此外,晶体管受更高栅极电荷影响,故障率增加。栅漏电荷是栅极电荷中的主要部分,且由于密勒效应,将开关电压施加到栅极放大了栅漏电容。因此,希望最小化栅漏电容,以减少栅极电荷,提高晶体管的开关速度、效率和故障率。In switching applications, power MOSFET devices must overcome gate charge to regulate the transistor to a specific voltage, and the switching speed of the transistor is significantly reduced at a larger gate charge. In addition, the transistor is affected by higher gate charge and the failure rate increases. The gate-drain charge is the main part of the gate charge, and due to the Miller effect, applying the switching voltage to the gate amplifies the gate-drain capacitance. Therefore, it is desirable to minimize the gate-drain capacitance to reduce the gate charge and improve the switching speed, efficiency and failure rate of the transistor.
在电力电子系统中,功率MOSFET器件通常需要搭配续流二极管(Free WheelingDiode,FWD)使用以确保系统的安全稳定。因此在传统功率MOSFET模块或单管器件中,通常会有FWD与其反向并联,该方案不仅增加了器件的个数、模块的体积及生产成本,而且封装过程中焊点数的增加会影响器件的可靠性,金属连线所产生的寄生效应还影响器件的整体性能。In power electronic systems, power MOSFET devices usually need to be used with free wheeling diodes (FWD) to ensure the safety and stability of the system. Therefore, in traditional power MOSFET modules or single-tube devices, FWD is usually connected in reverse parallel with it. This solution not only increases the number of devices, the size of the module and the production cost, but also the increase in the number of solder joints during the packaging process will affect the reliability of the device. The parasitic effects generated by the metal connection also affect the overall performance of the device.
目前碳化硅平面栅MOSFET商业化产品采用的器件元胞结构,如图1所示。沟道迁移率低是碳化硅平面栅MOSFET导通电阻大的关键因素,同时碳化硅只能采用离子注入,平面栅MOSFET的N+源区和P型阱PW采用两层光刻版套准的方式,由于容易失准,套刻偏差会引起两个半元胞的沟道长度(如图1中的31和32所示)不对称,导致器件的导通电流选择较短的沟道流向漏极,则较长沟道的一半元胞未被利用。The device cell structure currently used in commercial products of SiC planar gate MOSFET is shown in Figure 1. Low channel mobility is the key factor for the high on-resistance of SiC planar gate MOSFET. At the same time, SiC can only be implanted by ion implantation. The N+ source region and P-type well PW of planar gate MOSFET are registered by two layers of photolithography. Due to the easy misalignment, the overlay deviation will cause the channel length of the two half cells (as shown in 31 and 32 in Figure 1) to be asymmetric, resulting in the on-current of the device selecting the shorter channel to flow to the drain, and the half cell with the longer channel is not used.
综合所述,目前的功率MOSFET器件具有栅漏电荷大、碳化硅芯片利用率低、续流二极管损耗大等缺陷。In summary, current power MOSFET devices have defects such as large gate-drain charge, low silicon carbide chip utilization, and large freewheeling diode losses.
发明内容Summary of the invention
针对现有技术存在的问题,本发明提供一种减小栅漏电荷,提高芯片利用率,降低反并联二极管损耗,提高反并联二极管的浪涌能力的功率半导体器件及其制造方法。In view of the problems existing in the prior art, the present invention provides a power semiconductor device and a manufacturing method thereof which can reduce gate-drain charge, improve chip utilization, reduce anti-parallel diode loss, and improve the surge capability of the anti-parallel diode.
为解决上述技术问题,本发明提出的技术方案为:In order to solve the above technical problems, the technical solution proposed by the present invention is:
一种功率半导体器件,包括碳化硅N型衬底,所述碳化硅N型衬底上设有N型外延层,所述N型外延层上设有P基区,所述P基区中形成N+源区和P+源区,以形成中间器件,所述中间器件表面淀积有绝缘介质材料层和栅介质材料层,所述绝缘介质材料层和栅介质材料层上淀积有多晶硅,所述N+源区与P+源区表面形成有欧姆接触层,所述P+源区与P+源区之间的N型外延层表面形成有肖特基接触层,所述欧姆接触层和肖特基接触层上设有源极,所述多晶硅上设有栅极,所述碳化硅N型衬底的背面设有漏极。A power semiconductor device comprises a silicon carbide N-type substrate, an N-type epitaxial layer is provided on the silicon carbide N-type substrate, a P-base region is provided on the N-type epitaxial layer, an N+ source region and a P+ source region are formed in the P-base region to form an intermediate device, an insulating dielectric material layer and a gate dielectric material layer are deposited on the surface of the intermediate device, polysilicon is deposited on the insulating dielectric material layer and the gate dielectric material layer, an ohmic contact layer is formed on the surface of the N+ source region and the P+ source region, a Schottky contact layer is formed on the surface of the N-type epitaxial layer between the P+ source region and the P+ source region, a source electrode is provided on the ohmic contact layer and the Schottky contact layer, a gate electrode is provided on the polysilicon, and a drain electrode is provided on the back side of the silicon carbide N-type substrate.
作为上述技术方案的进一步改进:As a further improvement of the above technical solution:
所述N型外延层、部分P基区、欧姆接触层、肖特基接触层形成JBS或MPS。The N-type epitaxial layer, part of the P-base region, the ohmic contact layer, and the Schottky contact layer form a JBS or an MPS.
所述部分P基区、P+源区、绝缘介质材料层和多晶硅形成P型MOS电容。The part of the P base region, the P+ source region, the insulating dielectric material layer and the polysilicon form a P-type MOS capacitor.
所述碳化硅N型衬底、N型外延层、栅介质材料层和多晶硅形成N型MOS电容。The silicon carbide N-type substrate, the N-type epitaxial layer, the gate dielectric material layer and the polysilicon form an N-type MOS capacitor.
所述P型MOS电容和N型MOS电容串联。The P-type MOS capacitor and the N-type MOS capacitor are connected in series.
所述多晶硅的面积可变化。The area of the polysilicon may vary.
本发明还公开了一种如上所述的功率半导体器件的制造方法,包括步骤:The present invention also discloses a method for manufacturing the power semiconductor device as described above, comprising the steps of:
第1步:采用外延工艺,在碳化硅N型衬底上形成N型外延层;Step 1: Using an epitaxial process, an N-type epitaxial layer is formed on a silicon carbide N-type substrate;
第2步:采用光刻和离子注入工艺,在N型外延层上方形成P基区,在P基区中形成N+源区和P+源区,并通过高温退火激活上述注入区的杂质;Step 2: Using photolithography and ion implantation processes, a P base region is formed above the N-type epitaxial layer, an N+ source region and a P+ source region are formed in the P base region, and impurities in the above implanted regions are activated by high temperature annealing;
第3步:采用淀积、光刻和刻蚀工艺,在器件表面淀积一层绝缘介质材料层,并刻蚀去除多余绝缘介质材料层;Step 3: Using deposition, photolithography and etching processes, a layer of insulating dielectric material is deposited on the surface of the device, and the excess insulating dielectric material layer is removed by etching;
第4步:采用热氧化工艺,在器件表面生成一层栅介质材料层;Step 4: Using a thermal oxidation process, a gate dielectric material layer is formed on the surface of the device;
第5步:采用淀积、光刻和刻蚀工艺,在器件表面淀积一层多晶硅,并刻蚀去除多余多晶硅材料;Step 5: Using deposition, photolithography and etching processes, a layer of polysilicon is deposited on the surface of the device, and excess polysilicon material is removed by etching;
第6步:采用淀积、光刻和刻蚀工艺,在器件表面淀积一层绝缘介质材料,并刻蚀去除多余缘介质材料;Step 6: Using deposition, photolithography and etching processes, a layer of insulating dielectric material is deposited on the surface of the device, and excess dielectric material is removed by etching;
第7步:采用淀积、合金、光刻和刻蚀工艺,在器件表面形成欧姆接触层;Step 7: Using deposition, alloying, photolithography and etching processes to form an ohmic contact layer on the device surface;
第8步:采用淀积、合金、光刻和刻蚀工艺,在器件表面形成肖特基接触层;Step 8: Using deposition, alloying, photolithography and etching processes to form a Schottky contact layer on the device surface;
第9步:采用淀积、光刻和刻蚀工艺,分别形成源极和栅极;Step 9: Use deposition, photolithography and etching processes to form the source and gate respectively;
第10步:采用激光退火、金属加厚、淀积工艺,形成器件背面的漏极,最终制得碳化硅MOSFET器件。Step 10: Use laser annealing, metal thickening and deposition processes to form the drain on the back of the device, and finally produce a silicon carbide MOSFET device.
作为上述技术方案的进一步改进:As a further improvement of the above technical solution:
在第1步中,所述N型外延层的掺杂浓度为5e14~5e16cm-3。In step 1, the doping concentration of the N-type epitaxial layer is 5e14-5e16 cm -3 .
在第2步中,所述P基区结深为0.6~1.5um,峰值掺杂浓度为1e18~5e19cm-3。In step 2, the junction depth of the P base region is 0.6-1.5 um, and the peak doping concentration is 1e18-5e19 cm -3 .
在第3步中,所述绝缘介质材料层厚度为0.05~2μm。In step 3, the thickness of the insulating dielectric material layer is 0.05-2 μm.
与现有技术相比,本发明的优点在于:Compared with the prior art, the advantages of the present invention are:
本发明的功率MOSFET结构中,利用MOSFET元胞的一半集成MPS,从而提高了芯片利用率,降低了外部反并联二极管的损耗和器件体积,避免了MOSFET寄生体二极管的双极退化效应,保证体二极管与MOSFET同等级耐压的前提下,避免了PiN二极管的开启损耗,同时也提高了反并联二极管的浪涌能力;其中,利用集成MPS的一部分形成了PMOS电容,并与MOSFET的NMOS栅漏电容串联,由C-V曲线理论可知,当MOSFET的栅源电压接近平台电压时,NMOS电容的N型半导体漂移区的耗尽区在缩小,其电容增加,而PMOS电容的P型区的耗尽区在扩展,其电容减小,两个电容串联,总电容取决于较小的电容,从而减小了栅漏电荷;同时,PMOS电容的绝缘介质材料层比NMOS栅漏电容的栅介质材料层更厚,进一步减小了栅漏电荷。In the power MOSFET structure of the present invention, half of the MOSFET cell is used to integrate the MPS, thereby improving chip utilization, reducing the loss of the external anti-parallel diode and the device volume, avoiding the bipolar degradation effect of the MOSFET parasitic body diode, ensuring that the body diode has the same level of withstand voltage as the MOSFET, avoiding the turn-on loss of the PiN diode, and also improving the surge capacity of the anti-parallel diode; wherein, a part of the integrated MPS is used to form a PMOS capacitor, and is connected in series with the NMOS gate-drain capacitor of the MOSFET. It can be known from the C-V curve theory that when the gate-source voltage of the MOSFET is close to the platform voltage, the depletion region of the N-type semiconductor drift region of the NMOS capacitor is shrinking, and its capacitance is increased, while the depletion region of the P-type region of the PMOS capacitor is expanding, and its capacitance is reduced. The two capacitors are connected in series, and the total capacitance depends on the smaller capacitor, thereby reducing the gate-drain charge; at the same time, the insulating dielectric material layer of the PMOS capacitor is thicker than the gate dielectric material layer of the NMOS gate-drain capacitor, further reducing the gate-drain charge.
本发明通过对功率MOSFET器件结构设计的改进,有以下3个优点:1、减小栅漏电荷;2、提高了芯片利用率;3、集成混合PiN肖特基二极管,降低了反并联二极管损耗,提高了反并联二极管的浪涌能力,增强了其鲁棒性。The present invention has the following three advantages by improving the structural design of the power MOSFET device: 1. reducing gate-drain charge; 2. improving chip utilization; 3. integrating a hybrid PiN Schottky diode, reducing the loss of the anti-parallel diode, improving the surge capability of the anti-parallel diode, and enhancing its robustness.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1现有功率MOSFET器件结构剖面示意图。FIG1 is a schematic cross-sectional view of a conventional power MOSFET device structure.
图2本发明实施例一中功率MOSFET器件结构剖面示意图。FIG. 2 is a schematic cross-sectional view of a power MOSFET device structure in Embodiment 1 of the present invention.
图3本发明功实施例一率MOSFET器件在第2步后的剖面示意图。FIG3 is a cross-sectional view of a power MOSFET device according to an embodiment of the present invention after step 2.
图4本发明实施例一中功率MOSFET器件在第3步后的剖面示意图。FIG. 4 is a schematic cross-sectional view of a power MOSFET device after step 3 in the first embodiment of the present invention.
图5本发明实施例一中功率MOSFET器件在第5步后的剖面示意图。FIG5 is a schematic cross-sectional view of a power MOSFET device after step 5 in the first embodiment of the present invention.
图6本发明实施例一中功率MOSFET器件在第7步后的剖面示意图。FIG6 is a schematic cross-sectional view of the power MOSFET device after step 7 in the first embodiment of the present invention.
图7本发明实施例一中功率MOSFET器件在第8步后的剖面示意图。FIG. 7 is a schematic cross-sectional view of a power MOSFET device after step 8 in the first embodiment of the present invention.
图8本发明实施例二中功率MOSFET器件结构剖面示意图。FIG8 is a schematic cross-sectional view of the power MOSFET device structure in the second embodiment of the present invention.
图例说明:1、N型衬底;2、N型外延层;3、P基区;4、N+源区;5、P+源区;6、绝缘介质材料层;7、栅介质材料层;8、多晶硅;9、层间介质层;10、欧姆接触层;11、肖特基金接触层;12、源极;13、栅极;14、漏极;100、MPS;101、PMOS电容;102、栅漏电容。Legend: 1. N-type substrate; 2. N-type epitaxial layer; 3. P base region; 4. N+ source region; 5. P+ source region; 6. Insulating dielectric material layer; 7. Gate dielectric material layer; 8. Polysilicon; 9. Interlayer dielectric layer; 10. Ohmic contact layer; 11. Schottky base contact layer; 12. Source; 13. Gate; 14. Drain; 100. MPS; 101. PMOS capacitor; 102. Gate-drain capacitor.
具体实施方式DETAILED DESCRIPTION
以下结合说明书附图和具体实施例对本发明作进一步描述。The present invention is further described below in conjunction with the accompanying drawings and specific embodiments.
如图2所示,本实施例的功率半导体器件,包括碳化硅N型衬底1,碳化硅N型衬底1上设有N型外延层2,N型外延层2上设有P基区3,具体为左中右三处,P基区3中形成N+源区4和P+源区5(其中两边的P基区3中形成N+源区4和P+源区5,中间的P基区3中形成有P+源区5),以形成中间器件;中间器件表面淀积有绝缘介质材料层6和栅介质材料层7(其中绝缘介质层6为左右两处,左处位于中间P基区3未形成P+源区5的区域;其中栅介质材料层7有左右两处,其中左处位于左边P基区3、对应的N+源区4和N型外延层2上,右处位于右边P基区3、对应的N+源区4和N型外延层2上),绝缘介质材料层6和栅介质材料层7上淀积有多晶硅8(面积可变),N+源区4与P+源区5之间形成有欧姆接触层10(具体为三处,其中左边一处为左边P基区3的N+源区4和P+源区5上,中间一处为中间P基区3的P+源区5上,右边一处为右边P基区3的N+源区4和P+源区5上),P+源区5与P+源区5之间形成有肖特基接触层11(位于中间欧姆接触层10与右边欧姆接触层10之间),欧姆接触层10和肖特基接触层11上设有源极12(具体为两处,如图2中所示),多晶硅8上设有栅极13,碳化硅N型衬底1的背面设有漏极14。As shown in FIG2 , the power semiconductor device of the present embodiment comprises a silicon carbide N-type substrate 1, an N-type epitaxial layer 2 is provided on the silicon carbide N-type substrate 1, a P-base region 3 is provided on the N-type epitaxial layer 2, specifically three locations on the left, middle and right, an N+ source region 4 and a P+ source region 5 are formed in the P-base region 3 (wherein the N+ source region 4 and the P+ source region 5 are formed in the P-base regions 3 on both sides, and the P+ source region 5 is formed in the middle P-base region 3) to form an intermediate device; an insulating dielectric material layer 6 and a gate dielectric material layer 7 are deposited on the surface of the intermediate device (wherein the insulating dielectric layer 6 is in two locations on the left and the left location is located in the area where the P+ source region 5 is not formed in the middle P-base region 3; wherein the gate dielectric material layer 7 is in two locations on the left and the right, wherein the left location is located on the left P-base region 3, the corresponding N+ source region 4 and the N-type epitaxial layer 2, and the right location is located on the right P-base region 3, the corresponding N+ On the N+ source region 4 and the N-type epitaxial layer 2), polysilicon 8 (with a variable area) is deposited on the insulating dielectric material layer 6 and the gate dielectric material layer 7, an ohmic contact layer 10 is formed between the N+ source region 4 and the P+ source region 5 (specifically, three locations, one on the left is on the N+ source region 4 and the P+ source region 5 of the left P base region 3, one in the middle is on the P+ source region 5 of the middle P base region 3, and one on the right is on the N+ source region 4 and the P+ source region 5 of the right P base region 3), a Schottky contact layer 11 is formed between the P+ source region 5 and the P+ source region 5 (located between the middle ohmic contact layer 10 and the right ohmic contact layer 10), a source 12 is provided on the ohmic contact layer 10 and the Schottky contact layer 11 (specifically, two locations, as shown in FIG. 2), a gate 13 is provided on the polysilicon 8, and a drain 14 is provided on the back side of the silicon carbide N-type substrate 1.
本发明的功率MOSFET结构中,利用MOSFET元胞的一半集成MPS100(由区域碳化硅N型衬底1、N型外延层2、P基区3、P+源区5、欧姆接触层10、肖特基接触层11、源极12和漏极14构成),从而提高了芯片利用率,降低了外部反并联二极管的损耗和器件体积,避免了MOSFET寄生体二极管的双极退化效应,保证体二极管与MOSFET同等级耐压的前提下,避免了PiN二极管的开启损耗,同时也提高了反并联二极管的浪涌能力;其中,利用集成MPS的一部分形成了PMOS电容101(由区域P基区3、P+源区5、绝缘介质材料层6、多晶硅8、欧姆接触层10和源极12构成),并与MOSFET的NMOS栅漏电容102(由区域碳化硅N型衬底1、N型外延层2、栅介质材料层7、多晶硅8和漏极14构成)通过金属13串联,由C-V曲线理论可知,当MOSFET的栅源电压接近平台电压时,NMOS电容的N型半导体漂移区的耗尽区在缩小,其电容增加,而PMOS电容的P型区的耗尽区在扩展,其电容减小,两个电容(PMOS电容和NMOS电容)串联,总电容取决于较小的电容,从而减小了栅漏电荷,同时,PMOS电容的绝缘介质材料层6比NMOS栅漏电容的栅介质材料层7更厚,进一步减小了栅漏电荷。In the power MOSFET structure of the present invention, half of the MOSFET cell is used to integrate MPS100 (composed of a regional silicon carbide N-type substrate 1, an N-type epitaxial layer 2, a P base region 3, a P+ source region 5, an ohmic contact layer 10, a Schottky contact layer 11, a source 12 and a drain 14), thereby improving chip utilization, reducing the loss and device volume of the external anti-parallel diode, avoiding the bipolar degradation effect of the MOSFET parasitic body diode, ensuring that the body diode and the MOSFET have the same level of withstand voltage, avoiding the turn-on loss of the PiN diode, and also improving the surge capacity of the anti-parallel diode; wherein, a PMOS capacitor 101 (composed of a regional P base region 3, a P+ source region 5, an insulating dielectric material layer 6, a polysilicon 8, The ohmic contact layer 10 and the source 12 are formed), and are connected in series with the NMOS gate-drain capacitor 102 of the MOSFET (composed of a regional silicon carbide N-type substrate 1, an N-type epitaxial layer 2, a gate dielectric material layer 7, polysilicon 8 and a drain 14) through a metal 13. From the C-V curve theory, it can be seen that when the gate-source voltage of the MOSFET is close to the platform voltage, the depletion region of the N-type semiconductor drift region of the NMOS capacitor is shrinking, and its capacitance increases, while the depletion region of the P-type region of the PMOS capacitor is expanding, and its capacitance decreases. The two capacitors (PMOS capacitor and NMOS capacitor) are connected in series, and the total capacitance depends on the smaller capacitor, thereby reducing the gate-drain charge. At the same time, the insulating dielectric material layer 6 of the PMOS capacitor is thicker than the gate dielectric material layer 7 of the NMOS gate-drain capacitor, further reducing the gate-drain charge.
本发明还公开了一种如上所述的功率半导体器件的制造方法,包括步骤:The present invention also discloses a method for manufacturing the power semiconductor device as described above, comprising the steps of:
第1步:采用外延工艺,在碳化硅N型衬底1上形成N型外延层2;Step 1: using an epitaxial process to form an N-type epitaxial layer 2 on a silicon carbide N-type substrate 1;
第2步:采用光刻和离子注入工艺,在N型外延层2上方形成P基区3,在P基区3中形成N+源区4和P+源区5,并通过高温退火激活上述注入区的杂质;Step 2: Using photolithography and ion implantation processes, a P base region 3 is formed on the N-type epitaxial layer 2, an N+ source region 4 and a P+ source region 5 are formed in the P base region 3, and impurities in the above implanted regions are activated by high temperature annealing;
第3步:采用淀积、光刻和刻蚀工艺,在器件表面淀积一层绝缘介质材料层6,并刻蚀去除多余绝缘介质材料层;Step 3: using deposition, photolithography and etching processes, deposit a layer of insulating dielectric material 6 on the surface of the device, and remove the excess insulating dielectric material layer by etching;
第4步:采用热氧化工艺,在器件表面生成一层栅介质材料层7;Step 4: using a thermal oxidation process to form a gate dielectric material layer 7 on the surface of the device;
第5步:采用淀积、光刻和刻蚀工艺,在器件表面淀积一层多晶硅8,并刻蚀去除多余多晶硅材料;Step 5: using deposition, photolithography and etching processes, deposit a layer of polysilicon 8 on the surface of the device, and remove excess polysilicon material by etching;
第6步:采用淀积、光刻和刻蚀工艺,在器件表面淀积一层层间介质层9(绝缘介质材料),并刻蚀去除多余绝缘介质材料;Step 6: using deposition, photolithography and etching processes, deposit an interlayer dielectric layer 9 (insulating dielectric material) on the surface of the device, and remove excess insulating dielectric material by etching;
第7步:采用淀积、合金、光刻和刻蚀工艺,在器件表面形成欧姆接触层10;Step 7: Using deposition, alloying, photolithography and etching processes, an ohmic contact layer 10 is formed on the surface of the device;
第8步:采用淀积、合金、光刻和刻蚀工艺,在器件表面形成肖特基接触层11;Step 8: Using deposition, alloying, photolithography and etching processes to form a Schottky contact layer 11 on the surface of the device;
第9步:采用淀积、光刻和刻蚀工艺,分别形成源极12和栅极13;Step 9: using deposition, photolithography and etching processes to form the source 12 and the gate 13 respectively;
第10步:采用激光退火、金属加厚、淀积工艺,形成器件背面的漏极14,最终制得碳化硅MOSFET器件。Step 10: Use laser annealing, metal thickening and deposition processes to form the drain 14 on the back of the device, and finally obtain a silicon carbide MOSFET device.
本发明通过对功率MOSFET器件结构设计的改进,有以下3个优点,1、减小栅漏电荷;2、提高了芯片利用率;3、集成混合PiN肖特基二极管(Merged PiN Schottky,MPS),降低了反并联二极管损耗,提高了反并联二极管的浪涌能力。The present invention has the following three advantages by improving the structural design of the power MOSFET device: 1. reducing gate-drain charge; 2. improving chip utilization; 3. integrating a Merged PiN Schottky (MPS) diode, reducing the loss of the anti-parallel diode and improving the surge capacity of the anti-parallel diode.
下面结合两个具体实施例对本发明做进一步说明:The present invention is further described below in conjunction with two specific embodiments:
实施例一:Embodiment 1:
第1步:采用外延工艺,在碳化硅N型衬底1上形成N型外延层2,其中N型衬底1的电阻率为0.01~0.03Ω.cm,厚度为200~400μm,N型外延层2的掺杂浓度为5e14~5e16cm-3;Step 1: using an epitaxial process to form an N-type epitaxial layer 2 on a silicon carbide N-type substrate 1, wherein the resistivity of the N-type substrate 1 is 0.01-0.03Ω.cm, the thickness is 200-400μm, and the doping concentration of the N-type epitaxial layer 2 is 5e14-5e16cm -3 ;
第2步:采用光刻和离子注入工艺,在N型外延层2上方形成P基区3,其P基区3结深为0.6~1.5um,峰值掺杂浓度为1e18~5e19cm-3,在P基区3中形成N+源区4,其结深为0.2~0.5um,峰值掺杂浓度为5e18~5e20cm-3,在P基区3中形成P+源区5,其结深为0.2~0.5um,掺杂浓度为5e18~5e20cm-3,并通过高温退火激活上述注入区的杂质,如图3所示;Step 2: using photolithography and ion implantation processes, a P base region 3 is formed on the N-type epitaxial layer 2, wherein the junction depth of the P base region 3 is 0.6-1.5um, and the peak doping concentration is 1e18-5e19cm -3 , an N+ source region 4 is formed in the P base region 3, wherein the junction depth is 0.2-0.5um, and the peak doping concentration is 5e18-5e20cm -3 , a P+ source region 5 is formed in the P base region 3, wherein the junction depth is 0.2-0.5um, and the doping concentration is 5e18-5e20cm -3 , and the impurities in the above implanted regions are activated by high temperature annealing, as shown in FIG3 ;
第3步:采用淀积、光刻和刻蚀工艺,在器件表面淀积一层绝缘介质材料6,厚度为0.05~2μm,并刻蚀去除多余缘介质材料6,如图4所示;Step 3: using deposition, photolithography and etching processes, deposit a layer of insulating dielectric material 6 on the device surface with a thickness of 0.05 to 2 μm, and remove excess dielectric material 6 by etching, as shown in FIG4 ;
第4步:采用热氧化工艺,在器件表面生成一层栅介质材料7;Step 4: Using a thermal oxidation process, a layer of gate dielectric material 7 is formed on the surface of the device;
第5步:采用淀积、光刻和刻蚀工艺,在器件表面淀积一层多晶硅8,并刻蚀去除多余多晶硅材料,如图5所示;Step 5: using deposition, photolithography and etching processes, deposit a layer of polysilicon 8 on the surface of the device, and remove excess polysilicon material by etching, as shown in FIG5 ;
第6步:采用淀积、光刻和刻蚀工艺,在器件表面淀积一层层间介质层9(如绝缘介质材料),并刻蚀去除多余缘介质材料;Step 6: using deposition, photolithography and etching processes, deposit an interlayer dielectric layer 9 (such as insulating dielectric material) on the surface of the device, and remove excess dielectric material by etching;
第7步:采用淀积、合金、光刻和刻蚀工艺,在器件表面形成欧姆接触10,如图6所示;Step 7: Using deposition, alloying, photolithography and etching processes, an ohmic contact 10 is formed on the surface of the device, as shown in FIG6 ;
第8步:采用淀积、合金、光刻和刻蚀工艺,在器件表面形成肖特基接触11,如图7所示;Step 8: Using deposition, alloying, photolithography and etching processes, a Schottky contact 11 is formed on the surface of the device, as shown in FIG7 ;
第9步:采用淀积、光刻和刻蚀工艺,分别形成源极12和栅极13,为了表述清晰而显示栅极金属;Step 9: Using deposition, photolithography and etching processes, a source electrode 12 and a gate electrode 13 are formed respectively, and the gate metal is shown for clarity of description;
第10步:采用激光退火、金属加厚、淀积工艺,形成器件背面的漏极14,正面的保护胶,最终制得碳化硅MOSFET器件,如图2所示。Step 10: Laser annealing, metal thickening and deposition processes are used to form the drain 14 on the back of the device and the protective glue on the front, and finally a silicon carbide MOSFET device is obtained, as shown in FIG2 .
其中图中的尺寸(包括横向尺寸、版图尺寸、介质厚度、金属厚度、结深等)不代表实际尺寸,仅用于形成结构的方法示例,其中器件包括但不限于平面MOSFET、平面IGBT、MPS、JBS;半导体材料包含但不限于SiC,例如Si等。The dimensions in the figure (including lateral dimensions, layout dimensions, dielectric thickness, metal thickness, junction depth, etc.) do not represent actual dimensions, but are only used as examples of methods for forming structures, wherein the devices include but are not limited to planar MOSFET, planar IGBT, MPS, JBS; semiconductor materials include but are not limited to SiC, such as Si, etc.
实施例二:Embodiment 2:
与实施例一相同的是均利用MOSFET半元胞集成了MPS(图8中虚线框200);与实施例一的区别是,通过去除一片多晶硅8(图8中虚线框201中没有多晶硅8)而减小工作栅极的尺寸,减少了栅电荷,而MPS部分未形成PMOS电容,如图8所示。The same as the first embodiment is that the MPS is integrated by using the MOSFET half cell (the dotted box 200 in FIG8 ); the difference from the first embodiment is that the size of the working gate is reduced by removing a piece of polysilicon 8 (there is no polysilicon 8 in the dotted box 201 in FIG8 ), thereby reducing the gate charge, and the MPS part does not form a PMOS capacitor, as shown in FIG8 .
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。The above are only preferred embodiments of the present invention. The protection scope of the present invention is not limited to the above embodiments. All technical solutions under the concept of the present invention belong to the protection scope of the present invention. It should be pointed out that for ordinary technicians in this technical field, some improvements and modifications without departing from the principle of the present invention should be regarded as the protection scope of the present invention.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111216204.5A CN113964120B (en) | 2021-10-19 | 2021-10-19 | A power semiconductor device and a method for manufacturing the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111216204.5A CN113964120B (en) | 2021-10-19 | 2021-10-19 | A power semiconductor device and a method for manufacturing the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN113964120A CN113964120A (en) | 2022-01-21 |
| CN113964120B true CN113964120B (en) | 2024-08-13 |
Family
ID=79465395
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202111216204.5A Active CN113964120B (en) | 2021-10-19 | 2021-10-19 | A power semiconductor device and a method for manufacturing the same |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN113964120B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117995838B (en) * | 2024-03-05 | 2025-02-14 | 上海陆芯电子科技有限公司 | A semiconductor device |
| CN118610228B (en) * | 2024-06-03 | 2024-12-20 | 广州智明微电子科技有限公司 | High-low side integrated MOS type power switch |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2019054064A (en) * | 2017-09-13 | 2019-04-04 | 富士電機株式会社 | Semiconductor device |
| CN113035955A (en) * | 2021-02-25 | 2021-06-25 | 厦门市三安集成电路有限公司 | Silicon carbide MOSFET device integrated with Schottky diode and preparation method thereof |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7598567B2 (en) * | 2006-11-03 | 2009-10-06 | Cree, Inc. | Power switching semiconductor devices including rectifying junction-shunts |
| KR101398125B1 (en) * | 2013-06-19 | 2014-05-27 | 주식회사 시지트로닉스 | Self aligned fast recovery diode and fabrication method thereof |
-
2021
- 2021-10-19 CN CN202111216204.5A patent/CN113964120B/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2019054064A (en) * | 2017-09-13 | 2019-04-04 | 富士電機株式会社 | Semiconductor device |
| CN113035955A (en) * | 2021-02-25 | 2021-06-25 | 厦门市三安集成电路有限公司 | Silicon carbide MOSFET device integrated with Schottky diode and preparation method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| CN113964120A (en) | 2022-01-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6929404B2 (en) | Silicon carbide semiconductor device and power conversion device | |
| CN101345243B (en) | Semiconductor device | |
| JP6933274B2 (en) | Silicon carbide semiconductor device and power conversion device | |
| EP3147950B1 (en) | Semiconductor device and method of manufacturing the same | |
| CN110047910A (en) | A kind of heterojunction semiconductor device of high voltage ability | |
| JPH0427712B2 (en) | ||
| JPWO2011136272A1 (en) | Semiconductor device | |
| WO2019124378A1 (en) | Silicon carbide semiconductor device and power converter | |
| CN110651369B (en) | Semiconductor device layout and method of forming the same | |
| CN113964120B (en) | A power semiconductor device and a method for manufacturing the same | |
| CN114551586B (en) | Silicon carbide split gate MOSFET cell with integrated gated diode and preparation method | |
| CN117878142A (en) | Planar gate type MOSFET integrated with Schottky diode and preparation method thereof | |
| CN106328698B (en) | Semiconductor device and method for manufacturing the same | |
| CN117497600B (en) | Structure, manufacturing method and electronic equipment of super-junction silicon carbide transistor | |
| CN117476774B (en) | Structure, manufacturing method and electronic device of vertical silicon carbide transistor | |
| CN117497601B (en) | Structure, manufacturing method and electronic equipment of planar silicon carbide transistor | |
| JPWO2021044624A1 (en) | Silicon carbide semiconductor device and power conversion device | |
| CN117393609A (en) | Silicon carbide MOSFET device and preparation method thereof | |
| CN216250740U (en) | Power semiconductor device | |
| CN116314265A (en) | A reverse conduction type IGBT and its manufacturing method | |
| CN116093158A (en) | Trench gate super junction MOSFET and manufacturing method thereof | |
| JPH04363068A (en) | semiconductor equipment | |
| CN111430468A (en) | Double-core isolation structure of double-cell packaged Schottky diode chip and manufacturing method | |
| CN113299762B (en) | A trench-gate super-barrier rectifier device with low on-state voltage drop | |
| CN219937052U (en) | Super junction device and electronic device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |