[go: up one dir, main page]

CN1248303C - Method for forming metal capacitor by damascene process and product thereof - Google Patents

Method for forming metal capacitor by damascene process and product thereof Download PDF

Info

Publication number
CN1248303C
CN1248303C CN 02100315 CN02100315A CN1248303C CN 1248303 C CN1248303 C CN 1248303C CN 02100315 CN02100315 CN 02100315 CN 02100315 A CN02100315 A CN 02100315A CN 1248303 C CN1248303 C CN 1248303C
Authority
CN
China
Prior art keywords
layer
copper
metal
insulating layer
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN 02100315
Other languages
Chinese (zh)
Other versions
CN1402326A (en
Inventor
徐震球
李世达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Microelectronics Corp
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to CN 02100315 priority Critical patent/CN1248303C/en
Publication of CN1402326A publication Critical patent/CN1402326A/en
Application granted granted Critical
Publication of CN1248303C publication Critical patent/CN1248303C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

Before forming metal film capacitor, the copper mosaic process is first used to make the lower inner connecting wire, one insulating layer is then deposited to form opening, the first metal layer, dielectric layer and the second metal layer are deposited successively, and the chemical mechanical grinding process is then performed to eliminate the excessive first metal layer, dielectric layer and second metal layer outside the opening until the insulating layer below the opening is exposed to form the capacitor in the opening. After the capacitor is completed, the copper damascene process is continued to form the interconnect thereon. The size of the integrated circuit with the embedded capacitor can be easily reduced, the required photoetching steps are reduced, the manufacturing cost of the integrated circuit with the embedded capacitor is reduced, and the height difference between the capacitor area and the non-capacitor area is reduced.

Description

利用镶嵌制程形成金属电容器的方法及其产品Method for forming metal capacitor by damascene process and product thereof

技术领域technical field

本发明是有关于一种形成内含电容器的集成电路,特别是有关于一种利用镶嵌制程形成金属电容器的方法及其产品。The invention relates to an integrated circuit for forming a capacitor, in particular to a method for forming a metal capacitor by using a damascene process and its product.

背景技术Background technique

众所周知,电容器可以与各种集成电路相整合。例如可以作为解耦合电容器(decoupling Capacitors),以用来改善电压调节(voltageregulation)和提供功率分布(powerdistribution)的抗杂讯能力(noiseimmunity)。亦可以应用在类比/逻辑电路、类比一数字转换器、混合型讯号(mixedsignal)、或是射频(radiofrequency)电路操作等等。It is well known that capacitors can be integrated with various integrated circuits. For example, they can be used as decoupling capacitors to improve voltage regulation and provide noise immunity for power distribution. It can also be applied in analog/logic circuit, analog-digital converter, mixed signal (mixedsignal), or radio frequency (radiofrequency) circuit operation, etc.

图1-图4所示,为传统制造内含电容器20的半导体元件的方法。FIG. 1-FIG. 4 show a conventional method of manufacturing a semiconductor device including a capacitor 20 .

图1所示,为在绝缘层12上沉积铝金属层,随后进行光刻蚀刻制程,图案化成铝金属层14a和14b。其中绝缘层12包括一些形成于硅基底上和基底中的元件(未绘示)。As shown in FIG. 1 , an aluminum metal layer is deposited on the insulating layer 12 , followed by a photolithographic etching process to form aluminum metal layers 14 a and 14 b. The insulating layer 12 includes some elements (not shown) formed on and in the silicon substrate.

接着,如图2所示,在铝金属层14a和14b以及绝缘层12上形成绝缘层16,并于此绝缘层16中并形成钨插塞(tungstenplug;W-plug)18与铝金属层14a电性连接,之后,于钨插塞18和绝缘层16上依序沉积金属层/介电层/金属层,并进行光刻蚀刻后,形成第一导电板21、介电层22和第二导电板23,因而构成电容器20。其中,第一导电板21(即下电极)经由钨插塞18与铝金属层14a连接。Next, as shown in FIG. 2, an insulating layer 16 is formed on the aluminum metal layers 14a and 14b and the insulating layer 12, and a tungsten plug (tungstenplug; W-plug) 18 and the aluminum metal layer 14a are formed in the insulating layer 16. Electrically connected, after that, deposit metal layer/dielectric layer/metal layer sequentially on the tungsten plug 18 and the insulating layer 16, and after performing photolithographic etching, a first conductive plate 21, a dielectric layer 22 and a second conductive plate 21 are formed. The conductive plate 23 thus constitutes the capacitor 20 . Wherein, the first conductive plate 21 (ie, the lower electrode) is connected to the aluminum metal layer 14a via the tungsten plug 18 .

继续于电容器20和绝缘层16上方沉积另一层绝缘层26,并同时于绝缘层26和其下方的绝缘层16中形成钨插塞28a和28b,如图3所示。Continue to deposit another insulating layer 26 over the capacitor 20 and the insulating layer 16 , and simultaneously form tungsten plugs 28 a and 28 b in the insulating layer 26 and the insulating layer 16 below it, as shown in FIG. 3 .

继续在绝缘层26以及钨插塞28a和28b上方沉积另一层铝金属层,并进行光刻蚀刻制程后,形成铝金属层34a和34b,如图4所示。其中铝金属层34a经由钨插塞28a与第一导电板23(即上电极),而铝金属层34b经由钨插塞28b与下层的铝金属层14b电性连接。其主要缺陷在于:Continue to deposit another aluminum metal layer on the insulating layer 26 and the tungsten plugs 28 a and 28 b, and perform photolithography and etching process to form aluminum metal layers 34 a and 34 b, as shown in FIG. 4 . The aluminum metal layer 34a is electrically connected to the first conductive plate 23 (ie, the upper electrode) through the tungsten plug 28a, and the aluminum metal layer 34b is electrically connected to the lower aluminum metal layer 14b through the tungsten plug 28b. Its main flaws are:

在上述的制程中,需要额外的光刻步骤来形成电容器20,才能将电容器20整合至集成电路中,因此,增加了整个半导体制程的成本。在这样的制程中,如要增加平板电容器20的电容量,则必须增加平板电容器20的布局面积。而这样的方法会牺牲电容器20和其相邻的导线之间的空间,且会无法有效使整个集成电路的尺寸再缩小。In the above process, an additional photolithography step is required to form the capacitor 20 to integrate the capacitor 20 into an integrated circuit, thus increasing the cost of the entire semiconductor process. In such a process, if the capacitance of the panel capacitor 20 is to be increased, the layout area of the panel capacitor 20 must be increased. However, such a method will sacrifice the space between the capacitor 20 and its adjacent wires, and will not effectively reduce the size of the entire integrated circuit.

在美国专利第6,025,226号中,揭露一种于形成镶嵌式介层窗时,同时形成电容器。此方法中,在沉积作为下电极的导电层时,同时填入电容器的开口和介层窗的开口。其主要缺陷在于:In US Pat. No. 6,025,226, a method for forming a capacitor while forming a damascene via is disclosed. In this method, when depositing the conductive layer as the bottom electrode, the opening of the capacitor and the opening of the via are filled at the same time. Its main flaws are:

1、此导电层必须足够厚至填满介层窗开口,且不能将电容器的开口填平,在制程控制上相当困难。1. The conductive layer must be thick enough to fill the opening of the via window, and cannot fill the opening of the capacitor, which is quite difficult in process control.

2、此外,由于元件积集度提高以及资料传输速度增加的趋势,以铝金属所构成的导线已无法满足对速度的要求,因此,以具有高导电性的金属铜作为导线,以降低RC延迟(RC delay)为目前的发展趋势。但是,铜金属无法以干蚀刻的方式来定义图案,其原因在于铜金属与氯气等离子体气体反应生成的氯化铜(CuCl。)的沸点极高(约1500℃),以铜导线的制作需以镶嵌制程(damasceneprocess)来进行。也因这样的原因,本发明是将铜制程应用在内含电容器的集成电路的制程中。2. In addition, due to the increasing integration of components and the trend of increasing data transmission speed, wires made of aluminum metal can no longer meet the requirements for speed. Therefore, metal copper with high conductivity is used as wires to reduce RC delay. (RC delay) is the current development trend. However, copper metal cannot be used to define patterns by dry etching. The reason is that the copper chloride (CuCl.) formed by the reaction of copper metal and chlorine plasma gas has a very high boiling point (about 1500 ° C), and the production of copper wires requires It is performed by a damascene process. Also for this reason, the present invention applies the copper process to the process of integrated circuits containing capacitors.

发明内容Contents of the invention

本发明的主要目的是提供一种利用镶嵌制程形成金属电容器的方法,利用镶嵌制程形成金属电容器,在形成薄膜电容器之前,于第一绝缘层中形成第一铜导线和第二铜导线,且此第一和第二铜导线为阻障层和第一密封层所包围。克服现有技术的弊端,达到内含电容器的集成电路的尺寸可以容易地达成缩小化的目的。The main object of the present invention is to provide a method for forming a metal capacitor by using a damascene process. The metal capacitor is formed by using a damascene process. Before forming a film capacitor, a first copper wire and a second copper wire are formed in a first insulating layer, and the The first and second copper wires are surrounded by the barrier layer and the first sealing layer. By overcoming the drawbacks of the prior art, the size of the integrated circuit containing the capacitor can be easily reduced.

本发明的第二目的是提供一种利用镶嵌制程形成金属电容器的方法,达到制造内含电容器的集成电路时,降低所需的光刻蚀刻步骤的目的。The second object of the present invention is to provide a method for forming metal capacitors by using a damascene process, so as to reduce the required photolithography and etching steps when manufacturing integrated circuits containing capacitors.

本发明的第三目的是提供一种利用镶嵌制程形成金属电容器的方法,达到降低制造内含电容器的集成电路的制造成本的目的。The third object of the present invention is to provide a method for forming a metal capacitor by using a damascene process, so as to reduce the manufacturing cost of an integrated circuit containing a capacitor.

本发明的第四目的是提供一种利用镶嵌制程形成金属电容器的方法,达到降低电容器区域和非电容器区域之间的高度落差的目的。The fourth object of the present invention is to provide a method for forming a metal capacitor by using a damascene process, so as to reduce the height difference between the capacitor area and the non-capacitor area.

本发明的第五目的是提供一种利用镶嵌制程形成金属电容器产品,达到具有金属电容器的铜镶嵌结构的目的。The fifth object of the present invention is to provide a metal capacitor product formed by a damascene process to achieve the purpose of having a copper damascene structure of a metal capacitor.

本发明的目的是这样实现的:一种利用镶嵌制程形成金属电容器的方法,其特征是:它至少包括如下步骤:The purpose of the present invention is achieved in that a method for forming a metal capacitor utilizing a damascene process is characterized in that it at least includes the following steps:

(1)提供第一绝缘层;(1) providing a first insulating layer;

(2)于该第一绝缘层中形成第一铜导线和第二铜导线;(2) forming a first copper wire and a second copper wire in the first insulating layer;

(3)于该第一和第二铜导线上形成第一密封层;(3) forming a first sealing layer on the first and second copper wires;

(4)于该第一密封层上形成第二绝缘层;(4) forming a second insulating layer on the first sealing layer;

(5)于该第二绝缘层和第一密封层中形成一开口,暴露出该第一铜导线;(5) forming an opening in the second insulating layer and the first sealing layer, exposing the first copper wire;

(6)于该开口中顺应性形成第一金属层;(6) conformally forming a first metal layer in the opening;

(7)于该第一金属层上顺应性形成介电层;(7) conformally forming a dielectric layer on the first metal layer;

(8)于该介电层上顺应性形成第二金属层;(8) conformally forming a second metal layer on the dielectric layer;

(9)移除该第一金属层、该介电层和该第二金属层至暴露出该第二绝缘层;(9) removing the first metal layer, the dielectric layer and the second metal layer to expose the second insulating layer;

(10)于该第二绝缘层和该第二金属层上形成第三绝缘层;(10) forming a third insulating layer on the second insulating layer and the second metal layer;

(11)于该第三绝缘层和该第二绝缘层中形成多数个双镶嵌图案,该双镶嵌图案包含多数个沟槽和多数个介层窗孔;(11) forming a plurality of dual damascene patterns in the third insulating layer and the second insulating layer, the dual damascene patterns comprising a plurality of trenches and a plurality of via holes;

(12)于该沟槽中形成第三铜导线和第四铜导线,以及于该介层窗孔中形成第三、一铜插塞和第四、二铜插塞,其中该第二金属层经由该第三、一铜插塞与该第三铜导线电性连接,该第四铜导线经由该第四、二铜插塞与该第二铜导线电性连接;(12) Form a third copper wire and a fourth copper wire in the trench, and form a third, a copper plug, a fourth, and a second copper plug in the via hole, wherein the second metal layer The third and first copper plugs are electrically connected to the third copper wire, and the fourth copper wire is electrically connected to the second copper wire through the fourth and second copper plugs;

(13)于该第三和第四铜导线上形成第二密封层。(13) Forming a second sealing layer on the third and fourth copper wires.

该第一金属层的材质是选自钛、氮化钛、钽、氮化钽、铝、或铝铜合金的其中至少一种。该介电层的材质是选自氮化硅、氮氧化硅、碳化硅、氧化钽、氧化锆、氧化铪或氧化铝的其中至少一种。该第二金属层的材质是选自钛、氮化钛、钽、氮化钽、铝、或铝铜合金的其中至少一种。移除该第一金属层、该介电层和该第二金属层至暴露出该第二绝缘层的方法为化学机械研磨法。该第一金属层的厚度介于100埃至2000埃之间。该介电层的厚度介于100埃至1200埃之间。该第二金属层的厚度介于200埃至2000埃之间。The material of the first metal layer is at least one selected from titanium, titanium nitride, tantalum, tantalum nitride, aluminum, or aluminum-copper alloy. The material of the dielectric layer is at least one selected from silicon nitride, silicon oxynitride, silicon carbide, tantalum oxide, zirconium oxide, hafnium oxide or aluminum oxide. The material of the second metal layer is at least one selected from titanium, titanium nitride, tantalum, tantalum nitride, aluminum, or aluminum-copper alloy. The method for removing the first metal layer, the dielectric layer and the second metal layer to expose the second insulating layer is chemical mechanical polishing. The thickness of the first metal layer is between 100 angstroms and 2000 angstroms. The thickness of the dielectric layer is between 100 angstroms and 1200 angstroms. The thickness of the second metal layer is between 200 angstroms and 2000 angstroms.

本发明还提供一种具有镶嵌结构的金属电容器,其特征是:它包括如下构造:第一铜导线和第二铜导线配置于第一绝缘层中;第二绝缘层配置于该第一绝缘层上,该第二绝缘层中具有一开口位于该第一铜导线上;第一金属层顺应性地配置于该开口中,且与该第一铜导线的表面接触;介电层顺应性地配置于该开口中的该第一金属层上;第二金属层顺应性地配置于该开口中的该介电层上;第三绝缘层配置于该第二绝缘层和该第二金属层上;第一铜镶嵌结构和第二铜镶嵌结构配置在该第二绝缘层和该第三绝缘层中,该第一铜镶嵌结构是由该第三铜导线和第一铜插塞所构成,该第二铜镶嵌结构是由该第四铜导线和第二铜插塞所构成,该第二金属层经由该第一铜插塞与该第三铜导线电性连接,该第四铜导线经由该第二铜插塞与该第二铜导线电性连接;第一密封层配置于该第二铜导线和该第二绝缘层之间;第二密封层配置于该第三和第四铜导线上。The present invention also provides a metal capacitor with a damascene structure, which is characterized in that it includes the following structure: the first copper wire and the second copper wire are arranged in the first insulating layer; the second insulating layer is arranged in the first insulating layer On the second insulating layer, there is an opening on the first copper wire; the first metal layer is conformably disposed in the opening and is in contact with the surface of the first copper conductor; the dielectric layer is conformably disposed on the first metal layer in the opening; a second metal layer is conformably disposed on the dielectric layer in the opening; a third insulating layer is disposed on the second insulating layer and the second metal layer; The first copper damascene structure and the second copper damascene structure are disposed in the second insulating layer and the third insulating layer, the first copper damascene structure is composed of the third copper wire and the first copper plug, and the first copper damascene structure is composed of the third copper wire and the first copper plug. The second copper damascene structure is composed of the fourth copper wire and the second copper plug, the second metal layer is electrically connected with the third copper wire through the first copper plug, and the fourth copper wire is connected through the first copper plug. Two copper plugs are electrically connected with the second copper wire; the first sealing layer is configured between the second copper wire and the second insulating layer; the second sealing layer is configured on the third and fourth copper wires.

该第一金属层的材质是选自钛、氮化钛、钽、氮化钽、铝、或铝铜合金的其中至少一种。该介电层的材质是选自氮化硅、氮氧化硅、碳化硅、氧化钽、氧化锆、氧化铪或氧化铝的其中至少一种。该第二金属层的材质是选自钛、氮化钛、钽、氮化钽、铝、或铝铜合金的其中至少一种。该第一金属层的厚度介于100埃至2000埃之间。该介电层的厚度介于100埃至1200埃之间。该第二金属层的厚度介于200埃至2000埃之间。The material of the first metal layer is at least one selected from titanium, titanium nitride, tantalum, tantalum nitride, aluminum, or aluminum-copper alloy. The material of the dielectric layer is at least one selected from silicon nitride, silicon oxynitride, silicon carbide, tantalum oxide, zirconium oxide, hafnium oxide or aluminum oxide. The material of the second metal layer is at least one selected from titanium, titanium nitride, tantalum, tantalum nitride, aluminum, or aluminum-copper alloy. The thickness of the first metal layer is between 100 angstroms and 2000 angstroms. The thickness of the dielectric layer is between 100 angstroms and 1200 angstroms. The thickness of the second metal layer is between 200 angstroms and 2000 angstroms.

下面结合较佳实施例并配合附图详细说明。The following describes in detail in conjunction with preferred embodiments and accompanying drawings.

附图说明Description of drawings

图1-图4是传统将电容器整合至集成电路中的流程剖面示意图。1 to 4 are schematic cross-sectional views of the traditional process of integrating capacitors into integrated circuits.

图5-图14是本发明的方法的流程剖面示意图。5-14 are schematic cross-sectional flow charts of the method of the present invention.

具体实施方式Detailed ways

本发明的方法是提供一种利用镶嵌制程制造金属电容器的方法及其产品,且与铜镶嵌制程相结合。是于形成金属薄膜电容器之前,利用铜金属镶嵌制程来制作其下的内连线,接着沉积一层绝缘层,并于其中形成电容器开口,之后依序沉积顺应性的第一金属层、介电层和第二金属层,再利用化学机械研磨制程移除多余的第一金属层、介电层和第二金属层。待电容器形成于绝缘层中的电容器开口中后,继续利用铜金属镶嵌制程来制作其上的内连线。The method of the present invention provides a method for manufacturing metal capacitors using a damascene process and its product, and is combined with a copper damascene process. Before the metal film capacitor is formed, the copper metal damascene process is used to make the underlying interconnection, then an insulating layer is deposited, and the capacitor opening is formed in it, and then the first conformal metal layer, the dielectric layer, and the dielectric layer are sequentially deposited. layer and the second metal layer, and then remove the redundant first metal layer, dielectric layer and second metal layer by chemical mechanical polishing process. After the capacitor is formed in the capacitor opening in the insulating layer, the copper damascene process is used to fabricate the interconnection thereon.

参阅图5-图14,是本发明的较佳实施例的一种利用镶嵌制程形成金属电容器且与铜制程结合的方法的结构剖面示意图。Referring to FIG. 5-FIG. 14 , it is a schematic cross-sectional structure diagram of a method for forming a metal capacitor using a damascene process combined with a copper process in a preferred embodiment of the present invention.

参阅图5,首先提供一绝缘层102,而绝缘层102中可能包括其他内连线,绝缘层102下方包括形成于基底上和基底中的元件。为了能清楚描述本发明的内容,这些底层的电路元件并未在图中显示。于绝缘层102上形成另一层绝缘层106,其厚度约为2000至6000埃左右。Referring to FIG. 5 , an insulating layer 102 is firstly provided, and the insulating layer 102 may include other interconnections, and the insulating layer 102 includes components formed on and in the substrate. In order to clearly describe the content of the present invention, these underlying circuit elements are not shown in the figure. Another insulating layer 106 is formed on the insulating layer 102 with a thickness of about 2000-6000 angstroms.

如图6所示,利用光刻蚀刻的方法,在绝缘层106中形成开口。As shown in FIG. 6 , openings are formed in the insulating layer 106 by photolithographic etching.

参阅图7,在绝缘层106及其中的开口表面形成顺应性的阻障层103。随后将铜金属填入开口中,并进行化学机械研磨,以磨除多余的铜金属和阻障层103,于绝缘层106中形成铜导线104a和104b。接着至少在铜导线104a和104b上形成密封层108,在图中是以形成全面性的密封层108为例,其厚度约为100-400埃左右,其材质可以是氮化硅(SiN)或碳化硅(SiC)。Referring to FIG. 7 , a conformable barrier layer 103 is formed on the insulating layer 106 and the surface of the opening therein. Then copper metal is filled into the opening, and chemical mechanical polishing is performed to remove excess copper metal and the barrier layer 103 , and form copper wires 104 a and 104 b in the insulating layer 106 . Then at least the sealing layer 108 is formed on the copper wires 104a and 104b. In the figure, the comprehensive sealing layer 108 is taken as an example, its thickness is about 100-400 angstroms, and its material can be silicon nitride (SiN) or Silicon carbide (SiC).

参阅图8,于密封层108上形成一层绝缘层110。Referring to FIG. 8 , an insulating layer 110 is formed on the sealing layer 108 .

参阅图9,在绝缘层110和密封层108中形成开口112,此开口112暴露出将与下电极接触的铜导线104a的表面,且开口112的定义是用来形成电容器。绝缘层110的高度和开口112的面积是控制着电容器的电容量,利用这样的方式来增加电容量,不会牺牲电容器和邻近的导线的空间。因此,内含电容器的集成电路的尺寸可以容易地达成缩小化的目的。Referring to FIG. 9, an opening 112 is formed in the insulating layer 110 and the sealing layer 108, and the opening 112 exposes the surface of the copper wire 104a to be in contact with the bottom electrode, and the opening 112 is defined to form a capacitor. The height of the insulating layer 110 and the area of the opening 112 control the capacitance of the capacitor. Using this method to increase the capacitance will not sacrifice the space of the capacitor and adjacent wires. Therefore, the size of the integrated circuit including the capacitor can be easily reduced.

参阅图10,在绝缘层110和开口112表面形成顺应性的第一金属层114、介电层116和第二金属层118。其中第一金属层114是将用以形成下电极之用,其厚度约为100-2000埃;介电层116的厚度约为100-1200埃,然而实际的厚度仍需视电容器的应用及其所需的电容量而定;第二金属层118是将用以形成上电极,其厚度约为100-2000埃。第一金属层114和第二金属层118的材质可为钛(Ti)、氮化钛(TiN)、钽(Ta)、氮化钽(TaN)、铝、铝铜合金(AlCu)等。介电层116的材质可为氮化硅、氮氧化硅、碳化硅(SiC)、氧化钽(TaO2)、氧化锆(ZrO2)、氧化铪(HfO2)、氧化铝(Al2O3)等。Referring to FIG. 10 , a conformable first metal layer 114 , a dielectric layer 116 and a second metal layer 118 are formed on the surface of the insulating layer 110 and the opening 112 . Wherein the first metal layer 114 is used to form the lower electrode, and its thickness is about 100-2000 angstroms; the thickness of the dielectric layer 116 is about 100-1200 angstroms, but the actual thickness still depends on the application of the capacitor and its thickness. It depends on the required capacitance; the second metal layer 118 will be used to form the upper electrode, and its thickness is about 100-2000 angstroms. The material of the first metal layer 114 and the second metal layer 118 can be titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), aluminum, aluminum copper alloy (AlCu) and the like. The material of the dielectric layer 116 can be silicon nitride, silicon oxynitride, silicon carbide (SiC), tantalum oxide (TaO 2 ), zirconium oxide (ZrO 2 ), hafnium oxide (HfO 2 ), aluminum oxide (Al 2 O 3 )wait.

参阅图11,进行化学机械研磨制程,以研除多余的第一金属层114、介电层116和第二金属层118,直至暴露出其下方的绝缘层110为止。留在开口112中的第一金属层114作为下电极,留在开口112中的介电层116作为电容器介电层,而留在开口112中的第二金属层118作为上电极,因此构成电容器140。下电极114是与铜导线104a做电性接触。Referring to FIG. 11 , a chemical mechanical polishing process is performed to remove the redundant first metal layer 114 , dielectric layer 116 and second metal layer 118 until the insulating layer 110 underneath is exposed. The first metal layer 114 left in the opening 112 acts as a lower electrode, the dielectric layer 116 left in the opening 112 acts as a capacitor dielectric layer, and the second metal layer 118 left in the opening 112 acts as an upper electrode, thus forming a capacitor 140. The bottom electrode 114 is in electrical contact with the copper wire 104a.

根据上述的电容器140的形成步骤,仅需额外一道光刻蚀刻步骤定义开口112,用以形成嵌入式的电容器140,以及需要化学机械研磨制程来定义电容器140。因此,减少了制造内含电容器140的集成电路所需的光刻蚀刻步骤数目。再者,可以避免电容器区域和非电容器区域的表面高度落差。According to the formation steps of the capacitor 140 described above, only an additional photolithography etching step is required to define the opening 112 for forming the embedded capacitor 140 , and a CMP process is required to define the capacitor 140 . Accordingly, the number of photolithographic etch steps required to fabricate an integrated circuit incorporating capacitor 140 is reduced. Furthermore, a difference in surface height between the capacitor area and the non-capacitor area can be avoided.

如图12所示,在电容器140和绝缘层110上形成一层绝缘层120。As shown in FIG. 12 , an insulating layer 120 is formed on the capacitor 140 and the insulating layer 110 .

参阅图13、14,接着进行双镶嵌制程,于绝缘层120和绝缘层110中形成双镶嵌的图案,此图案是由沟槽124a和124b以及介层窗孔122a和122b所构成。介层窗孔122b暴露出铜导线104b的表面,而介层窗122a则暴露出上电极118的表面。Referring to FIGS. 13 and 14 , a dual damascene process is then performed to form a dual damascene pattern in the insulating layer 120 and the insulating layer 110 , and the pattern is composed of trenches 124 a and 124 b and via holes 122 a and 122 b. The via 122b exposes the surface of the copper wire 104b , and the via 122a exposes the surface of the top electrode 118 .

如图14所示,于绝缘层120和110、沟槽124a和124b以及介层窗孔122a和122b的表面形成一层顺应性的阻障层126,并填入铜金属,之后进行化学机械研磨,以磨除多余的铜金属,而于双镶嵌图案中形成铜导线130a和130b以及铜插塞128a和128b。之后至少于铜导线130a和130b表面形成一层密封层,在本实施例中是以形成全面性的密封层132为例,其材质可为氮化硅或碳化硅。于是,上电极118经由铜插塞128a与铜导线130a电性连接,而导线104b则经由铜插塞128b与铜导线130b电性连接。As shown in FIG. 14, a compliant barrier layer 126 is formed on the surfaces of the insulating layers 120 and 110, the trenches 124a and 124b, and the via holes 122a and 122b, and filled with copper metal, followed by chemical mechanical polishing. , to remove excess copper metal to form copper traces 130a and 130b and copper plugs 128a and 128b in the dual damascene pattern. Afterwards, at least a sealing layer is formed on the surface of the copper wires 130a and 130b. In this embodiment, the comprehensive sealing layer 132 is taken as an example, and its material can be silicon nitride or silicon carbide. Therefore, the upper electrode 118 is electrically connected to the copper wire 130a through the copper plug 128a, and the wire 104b is electrically connected to the copper wire 130b through the copper plug 128b.

后续的铜制程仍继续进行,直至完成整个内连线的制造为止。因为其为现有技术,故不重述。Subsequent copper manufacturing process continues until the manufacture of the entire interconnection is completed. Since it is prior art, it will not be restated.

上述的绝缘层102、106、110和120的材质可以是低介电常数材质,例如掺杂或未掺杂的氧化硅、旋涂式高分子的低介电常数材质(例如FLARE、Si4C、PAE-II等)或化学气相沉积式低介电常数材质等(例如blackdiamond、BD、Coral、Greendot、Aurora)。The material of the above-mentioned insulating layers 102, 106, 110 and 120 can be a low dielectric constant material, such as doped or undoped silicon oxide, spin-on polymer low dielectric constant material (such as FLARE, Si4C, PAE -II, etc.) or chemical vapor deposition type low dielectric constant material, etc. (such as blackdiamond, BD, Coral, Greendot, Aurora).

本发明利用上述方法制作的具有金属电容器的镶嵌结构,如图14所示,铜导线104a和104b配置于绝缘层106中。而绝缘层110配置于绝缘层106上,其中绝缘层110中具有位于铜导线104a上的开口112。金属层114顺应性地配置于开口112中,且与铜导线104a的表面接触。The present invention utilizes the damascene structure with metal capacitors fabricated by the above method, as shown in FIG. The insulating layer 110 is disposed on the insulating layer 106 , wherein the insulating layer 110 has an opening 112 located on the copper wire 104 a. The metal layer 114 is conformably disposed in the opening 112 and is in contact with the surface of the copper wire 104a.

介电层116顺应性地配置于开口112中的金属层114上。金属层118顺应性地配置于开口112中的介电层116上。绝缘层120配置于绝缘层110和金属层118上。第一铜镶嵌结构和第二铜镶嵌结构配置在绝缘层110和120中,其中第一铜镶嵌结构是由铜导线130a和铜插塞128a所构成,第二铜镶嵌结构是由铜导线130b和铜插塞128b所构成,其中金属层118经由铜插塞128a与铜导线130a电性连接,铜导线130b经由铜插塞128b与铜导线104b电性连接。密封层108配置于铜导线104b和绝缘层110之间。密封层132配置于铜导线130a和130b上。The dielectric layer 116 is conformally disposed on the metal layer 114 in the opening 112 . The metal layer 118 is conformably disposed on the dielectric layer 116 in the opening 112 . The insulating layer 120 is disposed on the insulating layer 110 and the metal layer 118 . The first copper damascene structure and the second copper damascene structure are disposed in the insulating layers 110 and 120, wherein the first copper damascene structure is composed of copper wire 130a and copper plug 128a, and the second copper damascene structure is composed of copper wire 130b and copper plug 128a. The metal layer 118 is electrically connected to the copper wire 130a through the copper plug 128b, and the copper wire 130b is electrically connected to the copper wire 104b through the copper plug 128b. The sealing layer 108 is disposed between the copper wire 104 b and the insulating layer 110 . The sealing layer 132 is disposed on the copper wires 130a and 130b.

虽然本发明以较佳实施例揭露如上,然其并非用以限制本发明,任何熟习此项技艺者,在不脱离本发明的精神和范围内,所做更动与润饰,都属于本发明的保护范围之内。Although the present invention is disclosed as above with preferred embodiments, it is not intended to limit the present invention. Any changes and modifications made by those skilled in the art without departing from the spirit and scope of the present invention belong to the present invention. within the scope of protection.

Claims (15)

1、一种利用镶嵌制程形成金属电容器的方法,其特征是:它至少包括如下步骤:1. A method for forming a metal capacitor using a damascene process, characterized in that it at least includes the following steps: (1)提供第一绝缘层;(1) providing a first insulating layer; (2)于该第一绝缘层中形成第一铜导线和第二铜导线;(2) forming a first copper wire and a second copper wire in the first insulating layer; (3)于该第一和第二铜导线上形成第一密封层;(3) forming a first sealing layer on the first and second copper wires; (4)于该第一密封层上形成第二绝缘层;(4) forming a second insulating layer on the first sealing layer; (5)于该第二绝缘层和第一密封层中形成一开口,暴露出该第一铜导线;(5) forming an opening in the second insulating layer and the first sealing layer, exposing the first copper wire; (6)于该开口中顺应性形成第一金属层;(6) conformally forming a first metal layer in the opening; (7)于该第一金属层上顺应性形成介电层;(7) conformally forming a dielectric layer on the first metal layer; (8)于该介电层上顺应性形成第二金属层;(8) conformally forming a second metal layer on the dielectric layer; (9)移除该第一金属层、该介电层和该第二金属层至暴露出该第二绝缘层;(9) removing the first metal layer, the dielectric layer and the second metal layer to expose the second insulating layer; (10)于该第二绝缘层和该第二金属层上形成第三绝缘层;(10) forming a third insulating layer on the second insulating layer and the second metal layer; (11)于该第三绝缘层和该第二绝缘层中形成多数个双镶嵌图案,该双镶嵌图案包含多数个沟槽和多数个介层窗孔;(11) forming a plurality of dual damascene patterns in the third insulating layer and the second insulating layer, the dual damascene patterns comprising a plurality of trenches and a plurality of via holes; (12)于该沟槽中形成第三铜导线和第四铜导线,以及于该介层窗孔中形成第三、一铜插塞和第四、二铜插塞,其中该第二金属层经由该第三、一铜插塞与该第三铜导线电性连接,该第四铜导线经由该第四、二铜插塞与该第二铜导线电性连接;(12) Form a third copper wire and a fourth copper wire in the trench, and form a third, a copper plug, a fourth, and a second copper plug in the via hole, wherein the second metal layer The third and first copper plugs are electrically connected to the third copper wire, and the fourth copper wire is electrically connected to the second copper wire through the fourth and second copper plugs; (13)于该第三和第四铜导线上形成第二密封层。(13) Forming a second sealing layer on the third and fourth copper wires. 2、根据权利要求1所述的利用镶嵌制程形成金属电容器的方法,其特征是:该第一金属层的材质是选自钛、氮化钛、钽、氮化钽、铝、或铝铜合金的其中至少一种。2. The method for forming a metal capacitor using a damascene process according to claim 1, wherein the material of the first metal layer is selected from titanium, titanium nitride, tantalum, tantalum nitride, aluminum, or an aluminum-copper alloy at least one of the . 3、根据权利要求1所述的利用镶嵌制程形成金属电容器的方法,其特征是:该介电层的材质是选自氮化硅、氮氧化硅、碳化硅、氧化钽、氧化锆、氧化铪或氧化铝的其中至少一种。3. The method for forming a metal capacitor using a damascene process according to claim 1, wherein the material of the dielectric layer is selected from silicon nitride, silicon oxynitride, silicon carbide, tantalum oxide, zirconium oxide, hafnium oxide or at least one of alumina. 4、根据权利要求1所述的利用镶嵌制程形成金属电容器的方法,其特征是:该第二金属层的材质是选自钛、氮化钛、钽、氮化钽、铝、或铝铜合金的其中至少一种。4. The method for forming a metal capacitor using a damascene process according to claim 1, wherein the material of the second metal layer is selected from titanium, titanium nitride, tantalum, tantalum nitride, aluminum, or an aluminum-copper alloy at least one of the . 5、根据权利要求1所述的利用镶嵌制程形成金属电容器的方法,其特征是:移除该第一金属层、该介电层和该第二金属层至暴露出该第二绝缘层的方法为化学机械研磨法。5. The method of forming a metal capacitor using a damascene process according to claim 1, characterized in that: removing the first metal layer, the dielectric layer and the second metal layer to expose the second insulating layer For the chemical mechanical polishing method. 6、根据权利要求1所述的利用镶嵌制程形成金属电容器的方法,其特征是:该第一金属层的厚度介于100埃至2000埃之间。6. The method for forming a metal capacitor by using a damascene process according to claim 1, wherein the thickness of the first metal layer is between 100 angstroms and 2000 angstroms. 7、根据权利要求1所述的利用镶嵌制程形成金属电容器的方法,其特征是:该介电层的厚度介于100埃至1200埃之间。7. The method for forming a metal capacitor using a damascene process according to claim 1, wherein the thickness of the dielectric layer is between 100 angstroms and 1200 angstroms. 8、根据权利要求1所述的利用镶嵌制程形成金属电容器的方法,其特征是:该第二金属层的厚度介于200埃至2000埃之间。8. The method for forming a metal capacitor using a damascene process as claimed in claim 1, wherein the thickness of the second metal layer is between 200 angstroms and 2000 angstroms. 9、一种权利要求1-8其中之一所述的方法形成的具有镶嵌结构的金属电容器,其特征是:它包括如下构造:第一铜导线和第二铜导线配置于第一绝缘层中;第二绝缘层配置于该第一绝缘层上,该第二绝缘层中具有一开口位于该第一铜导线上;第一金属层顺应性地配置于该开口中,且与该第一铜导线的表面接触;介电层顺应性地配置于该开口中的该第一金属层上;第二金属层顺应性地配置于该开口中的该介电层上;第三绝缘层配置于该第二绝缘层和该第二金属层上;第一铜镶嵌结构和第二铜镶嵌结构配置在该第二绝缘层和该第三绝缘层中,该第一铜镶嵌结构是由该第三铜导线和第一铜插塞所构成,该第二铜镶嵌结构是由该第四铜导线和第二铜插塞所构成,该第二金属层经由该第一铜插塞与该第三铜导线电性连接,该第四铜导线经由该第二铜插塞与该第二铜导线电性连接;第一密封层配置于该第二铜导线和该第二绝缘层之间;第二密封层配置于该第三和第四铜导线上。9. A metal capacitor with a damascene structure formed by the method according to any one of claims 1-8, characterized in that it comprises the following structure: the first copper wire and the second copper wire are arranged in the first insulating layer ; the second insulating layer is disposed on the first insulating layer, and an opening in the second insulating layer is located on the first copper wire; the first metal layer is conformably disposed in the opening, and is connected to the first copper wire The surface contact of the wire; the dielectric layer is conformably disposed on the first metal layer in the opening; the second metal layer is conformably disposed on the dielectric layer in the opening; the third insulating layer is disposed on the On the second insulating layer and the second metal layer; a first copper damascene structure and a second copper damascene structure are disposed in the second insulating layer and the third insulating layer, and the first copper damascene structure is composed of the third copper damascene structure wire and a first copper plug, the second copper damascene structure is composed of a fourth copper wire and a second copper plug, and the second metal layer passes through the first copper plug and the third copper wire Electrically connected, the fourth copper wire is electrically connected to the second copper wire through the second copper plug; the first sealing layer is configured between the second copper wire and the second insulating layer; the second sealing layer configured on the third and fourth copper wires. 10、根据权利要求9所述的具有镶嵌结构的金属电容器,其特征是:该第一金属层的材质是选自钛、氮化钛、钽、氮化钽、铝、或铝铜合金的其中至少一种。10. The metal capacitor with a damascene structure according to claim 9, characterized in that: the material of the first metal layer is selected from titanium, titanium nitride, tantalum, tantalum nitride, aluminum, or aluminum-copper alloy. at least one. 11、根据权利要求9所述的具有镶嵌结构的金属电容器,其特征是:该介电层的材质是选自氮化硅、氮氧化硅、碳化硅、氧化钽、氧化锆、氧化铪或氧化铝的其中至少一种。11. The metal capacitor with a mosaic structure according to claim 9, characterized in that: the material of the dielectric layer is selected from silicon nitride, silicon oxynitride, silicon carbide, tantalum oxide, zirconium oxide, hafnium oxide or oxide at least one of aluminum. 12、根据权利要求9所述的具有镶嵌结构的金属电容器,其特征是:该第二金属层的材质是选自钛、氮化钛、钽、氮化钽、铝、或铝铜合金的其中至少一种。12. The metal capacitor with a damascene structure according to claim 9, characterized in that: the material of the second metal layer is selected from titanium, titanium nitride, tantalum, tantalum nitride, aluminum, or aluminum-copper alloy. at least one. 13、根据权利要求9所述的具有镶嵌结构的金属电容器,其特征是:该第一金属层的厚度介于100埃至2000埃之间。13. The metal capacitor with a damascene structure as claimed in claim 9, wherein the thickness of the first metal layer is between 100 angstroms and 2000 angstroms. 14、根据权利要求9所述的具有镶嵌结构的金属电容器,其特征是:该介电层的厚度介于100埃至1200埃之间。14. The metal capacitor with a damascene structure according to claim 9, wherein the thickness of the dielectric layer is between 100 angstroms and 1200 angstroms. 15、根据权利要求9所述的具有镶嵌结构的金属电容器,其特征是:该第二金属层的厚度介于200埃至2000埃之间。15. The metal capacitor with a damascene structure as claimed in claim 9, wherein the thickness of the second metal layer is between 200 angstroms and 2000 angstroms.
CN 02100315 2001-08-22 2002-01-07 Method for forming metal capacitor by damascene process and product thereof Expired - Lifetime CN1248303C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 02100315 CN1248303C (en) 2001-08-22 2002-01-07 Method for forming metal capacitor by damascene process and product thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN01130736 2001-08-22
CN01130736.6 2001-08-22
CN 02100315 CN1248303C (en) 2001-08-22 2002-01-07 Method for forming metal capacitor by damascene process and product thereof

Publications (2)

Publication Number Publication Date
CN1402326A CN1402326A (en) 2003-03-12
CN1248303C true CN1248303C (en) 2006-03-29

Family

ID=25740536

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 02100315 Expired - Lifetime CN1248303C (en) 2001-08-22 2002-01-07 Method for forming metal capacitor by damascene process and product thereof

Country Status (1)

Country Link
CN (1) CN1248303C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7186617B2 (en) * 2003-07-08 2007-03-06 Samsung Electronics Co., Ltd. Methods of forming integrated circuit devices having a resistor pattern and plug pattern that are made from a same material
CN100461393C (en) * 2003-12-30 2009-02-11 中芯国际集成电路制造(上海)有限公司 Methods and structures for combining copper with metal-insulator-metal capacitors
US7223684B2 (en) * 2004-07-14 2007-05-29 International Business Machines Corporation Dual damascene wiring and method
CN103295957A (en) * 2013-06-03 2013-09-11 上海华力微电子有限公司 Method of improving metal layer/insulating layer/metal layer mismatch parameters
CN109309085A (en) * 2017-07-28 2019-02-05 联华电子股份有限公司 Integrated circuit and manufacturing method thereof

Also Published As

Publication number Publication date
CN1402326A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
CN1177365C (en) Semiconductor device and method for manufacturing the same
CN1434509A (en) Dual damascene metal interconnection structure and manufacturing method thereof
CN1599028A (en) Metal-insulator-metal capacitor and interconnecting structure
CN1507033A (en) Capacitor and its manufacturing method
CN1783476A (en) Interconnect structure of integrated circuit
CN1967845A (en) Semiconductor device and its manufacturing method
CN1949502A (en) Semiconductor device and integrated circuit device
CN1925154A (en) Capacitor with metal-insulation-metal structure, semiconductor device and manufacturing method
CN1574334A (en) Integrated circuit and its forming method and electronic component
CN1881558A (en) Dual damascene structure, interconnect structure and manufacturing method thereof
CN1324677C (en) Process and structure for improving adhesion between etch stop layer and metal wire
US6495877B1 (en) Metal capacitors with damascene structures and method for forming the same
US6483142B1 (en) Dual damascene structure having capacitors
CN1278409C (en) Manufacturing method of semiconductor device and semiconductor device
US6391713B1 (en) Method for forming a dual damascene structure having capacitors
CN1305126C (en) Laminated method insulator metal capacitor and manufacturing method thereof
CN1677643A (en) Method for manufacturing semiconductor device having damascene structure with air gap
CN1240121C (en) Semiconductor device and metod for manufacturing semiconductor device by metal mosaic process
CN1248303C (en) Method for forming metal capacitor by damascene process and product thereof
CN1707788A (en) Semiconductor device and manufacturing method thereof
US6512260B2 (en) Metal capacitor in damascene structures
US6410386B1 (en) Method for forming a metal capacitor in a damascene process
CN1201386C (en) Method for forming metal capacitor by damascene process and product thereof
CN1237598C (en) Method for forming metal capacitors in damascene process
US6504205B1 (en) Metal capacitors with damascene structures

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
ASS Succession or assignment of patent right

Owner name: LIANHUA ELECTRONICS CO., LTD.

Free format text: FORMER OWNER: XITONG SCIENCE AND TECHNOLOGY CO LTD

Effective date: 20050415

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20050415

Address after: Hsinchu Science Park, Taiwan

Applicant after: United Microelectronics Corporation

Address before: Hsinchu Science Park, Taiwan

Applicant before: Xitong Science & Technology Co., Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20060329