CN1222757A - Porous region removing method and semiconductor substrate manufacturing method - Google Patents
Porous region removing method and semiconductor substrate manufacturing method Download PDFInfo
- Publication number
- CN1222757A CN1222757A CN 98125515 CN98125515A CN1222757A CN 1222757 A CN1222757 A CN 1222757A CN 98125515 CN98125515 CN 98125515 CN 98125515 A CN98125515 A CN 98125515A CN 1222757 A CN1222757 A CN 1222757A
- Authority
- CN
- China
- Prior art keywords
- substrate
- porous
- etchant
- layer
- wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 278
- 238000000034 method Methods 0.000 title claims description 109
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000004065 semiconductor Substances 0.000 title claims description 16
- 229910021426 porous silicon Inorganic materials 0.000 claims abstract description 92
- 238000005530 etching Methods 0.000 claims abstract description 42
- 239000011148 porous material Substances 0.000 claims abstract description 36
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 58
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 43
- 239000007788 liquid Substances 0.000 claims description 30
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 26
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 22
- 238000011282 treatment Methods 0.000 claims description 20
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 17
- 229910052710 silicon Inorganic materials 0.000 claims description 17
- 239000010703 silicon Substances 0.000 claims description 17
- 239000011259 mixed solution Substances 0.000 claims description 14
- 239000000243 solution Substances 0.000 claims description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 238000005260 corrosion Methods 0.000 claims description 11
- 230000007797 corrosion Effects 0.000 claims description 11
- 239000013078 crystal Substances 0.000 claims description 10
- 238000005498 polishing Methods 0.000 claims description 9
- 238000007743 anodising Methods 0.000 claims description 7
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 6
- 238000005201 scrubbing Methods 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 4
- 239000012530 fluid Substances 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 4
- 235000012431 wafers Nutrition 0.000 description 240
- 239000010410 layer Substances 0.000 description 224
- 230000007246 mechanism Effects 0.000 description 32
- 229960002050 hydrofluoric acid Drugs 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 239000004033 plastic Substances 0.000 description 12
- 229920003023 plastic Polymers 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 229910004298 SiO 2 Inorganic materials 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 238000002604 ultrasonography Methods 0.000 description 9
- -1 polyethylene Polymers 0.000 description 8
- 235000012239 silicon dioxide Nutrition 0.000 description 7
- 238000002048 anodisation reaction Methods 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 239000004696 Poly ether ether ketone Substances 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 229910052681 coesite Inorganic materials 0.000 description 5
- 229910052906 cristobalite Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 229920002530 polyetherether ketone Polymers 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 229910052682 stishovite Inorganic materials 0.000 description 5
- 229910052905 tridymite Inorganic materials 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 239000007977 PBT buffer Substances 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 239000004813 Perfluoroalkoxy alkane Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229920011301 perfluoro alkoxyl alkane Polymers 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Landscapes
- Weting (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Description
本发明涉及多孔区的去除方法和半导体衬底的制造方法,更具体地,涉及从具有多孔区的衬底上去除多孔区的方法、应用该方法的半导体衬底制造方法以及去除多孔区的设备。The present invention relates to a method for removing a porous region and a method for manufacturing a semiconductor substrate, and more particularly, to a method for removing a porous region from a substrate having a porous region, a method for manufacturing a semiconductor substrate using the method, and an apparatus for removing the porous region .
已存在以下SOI衬底的制造方法,先在第一衬底上形成多孔层和单晶硅层,将第一衬底与分离准备的第二衬底粘合起来,然后在多孔硅层将粘合的叠层衬底分成两个衬底,以使得在第一衬底的侧面上形成的单晶硅层被转移到第二衬底上。The following SOI substrate manufacturing method already exists. Firstly, a porous layer and a single crystal silicon layer are formed on a first substrate, the first substrate is bonded to a second substrate prepared separately, and then bonded on the porous silicon layer. The combined laminated substrate is divided into two substrates so that the single crystal silicon layer formed on the side surface of the first substrate is transferred onto the second substrate.
在该方法中,在粘合的叠层衬底被分成两个衬底后,除去第二衬底表面上的残余多孔硅层。在除去多孔硅时,最好不要使下面的第二衬底表面的平整度,更具体地,作为第二衬底表面层的单晶硅层的膜厚均匀性受到妨害。In this method, after the bonded laminated substrates are divided into two substrates, the residual porous silicon layer on the surface of the second substrate is removed. In removing the porous silicon, it is preferable not to impair the flatness of the underlying second substrate surface, more specifically, the film thickness uniformity of the single crystal silicon layer as the second substrate surface layer.
本发明的提出考虑了上述情况,其目的在于提供能够保证底层平整度的多孔区去除方法和利用该方法的半导体衬底制造方法。The present invention has been proposed in consideration of the above circumstances, and its object is to provide a method for removing a porous region capable of ensuring the flatness of an underlayer and a method for manufacturing a semiconductor substrate using the method.
根据本发明,提供一种从具有多孔区的衬底上去除多孔区的方法,其特征在于包括如下步骤:第一步,在对腐蚀剂施加超声波的同时用腐蚀剂处理多孔区;第二步,在不对腐蚀剂施加超声波或施加的超声波比在第一步中施加的超声波弱的情况下,用腐蚀剂处理多孔区;以及第三步,去除衬底上的残余多孔区。According to the present invention, there is provided a method for removing a porous region from a substrate having a porous region, characterized in that it comprises the following steps: the first step, treating the porous region with an etchant while applying ultrasonic waves to the etchant; the second step, Treating the porous region with an etchant without applying ultrasonic waves to the etchant or applying ultrasonic waves weaker than the ultrasonic waves applied in the first step; and a third step of removing the residual porous region on the substrate.
在多孔区去除方法中,所述第一步包括把腐蚀剂注入到多孔区中孔的较深的部位。In the porous region removal method, the first step includes injecting an etchant into deeper portions of the pores in the porous region.
在多孔区去除方法中,所述第二步包括通过腐蚀作用把多孔区的孔壁减薄到不厚于预定厚度。In the porous region removal method, the second step includes thinning the pore walls of the porous region to not thicker than a predetermined thickness by etching.
在多孔区去除方法中,所述第二步包括把多孔区的孔壁减薄到能够在第三步中把残余多孔区一次去除的厚度。In the porous region removal method, the second step includes thinning the pore walls of the porous region to a thickness capable of removing the remaining porous region at one time in the third step.
在多孔区去除方法中,所述第三步包括用腐蚀剂去除衬底上的残余多孔区。In the porous region removal method, the third step includes removing the residual porous region on the substrate with an etchant.
在多孔区去除方法中,所述第三步包括在对腐蚀剂施加超声波的同时用腐蚀剂去除衬底上的残余多孔区。In the porous region removing method, the third step includes removing the residual porous region on the substrate with the etchant while applying ultrasonic waves to the etchant.
在多孔区去除方法中,把要处理的衬底浸入同一腐蚀剂中进行从第一步到第三步的处理。In the porous area removal method, the substrate to be treated is immersed in the same etchant to perform the treatments from the first step to the third step.
在多孔区去除方法中,所述第三步包括用对多孔材料的腐蚀速度高于第一和第二处理液的第三处理液去除衬底上的残余多孔区。In the porous region removing method, the third step includes removing the remaining porous region on the substrate with a third treatment liquid having a higher etching rate for the porous material than the first and second treatment liquids.
在多孔区去除方法中,把要处理的衬底完全浸入腐蚀剂中进行从第一步到第三步的处理。In the porous area removal method, the substrate to be treated is completely immersed in an etchant to perform the treatment from the first step to the third step.
在多孔区去除方法中,把要处理的衬底完全浸入腐蚀剂中进行第一和/或第二步的处理。In the porous area removal method, the substrate to be treated is completely immersed in an etchant for the first and/or second treatment step.
在多孔区去除方法中,所述第三步包括用高压流体去除衬底上的残余多孔区。In the porous region removal method, the third step includes removing the residual porous region on the substrate with a high-pressure fluid.
在多孔区去除方法中,所述第三步包括用擦洗法去除衬底上的残余多孔区。In the porous region removal method, the third step includes removing the residual porous region on the substrate by scrubbing.
在多孔区去除方法中,在对衬底施加超声波的同时进行衬底处理时,改变衬底和超声波源之间的相对位置关系。In the porous region removal method, when the substrate is processed while applying ultrasonic waves to the substrate, the relative positional relationship between the substrate and the ultrasonic source is changed.
在多孔区去除方法中,在对腐蚀剂施加超声波的同时进行衬底处理时,衬底在处理液中摆动。In the porous region removal method, when the substrate is processed while ultrasonic waves are applied to the etchant, the substrate is swung in the processing liquid.
在多孔区去除方法中,在对腐蚀剂施加超声波的同时进行衬底处理时,使衬底转动。In the porous region removal method, the substrate is rotated while performing substrate processing while applying ultrasonic waves to the etchant.
在多孔区去除方法中,在对衬底施加超声波的同时进行衬底处理时,衬底和超声波源中的至少一个的位置在基本平行于或垂直于超声波振动面的方向上变化。In the porous region removal method, when the substrate is processed while applying ultrasonic waves to the substrate, the position of at least one of the substrate and the ultrasonic wave source is changed in a direction substantially parallel to or perpendicular to the ultrasonic vibration plane.
在多孔区去除方法中,用腐蚀剂处理衬底时,使衬底摆动或转动。In the porous region removal method, while treating the substrate with an etchant, the substrate is swung or rotated.
在多孔区去除方法中,用腐蚀剂处理衬底时,使腐蚀剂循环以在衬底附近造成腐蚀剂的流动。In the porous region removal method, when the substrate is treated with an etchant, the etchant is circulated to cause a flow of the etchant in the vicinity of the substrate.
在多孔区去除方法中,把衬底浸入同一腐蚀池进行第一和第二步的处理,且第一步包括使超声波源工作,第二步包括使超声波源停止工作。In the porous area removal method, the first and second steps are performed by immersing the substrate in the same etching bath, and the first step includes operating the ultrasonic source, and the second step includes stopping the ultrasonic source.
在多孔区去除方法中,把衬底浸入同一腐蚀池中进行第一步和第二步的处理,且第一和第二步包括使超声波源连续工作,第二步包括在超声源和衬底之间插入超声波屏蔽扳。In the porous area removal method, the substrate is immersed in the same corrosion bath for the first and second steps, and the first and second steps include continuous operation of the ultrasonic source, and the second step includes the ultrasonic source and the substrate Insert the ultrasonic shielding wrench between them.
在多孔区去除方法中,要处理的所述衬底主要由单晶硅组成。In the porous region removal method, the substrate to be processed is mainly composed of single crystal silicon.
在多孔区去除方法中,所述多孔区主要由多孔硅组成。In the porous region removal method, the porous region is mainly composed of porous silicon.
在多孔区去除方法中,所述多孔区是通过对由单晶硅组成的衬底进行阳极化处理得到的。In the porous region removal method, the porous region is obtained by anodizing a substrate composed of single crystal silicon.
在多孔区去除方法中,腐蚀剂可以采用下述的任何一种溶液:In the porous area removal method, the etchant can use any of the following solutions:
(a)氢氟酸;(a) hydrofluoric acid;
(b)向氢氟酸中至少加入乙醇或过氧化氢中的二者之一得到的混合溶液;(b) in hydrofluoric acid, at least add the mixed solution that one of ethanol or hydrogen peroxide obtains;
(c)缓冲氢氟酸;以及(c) buffered hydrofluoric acid; and
(d)向缓冲氢氟酸中至少加入乙醇或过氧化氢中的二者之一得到的混合溶液。(d) A mixed solution obtained by adding at least one of ethanol or hydrogen peroxide to buffered hydrofluoric acid.
根据本发明还提供一种半导体衬底的制造方法,其特征在于包括下列步骤:在第一衬底上形成多孔层和至少一层无孔层;把第二衬底粘合在第一衬底的无孔层一侧;从粘合的层叠衬底上去除第一衬底使在第二衬底表面上的多孔层暴露出来;以及用上述多孔区去除方法去除第二衬底上的多孔层。According to the present invention, there is also provided a method for manufacturing a semiconductor substrate, which is characterized in that it includes the following steps: forming a porous layer and at least one non-porous layer on the first substrate; bonding the second substrate to the first substrate removing the first substrate from the bonded laminated substrate to expose the porous layer on the surface of the second substrate; and removing the porous layer on the second substrate by the porous region removing method described above .
在多孔区去除方法中,所述使多孔区暴露的步骤包括从粘合的第一衬底的下表面一侧研磨、抛光或腐蚀第一衬底,以使在第二衬底表面上的多孔层暴露出来。In the porous region removal method, the step of exposing the porous region includes grinding, polishing or etching the first substrate from the side of the lower surface of the bonded first substrate to make the porous region on the surface of the second substrate layer is exposed.
在多孔区去除方法中,所述使多孔层暴露的步骤包括沿多孔层将粘合的层叠衬底分开,以使在第二衬底表面上的多孔层暴露出来。In the porous region removing method, the step of exposing the porous layer includes separating the bonded laminated substrates along the porous layer to expose the porous layer on the surface of the second substrate.
在多孔区去除方法中,所述无孔层包括单晶硅层。In the porous region removal method, the nonporous layer includes a single crystal silicon layer.
在多孔区去除方法中,所述无孔层包括单晶硅层和氧化硅层。In the porous region removal method, the nonporous layer includes a single crystal silicon layer and a silicon oxide layer.
在多孔区去除方法中,所述单晶硅层是在第一衬底的多孔层上外延生长的层。In the porous region removal method, the single crystal silicon layer is a layer epitaxially grown on the porous layer of the first substrate.
在多孔区去除方法中,所述无孔层包括单晶化合物半导体层。In the porous region removal method, the nonporous layer includes a single crystal compound semiconductor layer.
在多孔区去除方法中,所述第二衬底主要由硅组成。In the porous region removal method, the second substrate is mainly composed of silicon.
在多孔区去除方法中,所述第二衬底在其与第一衬底粘合的表面上具有氧化硅层。In the porous region removal method, the second substrate has a silicon oxide layer on its surface bonded to the first substrate.
在多孔区去除方法中,所述第二衬底包括透明衬底。In the porous region removal method, the second substrate includes a transparent substrate.
根据本发明还提供了一种多孔区去除设备,该设备用于从具有多孔区的衬底上去除多孔区,包括:执行第一步即在对腐蚀剂施加超声波的同时用腐蚀剂对多孔区进行处理的装置;执行第二步即在不对腐蚀剂施加超声波或施加的超声波比第一步中施加的超声波弱的情况下,用腐蚀剂对多孔区进行处理的装置;以及执行第三步即去除衬底上的残余多孔区的装置。According to the present invention there is also provided a porous region removing apparatus for removing a porous region from a substrate having a porous region, comprising: performing a first step of treating the porous region with an etchant while applying ultrasonic waves to the etchant a device for performing the second step of treating the porous region with an etchant without applying ultrasonic waves to the etchant or applying ultrasonic waves that are weaker than the ultrasonic waves applied in the first step; and performing the third step of removing the The residual porous region of the device.
在如下的结合附图的详述中,本发明的目的、特征和优点将更加明晰。In the following detailed description in conjunction with the accompanying drawings, the purpose, features and advantages of the present invention will be more clear.
图1A~1C是解释根据本发明的一个优选实施方案的多孔层去除方法的原理图;1A to 1C are schematic diagrams illustrating a porous layer removal method according to a preferred embodiment of the present invention;
图2A~2C示出根据多孔层去除方法的第一应用例的制造方法;2A to 2C illustrate a manufacturing method according to a first application example of the porous layer removal method;
图3A~3F示出根据本发明另一优选实施方案的半导体衬底制造方法;3A to 3F illustrate a semiconductor substrate manufacturing method according to another preferred embodiment of the present invention;
图4是示出晶片处理设备的第一装置的立体图;4 is a perspective view showing a first device of a wafer processing apparatus;
图5是示出晶片处理设备的第二装置的立体图;5 is a perspective view showing a second device of the wafer processing apparatus;
图6是示出晶片处理设备的第三装置的立体图;6 is a perspective view showing a third device of the wafer processing apparatus;
图7A~7E示出图6所示晶片处理设备的操作;7A-7E illustrate the operation of the wafer processing apparatus shown in FIG. 6;
图8是图6所示晶片处理设备的摆动支承部件的立体图;8 is a perspective view of a swing support member of the wafer processing apparatus shown in FIG. 6;
图9是示出晶片处理设备的第四装置的立体图;9 is a perspective view showing a fourth device of the wafer processing apparatus;
图10是示出晶片处理设备的第五装置的立体图;10 is a perspective view showing a fifth device of the wafer processing apparatus;
图11A和11B示出图6或图8所示晶片处理设备的变形;Figures 11A and 11B illustrate variations of the wafer processing apparatus shown in Figure 6 or Figure 8;
图12A~12C示出晶片处理设备的第七装置;12A-12C illustrate a seventh arrangement of a wafer processing apparatus;
本发明适用于制造SOI衬底的方法:先在第一衬底上形成多孔层和单晶硅层,将第一衬底和独立地制备的第二衬底粘合起来,然后在多孔硅层将粘合的层叠衬层分成两个衬底,以使得第一衬底上形成的单晶硅层被转移到第二衬底上,再除去第二衬底表面上的残余多孔层,由此得到SOI结构。The present invention is applicable to the method for manufacturing SOI substrate: firstly form porous layer and monocrystalline silicon layer on the first substrate, the first substrate and the second substrate prepared independently are bonded together, then on the porous silicon layer dividing the bonded laminated liner into two substrates so that the single crystal silicon layer formed on the first substrate is transferred to the second substrate, and removing the residual porous layer on the surface of the second substrate, thereby Get the SOI structure.
单晶硅衬底可以用作第一衬底。这时,多孔层就是多孔硅层。在多孔硅层上,可以外延生长作为无孔层的单晶硅层。在单晶硅层上可以形成绝缘层如SiO2层。A single crystal silicon substrate can be used as the first substrate. In this case, the porous layer is the porous silicon layer. On the porous silicon layer, a single crystal silicon layer can be epitaxially grown as a non-porous layer. An insulating layer such as a SiO2 layer can be formed on the single crystal silicon layer.
在本实施方案中,在第一衬底上顺序形成多孔层和无孔层,并将第一衬底与分离准备的第二衬底粘合起来形成粘合的层叠衬底。在把该粘合层叠衬底在多孔层分离成两个衬底之后,用例如湿蚀该法去除残留在第二衬底上的多孔层。In this embodiment, a porous layer and a nonporous layer are sequentially formed on a first substrate, and the first substrate is bonded to a separately prepared second substrate to form a bonded laminated substrate. After the bonded laminated substrate is separated into two substrates at the porous layer, the porous layer remaining on the second substrate is removed by, for example, wet etching.
在多孔硅层的腐蚀过程中,通过对腐蚀池施加超声波,可以加快多孔硅层的断裂。更具体地说,在腐蚀过程中,当对腐蚀池,具体地指对粘合层叠衬底施加超声波时,多孔硅层的孔壁在变得很薄之前就可断裂,由于多孔硅层的孔壁从开始断裂到结束的时间被大大缩短,多孔层和下层的第二衬底(即单晶硅衬底)的腐蚀选择比增加,因此,可以减小第二衬底表面的SOI厚度差和去除多孔层后的衬底之间的尺寸差,可以得到具有膜厚非常均匀的单晶硅层的高质量SOI衬底。During the etching process of the porous silicon layer, the fracture of the porous silicon layer can be accelerated by applying ultrasonic waves to the etching pool. More specifically, during the etching process, when ultrasonic waves are applied to the etching pool, specifically, to the bonded laminated substrate, the pore walls of the porous silicon layer can be broken before becoming very thin, because the pores of the porous silicon layer The time from the start to the end of the wall fracture is greatly shortened, and the etching selectivity ratio of the porous layer and the underlying second substrate (i.e., single crystal silicon substrate) is increased, therefore, the SOI thickness difference and the thickness of the second substrate surface can be reduced. The difference in size between substrates after removal of the porous layer enables to obtain a high-quality SOI substrate with a single crystal silicon layer with a very uniform film thickness.
然而,如果要被处理的衬底上的多孔层厚度不一,在去除多孔层后就难以保证第二衬底表面层(单晶硅层)的膜厚的均匀性,尤其在批量生产中,这个问题会造成低的产量。However, if the thickness of the porous layer on the substrate to be processed varies, it will be difficult to ensure the uniformity of the film thickness of the second substrate surface layer (single crystal silicon layer) after removing the porous layer, especially in mass production, This problem can result in low yields.
本实施方案提供了在多孔硅层去除后第二衬底的表面层(单晶硅层)能保证膜厚均匀性的方法。This embodiment provides a method in which the surface layer (single-crystal silicon layer) of the second substrate can ensure uniformity of film thickness after removal of the porous silicon layer.
图1A~1C是解释根据本发明的一个优选实施方案的多孔层去除方法原理的图。其中,标号201,下面的衬底(第二衬底);202,多孔层;203,腐蚀剂。1A to 1C are diagrams explaining the principle of a porous layer removal method according to a preferred embodiment of the present invention. Wherein, reference numeral 201, the underlying substrate (second substrate); 202, the porous layer; 203, the etchant.
在图1A中,腐蚀剂203向多孔层202的孔的最深部分注入。此时,优选地对被处理的物体(即粘合层叠衬底)施加超声波。施加超声波时,腐蚀剂注入孔中的速度加快。In FIG. 1A , etchant 203 is injected into the deepest portion of the pores of porous layer 202 . At this time, ultrasonic waves are preferably applied to the object to be processed (ie, bonded laminated substrate). When ultrasonic waves are applied, the rate at which the etchant is injected into the holes increases.
在图1B中,孔被腐蚀而变大。此时,优选地,不对要处理物体施加超声波,或减小超声波的强度。如果施加超声波,随着孔长大,一旦相邻孔的孔壁薄到一定程度,多孔层就开始断裂。由于多孔层先在薄的部位断裂,在这些部位就会腐蚀下面的衬底201。这时,很明显地会降低衬底201的平整度。但如果不施加超声波,孔只有在变得比施加超声波时薄得多的时候才会断裂。因此,这时可以防止某些部位的过度腐蚀。In Figure 1B, the holes are etched and enlarged. At this time, it is preferable not to apply ultrasonic waves to the object to be processed, or to reduce the intensity of ultrasonic waves. If ultrasonic waves are applied, as the pores grow, once the pore walls of adjacent pores become thinner to a certain extent, the porous layer begins to break. Since the porous layer breaks first at the thin points, the underlying substrate 201 is corroded at these points. At this time, the flatness of the substrate 201 will obviously be reduced. But without the application of ultrasound, the holes only break when they become much thinner than with ultrasound. Therefore, excessive corrosion in certain parts can be prevented at this time.
即使在不对被处理物体施加超声波时,腐蚀也是不仅在水平方向(平扳方向)上还在垂直方向上进行。然而,与施加超声波的情况相比,这时对蚀刻的影响可以忽略不计。Even when ultrasonic waves are not applied to the object to be processed, corrosion proceeds not only in the horizontal direction (horizontal direction) but also in the vertical direction. However, the effect on etching at this time is negligible compared with the case of applying ultrasonic waves.
在图1C中,具有薄孔壁的多孔层202被除去。在这一步中不仅可使用蚀刻法,还可采用抛光、擦洗或喷水法。在这一步中,具有腐蚀造成的脆弱结构的多孔层被一次去除。In Figure 1C, the porous layer 202 having thin pore walls is removed. Not only etching but also polishing, scrubbing or water spraying can be used in this step. In this step, the porous layer with a fragile structure caused by corrosion is removed in one go.
在图1C的步骤中进行腐蚀时,从图1A到图1C的步骤都可在同一腐蚀池中进行。这时,在图1B所示的步骤中超声波的施加被中断,等到多孔层的孔最深处的孔壁薄到可以在全部区域上立即断裂的时候,再重新施加超声波,执行图1C的步骤(在施加超声波的时候进行腐蚀)。利用这种处理,多孔层可以被一次、几乎同时地去除,被处理物的整个区域上的下层衬底202就暴露出来。因此,可以减小腐蚀时的差别,下层衬底201可以保持高的平整度。When etching is performed in the step of FIG. 1C, the steps from FIG. 1A to FIG. 1C can all be performed in the same etching bath. At this time, in the step shown in Figure 1B, the application of the ultrasonic wave is interrupted, and when the wall of the deepest hole in the hole of the porous layer is so thin that it can be broken immediately in the entire area, the ultrasonic wave is reapplied, and the step of Figure 1C is performed ( corrosion while applying ultrasonic waves). With this treatment, the porous layer can be removed almost simultaneously at one time, and the underlying substrate 202 over the entire area of the object to be processed is exposed. Therefore, the difference in etching can be reduced, and the lower substrate 201 can maintain high flatness.
上述多孔层去除方法可以很容易地应用到大量的衬底的批量处理中。对于大量被处理的每一个,在如图1B所示的步骤中,当多孔层最深处的孔壁减薄到可以在整个区域上立即断裂时,就执行图1C所示的步骤。The above porous layer removal method can be easily applied to batch processing of a large number of substrates. For each of the large quantities processed, in the step shown in FIG. 1B, when the innermost pore wall of the porous layer is thinned enough to break immediately over the entire area, the step shown in FIG. 1C is performed.
该多孔层去除方法优选地在被处理的物体全部浸入腐蚀剂时进行。这时,可防止在腐蚀剂和空气界面附近的颗粒粘到被处理物上。The porous layer removal method is preferably carried out when the object to be treated is fully immersed in the etchant. At this time, particles near the interface between the corrosive agent and air can be prevented from sticking to the object to be processed.
根据该多孔层去除方法,通过施加超声波可以加速多孔层的断裂,还可以有效地从被处理物表面去除颗粒。According to this porous layer removal method, the fracture of the porous layer can be accelerated by applying ultrasonic waves, and particles can also be efficiently removed from the surface of the object to be treated.
在去除多孔层时,如果改变超声波源(如超声波振荡器)和被处理物的相对位置关系,更具体地,改变衬底和超声波振荡表面与腐蚀剂液面之间的驻波的相对位置,可以在整个衬底表面上进行加工。为实现这一点,例如可以使衬底旋转、摆动,或者摆动夹持该衬底的托扳,或移动超声波源。When removing the porous layer, if the relative positional relationship between the ultrasonic source (such as ultrasonic oscillator) and the processed object is changed, more specifically, the relative position of the standing wave between the substrate and the ultrasonic oscillation surface and the liquid level of the etchant can be changed. Processing is performed on the entire substrate surface. To achieve this, for example, the substrate can be rotated, swiveled, or the holder holding the substrate can be swung, or the ultrasound source can be moved.
下面描述该多孔层去除方法的应用例。(第一应用例)Application examples of this porous layer removal method are described below. (first application example)
第一应用例与制造方法有关。图2A~2C示出该应用例的制造方法。在图2A中,制备局部位置有多孔硅部分402的硅衬底401。硅衬底401可由如下方法制备,如在硅衬底上形成光致抗蚀膜,用平版印制法在光致抗蚀膜上制作图形并对得到的结构进行阳极化处理。可用已制作图形的Si3N4膜或蜡代替光致抗蚀膜,此处的蜡可采用抗氢氟酸(fluoric acid)的蜡如Apizoen蜡(商品名)。The first application example relates to a manufacturing method. 2A to 2C show the manufacturing method of this application example. In FIG. 2A, a
在图2B中,在图2A所示的硅衬底表面上形成无孔层(图形)403。In FIG. 2B, a non-porous layer (pattern) 403 is formed on the surface of the silicon substrate shown in FIG. 2A.
在图2C中,去除多孔硅部分402,更具体地说,将图2B所示的衬底放进盛有多孔硅的腐蚀剂的腐蚀池中,在对衬底施加超声波的同时进行腐蚀处理。In FIG. 2C, the
当把腐蚀剂有效地注入到多孔硅部分402的孔中时,停止施加超声波,并继续进行腐蚀。在该腐蚀过程中,多孔硅部分402的孔壁逐渐变薄。从表面上看(图的下部)多孔硅部分402的颜色逐渐变浅。当孔壁足够薄时,可透过多孔硅部分402看到下面的无孔层(图形)403。When the etchant is effectively injected into the pores of the
在这种状态下,去除残余的多孔硅部分。为了去除多孔硅部分,例如可以:1)重新施加超声波进行腐蚀,或2)用对硅腐蚀快的腐蚀剂进行腐蚀。In this state, the remaining porous silicon portion is removed. In order to remove the porous silicon portion, for example, 1) etching can be performed by reapplying ultrasonic waves, or 2) etching can be performed using an etchant that corrodes silicon quickly.
如果剩下的结构坚硬,可喷射水流去除多孔硅部分。If the remaining structure is rigid, a water jet can be used to remove the porous silicon portion.
如果整个硅衬底401由多孔硅构成,就会只剩下衬底上形成的无孔层,而且,如上所述,当制作无孔层403的图形时,可以形成包括如图2C所示悬臂梁形状的各种结构。(第二应用例)If the
第二应用例与半导体衬底的制造方法有关。图3A~3F示出该应用例的半导体衬底制造方法。在图3A中,制备第一单晶硅衬底501,在其一个表面上形成多孔硅层502。在图3B中,在多孔硅层502上形成至少一层无孔层503。作为无孔层503,可以是单晶硅层、多晶硅层、非晶态硅层、金属层、化合物半导体层或超导层。作为无孔层503,可以形成一包含如MOSFET的器件结构的层。优选地,在表层形成SiO2层504,从而完成第一衬底。SiO2层504是有用的,因为当第一衬底粘合到第二衬底505上时,粘合面的界面状态可从活性层上分离。The second application example relates to a method of manufacturing a semiconductor substrate. 3A to 3F show a semiconductor substrate manufacturing method of this application example. In FIG. 3A, a first single-
接着,如图3D所示,在室温下通过SiO2层504将图3C所示的第一衬底与分离准备的第二衬底505相接触。此后,进行阳极粘合、加压、热处理(如果需要)或其组合将衬底紧密地粘合。Next, as shown in FIG. 3D , the first substrate shown in FIG. 3C is brought into contact with the
当在无孔层503上形成单晶硅层时,最好是在单晶硅层表面用例如热氧化方法形成SiO2层504后把第一衬底与第二衬底505粘合。When forming a single crystal silicon layer on the
作为第一衬底时,合适的是硅衬底、在硅衬底形成SiO2层得到的衬底以及包括石英玻璃、石英、蓝宝石衬底的透明衬底。只要第二衬底505具有对粘合来说足够平整的表面,也可采用任何其它的衬底。As the first substrate, a silicon substrate, a substrate obtained by forming a SiO 2 layer on a silicon substrate, and transparent substrates including quartz glass, quartz, and sapphire substrates are suitable. Any other substrate may also be used as long as the
图3D示出第一衬底和第二衬底通过SiO2层504相粘合的状态。如果无孔层503或第二衬底不包含硅,就没必要形成SiO2层504。FIG. 3D shows a state where the first substrate and the second substrate are bonded through the SiO 2 layer 504 . If the
在粘合时,可以在第一衬底和第二衬底之间夹入绝缘薄片。At the time of bonding, an insulating sheet may be sandwiched between the first substrate and the second substrate.
在图3E中,第一衬底501在多孔硅层502处从第二衬底上移去。为了移去第一衬底,用研磨、抛光或腐蚀法除去第一衬底,或者将粘合层叠衬底在多孔硅层502分离成第一衬底和第二衬底。In FIG. 3E , the
在图3F中,除去第二衬底表面上残余的多孔硅层502。更具体地,将第二衬底部分置于盛有多孔硅腐蚀剂的腐蚀池中,在对衬底施加超声波的同时进行腐蚀处理。In FIG. 3F, the remaining
当把腐蚀剂有效地放入到多孔硅部分402的孔中时,停止施加超声波,并继续进行腐蚀。在该腐蚀过程中,多孔硅层502的孔壁逐渐变薄。从表面上看,多孔硅层502的颜色逐渐变浅。当孔壁足够薄时,可透过多孔硅层502看到下面的无孔层(如单晶硅层)503。When the etchant is effectively put into the pores of the
在这种状态下去除残余的多孔硅层502。为了去除多孔硅层,例如可以1)重新施加超声波进行腐蚀,2)用对硅腐蚀快的腐蚀剂进行腐蚀,3)用喷射水流去除多孔硅层502,4)抛光去除多孔硅层502,或5)磨去。The remaining
图3F示意地示出由上述方法得到的半导体衬底(SOI衬底)。通过绝缘层(如SiO2层)504在第二衬底505上形成表面平整、膜厚均匀的无孔层(如单晶硅层)503。根据该方法,可以制造高质量的大面积半导体衬底。FIG. 3F schematically shows a semiconductor substrate (SOI substrate) obtained by the above method. A non-porous layer (such as a single crystal silicon layer) 503 with a flat surface and uniform film thickness is formed on a
当绝缘衬底用作第二衬底505时,由上述制造方法得到的半导体衬底对于形成绝缘电子器件非常有用。When an insulating substrate is used as the
当图3D所示的粘合层叠衬底在多孔硅层502被分开时,将残余在第二衬底501表面的多孔硅层502去除后,第一衬底还可再利用,如果需要就对表面平整处理。When the bonded laminated substrate shown in Figure 3D was separated at the
下面将列举适于去除多孔层的晶片处理设备的特选例。(加工设备的第一装置)Selected examples of wafer processing equipment suitable for removing the porous layer will be listed below. (the first unit of processing equipment)
图4是适于去除多孔层的晶片处理设备的示意装置图。Figure 4 is a schematic setup diagram of a wafer processing apparatus suitable for removing a porous layer.
在晶片处理设备100中,可能与处理液接触的构件根据其用途优选地由石英玻璃或塑料构成。作为塑料,可以采用氟化塑料、氯乙烯、聚乙烯、聚丙烯、聚对苯二甲酸乙二醇脂(PBT)或聚醚醚酮(PEEK)。作为氟化塑料,PVDF、PFA或PTFE是合适的。In the
晶片处理设备100包括:晶片处理池110、溢液池120、超声波池130和在旋转时支承晶片140的晶片旋转机构(111~119)。The
在处理晶片之前,向晶片处理池110中注入处理液(腐蚀剂)。在晶片处理池110的上部围绕其设置了溢液池120,用来暂时贮存从晶片处理池110中溢出的处理液。在溢液池120中临时贮存的处理渡通过排液管121a从溢液池120的底部排到循环器121中。循环器121将排出的处理液过滤以去除颗粒并通过进液管121b将处理液送进晶片处理池110的底部。通过这种设置,可有效地去除晶片处理池110中的颗粒。Before processing a wafer, a processing liquid (etchant) is injected into the
晶片处理池110的深度最好能使晶片140完全浸入。通过这种设置,可防止空气或液面附近的颗粒粘附到晶片140上。The depth of the
超声波池130位于晶片处理池110的下面。在超声波池130中,调节机构132支承着超声波源131。如调节超声波源131和晶片处理池110的相对位置关系的机构一样,调节机构132具有用来调节超声波源131的垂直位置和水平位置的机构,通过这种机构,超声波可以满意地施加到晶片处理池110,更具体地,到晶片140。优选地,超声波源131具有调节所产生的超声波的频率和强度的功能。通过这种设置,所提供的超声波更加优化。通过增加向晶片140优化供应超声波的功能,可以一个一个地向多种晶片供应超声波。超声波池130充满超声波传播媒质(如水),所以超声波可以通过超声波传播媒质传到晶片处理池110。An
晶片处理设备100具有开/关控制超声波源131的控制部分,通过该控制部分,可以控制多孔层的去除加工。The
用四个晶片旋转杆111将晶片140支承在与晶片处理池110的底面基本垂直的位置,每个晶片旋转杆111上都有槽111a以嵌住晶片140。晶片旋转杆110旋转时具有支承晶片140的功能,构成基片旋转机构的一部分。各晶片旋转杆111被相对的两个杆支承部件118枢轴地支承,因此通过接收马达119产生的一个驱动转矩晶片旋转杆111沿同一方向旋转。优选地,每个晶片旋转杆111的直径应小到不阻碍超声波的传播。The
晶片旋转杆111的个数优选地为尽可能少。为了确保晶片140得到所期望的磨擦力,优选地,提供两个用来限制晶片140旋转方向(即X-轴方向)的晶片旋转111,和两个从下面支承晶片140的晶片旋转杆111。当在晶片下面以合适的间隔设置两个晶片旋转杆时,驱动转矩可以有效地传递到具有定向平扳的基片。如果在晶片下只设置一个晶片旋转杆111,定向平板就位于晶片旋转杆111的上面,晶片旋转杆111不能转动晶片。The number of
通常在晶片处理池110底和液面之间形成驻波,即具有高强度部位和低强度部位的超声波。然而,由于该晶片处理设备100是在旋转晶片140时对其进行处理,可以减小因驻波造成的加工不均匀性。Usually, a standing wave is formed between the bottom of the
在晶片处理设备100中,晶片处理设备100的底部和晶片140的周围的部件尽可能地少,因此,超声波可有效且均匀地供应给晶片140。而且,在这种装置中,由于处理液可围绕晶片140自由流动,晶片加工均匀,且可防止加工缺陷。(晶片处理设备第二装置)In the
图5示意示出适合去除多孔层的晶片处理设备的装置。Fig. 5 schematically shows an arrangement of a wafer processing apparatus suitable for removing a porous layer.
在晶片处理设备10中,可能与处理液接触的构件根据其用途优选地用石英玻璃或塑料构成。作为塑料,可采用氟化塑料、氯乙烯、聚乙烯、聚丙烯、聚对苯二甲酸乙二醇脂(PBT)或聚醚醚酮(PEEK)。作为氟化塑料,PVDF、PFA或PTFE是合适的。In the
晶片处理设备10包括:晶片处理池11和在晶片处理池11中用来摆动晶片夹具21的夹持驱动机构31。优选地,晶片处理设备10具有超声波池61。The
在处理晶片前,向晶片处理池11中注入处理液(腐蚀剂)。晶片处理池11具有四缘溢液池12。处理液通过具有过滤器的循环器71从晶片处理池11的底部注入。从晶片处理池11溢出的处理液贮存在四缘溢液池12中并从该四缘溢液池12的底部排出到循环器71中。在该晶片处理设备10中,夹具驱动机构31摆动晶片夹具21,同时搅动处理液。因此,具备四缘溢液池12的循环系统对于保持处理液的液面恒定非常有用。Before processing a wafer, a processing solution (etchant) is injected into the
作为晶片夹具21,可采用工业上可得到的产品。优选地,晶片夹具21由石英玻璃或塑料构成。作为塑料,可采用氟化塑料、氯乙烯、聚乙烯、聚丙烯、PBT或PEEK。作为氟化塑料,PVDF、PFA或PTFE是合适的。As the
夹具驱动机构31有一对用来夹持晶片夹具21的夹持部分31a。晶片夹具21被两个夹持部分31a夹住并浸入晶片处理池11。当在晶片处理池11中摆动晶片夹具21时可以对晶片40进行所期望的加工。夹持驱动机构31可以把夹持在上一步骤已被处理的晶片40的晶片夹具21传递到晶片处理池11或下一步骤中。而且夹具驱动机构31还是晶片处理设备10的一部分。The
在本实施方案中,夹持部分31a夹住晶片夹具21,使得晶片40被间接夹住。然而,可以用如卡盘垫代替夹持部分31a,直接夹住晶片40。晶片40夹持方向不限于垂直于晶片处理池11底面的方向,也可与底面平行。In the present embodiment, the clamping
超声波池61具有超声波源51并充满超声波传播介质(如水)。超声波源51固定在用来调节超声波源51的垂直和/或水平位置的调节机构62上。当通过调节机构62调节超声波源51和晶片处理池11之间的位置关系时,可以优化供应到晶片处理池11,更具体地到晶片40的超声波。优选地,超声波源51具有调节所产生的超声波的频率和强度的功能。通过这种装置可进一步优化超声波的供应。通过增加优化超声波向晶片40供应的功能,可以一个一个地向多种晶片供应超声波。The
晶片处理设备10具有对超声波源51开/关控制的控制部分。通过该控制部分可控制多孔层的去除加工。(晶片处理设备的第三装置)The
图6是适于去除多孔层的晶片处理设备的示意装置图。图7A~7E示出图6所示晶片处理设备的动作。图8是图6所示晶片处理设备中的摆动支承部件的立体图。Figure 6 is a schematic setup diagram of a wafer processing apparatus suitable for removing a porous layer. 7A to 7E show operations of the wafer processing equipment shown in FIG. 6 . FIG. 8 is a perspective view of a swing support member in the wafer processing apparatus shown in FIG. 6. FIG.
为了提高夹具驱动机构31摆动晶片40的效率,晶片处理池11在其底面上优选地具有摆动支承部件13。当晶片夹具21移动时,摆动支承部件13与晶片夹具21所夹持的晶片40侧面接触,通过摩擦力使晶片40滚动并上下移动、摆动支承部件13有助于提高被处理晶片的表面均匀性。In order to improve the efficiency with which the
如果采用一个驱动机构使摆动支承部件13垂直(Y轴方向)和/或水平(X轴方向)移动,也是有效的。这种情况下,摆动支承部件13自己移动去转动晶片40并使晶片40在晶片夹具21内上下移动。因此,夹具驱动机构31使晶片夹具21移动的范围就很小,换言之,晶片处理池11变得结构紧凑。It is also effective if a drive mechanism is used to move the
超声波池61具有超声波源51且充满超声波传播媒质(如水)。超声波源51固定在调节机构62上以调节超声波源51的垂直和/或水平位置,当用调节机构62调节超声波源51和晶片处理池11之间的相对位置时,可以优化供应给晶片处理池11,更具体地说是晶片40的超声波。优选地,超声波源51具有调节所产生的超声波的频率和强度的功能。通过这种装置,可进一步优化超声波的供应。通过增加优化向晶片40供应超声波的功能,可以一个一个地向多种晶供应超声波。The
晶片处理设备10具有对超声波源51进行开/关控制的控制部分。利用该控制部分可以控制多孔层的去除加工。The
图7A~7E用于解释晶片摆动方法。在这些图中,箭头表示晶片夹具21的移动方向。图7A示出晶片即将开始摆动时的状态。当得到摆动动作开始的指令时,如图7B所示,在微机控制下夹具摆动机构31向下按压夹持部分31a。晶片40的侧面在该按压的中途与摆动支承部件13接触。晶片40在下部被摆动支承部件13支承。7A to 7E are used to explain the wafer swing method. In these figures, arrows indicate the moving direction of the
当摆动支承部件13与晶片40接触时,无论量多少总会产生一些微粒。为防止这一点,摆动支承部件13的端部优选地加工成图8所示的圆形,与晶片40平滑接触。When the
由于摆动支承部件13只需支承晶片40的摆动,故其形状可以不阻碍超声波的传播,如为薄板状。通过这种设置,超声波可以被均匀地提供给晶片40,可以对晶片40进行均匀的处理。Since the
在晶片处理设备10中,当改变晶片40和摆动支承部件13的相对位置即晶片40和晶片处理池11的相对位置时,对晶片40进行处理。所以,摆动支承部件13造成的超声波的轻微不均匀性不是什么问题。In the
当晶片夹具21的按压量大到一定程度时,晶片40和摆动支承部件13之间的接触压力会增加。由此,可消除摆动支承部件13和晶片40之间的滑动以防止动作失误。如果按压量小,晶片40的重量更多地落在晶片夹具21上而不是摆动支承部件13的端部上。如果摆动支承部件13具有本实施方案所采用的形状,在晶片40和摆动支承部件13接触后,按压量优选地设置为约30mm。When the pressing amount of the
当按压晶片夹具21的操作结束时,如图7C所示,在微机控制下夹具驱动机构31将夹持部分31a右移(X轴正方向)。当正时针旋转时,晶片40在晶片处理池11中基本上水平右移(X轴正方向)。夹持部分31a的按压量必须设置在使夹持部分31a不与晶片夹具21的下部开口部分相碰的范围内。When the operation of pressing the
当晶片夹具21的右移(X轴正方向)运动结束时,如图7D所示,在微机控制下夹具驱动机构31使夹持部分31a上移。夹持部分31a的移动是优选地设置为使晶片40不接近处理液液面的范围内。如果晶片40接近液面41,微粒会粘在晶片40的表面上。When the movement of the
当晶片夹具21的上移运动结束后,在微机控制下夹具驱动机构31使夹持部分31a左移(X轴负方向),如图7E所示,然后恢复起始状态(图7A)。After the upward movement of the
通过重复上述操作(图7A→7B→7C→7D→7E),晶片40可被恰当地摆动和均匀的加工。By repeating the above operations (FIG. 7A→7B→7C→7D→7E), the
根据晶片处理设备10,在通过调节超声波池61使超声波供应优化的区域内摆动晶片40,可以优化作用在晶片40上的超声波。According to the
众所周知,超声波的驻波在预定间隔上有波节和反波节。因此,难以使晶片处理池11中的超声波均匀化。It is well known that a standing wave of ultrasonic waves has nodes and anti-nodes at predetermined intervals. Therefore, it is difficult to uniformize the ultrasonic waves in the
然而在该晶片处理设备10中,由于夹具驱动机构31摆动晶片40,尽管超声波的强度分布不均匀,晶片40也可被均匀地处理。即使晶片40仅仅简单地在水平方向、垂直方向或倾斜方向移动,晶片40也可被均匀地加工。当晶片40也在轴向(Z轴方向)摆动时,水平面上超声波的高强部分造成的晶片间的加工不均匀性也可被纠正。In this
由于晶片处理设备10具有摆动支承部件13,晶片40的摆动量可被有效地增加。摆动支承部件13的固定位置不限于晶片处理池11的底部。只要摆动支承部件13可接触到晶片夹具21内的所有晶片40,摆动支承部件13可固定在晶片处理池11的内壁上或夹具驱动机构31上(这时,需要有改变夹持部分31a和摆动支承部件13之间相对位置的机构)。Since the
而且,根据晶片处理设备10,由于在晶片处理池11中没有驱动机构,所以没有驱动机构的动作产生的微粒。(晶片处理设备的第四装置)Also, according to the
图9示意示出适合去除多孔层的晶片处理设备的装置。Fig. 9 schematically shows an arrangement of a wafer processing apparatus suitable for removing a porous layer.
在晶片处理设备300中,晶片40被夹持在与晶片处理池11底面基本平行的位置(即与超声波的振动面基本平行),并完全浸入晶片处理池11的处理液(腐蚀剂),在此状态下,由晶片移动机构80摆动晶片,实现对晶片40的均匀处理并可防止微粒的污染。In the
晶片移动机构80用臂81夹持晶片40,并在晶片处理池11中摆动晶片40。优选地,在横穿超声波振动面的方向(即垂直方向)上和平行于超声波振动面的方向(即水平方向)上摆动晶片40。The
而且在该晶片处理设备300中,优选地,晶片40完全浸入处理液进行处理。在这种情况下,可防止在处理液与气体界面附近微粒粘附在晶片40上。Also in the
根据晶片处理设备300,通过在晶片处理池11中摆动晶片40可以实现对其均匀加工。(晶片处理设备的第五装置)According to the
图10示意示出适合去除多孔层的晶片处理设备的装置。在晶片处理设备的第二到第四装置中,晶片在摆动时进行加工。而在晶片处理设备500中,是提高处理液(腐蚀剂)的流速而不是摆动晶片。Fig. 10 schematically shows an arrangement of a wafer processing apparatus suitable for removing a porous layer. In the second to fourth devices of the wafer processing apparatus, the wafer is processed while being oscillated. In contrast, in the
在晶片处理设备500中,用于支承晶片夹具21的支承部分73设置在晶片处理池11的下部。由循环器71供应的处理液从支承部分73下面的喷口72高速喷出。支承部分73有多个开口部分,喷口72喷出的处理液经开口部分向上移动。In the
当处理液高速循环时,晶片40可被均匀地处理。When the processing liquid is circulated at a high speed, the
在如图5所示的晶片处理设备10中安装上述循环机构(71~73),也是有效的。(晶片处理设备的第六装置)It is also effective to install the above-mentioned circulation mechanism (71-73) in the
在上述晶片处理设备中,通过开关控制超声波源实现超声波的供应或不供应。另外,如果需要也可在超声波源和晶片之间插入用于屏蔽超声波的机构。In the above-mentioned wafer processing equipment, the supply or non-supply of ultrasonic waves is realized by controlling the ultrasonic source through a switch. In addition, a mechanism for shielding ultrasonic waves may be inserted between the ultrasonic wave source and the wafer if necessary.
下面描述图5或图6的晶片处理设备的变形。图11A和11B示出图5或图6所示晶片处理设备的变形。在图11A和11B中,溢液池和循环器被省略了。Modifications of the wafer processing apparatus of FIG. 5 or 6 are described below. 11A and 11B show modifications of the wafer processing apparatus shown in FIG. 5 or 6 . In Figures 11A and 11B, the overflow tank and circulator are omitted.
如果需要,该晶片处理设备的变形在超声波源51和晶片处理池11的底面之间设有屏蔽超声波的保护门91和92。如图11A所示,为了把超声波传到晶片处理池11,驱动部分(未图示)打开保护门91和92。为了屏蔽超声波使其不进入晶片处理池11,如图11B所示,驱动部分(未图示)关闭保护门91和92。作为保护门91和92的材料,几乎不传播超声波的材料如PFA或PTFE是合适的。(晶片处理设置的第七装置)A modification of the wafer processing apparatus is provided with
图12A~12C示意示出适合去除多孔层的晶片处理设备的装置,图12A是前视图,图12B是侧视图,图12C是平面图。12A to 12C schematically show the apparatus of a wafer processing apparatus suitable for removing the porous layer, FIG. 12A is a front view, FIG. 12B is a side view, and FIG. 12C is a plan view.
在晶片处理设备700中,由喷射嘴700喷射流体束701(如水),用该喷射流体去除晶片40的多孔层。In the
在图12A~12C示出的实例中,当喷射嘴700的喷射流体垂直于晶片400时,喷射嘴700在正轴方向上扫描,由此去除整个表面上的多孔层40a。In the example shown in FIGS. 12A to 12C , when the spray fluid of the
下面描述上述多孔层去除方法的实例。(实例1)Examples of the above-mentioned porous layer removal method are described below. (Example 1)
在单晶硅衬底的表面上形成一层抗HF腐蚀的材料构成的膜,且为了形成有开口的掩摸对该膜制作了图形。暴露在开口部分的单晶硅衬底在HF溶液中阳极化以形成多孔层。通过这种工艺在单晶硅衬底上形成50μm厚的多孔层。然后,去除掩摸。也可以不在单晶硅衬底上形成掩膜,而是将单晶硅衬底放在夹具上,使HF溶液只接触到要形成多孔层并进行阳极化的的区域。A film of a material resistant to HF corrosion was formed on the surface of a single crystal silicon substrate, and the film was patterned for forming a mask with openings. The single crystal silicon substrate exposed at the opening portion was anodized in HF solution to form a porous layer. A 50 µm thick porous layer was formed on a single crystal silicon substrate by this process. Then, remove the mask. Instead of forming a mask on the single crystal silicon substrate, the single crystal silicon substrate may be placed on a jig so that the HF solution only touches the region where the porous layer is to be formed and anodized.
将得到的衬底放入图4所示的晶片处理设备100中。图4所示的晶片处理设备100的晶片处理池110中已预先注入氢氟酸、过氧化氢和纯水的混合溶液(腐蚀剂)。在晶片处理设备100中,衬底被转动两小时,同时施加近1MHz的超声波将腐蚀剂注入多孔硅层的孔中。The obtained substrate was placed in the
然后停止超声波源131,使衬底在晶片处理池110中保持1小时,通过这种处理,多孔硅层的孔壁变薄了。Then the
然后,用图12A~12C所示的设备将多孔硅层全部去除。结果,在衬底上形成了深50μm的凹槽部分。Then, the porous silicon layer was completely removed using the apparatus shown in Figs. 12A to 12C. As a result, a groove portion with a depth of 50 µm was formed on the substrate.
采用图5、6、或9所示的设备也可得一与如上所述相同的结构。(实例2)Using the apparatus shown in Fig. 5, 6, or 9 also obtains a structure identical to that described above. (Example 2)
在单晶硅衬底的表面上形成一层抗HF腐蚀的材料构成的膜,且为了形成有开口的掩膜对该膜制作了图形。暴露在开口部分的单晶硅衬底在HF溶液中阳极化以形成直达下表面的多孔层。然后,去除掩摸。也可以不在单晶硅衬底上形成掩膜,而是将单晶硅衬底放在夹具上,使HF溶液只接触到要形成多孔层并进行阳极化的区域。A film of a material resistant to HF corrosion was formed on the surface of a single crystal silicon substrate, and the film was patterned for forming a mask with openings. The single crystal silicon substrate exposed at the opening portion was anodized in HF solution to form a porous layer up to the lower surface. Then, remove the mask. It is also possible not to form a mask on the single crystal silicon substrate, but to place the single crystal silicon substrate on a jig so that the HF solution only touches the area where the porous layer is to be formed and anodized.
然后,用外延生长法在衬底表面上形成一厚为1μm的单晶硅层作为得到的结构。Then, a single-crystal Si layer was formed to a thickness of 1 m on the surface of the substrate by epitaxial growth as the resultant structure.
将得到的衬底放入图4所示的晶片处理设备100。图4所示的晶片处理设备100的晶片处理池110中已预先注入氢氟酸、过氧化氢和纯水的混合溶液(腐蚀剂)。在晶片处理设备100中,衬底被转动约6小时,同时施加近0.25MHz的超声波将腐蚀剂注入多孔硅层的孔中。The resulting substrate was placed in a
然后停止超声波源131,使衬底在晶片处理池110中保持2小时,通过这种处理,多孔硅层的孔壁变薄了。Then the
重新启动超声波源131五分钟以完全去除多孔硅层,结果,在多孔硅层上形成了包括外延层(单晶硅层)的单晶硅膜。整个表面上的外延层厚度基本相同。The
如图2C所示,通过预先部分地去除外延层(单晶硅层),可以形成单晶硅的悬臂梁结构。As shown in FIG. 2C, by partially removing the epitaxial layer (single crystal silicon layer) in advance, a cantilever beam structure of single crystal silicon can be formed.
采用图5、6、或9所示的设备也可得到与如上所述相同的结构。(实例3)The same structure as described above can also be obtained by using the apparatus shown in Fig. 5, 6, or 9. (Example 3)
准备第一单晶硅衬底。在HF溶液中对表层阳极化以形成多孔硅层,阳极化条件如下:Prepare the first single crystal silicon substrate. The surface layer is anodized in HF solution to form a porous silicon layer, and the anodization conditions are as follows:
电流密度:7(mA/cm2)Current density: 7 (mA/cm 2 )
阳极化溶液:HF∶H2O∶C2H5OH=1∶1∶1Anodizing solution: HF: H 2 O: C 2 H 5 OH=1:1:1
时间:11(min)Time: 11(min)
多孔硅层厚度:12(μm)Porous silicon layer thickness: 12 (μm)
该衬底在氧气氛中400℃氧化1h。通过这种氧化多孔硅层的每个孔的内壁上覆盖一热氧化膜。在多孔硅层上用CVD(化学气相沉积)法外延生长一厚为0.30μm的单晶硅层。生长条件如下:The substrate was oxidized at 400°C for 1 h in an oxygen atmosphere. The inner wall of each hole passing through this oxidized porous silicon layer is covered with a thermally oxidized film. On the porous silicon layer, a single crystal silicon layer was epitaxially grown to a thickness of 0.30 m by CVD (Chemical Vapor Deposition). The growth conditions were as follows:
源气体:SiH2Cl2/H2 Source gas: SiH 2 Cl 2 /H 2
气流速度:0.5/180(l/min)Air velocity: 0.5/180(l/min)
气压:80(乇)Air pressure: 80 (Torr)
温度:950(℃)Temperature: 950(℃)
生长速度:0.3(μm/min)Growth rate: 0.3(μm/min)
然后,用热氧化法在外延硅层上形成一厚度为200nm的SiO2层。Then, a SiO 2 layer with a thickness of 200 nm was formed on the epitaxial silicon layer by thermal oxidation.
第一衬底的SiO2层的表面与另一分离准备的衬底(第二衬底)的表面相粘合。The surface of the SiO2 layer of the first substrate was bonded to the surface of another separately prepared substrate (second substrate).
用研磨、抛光或蚀刻法去除第一衬底侧,使在第二衬底的整个平面上的多孔硅层暴露出来。The first substrate side is removed by grinding, polishing or etching to expose the porous silicon layer on the entire plane of the second substrate.
把第二衬底放入图4所示的晶片处理设备100中。图4所示的晶片处理设备100的晶片处理池110中已预注入氢氟酸、过氧化氢和纯水的混合溶液(腐蚀剂)。在晶片处理设备100中,衬底被转动1.5小时,同时施加近0.25MHz的超声波将腐蚀剂注入多孔硅层的孔中。The second substrate is placed in the
然后停止超声波源131,使衬底在晶片处理池110中保持1小时,通过这种处理,多孔硅层的孔壁变薄了。Then the
重新启动超声波源131五分钟以彻底去除多孔硅层。此时,如图10所示,当腐蚀剂循环适当时,可提高被加工衬底的表面均匀性。Restart the
对多孔硅层的腐蚀剂施加超声波,转动衬底并同时循环腐蚀剂以把腐蚀剂注入衬底上多孔层的孔中。然后,停止施加超声波,将衬底保持一段合适的时间。通过这种处理,每一个衬底的整个表面区域上的多孔硅层的孔都可以被充分地减薄。通过在这种状态下再次施加超声波,可以在每个衬底的整个区域上均匀地立即去除残余的多孔硅层。Ultrasonic waves are applied to the etchant of the porous silicon layer, and the substrate is rotated while circulating the etchant to inject the etchant into the pores of the porous layer on the substrate. Then, the application of ultrasonic waves is stopped, and the substrate is held for a suitable period of time. Through this treatment, the pores of the porous silicon layer over the entire surface area of each substrate can be sufficiently thinned. By applying ultrasonic waves again in this state, the residual porous silicon layer can be removed uniformly and immediately over the entire area of each substrate.
用图5、6或9所示的设备可以得到如上所述的同样的结果。The same results as described above can be obtained with the apparatus shown in Fig. 5, 6 or 9.
即使不是在停止施加超声波后再次施加,而是采用下面的任一种方法,都可以高质量地去除残余的多孔硅层:The residual porous silicon layer can be removed with high quality even if the application of ultrasonic waves is not applied again after stopping the application, but by any of the following methods:
(1)将得到的结构浸入氢氟酸、硝酸和纯水的混合溶液中约5秒钟,去除多孔层。(1) The obtained structure was immersed in a mixed solution of hydrofluoric acid, nitric acid and pure water for about 5 seconds to remove the porous layer.
(2)用抛光法去除多孔硅层。(2) The porous silicon layer is removed by polishing.
(3)用擦洗法去除多孔硅层。(3) Remove the porous silicon layer by scrubbing.
(4)以如100kg/cm3压力的喷射水流扫描衬底,去除多孔硅层。(4) Scan the substrate with a jet of water at a pressure of eg 100kg/cm 3 to remove the porous silicon layer.
在去除多孔硅层的步骤中,单晶硅层用作腐蚀阻止层,使多孔硅层被选择腐蚀和完全去除。In the step of removing the porous silicon layer, the single crystal silicon layer serves as an etching stopper so that the porous silicon layer is selectively etched and completely removed.
无孔硅单晶在上述腐蚀剂中的腐蚀速度非常慢。无孔硅单晶的腐蚀速度和多孔层腐蚀速度的选择比值为≥105。无孔层的腐蚀量(约几十个埃)在实际应用中是允许的。The etching speed of non-porous silicon single crystal in the above etchant is very slow. The selective ratio of the etching speed of the non-porous silicon single crystal to the etching speed of the porous layer is ≥10 5 . The corrosion amount of the non-porous layer (about tens of angstroms) is allowed in practical applications.
通过上述处理,形成了在氧化硅膜上有0.2μm厚的单晶硅层的SOI衬底。在整个表面上对得到的单晶硅层的厚度进行了100点测量,厚度为201nm±4nm。Through the above treatment, an SOI substrate having a 0.2 µm thick single crystal silicon layer on a silicon oxide film was formed. The thickness of the obtained monocrystalline silicon layer was measured at 100 points over the entire surface, and the thickness was 201 nm ± 4 nm.
将得到的结构热处理:氢气中1100℃保温1小时,然后用原子力显微镜测表面粗糙度。平均面积粗糙度为5μm平方面积为约0.2nm。这几乎与工业上的硅晶片相同。The obtained structure was heat-treated: the temperature was kept at 1100° C. for 1 hour in hydrogen, and then the surface roughness was measured with an atomic force microscope. The average area roughness is about 0.2 nm for a 5 μm square area. This is almost the same as a silicon wafer in industry.
用透射电子显微镜进行断面观察表明,在单晶硅层中没有形成新的晶体缺陷,保持着满意的结晶度。Cross-sectional observation with a transmission electron microscope showed that no new crystal defects were formed in the single-crystal silicon layer, and satisfactory crystallinity was maintained.
即使氧化膜(SiO2)不是在外延层表面上形成而是在第二衬底表面或所有这些表面上形成,也可得到与上述相同的结果。Even if the oxide film (SiO 2 ) is formed not on the surface of the epitaxial layer but on the surface of the second substrate or all of these surfaces, the same results as above can be obtained.
即使石英玻璃之类的透明衬底用作第二衬底,也可得到满意的结果。然而在这种情况下,由于石英玻璃和单晶硅层的热膨胀系数有差别会在单晶硅层上形成狭缝,在氢气中热处理的温度从1100℃降到≤1000℃。(实例4)Satisfactory results can be obtained even if a transparent substrate such as quartz glass is used as the second substrate. However, in this case, due to the difference in thermal expansion coefficient between the quartz glass and the single crystal silicon layer, a slit will be formed on the single crystal silicon layer, and the temperature of the heat treatment in hydrogen is reduced from 1100°C to ≤1000°C. (Example 4)
将第二衬底在HF溶液中进行两步阳极化以形成两个多孔层,阳极化处理的条件如下:<第一步阳极化处理>The second substrate is subjected to two-step anodization in HF solution to form two porous layers, and the conditions of anodization are as follows: <the first step of anodization>
电流密度:7(mA/cm2)Current density: 7 (mA/cm 2 )
阳极化溶液:HF∶H2O∶C2H5OH=1∶1∶1Anodizing solution: HF: H 2 O: C 2 H 5 OH=1:1:1
时间:5(min)Time: 5(min)
多孔硅层厚度:5.5(μm)<第二步阳极化处理>Porous silicon layer thickness: 5.5 (μm) <Second step anodizing treatment>
电流密度:30(mA/cm2)Current density: 30 (mA/cm 2 )
阳极化溶液:HF∶H2O∶C2H5H=1∶1∶1Anodizing solution: HF:H 2 O:C 2 H 5 H=1:1:1
时间:110(sec)Time: 110(sec)
多孔硅层厚度:3(μm)Porous silicon layer thickness: 3 (μm)
该衬底在氧气氛中400℃氧化1小时。通过这种氧化多孔硅层的每个孔的内壁上覆盖一热氧化膜。在多孔硅层上用CVD(化学气相沉积)法延生长一厚为0.15μm的单晶硅层。生长条件如下:The substrate was oxidized at 400°C for 1 hour in an oxygen atmosphere. The inner wall of each hole passing through this oxidized porous silicon layer is covered with a thermally oxidized film. A single crystal silicon layer with a thickness of 0.15 µm was grown on the porous silicon layer by CVD (Chemical Vapor Deposition). The growth conditions were as follows:
源气体:SiH2Cl2/H2 Source gas: SiH 2 Cl 2 /H 2
气流速度:0.5/180(l/min)Air velocity: 0.5/180(l/min)
气压:80(乇)Air pressure: 80 (Torr)
温度:950(℃)Temperature: 950(℃)
生长速度:0.3(μm/min)Growth rate: 0.3(μm/min)
然后,用热氧化法在外延硅层上形成一厚度为100nm的SiO2层。Then, a SiO 2 layer with a thickness of 100 nm was formed on the epitaxial silicon layer by thermal oxidation.
第一衬底的SiO2层的表面与另一分离准备的衬底(第二衬底)的表面相粘合。The surface of the SiO2 layer of the first substrate was bonded to the surface of another separately prepared substrate (second substrate).
沿在30mA/cm2的电流密度(第二步阳极化处理)下形成的多孔硅层把粘合的层叠衬底分成两个衬底,把多孔硅层暴露在第二衬底那一侧的整个表面上。为了分开粘合层叠衬底,可对衬底机械拉伸、扭转、压缩、沿粘合边缘楔入、从端面进行氧化以使剥离、用热应力、施加超声波,或向粘合层叠衬底的边缘喷射水流等。The bonded laminated substrate was divided into two substrates along the porous silicon layer formed at a current density of 30 mA/cm ( second -step anodization treatment), and the porous silicon layer was exposed on the side of the second substrate. on the entire surface. To separate bonded laminated substrates, the substrates may be mechanically stretched, twisted, compressed, wedged along the bonded edges, oxidized from the end faces for peeling, thermally stressed, ultrasonic waves are applied, or applied to the bonded laminated substrates. Edge water jets, etc.
将第二衬底放入图4所示的晶片处理设备100。图4所示晶片处理设备100的晶片处理池110中已预先注入氢氟酸、过氧化氢和纯水的混合溶液(腐蚀剂)。在晶片处理设备100中,衬底被转动1.5小时,同时施加近0.25MHz的超声波将腐蚀剂注入多孔硅层的孔中。The second substrate is placed in the
然后停止超声波源131,使衬底在晶片处理池110中保持1小时,通过这种处理,多孔硅层的孔壁变薄了。Then the
重新启动超声波源131五分钟以彻底去除多孔硅层。此时,如图10所示,当腐蚀剂循环适当时,可提高被加工衬底的表面均匀性。Restart the
对多孔硅层的腐蚀剂施加超声波,转动衬底并同时循环腐蚀剂以把腐蚀剂注入衬底上多孔层的孔中。然后,停止施加超声波,将衬底保持一段合适的时间。通过这种处理,每一个衬底的整个表面区域上的多孔硅层的孔都可以被充分地减薄。通过在这种状态下再次施加超声波,可以在每个衬底的整个区域上均匀地立即去除残余的多孔硅层。Ultrasonic waves are applied to the etchant of the porous silicon layer, and the substrate is rotated while circulating the etchant to inject the etchant into the pores of the porous layer on the substrate. Then, the application of ultrasonic waves is stopped, and the substrate is held for a suitable period of time. Through this treatment, the pores of the porous silicon layer over the entire surface area of each substrate can be sufficiently thinned. By applying ultrasonic waves again in this state, the residual porous silicon layer can be removed uniformly and immediately over the entire area of each substrate.
用图5、6或9所示的设备可以得到与如上所述同样的结果。The same results as described above can be obtained with the apparatus shown in Fig. 5, 6 or 9.
即使不是在停止施加超声波后再次施加,而是采用下面的任一种方法,都可以高质量地去除残余的多孔硅层:The residual porous silicon layer can be removed with high quality even if the application of ultrasonic waves is not applied again after stopping the application, but by any of the following methods:
(1)将得到的结构浸入氢氟酸、硝酸和纯水的混合溶液中约5秒钟,去除多孔层。(1) The obtained structure was immersed in a mixed solution of hydrofluoric acid, nitric acid and pure water for about 5 seconds to remove the porous layer.
(2)用抛光法去除多孔硅层。(2) The porous silicon layer is removed by polishing.
(3)用擦洗法去除多孔硅层。(3) Remove the porous silicon layer by scrubbing.
(4)以如100kg/cm3压力的喷射水流扫描衬底,去除多孔硅层。(4) Scan the substrate with a jet of water at a pressure of eg 100kg/cm 3 to remove the porous silicon layer.
在去除多孔硅层的步骤中,单晶硅层用作腐蚀阻止层,使多孔硅层被选择腐蚀和完全去除。In the step of removing the porous silicon layer, the single crystal silicon layer serves as an etching stopper so that the porous silicon layer is selectively etched and completely removed.
无孔硅单晶在上述腐蚀剂中的腐蚀速度非常慢。无孔硅单晶的腐蚀速度和多孔层腐蚀速度的选择比值为≥105。在实际应用中无孔层的腐蚀量(约几十个埃)是容许的。The etching speed of non-porous silicon single crystal in the above etchant is very slow. The selective ratio of the etching speed of the non-porous silicon single crystal to the etching speed of the porous layer is ≥10 5 . In practical applications, the corrosion amount of the non-porous layer (about tens of angstroms) is acceptable.
通过上述处理,形成了在氧化硅膜上有0.2μm厚的单晶硅层的SOI衬底。在整个表面上对得到的单晶硅层的厚度进行了100点测量,厚度为201nm±4nm。Through the above treatment, an SOI substrate having a 0.2 µm thick single crystal silicon layer on a silicon oxide film was formed. The thickness of the obtained monocrystalline silicon layer was measured at 100 points over the entire surface, and the thickness was 201 nm ± 4 nm.
将得到的结构热处理:氢气中1100℃保温1小、时,然后用原子力显微镜测表面粗糙度。平均面积粗糙度为5μm平方面积为约0.2nm。这几平与工业上的硅晶片相同。Heat treatment of the obtained structure: heat preservation at 1100° C. for 1 hour in hydrogen, and then measure the surface roughness with an atomic force microscope. The average area roughness is about 0.2 nm for a 5 μm square area. These levels are the same as industrial silicon wafers.
用透射电子显微镜进行断面观察表明,在单晶硅层中没有形成新的晶体缺陷,保持着满意的结晶度。Cross-sectional observation with a transmission electron microscope showed that no new crystal defects were formed in the single-crystal silicon layer, and satisfactory crystallinity was maintained.
即使氧化膜(SiO2)不是在外延层表面上形成而是在第二衬底表面或所有这些表面上形成,也可得到与上述相同的结果。Even if the oxide film (SiO 2 ) is formed not on the surface of the epitaxial layer but on the surface of the second substrate or all of these surfaces, the same results as above can be obtained.
即使石英玻璃之类的透明衬底用作第二衬底,也可得到满意的结果。然而在这种情况下,由于石英玻璃和单晶硅层的热膨胀系数有差别会在单晶硅层上形成狭缝,在氢气中热处理的温度从1100℃降到≤1000℃。Satisfactory results can be obtained even if a transparent substrate such as quartz glass is used as the second substrate. However, in this case, due to the difference in thermal expansion coefficient between the quartz glass and the single crystal silicon layer, a slit will be formed on the single crystal silicon layer, and the temperature of the heat treatment in hydrogen is reduced from 1100°C to ≤1000°C.
当第一衬底侧留下的多孔硅层被选择腐蚀并进行表面处理如氢气退火或表面抛光,衬底可被回收作为第一或第二衬底。When the porous silicon layer left on the side of the first substrate is selectively etched and subjected to surface treatment such as hydrogen annealing or surface polishing, the substrate can be recycled as the first or second substrate.
即使是具有单层结构的由阳极化形成的多孔层也可得到如上所述的同样的结果。Even a porous layer formed by anodization having a single-layer structure can obtain the same results as described above.
在上面的实例中,作为在多孔硅层上形成单晶硅层的外延生长法,不仅可用CVD法,也可用MBE、溅射或液相生长法。在多孔硅层上还可外延生长单晶化合物半导体层GaAs或InP。在这种情况下,可以制造高频器件中硅上的GaAs或玻璃(石英)上的GaAs或适合于OEIC的衬底。In the above examples, as the epitaxial growth method for forming the single crystal silicon layer on the porous silicon layer, not only the CVD method but also the MBE, sputtering or liquid phase growth method can be used. A single crystal compound semiconductor layer GaAs or InP can also be epitaxially grown on the porous silicon layer. In this case, GaAs on silicon or GaAs on glass (quartz) in high-frequency devices can be fabricated or a substrate suitable for OEIC.
作为用于选择性腐蚀多孔硅层的腐蚀剂,49%氢氟酸和30%过氧化氢的混合溶液是合适的。然后,也可采用下面的腐蚀剂。由于多孔硅层具有很大的表面积,选择腐蚀很容易。As an etchant for selectively etching the porous silicon layer, a mixed solution of 49% hydrofluoric acid and 30% hydrogen peroxide is suitable. Then, the following etchant can also be used. Selective etching is easy due to the large surface area of the porous silicon layer.
(a)氢氟酸(a) Hydrofluoric acid
(b)向氢氟酸中至少加入乙醇或过氧化氢中的二者之一得到的混合溶液。(b) A mixed solution obtained by adding at least one of ethanol or hydrogen peroxide to hydrofluoric acid.
(c)缓冲氢氟酸(c) Buffered hydrofluoric acid
(d)向缓冲氢氟酸中至少加入乙醇或过氧化氢中的二者之一得到的混合溶液(d) A mixed solution obtained by adding at least one of ethanol or hydrogen peroxide to buffered hydrofluoric acid
(e)氢氟酸、硝酸和乙酸的混合溶液(e) Mixed solution of hydrofluoric acid, nitric acid and acetic acid
在上面的实例中,停止超声波源以实现停止使用超声波,但是,利用保护门也是有效的,如图11A和11B所示。In the above example, the ultrasonic source is stopped to realize the stopping of the use of ultrasonic waves, however, it is also effective to use a protective door, as shown in FIGS. 11A and 11B .
根据本发明,可保持多孔区域下面的层的平整度。According to the invention, the flatness of the layer below the porous region can be maintained.
本发明并不限于上述实施方案,在其精神和范围内可以作各种变化和改进。因此为了向公众说明本发明的范围,作了如下的权利要求。The present invention is not limited to the above-described embodiments, and various changes and modifications can be made within the spirit and scope thereof. Therefore to convey the scope of the present invention to the public, the following claims are made.
Claims (35)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 98125515 CN1222757A (en) | 1998-01-09 | 1998-12-25 | Porous region removing method and semiconductor substrate manufacturing method |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP003397/98 | 1998-01-09 | ||
| CN 98125515 CN1222757A (en) | 1998-01-09 | 1998-12-25 | Porous region removing method and semiconductor substrate manufacturing method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN1222757A true CN1222757A (en) | 1999-07-14 |
Family
ID=5229202
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 98125515 Pending CN1222757A (en) | 1998-01-09 | 1998-12-25 | Porous region removing method and semiconductor substrate manufacturing method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN1222757A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102962226A (en) * | 2012-12-06 | 2013-03-13 | 江苏吉星新材料有限公司 | Method for cleaning polished sapphire substrate wafer |
-
1998
- 1998-12-25 CN CN 98125515 patent/CN1222757A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102962226A (en) * | 2012-12-06 | 2013-03-13 | 江苏吉星新材料有限公司 | Method for cleaning polished sapphire substrate wafer |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN1111900C (en) | Chip processing device, wafer processing and preparation method of semiconductor substrate | |
| CN1223463A (en) | Porous region removing method and semiconductor substrate manufacturing method | |
| CN1187792C (en) | Method for cleaning porous body and manufacture the same, non-porous film or keyed lining | |
| CN1136604C (en) | Method for making semiconductor substrate parts | |
| CN1108632C (en) | Wafer processing apparatus, wafer processing method, and SOI wafer fabrication method | |
| CN1175498C (en) | Composite part, method for separating same, and method for producing semiconductor substrate | |
| CN1036813C (en) | Semiconductor substrate and manufacturing method thereof | |
| CN1090381C (en) | Fabrication process and fabrication apparatus of SOI substrate | |
| CN1157768C (en) | Method and apparatus for etching semiconductor article and method of preparing semiconductor article by using the same | |
| CN1076862C (en) | Fabrication process of SOI (silicon on insulator) substrate | |
| CN1127122C (en) | Substrate processing method and apparatus and SOI substrate | |
| CN1153258C (en) | Substrate processing apparatus, substrate support apparatus, substrate processing method, and substrate manufacturing method | |
| CN1299150A (en) | Combined elements separating method, film mfg. method and combined elements separating device | |
| CN1612290A (en) | Preparation method of nitride substrate for semiconductor and nitride semiconductor substrate | |
| CN1622281A (en) | Method for producing semiconductor device and cleaning device for resist stripping | |
| CN1149758A (en) | Manufacturing method of semiconductor substrate | |
| CN1104040C (en) | Wafer processing device, wafer transfer device, and wafer processing method | |
| CN101075570A (en) | Inspection method of compound semiconductor substrate, compound semiconductor substrate, surface treatment method of compound semiconductor substrate, and method of producing compound semiconductor cr | |
| CN1216059A (en) | Composition for cleaning and etching electronic display and substrate | |
| CN1153264C (en) | Object separation device and method, and semiconductor substrate manufacturing method | |
| CN1636087A (en) | A method for manufacturing an unsupported substrate made of single crystal semiconductor material | |
| CN1763916A (en) | Substrate processing equipment | |
| CN101038871A (en) | Surface treatment method of compound semiconductor substrate and fabrication method of compound semiconductor | |
| CN1830077A (en) | Method for producing a high quality useful layer on a substrate | |
| CN1684236A (en) | Vacuum device, particle monitoring method thereof, program, and window component for particle monitoring |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C06 | Publication | ||
| PB01 | Publication | ||
| C12 | Rejection of a patent application after its publication | ||
| RJ01 | Rejection of invention patent application after publication |