[go: up one dir, main page]

CN1200850A - 接收和搜索以猝发段形式发射的信号的方法 - Google Patents

接收和搜索以猝发段形式发射的信号的方法 Download PDF

Info

Publication number
CN1200850A
CN1200850A CN96195275A CN96195275A CN1200850A CN 1200850 A CN1200850 A CN 1200850A CN 96195275 A CN96195275 A CN 96195275A CN 96195275 A CN96195275 A CN 96195275A CN 1200850 A CN1200850 A CN 1200850A
Authority
CN
China
Prior art keywords
search
offset
signal
rake
walsh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN96195275A
Other languages
English (en)
Other versions
CN1099171C (zh
Inventor
诺姆·A·兹伍
罗伯托·帕多瓦尼
杰弗里·A·莱文
肯尼思·D·伊斯顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN1200850A publication Critical patent/CN1200850A/zh
Application granted granted Critical
Publication of CN1099171C publication Critical patent/CN1099171C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/70751Synchronisation aspects with code phase acquisition using partial detection
    • H04B1/70752Partial correlation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/70756Jumping within the code, i.e. masking or slewing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2628Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using code-division multiple access [CDMA] or spread spectrum multiple access [SSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • H04J13/0048Walsh
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7113Determination of path profile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers
    • H04B1/7117Selection, re-selection, allocation or re-allocation of paths to fingers, e.g. timing offset control of allocated fingers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70703Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation using multiple or variable rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radio Relay Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

扩展频谱通信系统的调制解调器(110)中所用的综合搜索处理器(128)用缓存器(172)缓存接收到的信号样本,并利用时分变换处理器(120)按缓存器(172)的逐次偏移进行操作。搜索处理器(128)自主地进行微处理器(136)规定的搜索参数集配置的搜索,这些参数可以包括搜索天线组、搜索的搜索窗起始偏移和宽度,以及每个偏移上累积的Walsh码元数量。搜索处理器(128)在每个偏移上计算相关能量,并提出在搜索时找到的最佳路径的简要报告,用于解调单元(122)的分配。搜索以线性方式进行,与在给定时刻发射正在搜索的信号的概率无关。

Description

接收和搜索以猝发段形式发射的信号的方法
技术领域
本发明是1994年9月30日提出的、名称为“扩展频谱多址通信系统的多路径搜索处理器”的共同待批美国专利申请(序列号08/316,177)的部分继续申请。本发明一般涉及扩展频谱通信系统,尤其涉及蜂窝电话通信系统中的信号处理。背景技术
在诸如蜂窝电话系统、个人通信系统和无线本地回路系统等无线电话通信系统中,许多用户在一条无线信道上进行通信,以连接有线电话系统。该无线信道上的通信可以是有助于在有限的频谱中容纳大量的用户的多种多址技术中的一种。这些多址技术包括时分多址(TDMA)、频分多址(FDMA)以及码分多址(CDMA)。CDMA技术有许多优点,在1990年2月13日颁发给K.Gilhousen等的、名称为“利用卫星或地面中继器的扩展频谱多址通信系统”的美国专利(No.4,901,307)中描述了一种典型的CDMA系统,该专利转让给本发明的受让人,援引于此,以作参考。
在刚提到的专利中,揭示了一种多址技术,在这种多址技术中,每个都具有收发机的大量移动电话系统用户通过卫星中继器或地面基站利用CDMA扩展频谱通信信号进行通信。用CDMA通信时,频谱可以多次重复使用,因此可以增加系统用户容量。
美国专利(No.4,901,307)揭示的CDMA调制技术优于卫星或地面信道的通信系统中使用的窄带调制技术。地面信道具体在多路径信号方面对通信系统提出了特殊的问题。利用CDMA技术可以通过减轻例如衰落等多路径不利的影响来克服地面信道的这些问题,同时又利用了多路径的优点。
如美国专利4,901,307号揭示的CDMA技术设想在远端单元-卫星通信中链路的两个方向上使用相干调制和解调。因此,这里揭示的是把引导载波信号用作卫星-远端单元链路和基站-远端单元链路的相干相位基准。然而,地面蜂窝网环境中,严重的多路径衰落导致了信道相位的中断以及要求远端单元发射引导载波信号的功率较强,因此阻碍了远端单元-基站链路使用相干解调技术。1990年颁布的、名称为“CDMA蜂窝电话系统中产生信号波形的系统和方法”的美国专利(No.5,103,459)提供了一种利用非相干调制和解调技术克服上述远端单元-基站链路的多路径的不利影响的手段,把该专利揭示的内容引用于此,以作参考。
在CDMA蜂窝电话系统中,所有基站的通信可以使用相同的频率。在基站接收机中,诸如一条位置路径和建筑反射的另一路径等独立的多路径可以分集组合,以提高调制解调性能。提供处理增益的CDMA波形属性还用于区分占用同一频带的信号。而且,如果路径延迟差超过PN码片持续时间,高速伪噪声(PN)调制可以使要分开的同一信号有许多不同的传播路径。如果在CDMA系统中使用约为1MHz的PN码片速率,则可以对延迟差超过1微秒的路径使用等于扩展频宽对系统数据速率的比的全扩展频谱处理增益。1微秒路径延迟差对应于约300米的路径差。都市环境提供的路径延迟差通常超过1微秒。
在运行过几条不同传播路径的接收信号上产生地面信道的多路径特性。多路径信道的一个特征是通过该信道发射的信号中引入的时间扩展。例如,如果在多路径信道上发射理想脉冲,则接收到的信号表现为脉冲流。多路径信道的另一个特征是信道的每条路径可以引起不同的衰落系数。例如,如果在多路径信道上发射理想脉冲,接收到的脉冲流的每个脉冲的信号强度与接收到的另一个脉冲不同。多路径信道的又一个特征是信道的每条路径可能造成信号相位差。例如,如果在多路径信道上发射理想脉冲,则接收到的脉冲流的每个脉冲的相位通常与其它接收到的脉冲不同。
在无线电信道中,环境中的障碍物,例如建筑、树、汽车以及人等对信号的反射产生多路径。通常,由于产生多路径的构造相对运动,所以无线电信道是随时间变化的多路径信道。例如,如果在时间变化的多路径信道上发射理想脉冲,则接收到的脉冲流的时间位置、衰减以及相位作为理想脉冲发射时间的函数而变化。
信道的多路径特征可以导致信号衰落。衰落是多路径信道的相位变化特性造成的结果。当多路径矢量破坏性相加时发生衰落,造成接收到的信号小于各矢量。例如,如果通过具有两条路径(第一条路径的衰减系数为XdB,延时为δ,相移为θ弦度,第二路径的的衰减系数为XdB,延时为δ,相移为θ+π弧度,)的多路径信道发射正弦波时,在信道的输出端接收不到信号。
在诸如模拟FM调制等传统无线电话系统使用的窄带调制系统中,无线电信道中存在的多路径导致了严重的路径衰落。然而,如上述宽带CDMA所述的那样,可以在调制处理时区分出不同的路径。这种区分不仅大大降低了多路径衰落的严重性,而且为CDMA系统带来了好处。
分集是减轻衰落的不利影响的一种方法。因此希望提供一些分集形式,以使系统减小衰落。有三种主要的分集形式:时间分集、频率分集以及空间/路径分集。
利用重复、时间交织以及引入冗余位的纠错、检错编码可以最好地获得时间分集。包含本发明的系统可以把这些技术的每一种都用作时间分集。
CDMA以其固有的宽带属性通过在大带宽上扩展信号能量来提供一种频率分集。因此,频率选择衰落仅影响CDMA信号带宽的一小部分。
通过从远端单元经两个或更多个基站的同时传输链路提供多信号路径,并在一个基站上使用两个或多个空间上分开的天线单元可以获得空间和路径分集。而且,如上所述,路径分集还可以通过扩展频谱处理利用多路径环境,使到达的信号在接收时有不同的传播延时,并分开处理而获得。路径分集的例子在1992年3月21日颁发的、名称为“CDMA蜂窝电话系统中的软切换”的美国专利5,101,501号以及1992年4月28日颁发的、名称为“CDMA蜂窝电话系统中的分集接收机”的美国专利5,109,390号中的图示说明,该两专利都转让给本发明的受让人。
通过控制发射机的功率可以把衰落的不利影响进一步控制在某一程度内。基站和远端单元的控制系统在1991年10月8日颁发的、名称为“CDMA蜂窝移动电话系统中控制发射功率的方法和装置”的美国专利5,056,109号中有所揭示,该专利也转让给本发明的受让人。
如美国专利4,901,307号中揭示的CDMA技术设想利用较长的PN序列,每个远端单元用户分配一个不同的PN序列。所有时移都不为零的不同PN序列的互相关以及PN序列的自相关都有接近零的平均值,可以在接收时区分出不同的用户信号。(自相关和互相关要求逻辑“0”采用值“1”,逻辑“1”采用值“-1”,或者类似的映射关系,以获得平均值零。)
然而,这种PN信号不是正交的。虽然互相关在整个序列长度上对短时间间隔(诸如信息位时间)的平均值基本上为零,但互相关是随二项式分布变化的随机数。因此,如果信号是相同功率谱密度的宽带高斯噪声,则它们在很多方面将彼此影响。因此,其它用户信号或者互干扰噪声极大地限制了可得到的容量。
本技术领域众所周知,一组正交二进制序列,每个序列的长度为n,则n可以构成2的任何次幂,参见S.W.Golomb等(prentice-Hall公司)的《带有空间应用的数字通信》,第45-64页,1964年出版。事实上,正交二进制序列组也是已知的,其大多数长度是4的倍数,且小于200。一类易于产生的这种序列称为Walsh函数,也称为阿达玛矩阵。
n阶Walsh函数可以进行如下的递归定义: W ( n ) = W ( n / 2 ) , W ( n / 2 ) W ( n / 2 ) , W ' ( n / 2 ) 其中W’表示W的逻辑补,W(1)=|0|。因此, W ( 2 ) = 0,0 0,1 W ( 4 ) = 0,0,0,0 0,1,0,1 0,0,1,1 0,1,1,0 W ( 8 ) = 0,0,0,0,0,0,0,0 0,1,0,1,0,1,0,1 0,0,1,1,0,0,1,1 0,1,1,0,0,1,1,0 0,0,0,0,1,1,1,1 0,1,0,1,1,0,1,0 0,0,1,1,1,1,0,0 0,1,1,0,1,0,0,1
Walsh码元、序列或者代码是Walsh函数矩阵的一行。n阶的Waslh函数矩阵包含n个序列,每个序列的长度为n个Walsh码片。每个Walsh代码具有相应的Walsh系数,其中Walsh系数指找到Walsh代码的相应行号(1至n)。例如,对于上述给出的n=8的Walsh函数矩阵,都为0的行对应于Walsh系数1,Walsh代码0,0,0,0,1,1,1,1对应于Walsh系数5。
n阶Walsh函数矩阵(以及其它长度为n的正交函数)具有这样的性质,即在n位的间隔上,该组内的所有不同序列之间的互相关为0。这可以从注意每个序列中正好一半位数彼此不同看出。还应注意到总是有一个序列全为0,所有其它序列一半为1,一半为0。由全部逻辑0而不是一半为1,一半为0组成的Walsh码元称为Walsh 0码元。
在从远端单元到基站的反向链路信道上,没有引导信号来提供相位基准。因此,需要一种方法在低Eb/No(每比特能量/噪声功率密度)的衰落信道上提供高质量的链路。在反向链路上的Walsh函数调制利用映射到64个Walsh代码的b码元组中的相干,是获得64-元调制的一种简便方法,地面信道的特征是相位的变化速率较低。因此,通过选择Walsh代码持续时间,使它比该信道上的相位变化速率慢,则可以在一个Walsh代码长度上进行相干解调。
在反向链路信道上,Walsh代码由远端单元发射的信息确定。例如,3比特信息码元可以映射8个上述给出的W(8)序列。在接收机内通过快速阿达玛变换(FHT)可以实现把Walsh编码码元“去映射”为原始信息码元。择佳“去映射”或选择处理产生软判决数据,可以把它提供给解码器进行最大似然解码。
FHT用于进行“去映射”处理。FHT把接收到的序列与每个Walsh序列相关。选择电路用于选出最大似然相关值,把它进行换算并作为软判决数据提供。
分集扩频接收机或“瑞克”(“rakd”)接收机的设计包含多个数据接收机,以减小衰落的影响。通常,每个数据接收机分配去解调利用多付天线或由于信道多路径特性带来的。不同路径上运行的信号。在解调根据正交信号方式调制的信号时,每个数据接收机利用FHT把接收到的信号与每个映射值相关。把每个数据接收机的FHT输出进行组合,然后选择电路根据最大的组合FHT输出选择最大似然相关值,以产生解调的软判决码元。
在美国专利5,103,459号描述的系统中,呼叫信号以每秒9600比特的信息源开始,然后由1/3率正向纠错解码器把它转换成每秒28,800个码元的输出流。这些码元同时分成6组,形成每秒4800个Walsh码元,每个Walsh码元选择64个正交Walsh函数中的一个,64个正交Walsh函数是持续期间的64个Walsh码片。把Walsh码片与用户特定的PN序列发生器进行调制。然后把用户特定的PN调制数据分成两个信号,其中一个信号与同相(I)信道PN序列进行调制,另一个信号与正交相(Q)信道PN序列进行调制。I信道调制和Q信道调制都每个Walsh码片有4个PN码片,扩展速率为1.2288MHz。I和Q调制数据组合为偏置4相相移键控(OQPSK),以进行传输。
在美国专利4,901,307号所述的CDMA蜂窝网系统中,每个基站覆盖有限的地理区域,并在其覆盖内通过蜂窝网系统交换局把远端单元连接到公用交换电话网(PSTN)上。当远端单元移入到新基站的覆盖区域时,该用户的呼叫的路由转接到该新的基站。基站至远端单元的信号传输路径称为正向链路,远端单元至基站的信号传输路径称为反向链路。
如上所述,PN码片间隔限定了最小间隔的两条路径,以进行组合。在解调不同的路径之前,必须首先确定接收到的信号的路径的相对到达时间(偏移)。信道单元调制解调器通过“搜索”潜在路径偏移序列以及测量每个潜在路径偏移上接收到的能量来完成这一功能。如果与潜在偏移相关的能量超过了某一阈值,则可以把信号解调单元分配给该偏移。然后可以把出现在该路径偏移上的信号与在各自偏移上的其它解调单元的信号分量相加。基于搜索器解调单元能量电平的解调单元分配方法和装置在1993年10月28日申请的、名称为“参接收多路信号的系统中的解调单元分配”的共同待批美国专利申请(序列号08/144,902)中有所揭示,该申请转让给本发明的受让人。这种分集或瑞克接收机提供了健全的数字链路,因为所有的路径在组合信号劣化之前都已衰落。
图1示出了一组典型的从一个远端单元到达基站的信号。垂直轴表示接收到的功率,以分贝(dB)为单位。水平轴表示信号由于多路径延迟造成的到达时延。进入到纸面的轴(未示出)表示时间段。与纸共面的每个信号尖峰以同一时间到达,但远端单元是以不同的时间发射的。在同一平面上,远端单元发射右边峰的时间早于发射左边的峰。例如,最左边的尖峰2对应于最近发射的信号。每个信号尖峰2-7在不同的路径上行进,因此,表现出不同的时延和不同的幅度响应。由尖峰2-7表示的6个不同的信号尖峰表示了严重的多路径环境。一般的都市环境产生的路径很少是可用的。系统的基本噪声由峰和能量电平较低的下降点表示。搜索单元的任务是在水平轴测量时识别信号尖峰2-7的延迟,以分配潜在的解调单元。解调单元的任务是解调一组多路径峰,以组合成单个输出。解调单元的任务还有一旦确定多路径峰值,即进行跟踪,因为该峰值会随时间移动。
水平轴还可以看作具有PN偏移的单位。在任一给定时刻,基站从单个远端单元接收各种信号,每个信号在不同的路径上行进,因此彼此具有不同的时延。远端单元的信号由PN序列调制。在基站上产生PN序列的复制品。在基站,每个多路径信号单独用与其定时一致的PN序列进行解调。水平轴坐标可以看作对应于PN序列代码偏移,可用于解调该坐标上的信号。
请注意,每个多路径峰的幅度如每个多路径峰的不平坦的脊所示,随时间函数变化。在所示的有限时间内,多路径峰没有大幅变化。在更大的时间范围内,多路径峰消失,随时间的前进,产生新的路径。当远端单元在基站覆盖区周围移动时,峰还可以随路径距离的变化前后偏移。每个解调单元跟踪分配给它的信号的微小的变化。搜索过程的任务是在基站接收时产生当前多路径环境记录。
在一般的无线电话通信系统中,远端单元发射机可以使用声码系统,它把语音信息以可变速率格式进行编码。例如,由于语音活动中有暂时的停顿,所以数据速率可以降低。低数据速率减少了因远端单元发射造成的对其它用户的影响程度。在接收机处或者其它与接收机有关的别的地方,把声码系统用来重新构成语音信息。除了语音信息之外,远端单元还单独发射非语音信息,或者混合发射这两者。
在1994年12月23日申请的、名称为“可变速率声码器”的共同待批美国专利申请(序列号08/363,170)中描述了可应用于这种环境内的声码器,该申请已转让给本发明的申请人。该声码器在一个20毫秒(ms)帧期间根据语音活动从语音信息的数字抽样,以四种不同的速率(例如约8000比特每秒(bps)、4000bps、2000bps、1000bps)产生编码数据。声码器数据的每一帧用开销位格式化成9600bps、4800bps、2400bps以及1200bps数据帧。对应于9600bps帧的最高速率的数据帧称为“全速率”帧;4800bps数据帧称为“半速率”帧;2400bps帧称为“四分之一速率”帧;1200bps帧称为“八分之一速率”帧。在编码处理和帧格式化处理中都不把速率信息包括在数据中。当远端单元以低于全速率的速率发射数据时,远端单元发射的信号的负载周期的比例与数据速率的比例相同。例如,远端单元以四分之一速率发射的信号仅占用了四分之一的时间。在其它四分之三的时间内,远端单元不发射信号。
该远端单元包括了数据猝发段随机函数发生器。数据猝发段随机函数发生器已知要发射的信号的数据速率、远端单元特定的识别号以及一天的时间,确定远端单元在哪个时间周期内发射,在哪个时间周期内不发射。当以低于全速率工作时,远端单元内的数据猝发段随机函数发生器伪随机分配发射猝发段内的工作时间周期。基站内也有相应的数据猝发段随机函数发生器,这样基站可以根据一天的时间和远端单元特定的识别号重新产生伪随机分配,尽管基站事先并不知道发射信号的数据速率。
八分之一速率时间周期确定了所谓的相称时间周期组。以四分之一速率工作的远端单元在有相称时间周期组和另一组伪随机分配周期期间发射。以半速率工作的远端单元在四分之一速率时间周期和另一组伪随机分配周期期间发射。以全速率工作的远端单元连续发射。这样,当相应的远端单元正在发射一个信号时,可以确保对应于相称组的每个时间周期对应于一个时间,而与发射信号的数据速率无关。有关数据脉冲随机函数发生器的进一步细节在1994年8月16日申请的名称为“数据脉冲串随机函数发生器”的共同待批美国专利(申请序列号08/291,647)中有描述。
为了节省发射语音实际数据的系统资源,远端单元不发射每帧的速率。因此,接收机必须根据接收到的信号确定对数据进行编码和发射的速率,以使与声码器关联的接收机可以正确地重构语音信息。在1994年4月26日申请的、名称为“通信接收机中确定所发射可变速率数据的速率的方法和装置”的共同待批美国专利(序列号08/233,570)中揭示了一种不从发射机接收速率信息确定猝发数据编码速率的方法。上述专利申请中揭示的确定数据速率的方法在接收并解调了信号之后进行,因此,在搜索过程中没有速率信息可用。
在基站上,必须根据接收到的全部呼叫信号识别出每个单独的远端单元信号。在例如美国专利5,103,459号中描述了一种解调基站接收到的远端单元信号的系统和方法。图2是美国专利5,103,459号描述的解调反向链路远端单元信号的基站设备的框图。
已有技术的一般基站包含多个独立的搜索机和解调单元。搜索机和解调单元受微处理器控制。在典型实施例中,为了保持高系统容量,系统中的每个远端单元不发射引导信号。在反向链路上没有引导信号增加了对可以接收远端单元信号的所有可能的时间偏移进行鉴定所需要的时间。通常以高于业务承载信号的功率发射引导信号,因此与接收到的业务信道信号相比,接收到的引导信号的信噪比提高。相反,设想,每个远端单元发射的反向链路信号以与从每个其它远端单元接收到的功率电平相同的电平到达,则具有较低的信噪比。而且,引导信道发射已知的数据序列。没有引导信号,搜索处理必须检查可以发射数据的所有可能性。
图2示出了已有技术的基站的典型实施例。图2的基站具有一付或多付天线12,接收CDMA反向链路远端单元信号14。通常,都市基站的覆盖区域分裂成三个称为扇区的子区域。每个扇区有两付天线,一般的基站具有总计六付天线。模拟接收机16把接收到的信号下变频到基带上,量化接收到的信号为I和Q信道,并把这些数字值在信号线18上传送给信道单元调制解调器20。一般的基站包含多个与信道单元调制解调器20相同的信道单元调制解调器(图2中未示出)。每个信道单元调制解调器20支持一个用户。在较佳实施例中,信道单元调制解调器20包含四个解调单元22和八个搜索器26。微处理器34控制解调器22和搜索器26的工作。把每个解调单元22和搜索26内的用户PN码设置成分配给该信道单元调制解调器20的远端单元的用户PN码。微处理器34逐步安排搜索器26通过一组称为搜索窗的偏移,其中可能含有适用于分配解调单元22的多路径信号峰。对于每个偏移,搜索器26向微处理器34报告它找到的该偏移的能量。然后微处理器34把解调单元22分配给搜索器26识别出的路径。一旦解调单元22之一锁定到它分配的偏移上,它就跟踪该路径而不再受微处理器34的管理,一直到路径衰落或者微处理器把它分配给另一条新路径。
对于图2的系统,每个解调单元22和搜索器26含有一个在等于Walsh码元周期的时间周期内能进行一次FHT变换的FHT处理器52。在每一Walsh码元间隔输入一个值元并从FHT输出一个码元值的意义上来说,FHT处理器为“实时”控制。因此,为了提供快速的搜索处理,必须使用一个以上的搜索器26。每个搜索器26向微处理器34送回进行搜索的结果。微处理器34把这些结果制成表格,以便在把解调单元22分配给呼入信号时使用。
在图2中,仅示出了一个解调单元22的内部结构,但应当理解,它同样可以用于搜索器26。信道单元调制解调器的每个解调器22或搜索器26具有一个相应的IPN和QPN序列发生器36、38以及用户特定PN序列发生器40,它用于选择特定的远端单元。发生器40输出用户特定序列由XOR(异)门42和44与IPN和QPN序列发生器36和38的输出进行“异”运算,产生PN-I’和PN-Q’序列,并把它们提供给去扩展器46。把PN发生器36、38、40的时间基准调整到分配的信号的偏移上,以使去扩展器46把接收到的I和Q信道天线取样和与分配的信号偏移一致的PN-I’和PN-Q’序列相关。由累加器48和50把对应于每个Walsh码片四个PN码片的四个去扩展输出相加,形成一个Walsh码片。然后把累加的Walsh码片输入到快速阿达玛变换(FHT)处理器52。当接收到对应于一个Walsh码元的64个码片时,FHT处理器52把这组64个Walsh码片与64个可能发射的Walsh码元中的每个相关,并输出这64项的软判决数据矩阵。然后由组合器28把FHT处理器52的输出与其它分配的解调单元的输出组合。组合器28的输出就是“软判决”解调码元,由正确识别原始发射的Walsht码元的可靠程度加权。然后把软判决数据传送给前向纠错解码器29,进一步处理以恢复原始的呼叫信号。该呼叫信号发送通过数据链路30,例如T1或E1链路,把呼叫发送到公用交换电话网32。
与每个解调单元22一样,每个搜索器26包含有解调数据路径,它具有能在等于一个Walsh码元周期的时间进行一次FHT变换的FHT处理器。搜索器26仅在如何利用其输出以及不提供时间跟踪方面与解调单元22不同。对于每次偏移处理,每个搜索器26通过对天线抽样进行去扩展,把它们累加到输入以进行FHT变换的Walsh码片上,进行FHT变换并把搜索器存在偏移的每个Walsh码元的最大FHT输出能量相加,在该偏移上求相关能量。把最后的总和向微处理器34报告。通常每个搜索器26在微处理器34的控制下一步步通过搜索窗,搜索窗与其它搜索窗组成一组,每个搜索窗与其相邻的搜索窗间隔半个PN码片。这样,每个四分之一码片最大偏移误差存在足够的相关能量,以确保不会因为搜索器没有与路径的精确偏移相关而丢失路径。在使搜索器26按序通过搜索窗之后,如上述共同待批美国专利(申请序列号08/144,902)所述一样,微处理器34估算回报的结果,寻找强的路径进行解调单元的分配。
由于远端单元和其它反射物在基站覆盖区域内移动,多路环境时常变化。根据快速找出多路径的需要来设置必须执行的搜索器的数量,以便可把有效的路径提供给解调单元使用。另一方面,所需要的解调单元的数量是在任一时间点上通常可找来使用的路径数量的函数。为了满足这些需求,图2的系统对所用四块解调集成电路(IC)的每块,配有两个搜索器26和一个解调单元22,每个信道单元调制解调器总计有四个解调单元和八个搜索器。这十二个处理单元中的每个单元包含完整的解调数据路径,其中包括在集成电路上实现的面积较大且昂贵的FHT处理器。除了四个解调器之外,集成电路的信道单元调制解调器还具有调制集成电路和前向纠错解码集成电路,总计有6块集成电路芯片。需要大功率和昂贵的微处理器来管理和协调解调单元和搜索器。如图2所示,这些电路是完全独立的,需要微处理器34密切进行指导,以按序通过正确的偏移,处理FHT的输出。每个Walsh码元微处理器34接收中断来处理FHT的输出。仅此中断速率就必须使用高功能微处理器。
如果调制解调器所需要的6块集成电路可以减少到一块集成电路,则将会带来下列优点:几乎不需要微处理器的支持,从而减少IC的直接费用以及调制解调器的插板层次的制造费用,可以转到低成本的微处理器(或者换用能同时支持几个信道单元调制解调器的单个高功能微处理器)。仅依靠IC制造工艺的缩小外表尺寸,把6块芯片放在一块小片上是不够的。真正有成本效率的单片调制解调器需要重新设计搜索器的基本构造。从上面的讨论中可以看出,需要低成本并以结构上更有效的方式解调扩展频谱呼叫信号的信号接收和处理装置。
本发明可以使用如上所述的一组实时搜索器或者一个或以快速估计大量偏移的综合搜索处理器,该偏移有可能包含所接收呼叫信号的多路径。
本发明是一种搜索多路径信号的方法,这种多路径信号是以未知的可变速率发射的,并且功率受到控制。发明内容
本发明是一种搜索以未知可变速率发射且功率受控制的多径信号的方法。这种搜索方法是线性的,不尝试使搜索过程与已知时间同步,以包含数据。这种搜索过程以功率控制组的边界定位,所以可以获得精确的功率估计值。附图概述
从结合下面附图的详细描述可以使本发明的特征、目的以及优点更明显,在所有图中相同的参考符表示相应的部件,其中:
图1示出了典型的有严重多路径信号的情况;
图2是已有通信网解调系统的方框图;
图3示出了根据本发明构成的典型CDMA电信系统;
图4是根据本发明构成的信道单元调制解调器的方框图;
图5是搜索处理器的方框图;
图6示出了利用第一偏移的天线样本缓存器的循环特性;
图7示出在图6的第一偏移上第二累积的天线样本缓存器的循环特性;
图8示出了第二偏移的天线样本缓存器的循环特性;
图9是示出搜索器如何将接收机输入作为时间的函数处理的曲线图;
图10是搜索器前端的框图;
图11是搜索器中去扩展器的框图;
图12是搜索器中结果处理器的框图;
图13是搜索器按序控制逻辑的框图;
图14是图5示出的处理顺序的时序图,示出了图13表示的某一控制逻辑单元的相应状态;
图15是搜索处理器的另一框图。本发明的实施方式
在下面对在数字无线电话系统中处理电话呼叫的方法和系统的描述中,对进行的处理和步骤作了各种引证,以达到所要求的结果。应当理解,这些引证并不是讲述人的行为或想法,而是表示各种系统的操作、修正以及变化,尤其是那些处理电或电磁信号,电荷、光信号或它们的组合的系统。对这些系统重要的是利用了各种信息存储装置(常称为“存储器”)和各种信息处理装置(常称为“微处理器”),前者通过硬盘媒体或硅、砷化镓或其它半导体为基础的集成电路媒体中的原子或超原子带电粒子的安置和组织存储信息,后者响应于上述电或电磁信号以及电荷改变它们的条件和状态。还考虑用处理光能或具有特殊光学特性的粒子或者这些的组合的存储器和微处理器,并与所描述的发明的操作一致地利用。
本发明可以在各种数据传输应用中实现,而图3所示的较佳实施例中,在语音、数据传输的系统100内实现,这种系统中的系统控制器和交换机(BSC&S)102实现接口和控制功能,以通过基站106与远端单元104进行呼叫通信。BSC&S102控制公用交换电话网(PSTN)108与基站106之间的呼叫路由,以对远端单元104相互传输。
图4示出了根据CDMA方法以及上述引用专利内描述的数据格式运转的基站基础设施的信道单元调制解调器110A-1110N以及其它单元。多付天线112向模拟发射接收机(收发机)116提供接收到的反向链路信号114。模拟收发机116把反向链路信号114下变频到基带上,并以如上所定义的CDMA接收信号的PN码片速率的8倍的速率对基带波形取样。模拟收发机116通过基站RX底板信号118向信道单元调制解调器(CEM)110A-110N提供数字天线样本。可以把每个信道单元调制解调器110A-110N分配到一个与基站建立有效通信的远端单元。每个信道单元调制解调器110A-110N的结构几乎相同。
当信道单元调制解调器110A分配到一个有效呼叫时,解调器前端122和综合搜索处理器128利用上述引用专利和专利申请中描述的PN序列把相应的远端单元的信号与包含在反向链路信号114中的多个呼叫信号分隔开。信道单元调制器110A包括一个综合搜索处理器128,以识别出解调器前端122可以使用的多路径信号。在较佳实施例中,时分FHT处理机(procesoor engine)120为综合搜索处理器128和解调器前端122服务。与共用FHT处理机120及其相关的最大检测块160不同,综合搜索处理器128自控、自备,是独立的。搜索器构造在1994年9月30日提出的名称为:“扩展频谱多址通信系统的多路径搜索处理器”的共同待批美国专利申请(No.08/316,177)中有详细描述,该申请已转让给本发明的受让人。
FHT处理机120解调处理的核性心。在较佳实施例中,FHT处理机120把接收到的Walsh码元值与每个可以由远端单元发射的Walsh码元相关。FHT处理机120输出对应于每个Walsh码元的相关能量,较高的相关能量值对应于远端单元发送该Walsh系数对应的码元的似然性较高。然后最大检测块160确定最大的64个FHT变换能量输出。把最大检测块160的最大相关能量和相应Walsh系数以及FHT处理机的全部64个相关能量输出传送到流水线式解调处理器126,以进一步处理信号。把最大检测块160的最大相关能量和相应Walsh系数回送给综合搜索处理器128。
流水式解调处理器126把以不同偏移接收到的码元数据时间对准,并组合成一个解调的“软判决”码元流。另外,流水线式解调处理器126计算正在接收的信号的功率电平。根据接收到的功率电平,产生功率控制指示,以指令远端单元提高或降低远端单元的发射功率。把功率控制指示传送通过调制器140,调制器140把该指示加到基站发射的信号上,以便远端单元接收。这种功率控制环路根据上面引用的美国专利5,056,109号中描述的方法工作。
把流水线式解调处理器126的软判决码元流输出到去交织器/前向纠错解码器130,进行去交织和解码。信道单元微处理器136通过微处理器总线接口134控制整个解调过程,并获得去交织器/前向纠错解码器130的复原数据。然后把该数据通过数字回程链路121按规定路线传送到通过PSTN108连接呼叫的BSC&C102。
正向链路数据路径的作用就象反向链路的相反作用一样。把信号从PSTN108通过BSC&S102提供给数据回程链路121。数字回程链路121把输入通过信道单元微处理器136提供给编码器/交织器138。在对数据进行编码和交织之后,编码器/交织器138把数据传送给调制器140,该调制器按上述专利所述的那样进行调制。把调制器140的输出146传送给发射加法器142,在模拟收发机116从基带上变频并放大之前,把它加到其它信道单元调制解调器110B-110N的输出上。相加的方法在1994年9月30日提出的名称为“多数字波形相加的串接互连”的共同待批美国专利申请(No.08/316,156)中有揭示,该申请已转让给本发明的受让人。如上述专利申请所述,对应于每个信道单元调制解调器110A-110N的发射加法器能以菊花链式级连,最后得到最终和,把该和提供给模拟收发机116,以便广播。
图5示出了组成综合搜索处理器128的各单元。搜索处理的心脏是时分FHT处理机120,如上所述,它由综合搜索处理器128与解调器前端122(图5中未示出)共用。FHT处理机120能以比图2的FHT处理器52快32倍的速率进行Walsh码元变换。这种快速变换能力可以使信道单元调制解调器110分时操作。
在较佳实施例中,FHT处理机120利用六级蝶形网络构成。如上文已详细解释那样,n阶Walsh函数可以如下递归地定义: W ( n ) = W ( n / 2 ) , W ( n / 2 ) W ( n / 2 ) , W ' ( n / 2 )
其中,W’表示W的逻辑补,W(1)=0。
在较佳实施例中,产生一个n=6的Walsh序列,因此用6级蝶形格网把一次发射的Walsh码元的64个Walsh码片与64个Walsh序列中的每个序列相关。FHT处理机120操作的结构和方法在1993年12月22日提出的名称为“进行快速率阿玛达变换的方法和装置”的共同待批美国专利申请(No.08/173,460)中有详述,该申请已转让给本发明的受让人。
为了获得FHT处理机120具有的32倍于其实时从动对端的通过量的好处,必须向FHT处理机120提供高速输入数据,以便处理。定制天线样本缓存器172专门设计成满足这一要求。天线样本缓存器172以循环的方式写入和读出。
搜索处理分成每一个偏移搜索为一组。最高一级分组是天线搜索组。每个天线搜索组由多个搜索窗组成。通常,天线搜索组内的每个搜索窗是独立进行的搜索群,天线搜索的每个搜索窗接收不同天线的数据。每个搜索窗由一系列搜索瑞克(rake)组成。搜索瑞克是一组按序搜索偏移,在与Walsh码元持续时间相等的时间内进行。每个搜索瑞克由一组瑞克单元组成。每个瑞克单元表示一次给定偏移的搜索。
在搜索处理开始时,信道单元微处理器136发送规定可为天线搜索组一部分的搜索窗的参数。搜索窗的宽度可以用PN码片表示。完成搜索窗所需的搜索瑞克数量随搜索窗内规定的PN码片的数据而变化。每个搜索瑞克的瑞克单元的数据可以由信道单元微处理器136来指定,或者可以固定为一些常数。
再照参示出了从一个远端单元到达基站的一组典型信号的图1,搜索窗、搜索瑞克以及瑞克单元之间的关系变得更清楚。图1中的垂直轴表示接收到的功率,以分贝(dB)为单位。水平轴表示多路径延迟引起的信号到达时间的延迟。进入纸面的轴(未示出)表示时间段。与纸共面的每个信号尖峰以同一时间到达,但远端单元是以不同的时间发射的。
水现轴还可以看作具有PN码片偏移的单位。在任一给定时刻,基站从一个远端单元接收各种信号,每个信号在不同的路径上行进,因此彼此具有不同时延。远端单元的信号由一PN序列调制。在基站上产生PN序列的复制品。在基站,如果每个多路径信号单独解调,则需要与每个信号的定时对准的PN序列码。由于上述时延,这些对准的PN序列在分别迟后于基站零偏移基准。对准的PN序列迟后于基站零偏移基站的PN码片数可映射到水平轴。
在图1中,时间段10表示要处理的PN码片偏移的搜索窗集。时间段10被分成5个不同的搜索瑞克,如搜索瑞克时间段9。每个搜索瑞克依次由多个表示要搜索的实际偏移的瑞克单元组成。例如,在图1中,每个搜索瑞克由8个不同的瑞克单元组成,如箭头8所示。
为了处理箭头8表示的单个瑞克单元,需要一组该偏移时间段的样本。例如,为了处理箭头8表示的瑞克单元,去扩展处理需要箭头8所指偏移上的样本组返回进入纸面的时间轴一段时间。去扩展处理还需要相应的PN序列。PN序列可以通过注意样本到达的时间以及要处理的偏移来确定。要处理的偏移可以与到达时间组合,以确定要与接收到的样本相关的相应PN序列。
在瑞克单元去扩展时,接收天线样本和PN序列随时间一系列值通过。请注意,接收到的天线样本对图1所示所有偏移都相同。尖峰2-7示出了典型的同时到达的多路径峰,仅通过去扩展处理来区分。
在下面的较佳实施例中,每个瑞克单元在时间上与前一瑞克单元偏移半个PN码片时间。这意味着如果对应于箭头8的瑞克单元相关,从所示切面开始,并在时间上向前移动(向所示的纸面内),则对应于箭头8左面的一个瑞克单元将用从所示切面返回半个码片时间开始的样本。这种时间上的连续可以使同一搜索瑞克上的每个瑞克单元与同一PN序列相关。
每个远端单元接收基站发射的信号,这些信号由于通过地面环境的路径延迟将延时一定的量。在远端单元内还产生相同的I和QPN短码和用户PN长码。远端单元根据它从基站得到时间基准产生时间基准。远端单元用该时间基准信号作为其I和QPN短码和用户PN长码发生器的输入。因此基站从远程站接收到的信息信号延迟了基站和远端单元之间的信号路径的往返行时延。如果搜索处理中所用的PN发生器的定时隶从于基站的零偏移时间基准,则在从远程站接收到的相应信号之前,该发生器总有输出可用。
在OQPSK信号中,I信道数据和Q信道数据在时间上彼此偏移半个码片。因此在较佳实施例中所用的OQPSK去扩展需要以两倍码片速率取样的数据。搜索处理还最好处理以半码片速率取样的数据。搜索瑞克内的每个瑞克单元与前一瑞克单元偏移半个码片。半个码片的瑞克单元分辨率保证了多路径信号不会未经检测而跳过。因此,图5的天线样本缓存器172存储了以两倍于PN码片速率取样的数据。
从天线样本缓存器172中读取相当于一个Walsh码元的数据,以处理一个瑞克单元。对于每一后续的瑞克单元,从天线样本缓存器172读出相当于一个Walsh码元的数据,而且偏离前一瑞克单元半个PN码片。每个瑞克单元用从PN序列缓存器176读取的同一PN序列由搜索瑞克内的各瑞克单元的去扩展器178进行去扩展。
天线样本缓存器172有两个Walsh码元深,在整个搜索过程中连续和重复地进行读出和写入。在每个搜索瑞克内,首先处理具有在时间上最后偏移的瑞克单元。最后偏移对应于从远端单元到基站行进了最长信号路径的信号。搜索器开始处理搜索瑞克的时间与搜索瑞克内的具有最后偏移的瑞克单元关联的Walsh码元边界对应。称为偏移Walsh码元边界的选通时间指示在天线样本缓存器172内所有需要的样本可用,并且搜索处理可以开始对搜索瑞克内第一个瑞克单元进行的最早时间。
注意缓存器的循环特性,最容易说明天线样本缓存器172的操作。图6示出了天线样本缓存器172的操作图。在图6中,粗的圆圈400可以看作天线样本缓存器172本身。天线样本缓存器172含有相当于两个Walsh码元的数据的存储位置。写指针406绕天线样本缓存器172以所示方向实时环行,这意味着写指针406在相当于两Walsh码元的样本传送到搜索器前端174时绕两个Walsh码元深度的天线样本缓存器172旋转。当把样本根据写指针406指示的存储位置写到天线样本缓存器172时,将重写前面存储的值。在较佳实施例中天线样本缓存器172包含有1024个天线样本,因为两个Walsh码元中的每个码元含有64个Walsh码片,每个Walsh码片含有4个PN码片,每个PN码片取样两次。
把搜索处理操作分成离散的‘时间片’。在较佳实施例中,时间片等于Walsh码元持续时间的1/32。根据可用的时钟频率和进行FHT所需要的时钟周期数选择每个Walsh码元的32个时间片。对一个Walsh码元进行FHT需要64个时钟周期。在较佳实施例中,可以用以PN码片频率8倍运行的时钟,从而提供所需水平的性。PN码片速率的8倍乘以64个所需的时钟等效于接收两个Walsh码片数据所花的时间。因为在每半个缓存器中有64个Walsh码片,所以读完一个Walsh码元需要32个时间片。在图6中,粗圆400外的一组同心弧表示对天线样本缓存器172的读写操作。(粗圆400内的弧用于解释,并不对应于读或写操作。)每段弧表示一个时间片期间的读或写操作。最靠近圆心的弧在时间上首先产生,各后面的弧表示如时间箭头414指示的后续时间片内产生的操作。每个同心弧对应于一段粗圆400表示的天线样本缓存器172。如果假设从粗圆400的中心向每个同心弧的端点画半径,则粗圆400上该半径与粗圆400的交点之间的部分表示所存取的存储位置。例如,在所示的第一时间片操作期间,把16个天线样本写入到弧402A表示的天线样本缓存器172内。
在图6、7和8中,假设所示搜索窗的搜索参数如下:
搜索窗宽度=24个PN码片
搜索偏移=24个PN码片
累积码元数=2
每个搜索瑞克的瑞克单元数=24
图6还假设天线样本缓存器172含有在弧402A所示写操作之前的有效数据的几乎全部Walsh码元。在后面的时间片期间,进行对应于弧402B和弧402C的写操作。在一个Walsh码元期间可用的32个时间片内,写操作从弧402A-402FF连续进行,其中大多数在图中没有示出。
弧402A至402FF表示的32个时间片对应于完成一个搜索瑞克所用的时间。用上述给定的参数,搜索瑞克从零偏移基准或‘实时’开始进行24个PN码片偏移,并含有24个瑞克单元。24个PN码片偏移对应于从402A指示的第一次写操作开始绕粗圆400转动16.875度(把24个PN码片偏移除以半个天线样本缓存器172内的256个码片总数,再乘以180度来计算)。16.875度的弧由弧线412表示。24个瑞克单元对应于弧线404A-404X指示的读取操作,其中大部分没有示出。对应于弧线404A的第一次读取操作在对应于搜索偏离402C的写操作之后某一时间上开始,所以有邻接的数据组可用。每个后续的读操作(例如404B)与前一次偏移一个存储位置,相当于1/2PN码片时间。在所述的搜索瑞克期间,读取操作向更前面的弧线404A-404X所示的时间偏移移动,向逆时针方向倾斜,时间以与写指针指示406旋转方向相反的方向推进。弧线404A至404X表示的24次读取横向穿过弧线418示出的弧线。读操作向前面的样本推进具有这样一个优点,即在执行每个搜索瑞克时,在搜索窗内的搜索无断层。这一优点在下面将作详细解释。
对应于弧线404A至404X的每次读取操作一个Walsh码元的数据传送给去扩展器178。因此,这种读取操作对应于横跨180度的粗圆400。请注意,在如图6所示的搜索瑞克中,对应于弧线402FF的最后一次写操作和对应于弧线404X的最后一次读操作不包括同一存储器位置,以保证有效数据相邻。然而,假设如果读和写操作方式是连续的,则事实上它们将交错,在这种情况下,不会提供有效的数据。
在大多数信令状态下,一个Walsh码元期间收集到的瑞克单元数据结果不足以提供有关分集信号位置的正确信息。在这些情况下,搜索瑞克可以重复多次。搜索结果处理器162累积在同一偏移上后续搜索瑞克中的瑞克单元的结果,这点在后面将详细解释。在这种情况下,上面给出的搜索参数表明在每个偏移上累积的码元数量为2。图7示出了以相同的偏移下一Walsh码元数据重复进行的图6的搜索瑞克。请注意,天线样本缓存器172含有两个Walsh码元数据,所以在图6所示的搜索瑞克期间写入图7所示搜索瑞克期间需要处理的数据。在这种结构中,彼此隔开180度的存储位置表示PN偏移相同。
在完成图6和图7中的两次累积搜索瑞克后,搜索处理进入到搜索窗的下一偏移。前进的量等于处理的搜索瑞克宽度,在本例中为12个PN码片。如搜索参数中所规定的那样,搜索窗的值为24个PN码片。窗的宽度将确定完成该搜索窗需要多少搜索瑞克偏移。在这种情况下,需要两个不同的偏移来覆盖24个PN码片的窗宽度。图8中的弧线412指出了该窗的宽度。该搜索窗的第二个偏移在前一搜索瑞克的最末偏移后的偏移上开始,继续在弧线430A指示的第一次写开始位置设置的标定零偏移点附近。再有,在弧线432A-432X(大多数没有示出)指示的搜索瑞克内有24个瑞克单元。弧线430A-430FF指出了32次写操作。因此弧线430FF指示的最后一次写和弧线432X指示的最后一次读在天线样本缓存器172内彼此相邻。
几乎与图6的搜索瑞克在图7中重复一样,图8所示的搜索瑞克也在天线样本缓存器172的相反侧重复,这是因为搜索参数指明每个码元累积两次。在完成第二个搜索瑞克的第二次累积时,综合搜索处理器128可以开始另一个搜索窗。后面的搜索窗可以具有新的偏移或者指明一付新的天线,或者同时都有。
在图8中,缓存器读取的一半和写入的一半之间的边界位置用标记436来注明。在图6中,该边界用标记410来注明。指示对应于标记410和436的时间点的信号称为偏移Walsh码无选通信号,它还指示新Walsh码元样本可用。当窗内的搜索瑞克前进到前面的偏移时,缓存器读和写两半部分之间的边界如图8所示在锁定步骤时反时针回转。如果在完成本次搜索窗之后,要求正在处理的偏移有较大的变化,则可以把偏移Walsh码元选通信号前移该圆的大部分圆周。
图9是搜索时线(timeline),它进一步提供了搜索处理的图解。时间沿水平轴划分,以Walsh码元为单位。天线样本缓存器172地址和PN序列缓存器176地址沿垂直轴示出,也以Walsh码元为单位。由于天线样本缓存器172是深为个Walsh码元,所以说明,天线样本缓存器172的寻址在偶数Walsh码元边界重叠。图9示出顶端相互叠置之前的地址。把样本写入到天线样本缓存器172内直接从获得的时间得到的地址上,所以至天线样本缓存器172的写指针181是45度斜直线。正在处理的偏移映射到天线样本缓存器174的一个基地址,以开始读取一个瑞克单元的样本的Walsh码元。图9把瑞克单元示成接近垂直的读取指针线段192。每个瑞克单元映射到与垂直轴有关的高度上的Walsh码元和与水平轴有关的Walsh码元的1/32。
搜索瑞克内的瑞克单元之间的垂直间隙起因于解调器前端122中断搜索处理以使用FHT处理机120。解调器前端122实时操作,它具有FHT处理机的第一优先使用权,无论它当前是否正有数据要处理或者后面有排队的数据要处理。因此,通常对应于解调器前端122正在解调的PN偏移,在每个Walsh码元边界上把FHT处理机120提供给解调器前端122。
图9示出了如图6、7和8所示的一样的搜索瑞克。例如,搜索瑞克194具有24个瑞克单元,每个瑞克单元对应于图6中的读取弧404A-404X中的一段。在图9中,对于搜索瑞克194,指针410指示偏移Walsh码元选通信号,对应于图6中的同类指针。为了读取当前样本,每个瑞克单元必须是在写指针181之下。搜索瑞克的瑞克单元向下倾斜表示处理步骤进入到前一样本。搜索瑞克195对应于图7所示的搜索瑞克,搜索瑞克196对应于图8所示的搜索瑞克。
在上述参数限定的搜索窗中,规定每个搜索瑞克仅有24个瑞克单元,即使搜索瑞克具有32个可用的时间片。每个瑞克单元可以在一个时间片内进行处理。然而,实际上不可以把每个搜索瑞克的瑞克单元增加到32个,与搜索瑞克期间可用的时间片数量一致。解调器前端122要使用一些FHT处理器可提供的时间片。当读取处理必须等待写入处理以在前一偏移上把有效数据填充到缓存器内时,还存在与瑞克单元前移有关的时延。还需要一些容限以在观察到偏移Walsh码元选通信号之后与时间片处理边界同步。所有这些因素实际上限制了在一个搜索瑞克内可以处理的瑞克单元的数量。在一些情况下,每个搜索瑞克的瑞克单元可以增加,例如,如果解调器前端122仅分配一个解调单元,因此,每个搜索瑞克仅中断FHT处理机120一次。因而在较佳实施例中,每个搜索瑞克的瑞克单元的数受到信道单元微处理器136的控制。在另一实施例中,每个搜索瑞克的瑞克单元数可以固定不变。
当在输入到样本缓存器的源天线之间转换或在搜索之间改变搜索窗起始点或值,也有显著的开销延迟。如果一个瑞克需要一组特定的样本,不同天线的下一瑞克需要使用缓存器的重叠部分,则下一瑞克必须延迟处理一直到下一偏移Walsh码元边界,在该点上,可用新天线源的样本的整个Walsh码元。在图9中,搜索瑞克198正在处理不同于搜索瑞克197的天线的数据。水平线188指示对应于新天线输入样本的存储位置。请注意,搜索瑞克197和198不使用任何共用的存储位置。
对于每一时间片,必须把样本的两个Walsh码片写入到样本缓存器中,并可以从样本缓存器读取样本的一个全Walsh码元。较佳实施例中,在每个时间片期间有64个时钟周期。样本的一个全Walsh码片由四组样本组成:准时I信道样本;迟后I信道样本,准时Q信道样本;迟后Q信道样本。在较佳实施例中,每个样本为四个比特。因此,每个时钟脉冲需要从天线样本缓存器172得到64比特。使用单端口RAM,最简洁的缓存器设计把字宽度加倍到128比特,并把缓存器分成两个64比特宽的64字,它们可以独立读取/写入到奇偶Walsh码片缓存器168,170。然后,后续时间周期内两个存储体之间触发的读取之间复用对缓冲器频次很低写入。
从奇偶Walsh码片缓存器168,170读取的Walsh码片样本具有对实际RAM字定位的任意定位。因此,在时间片的第一次读取时,把两部分都读到去扩展器178,以形成两个Walsh码片宽的窗口,从该窗口可以获得与当前偏移对准的单个Walsh码片。对于偶数的Walsh码片搜索偏移,第一次读取的奇偶Walsh码片缓存器地址是相同的。对于奇数的Walsh码片偏移,第一次读取的偶数地址比奇数地址早一个地址,以从样本缓存器的奇数一半起提供连续的Walsh码片。去扩展器178需要的另外的Walsh码片可以通过从单个Walsh码片缓存器读出来传给它。然后,后面的读取操作保证总是刷新两个Walsh码片宽的窗口,从该窗口取出与当前正在处理的偏移对准的Walsh码片数据。
再参照图5,对于搜索瑞克内的每个瑞克单元,在去扩展处理时使用PN序列缓存器176来的PN序列数据相同的Walsh码元。对于时间片的每个时钟周期,需要四对PN-I’和PN-Q’。利用单端口RAM,使字宽度加倍,并经常读取其一半。然后在读取时未用的周期上,进行每个时间片需要的对PN序列缓存器176的单一写入。
由于搜索处理可以规定从当前时间延时长达两个Walsh码元的搜索PN偏移,因此必须存储相当于的四个Walsh码元的PN序列数据。在较佳实施例中,PN序列缓存器176是16位的128个字RAM。由于起始偏移可以有两个Walsh码元的变化,所以需要四个Walsh码元,而且一旦选定起始偏移,相关处理需要相当于一个Walsh码元的PN序列,意味着,去扩展处理需要相当于三个Walsh码元的数据。由于重复使用同一个PN序列,所以在对应于一个搜索瑞克的去扩展处理期间不能重写PN序列缓存器176内的数据。因此,需要相当于一附加Walsh码元的存储器,以便产生时的PN序列数据时加以存储。
写入到PN序列缓存器176和天线样本缓存器172内的数据由搜索器前端174提供。在图10中示出了搜索器前端174的方框图。搜索器前端174包括短码I和Q PN发生器202、206和长码用户PN发生器204。短码I和QPN发生器202、206以及长码用户PN发生器204输出的值部分由一天的时间来确定。每个基站具有通用的定时标准,例如GPS定时,以建立定时信号。每个基站还向远端单元发射其定时信号。在基站上,时间基准被认为具有零偏移,因为它对准通用基准。
长码用户PN发生器204的输出与短码I和QPN发生器202、206的输出由“异”门208和210分别进行逻辑“异”。(在远端单元中也进行这种相同的处理,把输出用于调制远端单元的发射信号。)把“异”门208和210的输出存储到串并移位寄存器212内。串并移位寄存器212缓存长达PN序列缓存器176宽度的序列。然后,把串并移位寄存器212的输出以零偏移基准时间得到的地址写入到PN序列缓存器176。这样,搜索器前端174把PN序列数据提供给PN序列缓存器176。
搜索器前端174还向天线样本缓存器172提供天线样本。通过MUX216从多付天线之一中选择接收的样本118。把MUX216选择出的接收样本传到锁存器218,在锁存器218进行抽取,意味着选出四分之一的样本在搜索处理时使用。模拟收发机116(图4)以8倍于PN码片速率的速率对接收样本118进行取样。对以码片速率一半的速率进行的取样设计搜索算法处理。因此,仅需把接收到的样本的四分之一传送到天线样本缓存器172。
把锁存器218的输出馈送到串并移位寄存器214,寄存器214缓存多达与天线样本缓存器172容量相当的样本。然后把样本也以零偏移基准时间取得的地址写入到奇偶Walsh码片缓存器168、170。这样,去扩展器178能使天线样本数据与相对于PN序列已知的偏移对准。
再参照图5,对于时间片的每个时钟周期,去扩展器178从天线样本缓存器172得到天线样本的Walsh码片,从PN序列缓存器176得到一组相应的PN列值,并把I和Q信道Walsh码片通过MUX124输出到FHT处理机120。
图11示出了去扩展器178的详细框图。偶Walsh码片锁存器220和奇码片锁存器222分别锁存偶Walsh码片缓存器168和奇Walsh码片缓存器170的数据。MUX处理单元224从奇偶Walsh码片锁存器220和222给出的两个Walsh码片样本提取要用的样本的Walsh码片。MUX选择逻辑电路226根据正在处理的瑞克单元的偏移规定所选Walsh码片的边界。把Walsh码片输出到OQPSK去扩展器“异”处理单元228。
PN序列锁存器234锁存PN序列缓存器176的PN序列值。桶形移位器232根据正在处理的瑞克单元的偏移旋转PN序列锁存器234的输出,并把PN序列传送到OQPSK去扩展器“异”处理单元228,OQPSK去扩展器异或存储体228根据PN序列有条件地反转天线样本。然后把经“异”运算的值通过在OQPSK去扩展时进行加法操作的加法器树230相加,并把四个去扩展码片输出加在一起,形成Walsh码片,输入到FHT处理机120。
再参照图5,FHT处理机120通过MUX124从去扩展器178取得64个接收到的Walsh码片,并用6级蝶形格网在64个时钟周期时间片内,把这64个输入样本分别与64个Walsh函数相关。最大相关检测器160可以用于寻求FHT处理机120的最大相关能量输出。把最大相关检测器160的输出传送到综合搜索处理器128的一部分的搜索结果处理器162。
在图12中详细示出了搜索结果处理器162。搜索结果处理器能以时分方式工作。提供给它的控制信号受到流水线式延迟,以使Walsh码片输入到FHT处理机120开始时的两个时间片一致,获得最大能量输。如上文所解释那样,一组搜索窗参数可以指定在处理所选偏移结果之前累积的数据Walsh样本值的数量。图6、7、8和9例子中所用的参数中,累积的码元数为2。搜索结果处理器162实现加法和其它一些功能。
当搜索结果处理器162对连续的Walsh码元相加时,它必须存储搜索瑞克时每个瑞克单元的累加值。这些累加值存储在Walsh码元累加RAM240中。把最大相关检测器160按每个瑞克单元把每个搜索瑞克的结果输入到加法器242中。加法器242把该结果与Walsh码元累加RAM240得到的相应中间值相加。在每个瑞克单元的最后Walsh码元累加时,从Walsh码元累加RAM240读取中间结果,并由加法器242将该结果与瑞克单元的最后能量相加,产生该瑞克单元偏移的最后搜索结果。然后把搜索结果与这时已搜索到的最佳结果作比较,这点将在下面作解释。
在名称为“能接收多路信号的系统内解调单元的分配”的上述共同待批美国专利申请序列(No.08/144,902)中,较佳实施例根据搜索的最佳结果分配单元。在本较佳实施例中,把8个最佳结果存储在最佳结果寄存器250中。(在其它实施例中可以存储更少或更多的结果。)中间结果寄存器164存储峰值及它们相应的排列次序。如果当前搜索结果能量至少超过中间结果寄存器164内的能量值之一,则搜索结果处理器控制逻辑254丢弃中间结果寄存器164中第八个最佳结果,并插入新的结果,以及其适当的排列、PN偏移和对应于瑞克单元结果的天线。所有排在后面的结果都“降”一级。在该技术领域中,公知的提供这种排序功能的方法有很多种。这些方法在本发明的范围内都可以使用。
搜索结果处理器162具有本机峰值滤波器,它基本上由比较器244和先前能量锁存器246组成。本机峰值滤波器如果启动,即使搜索结果能量落入其中,也使中间结果寄存器164更新,除非搜索结果表示本机多路峰值。这样,本机峰值滤波器防止强且宽的“模糊”多路径填充到中间结果寄存器164的多路径入口,使可以成为较佳解调候选对象的较弱但清楚的多路径没有机会进入。
本机峰值滤波器的实现是简洁。把先前瑞克单元相加的能量值存储在先前能量锁存器246中。比较器244将目前的瑞克单元相加值与存储的值作比较。比较器244的输出表示两个输入中哪个大,并把该输出锁存在搜索结果处理器控制逻辑254内。如果先前样本呈现本机最大值,则搜索结果处理器控制逻辑254把先前能量结果与存储在上述中间结果寄存器164内的数据作比较。如果本机峰值滤波器被信道单元微处理器136禁止,则总是允许与中间结果寄存器164作比较。如果搜索窗边界上的前头或最后瑞克单元中有一个具有斜度,则锁存该斜度锁,因而能把边界值也看作是峰值。
本机峰值滤波器的实现这样简便,助于朝前连续读取搜索瑞克内前面的码元。如图6、7、8和9所示,在搜索瑞克中,每个瑞克单元连续往前对时间上较早到达的信号进行处理。这样进行意味着在搜索窗内,搜索瑞克的最后一个瑞克单元和后面的搜索瑞克的第一个瑞克单元在偏移上是连续的。因此,本机峰值滤波器的操作不会改变,并且比较器的输出在搜索瑞克边界上是有效的。
在处理搜索窗结束时,把存储在中间结果寄存器164内的值传送到最佳结果寄存器250,它可以由信道单元微处理器136读取。因此搜索结果处理器162取代了信道单元微处理器136大多数工作量,在图2的系统中,它需要单独处理每个瑞克单元结果。
前面重点说明综合搜索处理器128的数据路径处理,并详述了如何把未处理的天线样本118在最佳结果寄存器250的输出上转换成简要的多路径报告。下面详细描述如何控制搜索处理数据路径中的每个单元。
在图13中详细示出了图5的搜索控制块166。如前所述,信道单元微处理器136规定了搜索参数组,包括存储在天线选择缓存器348的搜索天线组、存储在搜索偏移缓存器308内的起始偏移、存储在瑞克宽度缓存器312内的每个搜索瑞克内的瑞克单元数、存储在搜索宽度缓存器314内的搜索窗宽度、存储在Walsh码元累积缓存器316内的Walsh码元累积数,以及存储在控制字缓存器346内的控制字。
存储在搜索偏移缓存器308内的起始偏移用第八个码片分辨度规定。起始偏移控制哪些样本由搜索器前端174内的锁存器218(图10)通过抽取除去。由于在本实施例中天线样本缓存器172宽度为两个Walsh码元,所以最大的起始偏移值是PN码片的一半,小于两个全Walsh码元。
至此,已揭示了进行搜索的一般结构。实际上,有几种预定的搜索。当远端单元开始尝试接入系统时,它利用Walsh零码元发送信标信号(称为报头)。如上所述,Walsh零码元是含有全部逻辑零而不是一半为一,一半为零的Walsh码元。当进行报头搜索时,搜索器在接入信道上寻找远端单元发送的Walsh零码元信标信号。报头搜索的搜索结果是Walsh零码元的能量。当进行捕获模式的接入信道搜索时,最大相关检测器160输出Walsh零码元的能量,它与检测到的最大输出能量无关。存储在控制字缓存器346内的控制字包括指示什么时候开始报头搜索的报头位。
如上所述,较佳实施例的功率控制机构测量从各远端单元接收到的信号电平,并建立功率控制指示,以命令远端单元提高或降低远端单元的发射功率。功率控制机构在业务信道工作期间对一组称为功率控制组的Walsh码元进行操作。(业务信道工作接在接入信道工作之后,包含有呼叫期间的操作。)用与远端单元中相同的功率控制指示命令发射一个功率控制组内的所有Walsh码元。
如上所述,在本发明的较佳实施例中,远端单元发射的信号的速率在业务信道工作期间是可变的。远端单元发射数据所用的速率基站在搜索处理期间是不知道的。在累积连续的码元时,在累积期间不能关闭发射机。把功率控制组内的连续Walsh码元作为一组选通成,也即较佳实施例中功率组成控制组的6个Walsh码元都被选通或关闭。
因此,当搜索参数规定在业务信道工作期间累积多个Walsh码元时,搜索处理必须把每个搜索瑞克对齐到一个功率控制组内的开始和结束处。存储在控制字缓存器346内的控制字包括功率控制组对准位。借助业务信道搜索的功率控制组对准位设置为“1”,表示信道搜索,搜索处理与下一功率控制组边界同步,而不仅是与下一偏移Walsh码元边界同步。
存储在控制字缓存器346内的控制字还包括峰值检测滤波器启动位,这点前面已结合图8作了讨论。
搜索器操作可以根据控制字的连续/单步位设置,以连续或单步的方式工作。在单步方式中,进行搜索之后,综合搜索处理器128返回到空闲状态,等待下一指令。在连续方式中,综合搜索处理器128总是进行搜索,并且在信道单元微处理器136发出结果可用的信号之前,综合处理器128已开始下一次搜索。
搜索控制块166产生定时信号用于控制综合搜索处理器128进行的搜索处理。搜索控制块166向短码I和QPN发生器202和206以及长码用户PN发生器204发送零偏移时间基准,向抽取锁存器218发送启动信号,向搜索器前端174内的MUX216发送选择信号。它为PN序列缓存器176和奇偶Walsh码片缓存器168和170提供读和写地址。它输出当前偏移,以控制去扩展器178的工作。它为FHT处理机120提供内部时间片定时基准,通过控制FHT输入端的MUX124,确定搜索处理或解调处理是否使用FHT处理机120。它向图12的搜索结果处理器控制逻辑254提供一些内部定时选通信号的若干流水线式延迟的版本,使它能在一些Walsh码元累积的瑞克偏移上把搜索结果相加。搜索控制块166向最佳结果寄存器250提供流水线式偏移和对应于存储的累积能量值的天线信息。
在图13中,系统时间计数342受零偏移时间基准控制。在上面详述的较佳实施例中,系统时钟以8倍于PN码片速率的速率运行。在一个Walsh码元中有256个PN码片,在功率控制组内有6个Walsh码元,每个功率控制组总计有6×256×8=12,288个系统时钟。因此,在较佳实施例中,系统时间计数342由14位计数器组成,可以对12,288个系统时钟计数。从系统时间计数342获得搜索器前端174的短码I和QPN发生器202,206和长码用户PN发生器204(图10)的输入基准。(长码用户PN发生器204的输出还根据约50天不重复的全系统长基准确定。全系统长基准不受搜索处理的控制,作为预置值。系统时间计数342控制基于该预置值连续工作。)PN序列缓存器176以及奇偶Walsh码片缓存器168和170的地址从系统时间计数342获得。系统时间计数342在每个时间片开始时由锁存器328闩锁。锁存器328的输出通过地址MUX330,332选出,当上述缓存器在时间片中稍后的时间进行写入时,地址MUX330,332提供对应于当前时间片的写入地址。
偏移累积器310保持跟踪当前正在处理的瑞克单元的偏移。在每个搜索窗开始时,把存储在搜索偏移缓存器308的起始偏移装载到偏移累积器310。偏移累积器310随每个瑞克单元减少。在重复进一步累积的每次搜索瑞克结束时,把存储在瑞克宽度缓存器312内的每个搜索瑞克的瑞克单元数回加到偏移累积器上,以排回搜索瑞克内的第一偏移供参照。这样,搜索处理再次扫过另一Walsh码元累积的相同的搜索瑞克。如果搜索处理已扫过其最后Walsh码元累积上的当前搜索瑞克,则在下一搜索瑞克时产生第一瑞克单元的偏移的重复瑞克MUX304的输入选择“-1”,偏移累积器310就减1。
偏移累积器310的输出总是表示正在处理的当前瑞克单元的偏移,因此它用于控制输入到去扩展器178的数据。加法器336把偏移累积器310的输出加到系统时间计数342的内部时间片定时输出上,以在对应于瑞克单元的时间片内产生地址序列。通过地址MUX330和332选出加法器336和338的输出,以提供天线样本缓存器172的读取地址。
比较器326还把偏移累积器310的输出与系统时间计数342的输出作比较,形成偏移Walsh码元选通信号,表示天线样本缓存器172具有足够的有效数据,可以开始搜索处理。
搜索瑞克计数320保持跟踪当前搜索瑞克正在处理的剩余的瑞克单元数。搜索瑞克计数320装载有在搜索窗开始时存储在搜索宽度缓存器314内的搜索窗宽度。在每个搜索瑞克的最后Walsh码元累积处理完成之后,搜索瑞克计数320增1。当它到达其最终计数时,搜索窗内所有的偏移已处理。为了提供即将到当前搜索窗的结尾的指示,加法器324把搜索瑞克计数320的输出与瑞克宽度缓存器312的输出相加。搜索窗结尾指示表明天线样本缓存器172可以开始从另一天线填充数据样本,以准备下一搜索窗,而不会破坏当前搜索窗所需要的内容。
当信道单元微处理器136规定搜索窗时,它可以规定对多付天线执行该搜索窗。在这种情况下,用一系列天线来的样本重复相同的搜索窗参数。这一组搜索窗称为天线搜索集。如果信道单元微处理器136规定了天线搜索集,则由存储在天线选择缓存器348内的值对天线集进行编程。在完成了天线搜索集之后,通知信道单元微处理器136。
瑞克单元计数318含有当前搜索瑞克处理余下的瑞克单元数。每处理了一个瑞克单元,瑞克单元计数318就增1,当搜索处理处于空闲状态或完成搜索瑞克时,对瑞克单元计数318装载瑞克宽度缓存器312的输出。
Walsh码元累积计数322对当前搜索瑞克累积余下的Walsh码元进行计数。当搜索处理处于空闲状态,或者在最后Walsh码元累积的搜索瑞克扫描完成之后,对计数器装载存储在Walsh码元累积缓存器316内的累积Walsh码元数。否则每完成一次搜索瑞克计数就增1。
每当输入天线或抽取器定位变化时,装载输入有效计数302。对它装载有搜索处理所需要的最小样本数,以根据搜索宽度缓中器312的输出处理搜索瑞克(即,装载相当于一个Walsh码元加上一个瑞克宽度的样本)。每次把天线样本写入到天线样本缓存器172,输入有效计数302就增1。当它到达其最终计数值时,它就发送启动信号,使搜索处理开始。输入有效计数302还提供当后续搜索窗的偏移不能继续处理数据时,截止搜索处理的机构。
搜索处理以空闲状态、同步状态或活动状态进行工作。搜索器序列控制350维持当前的状态。当信道单元调制解调器110复位时,综合搜索处理器128初始化到空闲状态。在空闲状态期间,搜索控制块166内所有的计数器和累积器装载上面提到的相应的搜索参数。一旦信道单元微处理器136通过控制字指令搜索处理开始连续或单步搜索,综合搜索处理器128就进入到同步状态。
在同步状态,搜索处理总是等待偏移Walsh码元的边界。如果天线样本缓存器172的数据仍为无效,或者如果设置功率控制组定位位并且Walsh码元不是功率控制组的边界,则综合搜索处理器128仍维持于同步状态,直到后续偏移Walsh码元边界满足适当条件为止。具有适当启动的偏移Walsh码元,搜索处理就能进入活动状态。
综合搜索处理器128停留在活动状态,直到它处理了一个搜索瑞克,此时,它通常返回到同步状态。如果综合搜索处理器128处理单步方式,在对搜索窗内的最后一个搜索瑞克处理完最终Walsh码元累加的最后瑞克单元后,它可以从活动状态进入到空闲状态。然后综合搜索处理器128等待信道单元微处理器136开始另一次搜索。如果不是这样,综合处理器128处于连续模式,则此时,它装载新的搜索参数组,并返回到同步状态,等待新的搜索要处理的起始偏移上的偏移Walsh码元。活动状态是处理天线数据样本的唯一状态。在空闲或同步状态,搜索处理仅保持跟踪系统时间计数342的时间,连续地写入到PN序列缓存器和天线样本缓存器172中,使搜索处理进入到活动状态时,这些缓存器已准备好待用。
图14是诸如图9所示搜索瑞克196的搜索窗内第二搜索瑞克的第一Walsh码元累积的典型时序图。对照零偏移基准系统时钟把第三Walsh码元图示成分为32个时间片。当对应于Walsh码元3的偏移Walsh码元边界指示符指示天线样本缓存器172已准备好有效样本以在该偏移上对进行处理时,搜索器状态372从同步变到活动状态。在下一可用的时间片期间,处理搜索瑞克的第一瑞克单元。如“S”所示,搜索处理在时间片374内连续使用每个时间片处理瑞克单元,除非如“D”所示,解调器前端122在时间片374使用FHT处理机120。搜索处理完成了对瑞克内的每个瑞克单元的处理,并在对应于Walsh码元4的下一个偏移Walsh码元边界之前返回到同步状态。图中还示出了在活动状态期间搜索瑞克计数状态362增加至到达最终状态,表示已处理了所有的搜索瑞克。图中示出了偏移计数状态364在对应于一个瑞克单元的每个时间片之间增加,所以可以用它来得到该时间片期间的样本缓存器偏移读取地址。偏移计数状态364通过流水线式延迟作为最佳结果寄存器366的偏移计数。偏移计数368在最后一个Walsh码元累积370通过时增加。
因此,通过缓存天线样本,利用时分转换处理器,单个综合搜索处理器结构就可以独立地按序进行搜索参数组配置的搜索,分析结果,提出最佳路径的简要报告,以用于解调单元再分配。这减少了控制微处理器有关与搜索的工作量,所以可以用低廉的微处理器,通过在单片IC上形成全部的信道单元调制解调器,还减少IC的直接成本。
这里描述的基本原理可以用于使用其它传输方案的系统。上面的讨论是基于接收反向链路信号,而不用引导信号。对于较佳实施例的正向链路,基站发射引导信号。引导信号是具有已知数据的信号,因此,用来确定发射哪个数据的FHT处理是不必要的。为了实现本发明,接收信号包含引导信号的综合搜索处理器不含有FHT处理器或最大相关检测功能。例如,图5的FHT处理机120和最大相关检测器160两个部分可以用如图15所示的简单的累加器125代替。用引导信号时的搜索操作与上述的捕获模式接入信道搜索操作相似。
上述的搜索结构可以用于以各种方式进行搜索。最有效的搜索是线性搜索。线性搜索通过按序线性搜索可能的时间偏移来完成,与远端单元发射的概率无关。当搜索一个远端单元时,基站必须知道希望的覆盖区域范围。例如,在典型实施例中,典型的基站的覆盖范围约为50公里,这意味着往返行程时延为350毫秒,约430个PN码片。而且,在信号有非直接路径的多路径环境下,远端单元信号可以延迟长达直接路径传播的两倍,意味着搜索必须在包含约1000个不同PN偏移的集合内进行。一旦检测到远端单元的信号并进行解调,即可知道远端单元大约的距离,可以极大减少的确保检测到大多数有效的多路径信号的所需搜索PN偏移。
在给定的功率控制组搜索中,在给定PN偏移上不能检测到信号有三个原因。首先,可能在给定的PN偏移上没有信号到达。远端单元可以提供若干多路径信号,但产生多路径信号的数量仅是搜索的所有偏移中很小的一部分。因此,大部分被搜索的偏移不会产生超过检测阈值的能量结果,在原因在于该偏移上没有远端单元的信号。
其次,在给定PN偏移上可能有信号到达,但在搜索综合时间的大部分期间它衰落上。如上文所解释那样,无线电信道的多路径特征可以导致信号衰落。衰落是多路径信道相位变化特征的结果。在多路径矢量破坏性相加时将产生衰落,使接收到的信号小于单个矢量。因此,如果在进行搜索时,长期有效信号恰巧发生深度衰落,则搜索处理不能检测到信号。
第三,在给定PN偏移上有信号到达,但在所考虑的时间周期内远端单元的发射机关闭。如上文所解释那样,在较佳实施例中,远端单元产生猝发信号。远端单元包含速率可变的声码器,产生速率可变的数据帧。数据猝发段随机函数发生器确定在什么时间周期内远端单元发射,在什么时间周期内不发射要发射的给定数据速率的信号,远端单元规定识别号和一天的时间。当工作低于全速率时,远端单元内的数据猝发段随机函数发生器伪随机分配反射猝发段内的工作时间周期。在基站中也包括相应的数据猝发段随机函数发生器,所以基站可以根据一天的时间和远端单元特定的识别号再产生伪随机分配,但在搜索处理时没有速率信息。如上所述,八分之一速率时间周期确定了所谓的相称时间周期组。这样,与发射的信号的数据速率无关,只要保证对应于相称组的每个时间周期对应于相应远端单元发射信号的时间。在所有其它时间周期期间,远端单元根据相应的编码速率可以发射或者可以不发射。
当规定线性搜索时,为了获得有效的功率测量,搜索处理限定了搜索综合时间(即,在一个搜索偏移上的Walsh累积数量),以在一个功率控制组中开始和结束处理。仅在一个功率控制组内综合的搜索被认为与功率控制组边界同步。如果累积在给定偏移上的搜索处理而与功率控制组边界无关,并且远端单元发射全速率,则对应于远端单元信号被选通的功率控制组的有效搜索结果会与在远端单元信号被关闭的后续功率控制组期间累积的噪声相加。对应于远端单元信号被关闭的功率控制组的搜索结果的累加使在远端单元信号被选通的功率控制期间累积的有用的结果变差。
搜索的一种方法是仅搜索对应于相称时间周期组的那些功率控制组。即使仅进行所述相称组的搜索,搜索处理和解调单元分配处理仍必须能处理这样一种状态,即由于信道上不可预知的衰落特征,偏移上累积的能量不超过检测阈值,但实际有信号。因此,更有效的方案是累积所有功率控制组内的能量,而不管它们是否对应于相称组。如果在不对应于相称组的搜索中检测到的能量,则除了根据仅搜索相称组产生的数据外,还产生另外的有效数据点。
如上所述,报头搜索和业务通信操作期间的搜索是不同的。当远端单元初始尝试接入系统时,它用Walsh零码元发送称为报头的信标信号。如上所述,Walsh零码元是含有全部逻辑零而不是一半零和一半一的Walsh码元。当进行报头搜索时,搜索器寻找在接入信道上发送Walsh零码元的远端单元。在较佳实施例中,报头总是以全速率发射的,不会被关闭。因此,在报头搜索期间,不需要与功率控制组边界同步。
扩展频谱多址通信系统有许多构造,这里没有具体描述,但它们在本发明中是可以应用的。例如,可用其它编码和译码代替Walsh编码和FHT译码。上面提供的对较佳实施例的描述能使该技术领域的熟练人员制造或使用本发明。这些实施例的改动对于那些本技术领域的熟练人员来说是显然的,并且这里限定的基本原理可以应用于其它实施例而无需创造性能力。因此,本发明并不限于这里所示的实施例,而是应符合与这里揭示的原理和新颖特征一致的最广的范围。

Claims (2)

1、一种接收共用同一频带的扩展频谱呼叫信号组所含信号的方法,每个所述扩展频谱呼叫信号包含一系列以固定长度的组编码成一系列码元的二进制位,其中,一系列所述码元组合到一功率控制组内,以相同功率电平发射同一功率控制组内的每个码元,并且这些所述功率控制组在一些猝发段发射,把所述呼叫信号之一从所述组中分出,以确定对零偏移基准时间的路径延迟时间偏移上的呼叫信号强度,其特征在于,所述方法包含下列步骤:
把PN序列数据的二进制位存入PN序列缓存器;
把首先接收到的呼叫信号样本组存储到容量有限的样本缓存器内;
用所述PN序列缓存器的第一组PN序列数据二进制位把对应于第一路径时延的所述样本缓存器的第一组长度固定的所述呼叫信号样本去扩展,产生第一去扩展输出;
把第二次接收到的呼叫信号组存储到所述样本缓存器中;
用所述PN序列缓存器的第一组PN序列数据二进制位把对应于第二路径时延的所述样本缓存器的第二组长度固定的所述呼叫信号样本去扩展,产生第二去扩展输出;
其中,所述第二组长度固定的呼叫信号样本包含大量与所述第一组长度固定的呼叫信号样本相同的呼叫信号样本,所述第一和第二次接收到的呼叫信号样本的长度是所述第一和第二长度固定呼叫信号样本组的固定长度的一部分;
存储所述第一和第二长度固定的呼叫信号样本组的所述步骤和去扩展所述第一和第二组长度固定的呼叫信号样本的所述步骤与所述功率控制组之一包含所述呼叫信号之一的概率无关。
2、一种接收共用同一频带的扩展频谱信号组所含信号的方法,它从所述扩展频谱信号组分出第一信号,以在所述第一信号对零偏移基准时间的路径延迟时间偏移上确定信号强度,其中所述第一信号包含一系列码元,所述一系列码元组合到一码元组内,以固定的功率电平发射同一码元组内的每个码元,能以各种信号电平发射后续码元组,所述各种信号电平包含关闭发射所述第一信号的零电平,其特征在于,所述方法包含下列步骤:
在第一偏移上搜索对应于所述第一信号的第一码元组的第一呼叫信号样本组,产生其第一功率估计值;
在所述第一偏移上搜索对应于所述第一信号的所述第一码元组的第二呼叫信号样本组,产生其第二功率估计值;
把所述第一和第二功率估计值相加,产生所述第一偏移上的码元组功率电平估计值;
在第二偏移上搜索对应于所述第一信号的第二码元组的第三呼叫信号样本组,产生其第三功率估计值;
在所述第二偏移上搜索对应于所述第一信号的所述第二码元组的第四呼叫信号样本组,产生其第四功率估计值;
把所述第三和第四功率估计值相加,产生所述第二偏移上的码元组功率电平估计值;
其中,所述第一码元组和所述第二码元组对应于时间连续码元组,所述搜索步骤与所述固定功率电平无关地连续进行。
CN96195275A 1995-05-05 1996-05-02 接收和搜索以猝发段形式发射的信号的方法 Expired - Fee Related CN1099171C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/436,029 US5710768A (en) 1994-09-30 1995-05-05 Method of searching for a bursty signal
US08/436,029 1995-05-05

Publications (2)

Publication Number Publication Date
CN1200850A true CN1200850A (zh) 1998-12-02
CN1099171C CN1099171C (zh) 2003-01-15

Family

ID=23730811

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96195275A Expired - Fee Related CN1099171C (zh) 1995-05-05 1996-05-02 接收和搜索以猝发段形式发射的信号的方法

Country Status (19)

Country Link
US (2) US5710768A (zh)
EP (1) EP0824802B1 (zh)
JP (1) JP3388754B2 (zh)
KR (1) KR100380427B1 (zh)
CN (1) CN1099171C (zh)
AR (1) AR001852A1 (zh)
AT (1) ATE227481T1 (zh)
AU (1) AU699159B2 (zh)
BR (1) BR9608287A (zh)
DE (1) DE69624698T2 (zh)
ES (1) ES2184871T3 (zh)
FI (1) FI113820B (zh)
IL (1) IL118116A (zh)
MX (1) MX9708514A (zh)
MY (1) MY113603A (zh)
RU (1) RU2157592C2 (zh)
TW (1) TW297974B (zh)
WO (1) WO1996035268A1 (zh)
ZA (1) ZA963188B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103248396A (zh) * 2012-02-02 2013-08-14 中兴通讯股份有限公司 多径搜索的方法及装置
CN111786766A (zh) * 2016-05-09 2020-10-16 高通股份有限公司 用于无线通信中的可缩放参数集的方法和装置
CN112383494A (zh) * 2020-11-26 2021-02-19 西安烽火电子科技有限责任公司 基于dsss-oqpsk的猝发通信接收系统

Families Citing this family (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710768A (en) * 1994-09-30 1998-01-20 Qualcomm Incorporated Method of searching for a bursty signal
US7020111B2 (en) * 1996-06-27 2006-03-28 Interdigital Technology Corporation System for using rapid acquisition spreading codes for spread-spectrum communications
US6801516B1 (en) 1995-06-30 2004-10-05 Interdigital Technology Corporation Spread-spectrum system for assigning information signals having different data rates
US6885652B1 (en) * 1995-06-30 2005-04-26 Interdigital Technology Corporation Code division multiple access (CDMA) communication system
US7072380B2 (en) * 1995-06-30 2006-07-04 Interdigital Technology Corporation Apparatus for initial power control for spread-spectrum communications
US7123600B2 (en) * 1995-06-30 2006-10-17 Interdigital Technology Corporation Initial power control for spread-spectrum communications
ZA965340B (en) 1995-06-30 1997-01-27 Interdigital Tech Corp Code division multiple access (cdma) communication system
US7929498B2 (en) * 1995-06-30 2011-04-19 Interdigital Technology Corporation Adaptive forward power control and adaptive reverse power control for spread-spectrum communications
US6975582B1 (en) * 1995-07-12 2005-12-13 Ericsson Inc. Dual mode satellite/cellular terminal
JP3598609B2 (ja) * 1995-09-20 2004-12-08 双葉電子工業株式会社 スペクトル拡散通信システムにおける受信装置
US6678311B2 (en) 1996-05-28 2004-01-13 Qualcomm Incorporated High data CDMA wireless communication system using variable sized channel codes
US5881058A (en) * 1996-11-25 1999-03-09 Motorola, Inc. Method for performing a signal search in a wireless communication system
JPH10173630A (ja) * 1996-12-13 1998-06-26 Nec Corp Cdmaチップ同期回路
US5909462A (en) * 1996-12-31 1999-06-01 Lucent Technologies Inc. System and method for improved spread spectrum signal detection
US6144649A (en) 1997-02-27 2000-11-07 Motorola, Inc. Method and apparatus for acquiring a pilot signal in a CDMA receiver
US6724738B1 (en) 1997-02-27 2004-04-20 Motorola Inc. Method and apparatus for acquiring a pilot signal in a CDMA receiver
US6345078B1 (en) * 1997-07-31 2002-02-05 Lucent Technologies Inc. Finger assignment system for a multiple finger receiver and method thereof
US6201802B1 (en) * 1997-08-29 2001-03-13 Qualcomm Inc. Method and apparatus for analyzing base station timing
US6285655B1 (en) * 1997-09-08 2001-09-04 Qualcomm Inc. Method and apparatus for providing orthogonal spot beams, sectors, and picocells
US5872774A (en) * 1997-09-19 1999-02-16 Qualcomm Incorporated Mobile station assisted timing synchronization in a CDMA communication system
US6307840B1 (en) * 1997-09-19 2001-10-23 Qualcomm Incorporated Mobile station assisted timing synchronization in CDMA communication system
US6064691A (en) * 1997-10-22 2000-05-16 Lsi Logic Corporation Method and apparatus for acquisition of the strongest pilot signal
US6707842B2 (en) 1997-10-22 2004-03-16 Via Telecom Co., Ltd. Accelerated base station searching by buffering samples
US20020051434A1 (en) * 1997-10-23 2002-05-02 Ozluturk Fatih M. Method for using rapid acquisition spreading codes for spread-spectrum communications
US6275482B1 (en) * 1997-10-28 2001-08-14 Qwest Communications International Inc. Combined angular, spatial, and temporal diversity for mobile radio system
US9118387B2 (en) 1997-11-03 2015-08-25 Qualcomm Incorporated Pilot reference transmission for a wireless communication system
US7184426B2 (en) * 2002-12-12 2007-02-27 Qualcomm, Incorporated Method and apparatus for burst pilot for a time division multiplex system
US6639906B1 (en) * 1997-12-09 2003-10-28 Jeffrey A. Levin Multichannel demodulator
JP3492177B2 (ja) * 1997-12-15 2004-02-03 松下電器産業株式会社 Cdma方式移動体通信機
US6222832B1 (en) * 1998-06-01 2001-04-24 Tantivy Communications, Inc. Fast Acquisition of traffic channels for a highly variable data rate reverse link of a CDMA wireless communication system
US9525923B2 (en) 1997-12-17 2016-12-20 Intel Corporation Multi-detection of heartbeat to reduce error probability
US7394791B2 (en) * 1997-12-17 2008-07-01 Interdigital Technology Corporation Multi-detection of heartbeat to reduce error probability
US7936728B2 (en) * 1997-12-17 2011-05-03 Tantivy Communications, Inc. System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system
US7079523B2 (en) * 2000-02-07 2006-07-18 Ipr Licensing, Inc. Maintenance link using active/standby request channels
KR100269341B1 (ko) 1997-12-19 2000-10-16 서평원 이동통신시스템의기저대역신호복조장치및방법
US6240082B1 (en) * 1998-03-10 2001-05-29 Lucent Technologies Inc. Router for daisy-chained components
US6094562A (en) * 1998-04-07 2000-07-25 Lucent Technologies Inc. Timing compensation for distant base station antennas in telecommunication systems
US6526029B1 (en) * 1998-04-24 2003-02-25 Lucent Technologies Inc. Search scheme for receivers in mobile communication systems
US7773566B2 (en) * 1998-06-01 2010-08-10 Tantivy Communications, Inc. System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system
US8134980B2 (en) * 1998-06-01 2012-03-13 Ipr Licensing, Inc. Transmittal of heartbeat signal at a lower level than heartbeat request
KR100291477B1 (ko) * 1998-06-02 2001-07-12 윤종용 이동통신시스템의가변데이터율전송환경에서순차적경로검색방법
JP3260716B2 (ja) * 1998-06-05 2002-02-25 松下電器産業株式会社 送信装置及びそれを用いた基地局装置
KR100277761B1 (ko) 1998-06-25 2001-01-15 윤종용 셀룰러 시스템에서 이동 단말기의 탐색 범위설정 방법
US5978365A (en) * 1998-07-07 1999-11-02 Orbital Sciences Corporation Communications system handoff operation combining turbo coding and soft handoff techniques
KR20000014990A (ko) * 1998-08-26 2000-03-15 윤종용 이동가입자의 호 제한방법
US6363261B1 (en) 1998-08-31 2002-03-26 Lucent Technologies Inc. Extended range concentric cell base station
US6304759B1 (en) 1998-08-31 2001-10-16 Lucent Technologies Inc. Method for extending the range of a wireless communication system
US6201827B1 (en) * 1998-09-09 2001-03-13 Qualcomm Incorporated System and method for probability based lock detection
US6125137A (en) * 1998-09-11 2000-09-26 Motorola, Inc. Apparatus and method for performing a signal search in a coherent wireless communication system
US6944149B1 (en) * 1998-09-24 2005-09-13 Samsung Electronics Co., Ltd. Apparatus and method or searching for PN sequence phase in multi-carrier CDMA mobile communication system
US6502138B2 (en) * 1998-09-25 2002-12-31 Intel Corporation Modem with code execution adapted to symbol rate
US6490628B2 (en) * 1998-09-25 2002-12-03 Intel Corporation Modem using a digital signal processor and a signal based command set
US6661848B1 (en) * 1998-09-25 2003-12-09 Intel Corporation Integrated audio and modem device
US6625208B2 (en) * 1998-09-25 2003-09-23 Intel Corporation Modem using batch processing of signal samples
EP1125370B1 (de) 1998-10-27 2005-02-09 Siemens Aktiengesellschaft Rake-empfänger in mobilfunksystemen der dritten generation
JP3267569B2 (ja) * 1998-11-27 2002-03-18 日本電気株式会社 サーチャ制御方法とサーチャ制御装置及び無線通信装置
US6456646B1 (en) * 1998-11-30 2002-09-24 Ericsson Inc. Methods and systems for detecting codewords with intersymbol interference and imperfect timing
US6512925B1 (en) * 1998-12-03 2003-01-28 Qualcomm, Incorporated Method and apparatus for controlling transmission power while in soft handoff
EP1053605B1 (en) * 1998-12-07 2007-02-14 Samsung Electronics Co., Ltd. Device and method for gating transmission in a cdma mobile communication system
EP1014275A1 (en) 1998-12-23 2000-06-28 TELEFONAKTIEBOLAGET L M ERICSSON (publ) Pipeline processing for data channels
US6567390B1 (en) 1999-03-29 2003-05-20 Lsi Logic Corporation Accelerated message decoding
US6404758B1 (en) * 1999-04-19 2002-06-11 Ericsson, Inc. System and method for achieving slot synchronization in a wideband CDMA system in the presence of large initial frequency errors
TW463481B (en) 1999-04-28 2001-11-11 Fujitsu Ltd Cell search method, communication synchronization apparatus, portable terminal apparatus, and recording medium
US7031271B1 (en) 1999-05-19 2006-04-18 Motorola, Inc. Method of and apparatus for activating a spread-spectrum radiotelephone
US7085246B1 (en) 1999-05-19 2006-08-01 Motorola, Inc. Method and apparatus for acquisition of a spread-spectrum signal
US6157847A (en) 1999-06-29 2000-12-05 Lucent Technologies Inc. Base station system including parallel interference cancellation processor
US6718170B1 (en) * 1999-07-01 2004-04-06 Qualcomm Incorporated Dynamic allocation of microprocessor resources in a wireless communication device
US6320849B1 (en) * 1999-07-01 2001-11-20 Qualcomm Incorporated Dynamic control of search duration in a wireless communication device
JP3715141B2 (ja) * 1999-07-13 2005-11-09 松下電器産業株式会社 通信端末装置
US8064409B1 (en) 1999-08-25 2011-11-22 Qualcomm Incorporated Method and apparatus using a multi-carrier forward link in a wireless communication system
US6785554B1 (en) * 1999-09-15 2004-08-31 Qualcomm Incorporated Modified finger assignment algorithm for high data rate calls
US6621804B1 (en) 1999-10-07 2003-09-16 Qualcomm Incorporated Method and apparatus for predicting favored supplemental channel transmission slots using transmission power measurements of a fundamental channel
US6526090B1 (en) * 1999-12-28 2003-02-25 Texas Instruments Incorporated Demodulation element assignment for a receiver capable of simultaneously demodulating multiple spread spectrum signals
US6654384B1 (en) 1999-12-30 2003-11-25 Aperto Networks, Inc. Integrated self-optimizing multi-parameter and multi-variable point to multipoint communication system
AU2915201A (en) * 1999-12-30 2001-07-16 Morphics Technology, Inc. A fast initial acquisition and search device for a spread spectrum communicationsystem
JP2001211101A (ja) * 2000-01-26 2001-08-03 Nec Corp 低消費電力cdma受信機、及びその消費電力低減方法
AU3673001A (en) 2000-02-07 2001-08-14 Tantivy Communications, Inc. Minimal maintenance link to support synchronization
JP5129915B2 (ja) * 2000-02-23 2013-01-30 アイピーアール ライセンシング インコーポレイテッド リバースリンク初期パワー設定
US7466741B2 (en) 2000-03-03 2008-12-16 Qualcomm Incorporated Method and apparatus for concurrently processing multiple calls in a spread spectrum communications system
US7103095B2 (en) * 2000-03-06 2006-09-05 Texas Instruments Incorporated Spread spectrum code correlator
US7224719B1 (en) 2000-03-31 2007-05-29 Qualcomm, Incorporated Fast acquisition of a pilot signal in a wireless communication device
US6704577B1 (en) 2000-03-31 2004-03-09 Qualcomm, Incorporated Efficient searching by a remote unit in a slotted mode communication system
US6947931B1 (en) * 2000-04-06 2005-09-20 International Business Machines Corporation Longest prefix match (LPM) algorithm implementation for a network processor
SE0003289D0 (sv) * 2000-05-18 2000-09-15 Ericsson Telefon Ab L M Radio receiver and channel estimator
US6628702B1 (en) * 2000-06-14 2003-09-30 Qualcomm, Incorporated Method and apparatus for demodulating signals processed in a transmit diversity mode
GB0016663D0 (en) * 2000-07-06 2000-08-23 Nokia Networks Oy Receiver and method of receiving
SE0002587D0 (sv) * 2000-07-07 2000-07-07 Ericsson Telefon Ab L M Rake receiver and method related to a rake receiver
US6859652B2 (en) * 2000-08-02 2005-02-22 Mobile Satellite Ventures, Lp Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
US6721295B1 (en) 2000-08-25 2004-04-13 Texas Instruments Incorporated Triple data system for high data rate communication systems
US6959033B1 (en) * 2000-08-25 2005-10-25 Texas Instruments Incorporated System and method for assigning combiner channels in spread spectrum communications
GB0022634D0 (en) * 2000-09-15 2000-11-01 Koninkl Philips Electronics Nv Secondary station and method of operating the station
US6847677B1 (en) * 2000-09-29 2005-01-25 Qualcomm, Incorporated Method and apparatus for efficient Walsh covering and summing of signals in a communication system
US6636488B1 (en) 2000-10-11 2003-10-21 Aperto Networks, Inc. Automatic retransmission and error recovery for packet oriented point-to-multipoint communication
GB2368238B (en) * 2000-10-17 2004-04-14 Ubinetics Ltd A method of searching a code space
KR100438447B1 (ko) * 2000-10-20 2004-07-03 삼성전자주식회사 이동통신시스템에서 버스트 파일롯 송신장치 및 방법
US7068683B1 (en) 2000-10-25 2006-06-27 Qualcomm, Incorporated Method and apparatus for high rate packet data and low delay data transmissions
US6973098B1 (en) * 2000-10-25 2005-12-06 Qualcomm, Incorporated Method and apparatus for determining a data rate in a high rate packet data wireless communications system
US6985516B1 (en) 2000-11-27 2006-01-10 Qualcomm Incorporated Method and apparatus for processing a received signal in a communications system
US8155096B1 (en) 2000-12-01 2012-04-10 Ipr Licensing Inc. Antenna control system and method
JP3510589B2 (ja) * 2000-12-15 2004-03-29 Necエレクトロニクス株式会社 セルサーチ方法およびセルサーチ装置
US6834075B2 (en) * 2001-01-12 2004-12-21 Motorola, Inc. Method for improving multipath searcher speed
JP3838877B2 (ja) * 2001-01-15 2006-10-25 日本電気株式会社 パスサーチを行うcdma受信装置、パスサーチ方法、及びプログラム
US6954448B2 (en) * 2001-02-01 2005-10-11 Ipr Licensing, Inc. Alternate channel for carrying selected message types
US7551663B1 (en) 2001-02-01 2009-06-23 Ipr Licensing, Inc. Use of correlation combination to achieve channel detection
US7110349B2 (en) * 2001-03-06 2006-09-19 Brn Phoenix, Inc. Adaptive communications methods for multiple user packet radio wireless networks
US6700922B2 (en) * 2001-04-09 2004-03-02 Raghu Challa System and method for acquiring a received signal in a spread spectrum device
JP3628977B2 (ja) * 2001-05-16 2005-03-16 松下電器産業株式会社 無線基地局装置及び通信端末装置
US6834074B2 (en) * 2001-05-23 2004-12-21 Texas Instruments Incorporated Method of time tracking in a vector correlator based rake receiver
EP2479905B1 (en) 2001-06-13 2017-03-15 Intel Corporation Method and apparatuses for transmittal of heartbeat signal at a lower level than heartbeat request
US7095987B2 (en) * 2001-11-15 2006-08-22 Texas Instruments Incorporated Method and apparatus for received uplinked-signal based adaptive downlink diversity within a communication system
US7474994B2 (en) * 2001-12-14 2009-01-06 Qualcomm Incorporated System and method for wireless signal time of arrival
US7738533B2 (en) * 2002-01-07 2010-06-15 Qualcomm Incorporated Multiplexed CDMA and GPS searching
US7215935B2 (en) * 2002-01-17 2007-05-08 Qualcomm Incorporated Segmented CDMA searching
US7463671B2 (en) * 2002-02-19 2008-12-09 Marvell World Trade Ltd. Rake receiver interface
US8194770B2 (en) 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US8570988B2 (en) 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8170513B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US8134976B2 (en) 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
RU2359413C2 (ru) * 2002-10-25 2009-06-20 Квэлкомм Инкорпорейтед Обнаружение и демодуляция данных для систем беспроводной связи
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US20040181777A1 (en) * 2003-03-14 2004-09-16 Swee-Koon Fam Method and device for programming electronic devices using a uniform parameter format
US7672404B2 (en) 2003-05-19 2010-03-02 Broadcom Corporation Method and apparatus for reducing the time required to acquire a GPS signal
US7298777B2 (en) * 2003-06-06 2007-11-20 Texas Instruments Incorporated Searching in a spread spectrum communications
RU2244963C1 (ru) * 2003-07-21 2005-01-20 Военный университет связи Способ сжатия и восстановления речевых сообщений
RU2251815C9 (ru) * 2003-08-05 2005-09-10 Гармонов Александр Васильевич Способ поиска широкополосного сигнала и устройство для его реализации
RU2251801C9 (ru) * 2003-08-05 2005-09-10 Гармонов Александр Васильевич Способ поиска многолучевого широкополосного сигнала и устройство для его реализации
RU2251802C1 (ru) * 2003-08-05 2005-05-10 Гармонов Александр Васильевич Способ приема многолучевого сигнала, способ поиска и способ формирования мягких решений при приеме многолучевого сигнала и устройства, их реализующие
RU2304359C2 (ru) * 2003-11-10 2007-08-10 Корпорация "Самсунг Электроникс" Способ частотно-временной синхронизации системы связи и устройство для его осуществления
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
RU2297713C2 (ru) * 2004-01-09 2007-04-20 Корпорация "Самсунг Электроникс" Способ приема многолучевого сигнала и устройство для его осуществления
US7129753B2 (en) * 2004-05-26 2006-10-31 Infineon Technologies Ag Chip to chip interface
US8068530B2 (en) * 2004-06-18 2011-11-29 Qualcomm Incorporated Signal acquisition in a wireless communication system
US7558591B2 (en) * 2004-10-12 2009-07-07 Magnolia Broadband Inc. Determining a power control group boundary of a power control group
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
US8358714B2 (en) 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
US8533255B2 (en) * 2005-12-13 2013-09-10 Panasonic Corporation Systems and methods for handling failover in a distributed routing environment
TWI324469B (en) * 2006-01-13 2010-05-01 Via Tech Inc Method and apparatus for delaying sampled signal
US8920343B2 (en) 2006-03-23 2014-12-30 Michael Edward Sabatino Apparatus for acquiring and processing of physiological auditory signals
US8738056B2 (en) 2006-05-22 2014-05-27 Qualcomm Incorporation Signal acquisition in a wireless communication system
CN101467413B (zh) 2006-06-13 2013-08-21 高通股份有限公司 用于在无线通信系统中发送和接收导频的方法和装置
US8929353B2 (en) 2007-05-09 2015-01-06 Qualcomm Incorporated Preamble structure and acquisition for a wireless communication system
US20080080444A1 (en) * 2006-09-28 2008-04-03 Analog Devices, Inc. Transport channel buffer organization in downlink receiver bit rate processor
US8265178B2 (en) 2006-11-07 2012-09-11 Qualcomm Incorporated Methods and apparatus for signal and timing detection in wireless communication systems
RU2321171C1 (ru) * 2006-12-04 2008-03-27 Открытое акционерное общество "Концерн "Созвездие" Устройство приема широкополосных сигналов
CN101102123B (zh) * 2007-07-03 2010-04-21 中兴通讯股份有限公司 基于宽带码分多址系统的混合业务rake接收装置及方法
JP4913018B2 (ja) * 2007-11-12 2012-04-11 富士通株式会社 逆拡散回路および電子機器
US8532201B2 (en) 2007-12-12 2013-09-10 Qualcomm Incorporated Methods and apparatus for identifying a preamble sequence and for estimating an integer carrier frequency offset
US8537931B2 (en) 2008-01-04 2013-09-17 Qualcomm Incorporated Methods and apparatus for synchronization and detection in wireless communication systems
RU2468512C2 (ru) * 2008-01-07 2012-11-27 Эл Джи Электроникс Инк. Способ планирования распределенных блоков виртуальных ресурсов
KR100904433B1 (ko) 2008-01-07 2009-06-24 엘지전자 주식회사 분산형 가상자원블록 스케쥴링 방법
KR100925441B1 (ko) 2008-01-07 2009-11-06 엘지전자 주식회사 분산형 가상자원블록 스케쥴링 방법
KR100913099B1 (ko) 2008-01-07 2009-08-21 엘지전자 주식회사 분산형 가상자원블록 스케쥴링 방법
US8811200B2 (en) * 2009-09-22 2014-08-19 Qualcomm Incorporated Physical layer metrics to support adaptive station-dependent channel state information feedback rate in multi-user communication systems
CA2773485A1 (en) * 2009-09-24 2011-03-31 Rockstar Bidco, LP Methods of radio communication involving multiple radio channels, and radio signal repeater and mobile station apparatuses implementing same
EP2486666B1 (en) * 2009-10-05 2019-07-03 Koninklijke Philips N.V. A method for signalling a precoding in a cooperative beamforming transmission mode
RU2660629C1 (ru) * 2017-06-22 2018-07-06 Закрытое акционерное общество Научно-технический центр "Модуль" Способ быстрого декодирования информационных элементов сигнала

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1411985A1 (ru) * 1986-06-18 1988-07-23 Войсковая Часть 32103 Система радиосв зи с доступом по запросу
US4901307A (en) * 1986-10-17 1990-02-13 Qualcomm, Inc. Spread spectrum multiple access communication system using satellite or terrestrial repeaters
US5109390A (en) * 1989-11-07 1992-04-28 Qualcomm Incorporated Diversity receiver in a cdma cellular telephone system
US5446756A (en) * 1990-03-19 1995-08-29 Celsat America, Inc. Integrated cellular communications system
US5297161A (en) * 1992-06-29 1994-03-22 Motorola Inc. Method and apparatus for power estimation in an orthogonal coded communication system
JP3295454B2 (ja) * 1992-08-05 2002-06-24 パイオニア株式会社 Gps受信機の信号処理方法
WO1994008403A1 (en) * 1992-10-01 1994-04-14 Motorola, Inc. Selective call receiver capable of requesting information from a communication system and method therefor
GB9311373D0 (en) * 1993-06-02 1993-07-21 Roke Manor Research Apparatus for use in equipment providing a digital radio link between a fixed and a mobile radio unit
US5442627A (en) * 1993-06-24 1995-08-15 Qualcomm Incorporated Noncoherent receiver employing a dual-maxima metric generation process
US5412686A (en) * 1993-09-17 1995-05-02 Motorola Inc. Method and apparatus for power estimation in a communication system
US5490165A (en) * 1993-10-28 1996-02-06 Qualcomm Incorporated Demodulation element assignment in a system capable of receiving multiple signals
MY120873A (en) * 1994-09-30 2005-12-30 Qualcomm Inc Multipath search processor for a spread spectrum multiple access communication system
US5710768A (en) * 1994-09-30 1998-01-20 Qualcomm Incorporated Method of searching for a bursty signal
US5654979A (en) 1995-01-13 1997-08-05 Qualcomm Incorporated Cell site demodulation architecture for a spread spectrum multiple access communication systems

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103248396A (zh) * 2012-02-02 2013-08-14 中兴通讯股份有限公司 多径搜索的方法及装置
CN103248396B (zh) * 2012-02-02 2016-09-07 中兴通讯股份有限公司 多径搜索的方法及装置
CN111786766A (zh) * 2016-05-09 2020-10-16 高通股份有限公司 用于无线通信中的可缩放参数集的方法和装置
CN112383494A (zh) * 2020-11-26 2021-02-19 西安烽火电子科技有限责任公司 基于dsss-oqpsk的猝发通信接收系统

Also Published As

Publication number Publication date
HK1017523A1 (zh) 1999-11-19
RU2157592C2 (ru) 2000-10-10
KR100380427B1 (ko) 2003-07-22
TW297974B (zh) 1997-02-11
IL118116A0 (en) 1996-09-12
AR001852A1 (es) 1997-12-10
AU6145896A (en) 1996-11-21
ES2184871T3 (es) 2003-04-16
WO1996035268A1 (en) 1996-11-07
US5867527A (en) 1999-02-02
DE69624698D1 (de) 2002-12-12
MY113603A (en) 2002-04-30
MX9708514A (es) 1998-02-28
JP3388754B2 (ja) 2003-03-24
CN1099171C (zh) 2003-01-15
ATE227481T1 (de) 2002-11-15
IL118116A (en) 2000-06-01
DE69624698T2 (de) 2003-08-21
FI113820B (fi) 2004-06-15
AU699159B2 (en) 1998-11-26
FI974132A0 (fi) 1997-11-04
EP0824802A1 (en) 1998-02-25
JPH11505083A (ja) 1999-05-11
US5710768A (en) 1998-01-20
KR19990008350A (ko) 1999-01-25
EP0824802B1 (en) 2002-11-06
FI974132A7 (fi) 1998-01-05
ZA963188B (en) 1996-10-23
BR9608287A (pt) 1999-06-15

Similar Documents

Publication Publication Date Title
CN1099171C (zh) 接收和搜索以猝发段形式发射的信号的方法
CN1091556C (zh) 多扩频信号流水线式蜂窝区基站接收机
CN1135815A (zh) 用于扩频的多址通信系统的多路径搜索处理器
JP4477691B2 (ja) 多重チャンネル通信システムのスペクトラム拡散多重経路復調器
CN1115805C (zh) 码分多址通信系统中移动解调器的搜索接收机结构
CN1311927A (zh) 用于分集与频率间移动辅助切换(maho)的测量技术
CN1222115C (zh) 用于码跟踪瑞克接收机分支的方法以及瑞克接收机
HK1017523B (zh) 接收和搜索以猝发段形式发射的信号的方法
CA2220224C (en) Method of receiving and searching a signal transmitting in bursts
HK1015199B (zh) 多扩频信号流水线式蜂窝区基站接收机
HK1015198B (zh) 用於扩频的多址通信系统的多路径搜索处理器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1037352

Country of ref document: HK

C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: Holy land, California, Egypt

Patentee after: Qualcomm Inc.

Address before: Holy land, California, Egypt

Patentee before: Qualcomm Inc.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20030115

Termination date: 20150502

EXPY Termination of patent right or utility model