CN1200006C - Method for synthesizing nano microsphere of inorganic/polymer huds with narrow decentralization - Google Patents
Method for synthesizing nano microsphere of inorganic/polymer huds with narrow decentralization Download PDFInfo
- Publication number
- CN1200006C CN1200006C CN 03111428 CN03111428A CN1200006C CN 1200006 C CN1200006 C CN 1200006C CN 03111428 CN03111428 CN 03111428 CN 03111428 A CN03111428 A CN 03111428A CN 1200006 C CN1200006 C CN 1200006C
- Authority
- CN
- China
- Prior art keywords
- inorganic
- reaction
- shell
- polymer core
- inorganic nanoparticles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000004005 microsphere Substances 0.000 title claims abstract description 20
- 230000002194 synthesizing effect Effects 0.000 title claims 3
- 239000011258 core-shell material Substances 0.000 claims abstract description 52
- 239000002245 particle Substances 0.000 claims abstract description 39
- 230000004048 modification Effects 0.000 claims abstract description 23
- 238000012986 modification Methods 0.000 claims abstract description 23
- 238000007720 emulsion polymerization reaction Methods 0.000 claims abstract description 19
- 239000000178 monomer Substances 0.000 claims abstract description 15
- 239000006087 Silane Coupling Agent Substances 0.000 claims abstract description 12
- 238000002360 preparation method Methods 0.000 claims abstract description 11
- 239000000839 emulsion Substances 0.000 claims abstract description 10
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 8
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 8
- 238000011065 in-situ storage Methods 0.000 claims abstract description 5
- 239000002105 nanoparticle Substances 0.000 claims description 57
- 238000006243 chemical reaction Methods 0.000 claims description 39
- 239000002077 nanosphere Substances 0.000 claims description 30
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 26
- 238000003756 stirring Methods 0.000 claims description 17
- 239000003995 emulsifying agent Substances 0.000 claims description 15
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 claims description 13
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 10
- 239000003999 initiator Substances 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 9
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 8
- 239000002243 precursor Substances 0.000 claims description 8
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 5
- 239000000872 buffer Substances 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 claims description 5
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 claims description 5
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 5
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 5
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 3
- 239000003054 catalyst Substances 0.000 claims description 3
- 239000002270 dispersing agent Substances 0.000 claims description 3
- YAPKLBSSEAZLGL-UHFFFAOYSA-N ethoxy(propyl)silane Chemical compound CCC[SiH2]OCC YAPKLBSSEAZLGL-UHFFFAOYSA-N 0.000 claims description 3
- 238000003980 solgel method Methods 0.000 claims description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 2
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 2
- 239000003945 anionic surfactant Substances 0.000 claims description 2
- 239000006172 buffering agent Substances 0.000 claims description 2
- 239000003153 chemical reaction reagent Substances 0.000 claims description 2
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 claims description 2
- 238000001308 synthesis method Methods 0.000 claims 1
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 claims 1
- 239000010954 inorganic particle Substances 0.000 abstract description 8
- 239000002131 composite material Substances 0.000 abstract description 2
- 238000010526 radical polymerization reaction Methods 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 23
- 238000005516 engineering process Methods 0.000 description 13
- 239000000377 silicon dioxide Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 239000000499 gel Substances 0.000 description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 239000004038 photonic crystal Substances 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 3
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 3
- 239000005083 Zinc sulfide Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 3
- 238000004945 emulsification Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000001132 ultrasonic dispersion Methods 0.000 description 3
- 229910052984 zinc sulfide Inorganic materials 0.000 description 3
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000010560 atom transfer radical polymerization reaction Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012674 dispersion polymerization Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 1
- -1 3-methacryl propylethoxysilane Chemical compound 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- ZVMDAQQBXVFTTI-UHFFFAOYSA-N [Si]OCCC1=CC=CC=C1 Chemical compound [Si]OCCC1=CC=CC=C1 ZVMDAQQBXVFTTI-UHFFFAOYSA-N 0.000 description 1
- SYWDWCWQXBUCOP-UHFFFAOYSA-N benzene;ethene Chemical group C=C.C1=CC=CC=C1 SYWDWCWQXBUCOP-UHFFFAOYSA-N 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000012703 microemulsion polymerization Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
Images
Landscapes
- Polymerisation Methods In General (AREA)
- Manufacturing Of Micro-Capsules (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种窄分散的无机/聚合物核壳纳米微球的制备方法,特别是涉及一种结合了无机纳米微粒表面修饰和乳液聚合技术,制备尺寸与结构可控的窄分散的无机/聚合物核壳纳米微球的方法。The invention relates to a method for preparing narrowly dispersed inorganic/polymer core-shell nano-microspheres, in particular to a method for preparing narrowly dispersed inorganic/polymer core-shell nanospheres with controllable size and structure, which combines surface modification of inorganic nanoparticles and emulsion polymerization technology. A method for polymer core-shell nanospheres.
背景技术Background technique
随着纳米科学研究与技术开发的日益深入和完善,纳米杂化和纳米复合材料的研究已经发展成为当今物理、化学、材料科学等学科中一个非常活跃的研究领域,尤其是随着对于光子晶体研究的不断深入,用于组装光子晶体的窄分散的无机/聚合物核壳纳米微球因其更为出色的性质(例如可调控的光学、磁学、电学、催化性质),其制备技术更加引起人们的关注。适用于制备窄分散的无机/聚合物核壳纳米微球的最常见的方法包括在无机纳米微粒上采取沉积法、Layer-by-Layer(LbL)组装法等物理方法和将无机纳米微粒表面修饰后进行乳液聚合、微乳液聚合、分散聚合、悬浮聚合、原子转移自由基聚合等化学方法。物理方法虽然操作简便、成本低,但由此法制备的无机/聚合物核壳纳米微球的结构形态均一性有待提高,其化学稳定性和热稳定性也较差。制备无机/聚合物核壳纳米微球的化学方法研究由来已久,但普遍存在合成过程比较复杂,制得的复合纳米微粒的尺寸、结构没有获得较好的控制的问题,例如Bourgeat-Lami等利用分散聚合制备的二氧化硅/聚苯乙烯核壳微粒,具有明显的核壳结构,但其微粒的尺寸分布较宽(从几百纳米到几微米不等),不适合于光子晶体的组装;原子转移自由基聚合虽然能够实现对微粒形态结构很好的控制,但因其需要使用价格较高的引发剂,合成成本较高,不能实现广泛实用。With the deepening and perfection of nanoscience research and technology development, the research of nano-hybrid and nano-composite materials has developed into a very active research field in the disciplines of physics, chemistry, and materials science, especially with the development of photonic crystals. With the continuous deepening of research, the preparation technology of narrowly dispersed inorganic/polymer core-shell nanospheres used to assemble photonic crystals has more excellent properties (such as tunable optical, magnetic, electrical, and catalytic properties). Attract people's attention. The most common methods suitable for preparing narrowly dispersed inorganic/polymer core-shell nanospheres include physical methods such as deposition on inorganic nanoparticles, Layer-by-Layer (LbL) assembly, and surface modification of inorganic nanoparticles. Afterwards, chemical methods such as emulsion polymerization, microemulsion polymerization, dispersion polymerization, suspension polymerization, and atom transfer radical polymerization are carried out. Although the physical method is easy to operate and low in cost, the structural and morphological uniformity of the inorganic/polymer core-shell nanospheres prepared by this method needs to be improved, and its chemical stability and thermal stability are also poor. The chemical method of preparing inorganic/polymer core-shell nanospheres has been studied for a long time, but the common problem is that the synthesis process is relatively complicated, and the size and structure of the prepared composite nanoparticles are not well controlled, such as Bourgeat-Lami et al. The silica/polystyrene core-shell particles prepared by dispersion polymerization have obvious core-shell structure, but the size distribution of the particles is wide (ranging from hundreds of nanometers to several microns), which is not suitable for the assembly of photonic crystals ; Although atom transfer radical polymerization can achieve good control of particle morphology and structure, it cannot be widely used because it requires the use of expensive initiators and high synthesis costs.
发明内容Contents of the invention
乳液聚合法是制备尺寸均匀可控的聚合物纳米微球的有效方法之一。本发明将无机纳米微粒的制备、表面修饰与乳液聚合技术有机地结合在一起,提供了一种简单易行的制备尺寸及结构可以控制和稳定性好的窄分散的无机/聚合物核壳纳米微球的方法。Emulsion polymerization is one of the effective methods to prepare polymer nanospheres with uniform and controllable size. The present invention organically combines the preparation, surface modification and emulsion polymerization technology of inorganic nanoparticles, and provides a simple and easy preparation of narrowly dispersed inorganic/polymer core-shell nanoparticles with controllable size and structure and good stability. microsphere method.
本发明的目的是通过以下技术方案来实现的:本发明采用胶体法直接合成出不同粒径的无机纳米微粒,并原位实现微粒的修饰以达到表面功能化,使其具有反应活性,再结合乳液聚合技术制备出稳定性好、尺寸和结构可以控制的窄分散的无机/聚合物核壳纳米微球。本发明包括以下步骤:1、无机纳米微粒的合成;2、无机纳米微粒表面的修饰;3、经过表面修饰的功能化的无机纳米微粒与含有双键的有机单体进行乳液聚合。The object of the present invention is achieved through the following technical solutions: the present invention adopts the colloidal method to directly synthesize inorganic nanoparticles of different particle sizes, and realizes the modification of the particles in situ to achieve surface functionalization, so that it has reactivity, and then combines Emulsion polymerization technology prepares narrowly dispersed inorganic/polymer core-shell nanospheres with good stability and controllable size and structure. The invention comprises the following steps: 1. Synthesis of inorganic nanoparticles; 2. Surface modification of inorganic nanoparticles; 3. Emulsion polymerization of functionalized inorganic nanoparticles with surface modification and organic monomers containing double bonds.
本发明采用胶体法制备无机纳米微粒,例如二氧化硅、二氧化钛、金、银、硫化锌、硫化镉、碲化镉、氧化铁和稀土微粒等,这些无机纳米微粒(例如二氧化硅、二氧化钛)可以采用溶胶-凝胶法一步合成,对于金、银、硫化锌、硫化镉、碲化镉、氧化铁和稀土微粒等,可用二氧化硅或硅烷偶联剂稳定。The present invention adopts colloidal method to prepare inorganic nanoparticles, such as silicon dioxide, titanium dioxide, gold, silver, zinc sulfide, cadmium sulfide, cadmium telluride, iron oxide and rare earth particles, etc., these inorganic nanoparticles (such as silicon dioxide, titanium dioxide) It can be synthesized in one step by sol-gel method. For gold, silver, zinc sulfide, cadmium sulfide, cadmium telluride, iron oxide and rare earth particles, etc., it can be stabilized with silica or silane coupling agent.
无机纳米微粒(例如二氧化硅)的制备采用溶胶-凝胶法一步完成,一般6.0-20ml的正硅酸乙酯(或正硅酸甲酯、正硅酸丁酯等其他硅酸酯)作为反应前驱体,作为分散剂的无水乙醇(或其它与所应用的前驱体相对应的醇)用量是180-280ml,8-40ml的氨水作为催化剂一次性加入反应瓶内,使用电动搅拌,搅拌速度为400-500转/分,在18-30℃经20-30小时的搅拌,制备出平均粒径为60-300nm的无机纳米微粒。The preparation of inorganic nanoparticles (such as silicon dioxide) is completed in one step by the sol-gel method, and generally 6.0-20ml of ethyl orthosilicate (or other silicate such as methyl orthosilicate, orthosilicate, etc.) is used as For the reaction precursor, the amount of absolute ethanol (or other alcohol corresponding to the applied precursor) used as a dispersant is 180-280ml, and 8-40ml of ammonia water is used as a catalyst to be added to the reaction bottle at one time, using electric stirring, stirring The speed is 400-500 rev/min, and the inorganic nanoparticles with an average particle diameter of 60-300nm are prepared after stirring for 20-30 hours at 18-30°C.
无机纳米微粒的表面修饰是通过原位加入带有反应活性的双键的硅烷偶联剂(例如3-甲基丙烯酸基丙基乙氧基硅烷等)实现的,带有双键的硅烷偶联剂的用量与正硅酸乙酯的用量的比值为1∶8-12(mol/mol),硅烷偶联剂用无水乙醇稀释至浓度为0.04-0.16mol/ml,在10-14小时内滴入前面的反应体系中,反应温度和搅拌速度不变,经过34-38小时的反应后,表面修饰的无机纳米微粒即可获得。将经过表面修饰的无机纳米微粒的醇溶液经过离心、洗涤、低温干燥得到纯化的功能性的无机纳米微粒粉末。其它无机纳米微粒(例如金、银、硫化锌、硫化镉、碲化镉、氧化铁和稀土微粒等)采用胶体法合成后,可继续用二氧化硅或硅烷偶联剂修饰稳定,然后再在其表面修饰具有反应活性的双键。The surface modification of inorganic nanoparticles is achieved by in-situ addition of a silane coupling agent with a reactive double bond (such as 3-methacryl propylethoxysilane, etc.), and the silane coupling agent with a double bond The ratio of the amount of the agent to the amount of tetraethyl orthosilicate is 1: 8-12 (mol/mol), and the silane coupling agent is diluted with absolute ethanol to a concentration of 0.04-0.16mol/ml, within 10-14 hours Dropping it into the previous reaction system, the reaction temperature and stirring speed remain unchanged, and after 34-38 hours of reaction, the surface-modified inorganic nanoparticles can be obtained. The alcohol solution of the surface-modified inorganic nanoparticles is centrifuged, washed and dried at low temperature to obtain purified functional inorganic nanoparticles powder. After other inorganic nanoparticles (such as gold, silver, zinc sulfide, cadmium sulfide, cadmium telluride, iron oxide and rare earth particles, etc.) are synthesized by colloidal method, they can be modified and stabilized with silica or silane coupling agent, and then Its surface modification has reactive double bonds.
制备窄分散的无机/聚合物核壳纳米微球采用乳液聚合技术,将1.0-1.5g的经过表面修饰的无机纳米微粒粉末重新分散在8-12ml无水乙醇中,加入反应单体(如苯乙烯、甲基丙烯酸甲酯等适合乳液聚合的单体)0.5-23ml、水80-120ml、再加入占反应体系总质量0.2-0.3%的缓冲剂(如碳酸氢钠)、0.03-0.04%的乳化剂(如十二烷基苯磺酸钠SDBS等阴离子表面活性剂)、0.8-1.2%的引发剂(如过硫酸钾、过硫酸铵等水溶性引发剂),采用电动搅拌,搅拌速度为200-250转/分,反应温度为75-80℃,反应所需时间是10-12小时。停止反应后,对产生的少量凝胶经过滤处理,即可合成出窄分散的无机/聚合物核壳纳米微球的乳液,微球平均粒径从200nm至470nm。无机/聚合物核壳纳米微球的尺寸与结构控制可以通过调控无机微粒的尺寸以及有机单体的加入量实现,而控制无机微粒和乳化剂的加入量实现了窄分散的无机/聚合物核壳纳米微球结构形态的控制。Prepare narrowly dispersed inorganic/polymer core-shell nanospheres using emulsion polymerization technology, redisperse 1.0-1.5g of surface-modified inorganic nanoparticle powder in 8-12ml of absolute ethanol, add reaction monomers (such as benzene Ethylene, methyl methacrylate and other monomers suitable for emulsion polymerization) 0.5-23ml, water 80-120ml, then add 0.2-0.3% of buffering agent (such as sodium bicarbonate) accounting for the total mass of the reaction system, 0.03-0.04% of Emulsifier (such as sodium dodecylbenzenesulfonate SDBS and other anionic surfactants), 0.8-1.2% initiator (such as potassium persulfate, ammonium persulfate and other water-soluble initiators), using electric stirring, the stirring speed is 200-250 rpm, the reaction temperature is 75-80°C, and the reaction time is 10-12 hours. After the reaction is stopped, a small amount of gel produced is filtered to synthesize a narrowly dispersed emulsion of inorganic/polymer core-shell nano-microspheres, and the average particle size of the microspheres ranges from 200nm to 470nm. The size and structure of inorganic/polymer core-shell nanospheres can be controlled by adjusting the size of inorganic particles and the addition of organic monomers, and controlling the addition of inorganic particles and emulsifiers achieves narrowly dispersed inorganic/polymer cores. Control of shell nanosphere structure morphology.
本发明将无机纳米微粒的溶胶制备技术、表面修饰技术与乳液聚合技术有机地结合起来,制备出的无机/聚合物核壳纳米微球具有均一的尺寸,较好的核壳结构和良好的稳定性,可以很好地应用于光子晶体的组装和其它纳米杂化与纳米复合材料。通过简单的调节反应物的加入量就可实现对合成出的窄分散的无机/聚合物核壳纳米微球尺寸和结构的控制,具有工艺简单,易于对无机/聚合物核壳纳米微球的结构性能进行设计的优点。The invention organically combines the sol preparation technology, surface modification technology and emulsion polymerization technology of inorganic nanoparticles, and the prepared inorganic/polymer core-shell nano-microspheres have uniform size, better core-shell structure and good stability properties, and can be well applied to the assembly of photonic crystals and other nano-hybrid and nano-composite materials. The size and structure of the synthesized narrowly dispersed inorganic/polymer core-shell nanospheres can be controlled by simply adjusting the amount of reactants, which has the advantages of simple process and easy preparation of inorganic/polymer core-shell nanospheres. Advantages of designing for structural performance.
附图说明Description of drawings
图1:表面修饰有双键的无机纳米微粒29Si固态核磁谱;Figure 1: 29 Si solid-state nuclear magnetic spectrum of inorganic nanoparticles with double bonds modified on the surface;
图2:表面修饰有双键的无机纳米微粒的透射电镜照片;Figure 2: Transmission electron micrograph of inorganic nanoparticles with double bonds modified on the surface;
图3:窄分散的无机/聚合物核壳纳米微球的透射电镜照片(插入图片为表面修饰有双键的无机纳米微粒的透射电镜照片,图片标尺为200nm);Figure 3: Transmission electron micrograph of narrowly dispersed inorganic/polymer core-shell nanospheres (the inserted picture is a transmission electron micrograph of inorganic nanoparticles with double bonds modified on the surface, and the picture scale is 200nm);
图4:无机/聚合物核壳纳米微球尺寸随单体加入量的变化曲线图;Figure 4: The change curve of the size of inorganic/polymer core-shell nanospheres with the amount of monomer added;
图5:无机/聚合物核壳纳米微球尺寸随无机微粒粒径变化图;Figure 5: The size of inorganic/polymer core-shell nanospheres varies with the particle size of inorganic particles;
图6:无机/聚合物核壳纳米微球尺寸随乳化剂用量变化曲线图;Figure 6: The graph of the change of the size of inorganic/polymer core-shell nanospheres with the amount of emulsifier;
图7:制备表面修饰的无机纳米微粒反应原理图;Figure 7: Schematic diagram of the reaction for preparing surface-modified inorganic nanoparticles;
图8:制备窄分散的无机/聚合物核壳纳米微球反应原理图;Figure 8: Schematic diagram of the preparation of narrowly dispersed inorganic/polymer core-shell nanospheres;
图1所示的表面修饰有双键的无机微粒29Si固态核磁谱和图2所示的表面修饰有双键的无机微粒的透射电镜照片说明了通过溶胶技术和原位表面修饰可以制备表面带有双键的功能性的无机纳米微粒。 The 29 Si solid-state nuclear magnetic spectrum of inorganic particles modified with double bonds on the surface shown in Figure 1 and the transmission electron microscope photos of inorganic particles modified with double bonds on the surface shown in Figure 2 illustrate that surface bands can be prepared by sol technology and in-situ surface modification. Functional inorganic nanoparticles with double bonds.
图3的透射电镜照片给出了无机/聚合物核壳纳米微球的大小、形貌,表现了其较好的窄分散性。The transmission electron microscope photos in Figure 3 show the size and morphology of the inorganic/polymer core-shell nanospheres, showing their better narrow dispersion.
图4给出了无机/聚合物核壳纳米微球尺寸随单体加入量的增加而增加的变化曲线,说明无机/聚合物核壳纳米微球壳层厚度的可控性。Figure 4 shows the change curve of the size of the inorganic/polymer core-shell nano-microspheres as the amount of monomer added increases, indicating the controllability of the shell thickness of the inorganic/polymer core-shell nano-microspheres.
图5的无机/聚合物核壳纳米微球尺寸随无机微粒粒径变化图表明在一定范围内控制无机纳米微粒粒径可以实现无机/聚合物核壳微粒尺寸形态的控制。Figure 5 shows that the size of inorganic/polymer core-shell nanospheres varies with the particle size of inorganic particles, which shows that controlling the particle size of inorganic nanoparticles within a certain range can realize the control of the size and shape of inorganic/polymer core-shell particles.
图6说明了乳化剂用量对于无机/聚合物核壳纳米微球尺寸具有很大的影响。通过对乳化剂用量的改变,能够确定制备窄分散的无机/聚合物核壳纳米微球的合适乳化剂的用量。Figure 6 illustrates that the amount of emulsifier has a great influence on the size of inorganic/polymer core-shell nanospheres. By changing the amount of emulsifier, it is possible to determine the appropriate amount of emulsifier for preparing narrowly dispersed inorganic/polymer core-shell nanospheres.
本发明所制备的窄分散的无机/聚合物核壳纳米微球具有较好的稳定性,可静止6个月只有少量凝胶,经搅拌后还可以重新分散。The narrowly dispersed inorganic/polymer core-shell nano-microspheres prepared by the invention have better stability, can stand still for 6 months with only a small amount of gel, and can be redispersed after being stirred.
具体制备实施例Specific preparation examples
下面结合具体实施例,对本发明做进一步阐述,而不是要以此对本发明进行限制。本发明的发明点在于无机纳米微粒的溶胶制备技术、表面修饰技术与乳液聚合技术的有机结合,至于应用实施例以外的纳米微粒、应用其它双键硅烷偶联剂进行表面修饰、并与其它单体聚合、及应用不同的引发剂、乳化剂、缓冲剂等均在本发明的构思范围内。The present invention will be further elaborated below in conjunction with specific examples, rather than limiting the present invention. The inventive point of the present invention lies in the organic combination of the sol preparation technology of inorganic nanoparticles, surface modification technology and emulsion polymerization technology, as for the nanoparticles other than the application examples, use other double-bond silane coupling agents to carry out surface modification, and combine with other single-bond silane coupling agents Bulk polymerization, and the use of different initiators, emulsifiers, buffers, etc. are all within the scope of the present invention.
1、无机纳米微粒的合成1. Synthesis of inorganic nanoparticles
反应原理:Reaction principle:
实施例1:Example 1:
分散剂无水乙醇250ml、反应前驱体正硅酸乙酯15.0ml,20.0ml的氨水作为催化剂一次性加入装有回流冷凝装置和搅拌器的四颈瓶中,以450转/分的搅拌速度,在25℃的水浴中经24小时的搅拌,停止反应得到285ml平均粒径为124nm左右的二氧化硅纳米微粒的醇溶液(质量浓度为5%左右),不需要进行任何后处理,待用。250ml of anhydrous ethanol as a dispersant, 15.0ml of tetraethyl orthosilicate as a reaction precursor, and 20.0ml of ammonia water are added as a catalyst to a four-necked bottle equipped with a reflux condensing device and a stirrer at one time, with a stirring speed of 450 rpm, After stirring for 24 hours in a water bath at 25° C., the reaction was stopped to obtain 285 ml of an alcohol solution (mass concentration of about 5%) of silicon dioxide nanoparticles with an average particle diameter of about 124 nm. No post-treatment was required and it was ready for use.
其它粒径的无机纳米微粒的合成步骤如上所述,采用表1中编号为1、2、3、4、5、6的原料的加入量,可以获得不同粒径的无机纳米微粒,平均粒径范围从60nm到300nm,分散度小于3%,具有较好的形态与窄分散性。The synthetic procedure of the inorganic nanoparticle of other particle size is as above-mentioned, adopts the addition of the raw material that is numbered as 1,2,3,4,5,6 in table 1, can obtain the inorganic nanoparticle of different particle size, average particle diameter The range is from 60nm to 300nm, the dispersion is less than 3%, and it has good shape and narrow dispersion.
表1:无机纳米微粒的合成配方Table 1: Synthetic formula of inorganic nanoparticles
无机微粒粒径Inorganic particle size
无水乙醇(ml) NH3·H2O(ml) TEOS(ml)Absolute ethanol (ml) NH 3 ·H 2 O (ml) TEOS (ml)
(nm)(nm)
1 250 10.0 6.5 611 250 10.0 6.5 61
2 250 13.0 10.0 1022 250 13.0 10.0 102
3 200 12.0 15.0 1103 200 12.0 15.0 110
4 250 15.0 20.0 1244 250 15.0 20.0 124
5 250 17.5 12.5 1455 250 17.5 12.5 145
6 200 17.0 15.0 1816 200 17.0 15.0 181
7 200 20.0 17.0 2117 200 20.0 17.0 211
8 200 25.0 17.0 2528 200 25.0 17.0 252
9 200 35.0 17.0 2909 200 35.0 17.0 290
2、表面修饰的无机纳米微粒的合成(反应原理如附图7所示)2. Synthesis of surface-modified inorganic nanoparticles (the reaction principle is shown in Figure 7)
实施例2:Example 2:
将制得的124nm的无机纳米微粒的285ml醇溶液的反应体系,继续在25℃的水浴中以450转/分的速度搅拌,同时用滴液漏斗开始滴加14ml的3-甲基丙烯酸基丙基乙氧基硅烷的无水乙醇溶液,3-甲基丙烯酸基丙基乙氧基硅烷的加入量为2.2ml,是反应前驱体正硅酸乙酯的10%(mol/mol),滴加在12小时内完成,继续搅拌36小时,得到300ml平均粒径为126nm的表面修饰的无机纳米微粒醇溶液。将表面修饰的无机纳米微粒从醇溶液中以转速为9500转/分的离心速度离出,再用无水乙醇重新分散,重复4次此过程,得到表面修饰的无机纳米微粒凝胶,将此凝胶在40℃的烘箱中烘干过夜,得到纯化的表面修饰的无机纳米微粒的粉末,待用。The reaction system of the 285ml alcohol solution of the prepared 124nm inorganic nanoparticles was continuously stirred at a speed of 450 rpm in a water bath at 25°C, and at the same time, 14ml of 3-methacrylic acid propane was added dropwise with a dropping funnel. The dehydrated ethanol solution of phenylethoxysilane, the addition of 3-methacrylic acid propylethoxysilane is 2.2ml, is 10% (mol/mol) of reaction precursor orthosilicate ethyl ester, drops Complete within 12 hours, and continue to stir for 36 hours to obtain 300 ml of surface-modified inorganic nanoparticles alcohol solution with an average particle diameter of 126 nm. The surface-modified inorganic nanoparticles were separated from the alcohol solution at a centrifugal speed of 9500 rpm, and then re-dispersed with absolute ethanol. This process was repeated 4 times to obtain surface-modified inorganic nanoparticle gels. The gel was dried overnight in an oven at 40° C. to obtain a purified surface-modified inorganic nanoparticle powder, ready for use.
其它粒径的无机纳米微粒的表面修饰步骤如上所述,3-甲基丙烯酸基丙基乙氧基硅烷的加入量为反应前驱体正硅酸乙酯的10%(mol/mol),无机纳米微粒经表面修饰后,粒径的增加很小(小于3%),而在乙醇中的稳定性由于表面被修饰带有双键相对于无机纳米微粒有所提高。The surface modification steps of inorganic nanoparticles of other particle sizes are as described above, and the addition of 3-methacrylic acid propyl ethoxysilane is 10% (mol/mol) of the reaction precursor orthosilicate ethyl ester, and the inorganic nanoparticles After the surface modification of the microparticles, the particle size increases very little (less than 3%), and the stability in ethanol is improved compared to the inorganic nanoparticles due to the surface modification with double bonds.
3、窄分散的无机/聚合物核壳纳米微球的合成(反应原理如附图8所示)3. Synthesis of narrowly dispersed inorganic/polymer core-shell nanospheres (the reaction principle is shown in Figure 8)
实施例3-1:Example 3-1:
将平均粒径为145nm的表面修饰的二氧化硅粉末1.2g置于小烧杯中,加入10ml无水乙醇超声分散30分钟左右,直至粉末在醇溶液中均一分散,同时加入缓冲剂碳酸氢钠(NaHCO3)0.24g、乳化剂十二烷基苯磺酸钠(SDBS)0.03g、及水100ml,继续超声分散15分钟后,将混合溶液加入装有回流冷凝装置的四颈瓶中,加入10ml单体苯乙烯(St),在通N2除O2的情况下,以250转/分的搅拌速度保持水浴温度50℃进行预乳化一个小时,然后将水浴温度升至80℃,滴加引发剂过硫酸钾(KPS)的水溶液15ml(0.1g/15ml),滴加完后,在此温度下反应12小时,停止反应得到平均粒径为330nm的窄分散的无机/聚合物核壳纳米微球的乳液,反应瓶内如有少量凝胶,将其过滤除去即可。Put 1.2 g of surface-modified silicon dioxide powder with an average particle size of 145 nm in a small beaker, add 10 ml of absolute ethanol for ultrasonic dispersion for about 30 minutes, until the powder is uniformly dispersed in the alcohol solution, and simultaneously add buffer sodium bicarbonate ( NaHCO 3 ) 0.24g, emulsifier sodium dodecylbenzene sulfonate (SDBS) 0.03g, and water 100ml, after continuing to ultrasonically disperse for 15 minutes, add the mixed solution into a four-necked bottle equipped with a reflux condensing device, add 10ml Monomer styrene (St), under the condition of passing N2 to remove O2 , keep the temperature of water bath at 50°C at a stirring speed of 250 rpm for pre-emulsification for one hour, then raise the temperature of water bath to 80°C, and dropwise add Add 15ml (0.1g/15ml) of an aqueous solution of potassium persulfate (KPS), after the dropwise addition, react at this temperature for 12 hours, and stop the reaction to obtain narrowly dispersed inorganic/polymer core-shell nanoparticle with an average particle size of 330nm. Ball emulsion, if there is a small amount of gel in the reaction bottle, just filter it out.
固定表面修饰的二氧化硅纳米微粒的粒径和加入量,改变反应单体St的加入量(如表2),引发剂的用量随之改变(引发剂的摩尔用量是反应单体的1%),其它试剂的用量不变,乳液聚合步骤如上所述,可以获得不同聚合物壳层厚度的窄分散的无机/聚合物核壳纳米微球的乳液。The particle diameter and the addition amount of the silicon dioxide nanoparticles of fixed surface modification, change the addition (as table 2) of reaction monomer St, the consumption of initiator changes thereupon (the molar consumption of initiator is 1% of reaction monomer ), the consumption of other reagents is constant, and the emulsion polymerization step is as described above, and the emulsion of narrowly dispersed inorganic/polymer core-shell nanospheres with different polymer shell thicknesses can be obtained.
表2:窄分散的无机/聚合物核壳纳米微球的乳液聚合配方ITable 2: Emulsion Polymerization Formulation I of Narrowly Dispersed Inorganic/Polymer Core-Shell Nanospheres
SiO 2 St KPS NaHCO3 SDBS 核壳微球 SiO 2 St KPS NaHCO 3 SDBS core-shell microspheres
粒径 质量(g) (ml) (g) (g) (g) 直径(nm)Particle Size Mass (g) (ml) (g) (g) (g) Diameter (nm)
(nm)(nm)
1 145 1.2 0.5 0.005 0.24 0.03 2051 145 1.2 0.5 0.005 0.24 0.03 205
2 145 1.2 1.0 0.010 0.24 0.03 2142 145 1.2 1.0 0.010 0.24 0.03 214
3 145 1.2 2.0 0.020 0.24 0.03 2233 145 1.2 2.0 0.020 0.24 0.03 223
4 145 1.2 4.0 0.040 0.24 0.03 2594 145 1.2 4.0 0.040 0.24 0.03 259
5 145 1.2 10.0 0.100 0.24 0.03 3305 145 1.2 10.0 0.100 0.24 0.03 330
6 145 1.2 13.0 0.100 0.24 0.03 4276 145 1.2 13.0 0.100 0.24 0.03 427
7 145 1.2 16.0 0.100 0.24 0.03 4557 145 1.2 16.0 0.100 0.24 0.03 455
8 145 1.2 22.0 0.150 0.24 0.03 4678 145 1.2 22.0 0.150 0.24 0.03 467
实施例3-2:Example 3-2:
将平均粒径为120nm的表面修饰的二氧化硅粉末1.2g置于小烧杯中,加入10ml无水乙醇超声分散30分钟左右,直至粉末在醇溶液中均一分散,同时加入缓冲剂碳酸氢钠(NaHCO3)0.24g、乳化剂十二烷基苯磺酸钠(SDBS)0.03g、及水100ml,继续超声分散15分钟后,将混合溶液加入装有回流冷凝装置的四颈瓶中,加入10ml单体苯乙烯(St),在通N2除O2的情况下,以250转/分的搅拌速度保持水浴温度50℃进行预乳化一个小时,然后将水浴温度升至80℃,滴加引发剂过硫酸钾(KPS) 的水溶液15ml(0.1g/15ml),滴加完后,在此温度下反应12小时,停止反应得到平均粒径为212nm的窄分散的无机/聚合物核壳纳米微球的乳液,反应瓶内如有少量凝胶,将其过滤除去即可。Put 1.2 g of surface-modified silicon dioxide powder with an average particle size of 120 nm in a small beaker, add 10 ml of absolute ethanol for ultrasonic dispersion for about 30 minutes, until the powder is uniformly dispersed in the alcohol solution, and simultaneously add buffer sodium bicarbonate ( NaHCO 3 ) 0.24g, emulsifier sodium dodecylbenzene sulfonate (SDBS) 0.03g, and water 100ml, after continuing to ultrasonically disperse for 15 minutes, add the mixed solution into a four-necked bottle equipped with a reflux condensing device, add 10ml Monomer styrene (St), under the condition of passing N2 to remove O2 , keep the temperature of water bath at 50°C at a stirring speed of 250 rpm for pre-emulsification for one hour, then raise the temperature of water bath to 80°C, and dropwise add An aqueous solution of 15ml (0.1g/15ml) of potassium persulfate (KPS), after the dropwise addition, was reacted at this temperature for 12 hours, and the reaction was stopped to obtain narrowly dispersed inorganic/polymer core-shell nanoparticle particles with an average particle size of 212nm. Ball emulsion, if there is a small amount of gel in the reaction bottle, just filter it out.
固定反应单体St和表面修饰的二氧化硅纳米微粒的加入量,改变表面修饰的二氧化硅微粒的粒径(如表3),其它的乳液聚合步骤如上所述,可以获得不同尺寸的窄分散的无机/聚合物核壳纳米微球的乳液。The adding amount of the silica nanoparticle of fixed reaction monomer St and surface modification changes the particle diameter (as table 3) of the silica nanoparticle of surface modification, and other emulsion polymerization steps are as mentioned above, can obtain the narrow Emulsions of Dispersed Inorganic/Polymer Core-Shell Nanospheres.
表3:窄分散的无机/聚合物核壳纳米微球的乳液聚合配方IITable 3: Emulsion polymerization formulation II of narrowly dispersed inorganic/polymer core-shell nanospheres
Si0 2 St KPS NaHCO3 SDBS 核壳微球 Si0 2 St KPS NaHCO 3 SDBS core-shell microspheres
粒径 质量 (ml) (g) (g) (g) 直径(nm)Particle Size Mass (ml) (g) (g) (g) Diameter (nm)
(nm) (g)(nm) (g)
1 120 1.2 10 0.1 0.24 0.03 2121 120 1.2 10 0.1 0.24 0.03 212
2 124 1.2 10 0.1 0.24 0.03 2292 124 1.2 10 0.1 0.24 0.03 229
3 136 1.2 10 0.1 0.24 0.03 2343 136 1.2 10 0.1 0.24 0.03 234
4 145 1.2 10 0.1 0.24 0.04 2754 145 1.2 10 0.1 0.24 0.04 275
5 177 1.2 10 0.1 0.24 0.03 3305 177 1.2 10 0.1 0.24 0.03 330
6 181 1.2 10 0.1 0.24 0.04 3706 181 1.2 10 0.1 0.24 0.04 370
实施例3-3:Embodiment 3-3:
将粒径为120nm的表面修饰的二氧化硅粉末1.2g置于小烧杯中,加入10ml无水乙醇超声分散30分钟左右,直至粉末在醇溶液中均一分散,同时加入缓冲剂碳酸氢钠(NaHCO3)0.24g、乳化剂十二烷基苯磺酸钠(SDBS)0.04g、及水100ml,继续超声分散15分钟后,将混合溶液加入装有回流冷凝装置的四颈瓶中,加入10ml单体苯乙烯(St),在通N2除O2的情况下,以250转/分的搅拌速度保持水浴温度50℃进行预乳化一个小时,然后将水浴温度升至80℃,滴加引发剂过硫酸钾(KPS)的水溶液15ml(0.1g/15ml),滴加完后,在此温度下反应12小时,停止反应得到平均粒径为220nm窄分散的无机/聚合物核壳纳米微球的乳液,反应瓶内如有少量凝胶,将其过滤除去即可。Put 1.2g of surface-modified silica powder with a particle size of 120nm in a small beaker, add 10ml of absolute ethanol to ultrasonically disperse for about 30 minutes, until the powder is uniformly dispersed in the alcohol solution, and add buffer sodium bicarbonate (NaHCO 3 ) 0.24g, emulsifier sodium dodecylbenzenesulfonate (SDBS) 0.04g, and water 100ml, after continuing ultrasonic dispersion for 15 minutes, add the mixed solution into a four-necked bottle equipped with a reflux condensing device, add 10ml single Bulk styrene (St), in the case of passing N2 to remove O2 , keep the water bath temperature at 50°C for pre-emulsification for one hour at a stirring speed of 250 rpm, then raise the water bath temperature to 80°C, and add the initiator dropwise Aqueous solution 15ml (0.1g/15ml) of potassium persulfate (KPS), after dropping, reacted at this temperature for 12 hours, stop reaction and obtain mean particle diameter and be that the inorganic/polymer core-shell nanosphere of 220nm narrow dispersion Emulsion, if there is a small amount of gel in the reaction bottle, it can be removed by filtration.
实施例3-2与3-3相比,乳化剂十二烷基苯磺酸钠的加入量有所改变,但反应得到无机/聚合物核壳纳米微球的分散性较好,纳米微粒的结构形态没有明显变化,乳液稳定均一。对比其它乳化剂SDBS的用量下合成得到的无机/聚合物核壳纳米微球的形态,合适的乳化剂用量为反应体系总质量的0.03-0.04%得到确定。Embodiment 3-2 is compared with 3-3, and the add-on of emulsifier sodium dodecylbenzene sulfonate changes to some extent, but the dispersibility of inorganic/polymer core-shell nano-microspheres obtained by reaction is better, and the There is no obvious change in structure and form, and the emulsion is stable and uniform. Comparing the morphology of the inorganic/polymer core-shell nanospheres synthesized under the dosage of other emulsifier SDBS, the appropriate emulsifier dosage is determined to be 0.03-0.04% of the total mass of the reaction system.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 03111428 CN1200006C (en) | 2003-04-09 | 2003-04-09 | Method for synthesizing nano microsphere of inorganic/polymer huds with narrow decentralization |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 03111428 CN1200006C (en) | 2003-04-09 | 2003-04-09 | Method for synthesizing nano microsphere of inorganic/polymer huds with narrow decentralization |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1446827A CN1446827A (en) | 2003-10-08 |
| CN1200006C true CN1200006C (en) | 2005-05-04 |
Family
ID=28050270
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 03111428 Expired - Fee Related CN1200006C (en) | 2003-04-09 | 2003-04-09 | Method for synthesizing nano microsphere of inorganic/polymer huds with narrow decentralization |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN1200006C (en) |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100425631C (en) * | 2006-10-24 | 2008-10-15 | 河北工业大学 | Poly acrylate composite emulsion for pressure' sensitive adhesive and its preparing and using method |
| CN100430423C (en) * | 2006-10-24 | 2008-11-05 | 河北工业大学 | Preparation method of polyacrylate composite emulsion for pressure-sensitive adhesive |
| CN101186301B (en) * | 2007-09-17 | 2010-05-26 | 浙江理工大学 | Preparation method of polysilicon oxide microspheres with uniform particle size and active groups |
| CN101559922B (en) * | 2009-06-02 | 2010-12-08 | 吉林大学 | Preparation method of polymer-coated nanocluster core-shell microspheres |
| CN102430375B (en) * | 2011-09-20 | 2013-10-30 | 武汉工程大学 | Method for preparing silicon dioxide-silver nanometer composite microspheres |
| CN102816274B (en) * | 2012-07-06 | 2014-07-02 | 安徽大学 | Silica/poly(methyl methacrylate-styrene) double-layered composite microsphere and its preparation method |
| CN103059188B (en) * | 2012-12-18 | 2014-07-09 | 华中科技大学 | Preparing method of composite styrene-acrylic emulsion containing silicon dioxide |
| CN103326001B (en) * | 2013-05-28 | 2015-09-09 | 中国科学院苏州纳米技术与纳米仿生研究所 | The preparation method of core-shell polymers-nano-sulfur particles composite material |
| CN106221480B (en) * | 2016-07-26 | 2018-11-06 | 广东工业大学 | A kind of lithium ion battery separator coating and its preparation method and application |
| CN106811957B (en) * | 2016-12-08 | 2019-08-27 | 苏州榕绿纳米科技有限公司 | A kind of preparation method of the super hydrophobic surface for lotion separation |
| CN110041473B (en) * | 2019-04-08 | 2021-10-22 | 华南理工大学 | A kind of silicon-modified water-based acrylic emulsion and its preparation method and application |
| CN113024830B (en) * | 2021-03-12 | 2022-07-19 | 湖北大学 | Shell-core particle with controllable shell and preparation method thereof |
| CN114752011A (en) * | 2022-04-25 | 2022-07-15 | 安徽省建筑科学研究设计院 | Preparation method of infrared reflection emulsion |
-
2003
- 2003-04-09 CN CN 03111428 patent/CN1200006C/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| CN1446827A (en) | 2003-10-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN1200006C (en) | Method for synthesizing nano microsphere of inorganic/polymer huds with narrow decentralization | |
| CN103146197B (en) | Preparation method of hydrophobic heat conduction material with micro-nano core-shell structure | |
| CN102430375B (en) | Method for preparing silicon dioxide-silver nanometer composite microspheres | |
| Huang et al. | Synthesis of monodispersed ZnO@ SiO2 nanoparticles for anti-UV aging application in highly transparent polymer-based nanocomposites | |
| CN101475179B (en) | Preparation of organic-inorganic hybridization silicon oxide nanosphere | |
| CN101805613A (en) | Surface functionalization silicon dioxide water-soluble modified quantum dot and preparation method thereof | |
| CN101519543A (en) | Method for preparing coupling agent modified nanometer zinc oxide with reaction groups | |
| CN102532554A (en) | Preparation method for organic silicon modified acrylic ester core-shell material | |
| CN115806715B (en) | A kind of photonic crystal 3D printing ink, photonic crystal and preparation method thereof | |
| CN106873190A (en) | A kind of magneto discoloration photon crystal material and preparation method thereof | |
| CN1631906A (en) | Method for preparing monodisperse core/shell composite particle emulsion by using polystyrene coated nano silicon dioxide microspheres | |
| CN104448168A (en) | Preparation method as well as product and application of organic-inorganic hybrid hollow microsphere | |
| KR100913272B1 (en) | Nanocomposite Particle Fabrication Method Using Supercritical Carbon Dioxide | |
| CN111334296A (en) | Ultrathin SiO2Encapsulated NaYF4Method for synthesizing Yb, Er composite nano particle | |
| CN104843715A (en) | Preparation method of silicon dioxide asymmetrically-modified magnetic colloidal particles | |
| Zou et al. | Synthetic strategies for nonporous organosilica nanoparticles from organosilanes | |
| WO2017004842A1 (en) | Method for preparing inverse opal colloidal crystal fiber | |
| JP4046874B2 (en) | Method for producing organic-inorganic composite | |
| CN110407986B (en) | A kind of preparation method of pH, temperature-responsive double-shell hollow microspheres | |
| JP2011116966A (en) | Fine particle dispersion liquid containing tantalum oxide fine particle, tantalum oxide fine particle-resin composite, and method of producing the fine particle dispersion liquid and the fine particle-resin composite | |
| CN1304436C (en) | Process for preparing reaction functional macromolecule/Al2O3 nano composite particles | |
| KR101280018B1 (en) | Method for preparing titania microspheres with high refractive index | |
| CN1669629A (en) | Method for preparing organic-inorganic hybrid nanocapsules with polymer as core | |
| CN105819455A (en) | Preparation method and application of mesoporous silica gel nano-particles | |
| CN102786931B (en) | Method for synthesizing PAM-coated rare earth fluoride nanomaterials by in-situ polymerization |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C19 | Lapse of patent right due to non-payment of the annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |