CN1421062A - Passive electrostatic shielding structures for electrical circuits and with external partial shielding energy channels - Google Patents
Passive electrostatic shielding structures for electrical circuits and with external partial shielding energy channels Download PDFInfo
- Publication number
- CN1421062A CN1421062A CN 01807462 CN01807462A CN1421062A CN 1421062 A CN1421062 A CN 1421062A CN 01807462 CN01807462 CN 01807462 CN 01807462 A CN01807462 A CN 01807462A CN 1421062 A CN1421062 A CN 1421062A
- Authority
- CN
- China
- Prior art keywords
- energy
- electrode
- conductive
- common
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
本发明涉及一种通用多功能共用传导屏蔽结构(9905),加上两个电反向差动的能量通道(810b,810f),该屏蔽结构局部使用一个带有叠层传导分层步进的电屏蔽体系结构,包含用于沿着利用旁路和馈通能量传播方式的成对的电差动通道同时进行能量传播的电路。
The present invention relates to a universal multifunctional shared conductive shielding structure (9905) coupled with two electrically oppositely differential energy channels (810b, 810f), the shielding structure locally utilizing an electrical shielding architecture with stacked conductive layered steps, comprising circuitry for simultaneously propagating energy along paired electrically differential channels utilizing bypass and feed-through energy propagation modes.
Description
技术领域technical field
本申请涉及一种通用多功能共用传导屏蔽结构,加上电反向差动的能量通道,该屏蔽结构局部使用一个法拉第屏蔽体系结构,该体系结构带有叠层传导分层步进,包含用于沿着利用旁路和馈通能量传播方式的成对的电差动通道传播的能量的电路。此外,对以预定方式包夹全部叠层传导分层步进的电和物理反向的差动电极的使用,提供另外的结构实施例。本发明也涉及分立的和非分立的通用多功能共用传导屏蔽结构,加上电反向差动的能量通道,该屏蔽结构局部使用一个法拉第屏蔽体系结构,该体系结构带有叠层传导分层步进,包含能包含能量传播方式的电路,并具有一个平衡的、中心定位的和共享共用的传导能量通道或电极,用于在通电的传导通道和电极之间互补地和同时地屏蔽和平滑能量去耦操作。本发明当通电时将几乎总是允许外部的局部屏蔽成对差动传导能量通道电极以及内含式反向成对差动传导能量通道电极这两种电极,分别平衡地、且以电反向互补的方式互相作用。The present application relates to a general purpose multifunctional shared conductive shielding structure, coupled with electrically reversed differential energy channels, which partially utilizes a Faraday shielding architecture with laminated conductive layered steps, including A circuit for propagating energy along pairs of electrically differential channels utilizing bypass and feedthrough energy propagation modes. Furthermore, the use of electrically and physically opposed differential electrodes sandwiching the entire stack of conductive layer steps in a predetermined manner provides a further structural embodiment. The present invention also relates to discrete and non-discrete general purpose multifunctional shared conductive shielding structures, coupled with electrically reversed differential energy pathways, which partially utilize a Faraday shielding architecture with laminated conductive layers Stepping, containing circuitry capable of encompassing energy propagation, and having a balanced, centrally located and shared common conducting energy channel or electrode for complementary and simultaneous shielding and smoothing between energized conducting channels and electrodes Energy decoupling operation. The present invention, when energized, will almost always allow both the outer, partially shielded pair of differentially conducted energy channel electrodes and the contained pair of reversed differentially conducted energy channel electrodes, respectively, to be balanced and electrically reversed. interact in complementary ways.
背景技术Background technique
本发明涉及一种用于电路和能量调节的分层式通用多功能共用传导屏蔽结构,加上电反向互补的能量通道。该屏蔽结构也具有一个共享的、中心定位的传导通道或电极,它能在通电的传导通道电极之间互补地和同时地屏蔽和允许平滑能量交互。本发明当通电时通常将允许内含式传导通道或电极分别和谐地、且以相位相反或反向带电的方式互相操作。当被放入电路并通电时,发明实施例也将提供EMI过滤和电冲击保护,与此同时在源和用能负载之间保持明显均匀或均衡的电压馈送。此外,本发明将几乎总是能够有效地提供同时的能量调节功能,包括旁通、能量和信号去耦、能量存储、以及集成电路栅的同时开关操作(SSO)状态中的持续平衡。随着发明实施例在电路内被被动地操作,这些调节功能被提供以被放置回电路系统中的寄生破坏性能量的最小贡献。The present invention relates to a layered general-purpose multifunctional shared conductive shielding structure for circuit and energy regulation, plus an electrically reversed complementary energy channel. The shielding structure also has a shared, centrally located conductive channel or electrode that complementarily and simultaneously shields and allows smooth energy interaction between energized conductive channel electrodes. The present invention, when energized, will generally allow the interoperability of the contained conductive channels or electrodes, respectively, in harmony and in opposite phase or oppositely charged manner. When placed into a circuit and energized, inventive embodiments will also provide EMI filtering and electrical surge protection, while maintaining a substantially uniform or balanced voltage feed between the source and energy consuming load. Furthermore, the present invention will almost always be effective in providing simultaneous energy regulation functions including bypassing, energy and signal decoupling, energy storage, and continuous balancing in simultaneous switching operation (SSO) states of integrated circuit gates. As inventive embodiments are passively operated within the circuit, these regulation functions are provided with minimal contribution of parasitic destructive energy placed back into the circuitry.
今天,随着全世界社会中电子器件的密度的增加,消除电磁干扰(EMI)和使电器产品免于这种干扰的政府标准或自定标准已经变得更加严格。仅仅在若干年前,干扰的主要原因的来源和条件诸如是电压失调、来自电冲击的乱真电压瞬变、人类、或其它电磁波发生器。Today, as the density of electronic devices in societies around the world increases, government or private standards for eliminating electromagnetic interference (EMI) and making electrical products immune to such interference have become more stringent. Only a few years ago, the main causes of interference were sources and conditions such as voltage imbalances, spurious voltage transients from electrical shocks, humans, or other electromagnetic wave generators.
在更高的工作频率,以现有技术部件传播能量的线调节已经导致以EMI、RFI和电容和感应寄生为形式的干扰的水平的增加。这些增加的原因是由于无源部件固有的制造失调和性能缺陷,在以更高工作频率工作时相关电路中产生或引起干扰。EMI也可能从电路自身中产生,因此需要对EMI屏蔽。差动和共用方式噪声能量能被生成并且将总是沿着并围绕电缆、电路板轨迹或迹线、高速传输线和总线通道而移动。在许多情况中,这些关键能源导体起着辐射能量场的天线的作用,使问题更加严重。At higher operating frequencies, line regulation of propagating energy with prior art components has resulted in increased levels of interference in the form of EMI, RFI, and capacitive and inductive parasitics. These increases are due to inherent manufacturing offsets and performance imperfections in passive components that create or cause interference in associated circuits when operating at higher operating frequencies. EMI can also be generated from the circuit itself, so EMI shielding is required. Differential and shared mode noise energy can be generated and will always travel along and around cables, circuit board traces or traces, high speed transmission lines and bus lanes. In many cases, these critical energy conductors act as antennas that radiate the energy field, compounding the problem.
其它EMI干扰源由有源硅部件在工作或转换时产生。诸如SSO之类的这些问题是电路破坏的臭名昭著的原因,产业中已知的问题包括无屏蔽的差动能量通道允许寄生能量自由耦合到电路,在高频上产生严重干扰。Other sources of EMI interference are generated by active silicon components during operation or switching. These problems, such as SSO, are notorious causes of circuit destruction, and problems known in the industry include unshielded differential energy paths allowing free coupling of parasitic energy into the circuit, creating severe interference at high frequencies.
其它对电路的破坏产生于大的电压瞬变以及由变化的地电势引起的地回路干扰,这会使准确平衡的计算机或电力系统无用。现有的电冲击和EMI保护器件已经不能在单个集成电路封装中提供足够的保护。各种分立的和连网的集总滤波器、去耦器、电冲击消除器、组合和电路配置已经证明是无效的,如现有技术的缺陷所表明的那样。Other damage to circuits arises from large voltage transients and ground loop disturbances caused by changing ground potentials, which can render a well-balanced computer or power system useless. Existing electrical shock and EMI protection devices have been unable to provide adequate protection in a single integrated circuit package. Various discrete and networked lumped filters, decouplers, surge eliminators, combinations and circuit configurations have proven ineffective, as demonstrated by the shortcomings of the prior art.
美国专利申请号09/594,447(2000年8月3日申请)的各个部分以及以下共同所有的专利(美国专利号6,097,581、6,018,448、5,909,350和5,142,430)的各部分,涉及对新的一组分立的多功能能量调节器的继续改进。09/594,447是美国申请号09/594,447(2000年6月15日申请)的待定申请的部分继续,09/594,447是美国申请号09/579,606(2000年5月26日申请)的待定申请的部分继续,09/579,606是美国申请号09/460,218(1999年12月13日申请)的待定申请的部分继续。这些多功能能量调节器提出一种共用共享、中心定位的共用传导电极,其结构能互补地和同时地与附接到外部载能传导通道的通电和成对的电互补的差动传导能量通道电极交互。Portions of U.S. Patent Application Serial No. 09/594,447 (filed August 3, 2000), as well as portions of the following commonly owned patents (U.S. Patent Nos. 6,097,581, 6,018,448, 5,909,350, and 5,142,430), relate to a new set of discrete multi- Continued improvement of functional energy regulators. 09/594,447 is a continuation-in-part of the pending application of U.S. Application No. 09/594,447 (filed June 15, 2000), 09/594,447 is a part-pending application of U.S. Application No. 09/579,606 (filed May 26, 2000) Continuation, 09/579,606 is a continuation-in-part of the pending application of US Application No. 09/460,218 (filed December 13, 1999). These multifunctional energy conditioners propose a common shared, centrally located common conduction electrode, structured to complementarily and simultaneously energize and pair electrically complementary differential conduction energy channels attached to external energy-carrying conduction channels Electrode interaction.
本申请拓展了这些构思,进一步披露了一种新的实施方案,申请人认为其作为电路保护和调节系统的一部分,有助于解决和减少工业问题和障碍。The present application expands on these concepts and further discloses a new implementation that applicants believe will help solve and reduce industrial problems and obstacles as part of a circuit protection and regulation system.
本申请也提供与现有技术相比具有前所未有的适应性或易于生产改装的制造基础结构。The present application also provides a manufacturing infrastructure with unprecedented adaptability or ease of production retrofitting compared to the prior art.
发明内容Contents of the invention
根据前面的介绍发现,需要提供一种分层式多功能共用传导屏蔽结构,在内容广泛的实施例内,该结构含有共享一个共用的、中心定位的、便于能量调节的共用传导通道或电极的能量传导通道,同时含有多个其它功能部件。In light of the foregoing, it has been discovered that there is a need to provide a layered multifunctional shared conductive shield structure that, in broad embodiments, includes components that share a common, centrally located, common conductive channel or electrode for easy energy regulation. The energy conduction channel also contains multiple other functional components.
该分层式多功能共用传导屏蔽结构也通过允许在分组的和通电的传导通道与实施例元件外部的各种传导通道之间进行预定的、同时的能量交互而对在电反向差动电极能量通道上存在的传播能量的各部分提供同时的物理和电屏蔽。This layered multifunctional common conductive shielding structure also protects against the electrically reversed differential electrodes by allowing predetermined, simultaneous energy interactions between the grouped and energized conductive channels and the various conductive channels external to the embodiment elements. The presence of portions of the propagating energy on the energy channel provides simultaneous physical and electrical shielding.
一种用于高频去耦的高级方法是提供位置紧密的低阻抗、在电反向差动电极能量通道或配电/信号平面的内部和相邻的平行能量通道,而不是在PCB上用多个平行的低阻抗去耦电容器来试图实现相同的目的。An advanced method for high-frequency decoupling is to provide closely located low-impedance, parallel energy paths inside and adjacent to the electrically reversed differential electrode energy paths or power distribution/signal planes, rather than on the PCB. Multiple low-impedance decoupling capacitors in parallel to try to achieve the same purpose.
相应地,按照本发明,对几百MHz以上的低阻抗配电的解决方案在于内部平行互补对准和定位的薄介电配电平面技术。Accordingly, according to the present invention, the solution to low impedance power distribution above a few hundred MHz lies in thin dielectric power distribution plane technology with internal parallel complementary alignment and positioning.
因此,本发明实施例的一个目的也是与单一部件或单一无源调节网络相比能够在宽的频率范围上有效地操作。理想情况下,本发明在其应用潜能方面能是通用的,并利用各种预定分组元件的实施例;工作发明将几乎总是在运行超过1GHz频率的系统内继续有效地执行。It is therefore also an object of embodiments of the present invention to be able to operate efficiently over a wide frequency range compared to a single component or a single passive regulation network. Ideally, the invention would be general in its application potential and utilize various embodiments of predetermined grouping elements; a working invention would almost always continue to perform effectively within systems operating at frequencies in excess of 1 GHz.
本发明实施例的一个目的是提供对有源系统的能量去耦,与此同时为该有源部件及其电路保持恒定的视在电位势。It is an object of embodiments of the present invention to provide energy decoupling to active systems while maintaining a constant apparent potential for the active components and their circuits.
本发明实施例的一个目的是最小化、消除或过滤由在开始受发明实施例影响的电子通道内流过的差动和共用方式电流产生的无益的电磁辐射。It is an object of embodiments of the present invention to minimize, eliminate or filter unwanted electromagnetic radiation generated by differential and common mode currents flowing in electronic pathways initially affected by embodiments of the invention.
本发明实施例的一个目的是提供用于传导能量通道的多功能共用传导屏蔽和能量调节结构,该结构具有各种各样的多层实施例并采用多种不受特定物理特性限制的介电材料,当被附加到电路中并通电时,能提供同时的线调节功能和保护,如将要说明的那样。It is an object of embodiments of the present invention to provide multifunctional common conductive shielding and energy conditioning structures for conductive energy pathways having a variety of multilayer embodiments and employing a variety of dielectrics not limited by specific physical properties The material, when attached to a circuit and energized, can provide both line conditioning and protection, as will be explained.
本发明实施例的一个目的是向用户提供解决现有技术器件解决不了的问题或局限的能力,这些问题或局限包括但不仅限于,同时的源至负载和/或负载至源的去耦、差动方式和共用方式EMI过滤、多数能量寄生的保留和排除、以及在一个集成实施例中的电冲击保护;以及在采用原始制造的实施例的外部的共用传导区或共用能量通道时执行所述的这些功能。It is an object of embodiments of the present invention to provide users with the ability to solve problems or limitations not addressed by prior art devices, including, but not limited to, simultaneous source-to-load and/or load-to-source decoupling, differential dynamic and shared mode EMI filtering, retention and removal of most energy parasitics, and electrical shock protection in an integrated embodiment; and performing said of these functions.
本发明实施例的一个目的是容易地适合于与一个或多个外部传导附件一起用于位于原始制造的发明的外部的共用传导区,这能帮助本发明实施例提供对电子系统电路的保护。此外,还从在职的向有源电子部件提供保护,后者来自由一个发明实施例本身贡献的电磁场辐射、过电压和消耗能量的电磁辐射,而在现有技术器件中则是以寄生的形式贡献回主电路中的。It is an object of embodiments of the present invention to be readily adaptable for use with one or more external conductive attachments for common conductive areas located outside of the original manufactured invention, which can help embodiments of the present invention provide protection to electronic system circuitry. Furthermore, protection is provided from active to active electronic components from electromagnetic field radiation, overvoltages and energy consuming electromagnetic radiation contributed by an inventive embodiment itself and in prior art devices in the form of parasitic contribute back to the main circuit.
本发明实施例的一个目的是提供一种物理上集成的、屏蔽包容的、传导电极体系结构,用于独立的电极材料和/或独立的介电材料成分,对于可能产生的本发明的多个可能实施例来说,该结构在被制造时,不把发明实施例限制在特定的形式、形状或大小,不限于本文所示各实施例。It is an object of embodiments of the present invention to provide a physically integrated, shielded contained, conductive electrode architecture for separate electrode materials and/or separate dielectric material compositions, for which multiple aspects of the present invention may be produced In terms of possible embodiments, the structures, when manufactured, do not limit inventive embodiments to a particular form, shape or size, and are not limited to the embodiments shown herein.
本发明实施例的一个目的是向用户提供一个实施例,让用户能实现能用于集成到多个电子产品中的比较价廉的、小型化的解决方案。It is an object of embodiments of the present invention to provide users with an embodiment that enables them to implement a relatively inexpensive, miniaturized solution that can be used for integration into multiple electronic products.
本发明实施例的一个目的是提供一个实施例,它能减少对为实现所希望的过滤和/或线调节所需的额外的支持分立无源部件的需要,这是现有技术部件不能提供的。It is an object of embodiments of the present invention to provide an embodiment that reduces the need for additional supporting discrete passive components to achieve the desired filtering and/or line conditioning, which cannot be provided by prior art components .
本发明实施例的一个目的是向用户提供一个实施例,让用户能实现一种容易制造的、通用的多功能电子实施例,以对当前在使用现有技术器件时面临的各种电问题和约束有一致性的解决方案。An object of embodiments of the present invention is to provide users with an embodiment that allows users to implement an easy-to-manufacture, general-purpose, multi-functional electronic embodiment to address various electrical issues and problems currently faced when using prior art devices. Constraints have consistent solutions.
本发明实施例的一个目的是提供一种实施例,其形式是分立或非分立器件、或者传导通道的预定分组,这些器件或传导通道构成一个多功能电子实施例,当附接到外部传导通道或预定的传导表面时,在宽的频率范围上有效地操作并同时对有源电路部件提供能量去耦,与此同时为电路各部分保持恒定的视在电位势。It is an object of embodiments of the present invention to provide an embodiment in the form of a predetermined grouping of discrete or non-discrete devices, or conductive paths, which constitute a multifunctional electronic embodiment which, when attached to external conductive paths or predetermined conductive surfaces, operate efficiently over a wide frequency range while providing energy decoupling to active circuit components while maintaining a constant apparent potential for each portion of the circuit.
本发明实施例的一个目的是提供一种实施例,其形式是分立或非分立器件、或者传导通道的预定分组,这些器件或传导通道构成一个多功能电子实施例,用于提供阻塞电路或使用该实施例固有的固有共用传导通道的电路,与外部传导表面或接地区组合起来提供从成对传导通道导体至另一个能量通道的连接,以衰减EMI和过电压。It is an object of embodiments of the present invention to provide an embodiment in the form of a predetermined grouping of discrete or non-discrete devices, or conductive paths, which constitute a multifunctional electronic embodiment for providing blocking circuits or using The inherent common conduction path circuitry inherent in this embodiment, in combination with an external conduction surface or ground area provides a connection from a pair of conduction path conductors to another energy path to attenuate EMI and overvoltage.
本发明实施例的一个目的是提供一种实施例,它采用标准制造工艺、由普通的介电材料和传导材料或合成传导材料构成,以在实施例内的电通道之间达到紧致的电容容限,与此同时为从源到使用能量的负载的能量传播保持一个恒定的、不间断的传导通道。It is an object of embodiments of the present invention to provide an embodiment that utilizes standard manufacturing processes, constructed of common dielectric materials and conductive materials or composite conductive materials, to achieve tight capacitance between electrical pathways within the embodiment Tolerance while maintaining a constant, uninterrupted conduction path for energy propagation from the source to the load that uses the energy.
最后,本发明实施例的一个目的是提供这样一个实施例,它将各对电导体非常紧密地互相耦合在一个部分被多个共同连接的传导电极、板、或通道封裹的区域或空间中,并使用户能选择有选择地将外部导体或通道耦合到作为该实施例一部分的单独的、非共用的能量通道或电极板上。Finally, it is an object of embodiments of the present invention to provide such an embodiment which very closely couples pairs of electrical conductors to each other in an area or space partially enclosed by a plurality of commonly connected conductive electrodes, plates, or channels , and give the user the option to selectively couple the external conductors or channels to separate, non-shared energy channels or electrode plates as part of this embodiment.
本说明也公开了实现或基于发明实施例的以上目的和优点的许多其它安排和配置,以展现本发明范围内的通用多功能共用传导屏蔽结构加上两个用于能量和EMI调节和保护的电反向差动的能量通道的多功能性和广泛应用。This description also discloses many other arrangements and configurations that achieve or are based on the above objects and advantages of the embodiments of the invention to present a general multifunctional shared conductive shielding structure within the scope of the invention plus two for energy and EMI regulation and protection Versatility and wide application of energy channels in electrical back-differentials.
附图说明Description of drawings
图1表示按照本发明的多功能共用传导电极通道和差动电极通道的详细平面图,它们层叠地位于通用法拉第屏蔽结构实施例9900的一部分内,实施例9900在图2中表示,具有叠层传导分层步进;Figure 1 shows a detailed plan view of multifunctional common conductive electrode channels and differential electrode channels stacked within a portion of a generalized Faraday shield structure embodiment 9900, shown in Figure 2, with stacked conductive layered stepping;
图2表示按照本发明的、具有叠层传导分层步进的通用法拉第屏蔽结构9900实施例的部件透视图;Figure 2 shows a component perspective view of an embodiment of a generalized Faraday shield structure 9900 with stacked conductive layered steps in accordance with the present invention;
图3表示按照本发明的、成对差动旁通电路调节实施例9905的剖面图,该实施例采用通用法拉第屏蔽结构的一个实施例部分,该结构具有电极叠层的传导分层步进,用于调节多个单独的旁通电路;Figure 3 shows a cross-sectional view of an embodiment 9905 of a paired differential bypass circuit regulation embodiment utilizing a portion of an embodiment of a general Faraday shield structure having conductive layered steps of an electrode stack, in accordance with the present invention, Used to regulate multiple individual bypass circuits;
图4表示按照本发明的两组差动、双扭线、跨接馈通电极能量通道的分层定位的俯视图;Fig. 4 shows the top view of the layered positioning of two groups of differential, twisted pair, and cross-over feedthrough electrode energy channels according to the present invention;
图5表示按照本发明的包含配置有分离的差动电极配置的电极能量通道的一组成对的“直接馈通”馈通电极分层的平面图;Figure 5 shows a plan view of a set of pairs of "direct feed-through" feed-through electrodes comprising electrode energy channels configured with a split differential electrode configuration in accordance with the present invention;
图6-6A表示的共用传导屏蔽电极通道的详细平面图表示按照本发明的典型的分离电极配置,图6B表示的详细平面图表示按照本发明的典型的分离电极配置;6-6A shows a detailed plan view of the common conductive shield electrode channel showing a typical split electrode configuration according to the present invention, and FIG. 6B shows a detailed plan view showing a typical split electrode configuration according to the invention;
图7A表示另一个备择实施例9210的局部的剖面图,包含按照本发明配置的两对电反向差动、双扭线、跨接馈通电极能量通道;Figure 7A shows a partial cross-sectional view of another
图7B表示按照本发明的9910的俯视图的局部;Figure 7B shows part of a top view of 9910 according to the present invention;
图8表示备择实施例9915局部的剖面图,包含按照本发明配置的各对电反向差动电极能量通道;Figure 8 shows a cross-sectional view of a portion of an alternative embodiment 9915, including pairs of electrically reversed differential electrode energy channels configured in accordance with the present invention;
图9表示在实施例中出现的所有电极所使用的分离电极的电路组合。作为本发明的一种选择,这个组合的备择方案可以让两组电极中的一组配置为不分离的。Figure 9 shows the circuit combination of the separate electrodes used for all the electrodes presented in the examples. As an option of the present invention, this combined alternative allows one of the two sets of electrodes to be configured as non-separated.
具体实施方式Detailed ways
本文作为参考引用包括美国申请号09/594,447(2000年6月15日申请)在内的共同待定和共同所有的申请。09/594,447是美国申请号09/579,606(2000年5月26日申请)的共同待定申请的部分继续,09/579,606是美国申请号09/460,218(1999年12月13日申请)的共同待定申请的部分继续,09/460,218是美国申请号09/056,379(1998年4月7日申请,现已授权,专利号6,018,448)的申请的继续,09/056,379是美国申请号09/008,769(1998年1月19日申请,现已授权,专利号6,097,581)的申请的部分继续,09/008,769是美国申请号08/841,940(1997年4月8日申请,现已授权,专利号5,909,350)的申请的部分继续。Co-pending and commonly owned applications including US Application Serial No. 09/594,447 (filed June 15, 2000) are incorporated herein by reference. 09/594,447 is a continuation-in-part of the co-pending application of U.S. Application No. 09/579,606 (filed May 26, 2000), and 09/579,606 is a co-pending application of U.S. Application No. 09/460,218 (filed December 13, 1999) 09/460,218 is a continuation in part of U.S. Application No. 09/056,379 (filed April 7, 1998, now granted Patent No. 6,018,448), and 09/056,379 is a continuation of U.S. Application No. 09/008,769 (January 1998 09/008,769 is a continuation-in-part of U.S. Application No. 08/841,940 (filed April 8, 1997, now granted, Patent No. 5,909,350) continue.
本申请这里也引用共同待定和共同所有的美国临时申请的各部分作为参考,这些临时申请包括:2000年2月3日申请的美国临时申请号60/180,101,2000年4月28日申请的美国临时申请号60/200,327,2000年8月xx日申请的美国临时申请号60/xxxxx,2000年8月xx日申请的美国临时申请号60/xxxxx,2000年8月xx日申请的美国临时申请号60/xxxxx,2000年12月15日申请的美国临时申请号60/xxxxx,因为它们以一种形式或另一种形式涉及对这组新的用于能量传播电路的多功能能量调节器和屏蔽结构的继续改进。This application also incorporates herein by reference, in part, co-pending and commonly owned U.S. provisional applications including: U.S. Provisional Application No. 60/180,101 filed February 3, 2000, U.S. Provisional Application No. 60/180,101 filed April 28, 2000 Provisional Application No. 60/200,327, U.S. Provisional Application No. 60/xxxxx filed August xx, 2000, U.S. Provisional Application No. 60/xxxxx filed August xx, 2000, U.S. Provisional Application No. August xx, 2000 No. 60/xxxxx, U.S. Provisional Application No. 60/xxxxx filed December 15, 2000, as they relate in one form or another to the new set of multifunctional energy conditioners for energy spreading circuits and Continued improvement of the shielding structure.
这里所用的术语“通用多功能共用传导屏蔽结构加两个电反向差动能量通道”指的是分离和非分离这两种形式的、利用额外的电反向差动通道作为传导馈通和旁通能量通道的共用传导屏蔽结构。As used herein, the term "universal multifunctional shared conductive shielding structure plus two electrically reversed differential energy paths" refers to both forms, separated and non-separated, utilizing an additional electrically reversed differential path as a conductive feedthrough and Shared conductive shield structure for bypassing energy pathways.
此外,这里所用的缩略词“AOC”表示“预定的物理汇聚或汇合区域或空间”,其被定义为被制造在一起的发明元件的物理边界。非通电化和通电化被定义为或者分立形式的或者非分立形式的通用多功能共用传导屏蔽结构加上电反向差动能量通道的“AOC”内的能量以互补的方式向和/或从位于预定区域以外的区域传播能量的范围或程度。Furthermore, the acronym "AOC" as used herein means "Area or Space of Predetermined Physical Convergence or Confluence" which is defined as the physical boundary of inventive elements being fabricated together. De-energized and energized are defined as either discrete or non-discrete common multifunctional shared conductive shielding structures plus electrically reversed differential energy pathways within the "AOC" where energy is directed to and/or from the The extent or degree to which energy is propagated in areas outside a predetermined area.
电学中普遍将能量传播之间的各种交互和相互关系按它们的互补动力学加以描述,这种互补动力学是由成对的、具有反向能量或力的能量部分元件引起的,这些反向能量或力的能量部分元件从一个极反向或电互补状态交互作用于每个其它的极反向或电互补状态。受当今检测设备的限制,这些交互作用的结果经常是无法记录到的。因此,交互作用被描述为互补平衡状态的动态事件,具有同时发生的、有相同的、或互补的、类镜的、逆镜像定位和定时的等等的对偶的对称性,这是考虑到该技术领域的熟练人员明白用于描述和记录某些动力学的人造容限和/或限制,尽管一般被精确的文字意义许可,但永远没有在达到现有物质的分子或原子量级上的对事件的可记录性。In electricity, the various interactions and interrelationships between energy propagation are generally described in terms of their complementary dynamics, which are caused by pairs of energy partial elements with opposite energy or force. The energy portion of the energy or force element interacts from one polar opposite or electrically complementary state to each other polar opposite or electrically complementary state. Due to the limitations of today's detection equipment, the results of these interactions are often not recorded. Thus, interactions are described as dynamic events of complementary equilibrium states, with dual symmetries of simultaneous, identical, or complementary, mirror-like, anti-mirror-positioned and timed, etc., taking into account that Those skilled in the art understand that the artificial tolerances and/or limitations used to describe and record certain dynamics, while generally permitted by the precise meaning of the words, never reach the molecular or atomic scale of existing matter. recordability.
在量子力学世界,互补性原理认为,存在成对的量,它们是互补的,因为仅当被放在一起时它们才描述一个整体,但是它们又是互相排斥的,因为它们永远不能被同时测量。它们之所以不能被测量,是因为测量一个属性的行为产生一个含有正被测量的部分、测量和观测者的统一体。这个更大的动态整体进而定义一个新的动态“部分”,它分离于、但是连接到正被测量的原始动态“部分”或事件。这两个动态“部分”必然总是互相排斥。无论我们观测到什么,无论我们如何设计试验,该动态“行为”总是表明一个在试验之外却又与其相连的新“部分”。在量子力学中,这个原理直接导致著名的不确定原理,不确定原理断言,在同时测量中可获得的精确性上有根本的局限。这个原理也限制进行能量测量所需的能量的和时间的同时测量的精确性。In the world of quantum mechanics, the principle of complementarity states that there are pairs of quantities that are complementary because they describe a whole only when put together, but that are mutually exclusive because they can never be measured simultaneously . They cannot be measured because the act of measuring a property produces a unity that includes the part being measured, the measurement, and the observer. This larger dynamic whole in turn defines a new dynamic "part" that is separate from, but connected to, the original dynamic "part" or event being measured. These two dynamic "parts" must always be mutually exclusive. No matter what we observe, no matter how we design the experiment, this dynamic "behavior" always indicates a new "part" outside of the experiment but connected to it. In quantum mechanics, this principle leads directly to the well-known uncertainty principle, which asserts that there are fundamental limits to the achievable precision in simultaneous measurements. This principle also limits the accuracy of the simultaneous measurements of energy and time required to make energy measurements.
为了用艺术中的例子与科学对照,通常通过赋予每个元件应有的重要性以及经常允许一个元件与另一个形成对照、对立或者配对,取得(如艺术作品中的)各元件的在美学上令人愉悦的集成。在艺术中而不是在科学中,互补这个词经常在不怎么严格的意义上使用,指对应部分不必相同但只是类似的一种平衡。可以将效果描述成不仅是对照的,也是互补的。To contrast science with examples in art, the aesthetic significance of elements (as in a work of art) is usually achieved by giving each element the importance it deserves and often allowing one element to contrast, oppose, or pair with another. A delightful integration. In the arts rather than in the sciences, the word complementarity is often used in a looser sense, to refer to a balance in which counterparts are not necessarily identical but only similar. Effects can be described as not only contrasting, but also complementary.
对称设计应当产生令人愉悦的效果;如果有太近的对应关系,效果可能会单调。产生与原始图形相同的图形(或其镜像图形)数学运算或变换被称作对称运算。这种运算包括反射、旋转、双重反射、和转换。使图形不变的所有对给定图形的运算的集合构成该图形的对称组。因此,对一定的同时、相关测量对的组合精确性的限制一般来说,在某对象的各个部分之间的平衡或对应;术语对称用于科学,应当考虑到由相反力的相等或精确调整而产生的稳定性和效率。A symmetrical design should produce a pleasing effect; if there are too close correspondences, the effect may be monotonous. Mathematical operations or transformations that produce a graph that is identical to the original graph (or its mirror image) are called symmetric operations. Such operations include reflection, rotation, double reflection, and transformation. The set of all operations on a given graph that make the graph invariant constitutes the symmetry group of that graph. Thus, the restriction on the combined accuracy of certain simultaneous, related pairs of measurements, in general, the balance or correspondence between the parts of an object; the term symmetry is used in science, and should take into account the equal or precise adjustment by opposing forces. resulting in stability and efficiency.
这些定义也应当与通常施加的不确定原理一起使用,受本测试设备具有的精确性程度的限制,并且在大规模的普通测量、更小结构的检查或组合的操作上未必是能注意到的。测量或声称取消或消除的声明在考虑到制造的普通理解的意义中,指的是就结构而言的形状和大小,并且理解为前述各事件即使在设备不能测量或证实其为冷事实也已经发生。These definitions should also be used with the generally applied uncertainty principle, limited by the degree of precision possessed by the present test equipment, and not necessarily noticeable on large scale ordinary measurements, inspection of smaller structures or combined operations . Statements of measurement or purported cancellation or elimination in the ordinary understood sense having regard to manufacture refer to shape and size as far as construction is concerned, and are understood to mean that each of the foregoing events has occur.
如上所述的这些概念给人的感觉是,只用几句话来描述事件的各种程度的限制的意义是困难的事情。这不是借口,相反,对已知的可认为是严格或确定性的词语的用法,在这里仍然被使用,期望读者或本领域的熟练人员以通常允许的不精确程度来理解这些词语、形容词、副词和名词。These concepts, as described above, give the impression that it is a difficult matter to describe in just a few sentences the meaning of the various degrees of limitation of events. This is not an excuse, but rather, the usage of words known to be considered strict or definitive, are still used here, and the reader or those skilled in the art are expected to understand these words, adjectives, Adverbs and nouns.
使用的下列词语,诸如“互补同时”、相同时间、相同大小、大小相同、等同、相等、大小相等、等等,应当按解释这些词语所依赖的现实世界的精度来理解,都根据对被认为正常和标准的一般理解,特别是根据对制造容限尽可能实际的理解,或者根据现有技术水平内实际要构造本文所述的发明及其变体的不同OEM而言是惯例的理解。因此,所描述的各变体,都是按标准工业过程设想的,具有各种标准工业总成限制或任何其它对制造通电电路实施例的电子器件的标准工业的标准工业限制,不是仅仅如对本说明书中所述发明及其变体所描述的那样的。The use of the following terms, such as "complementary simultaneous", same time, same size, same size, equal, equal, equal in size, etc., should be read with the real-world precision upon which these terms are to be interpreted, all in accordance with the perceived Normal and standard general understanding, in particular customary understanding in terms of as far as practical within manufacturing tolerances are concerned, or in accordance with the various OEMs within the state of the art who actually intend to construct the invention described herein and variations thereof. The variants described, therefore, are contemplated by standard industry processes, with various standard industry assembly constraints or any other standard industry constraints on the manufacture of electronic devices for energized circuit embodiments, not just as for this The invention described in the specification and variations thereof are described.
本发明在诸如分立和非分立结构的各种实施例中的形式是分层或层叠的导电、半导电和非导电介电独立材料的组合。可以将这些层组合起来,形成能在系统中设置和通电的独特电路。发明实施例包括各层导电、半导电和非导电的平面,它们构成各组共用传导通道电极、导体、沉积体、极板(它们在这里都被称作“通道”)和介电平面。这些层的方向彼此形成总体平行的关系,朝向预定的元件对或组,这些元件对或组也包括各种通道组合以及它们在预定制造结构中的分层。The invention takes the form of various embodiments such as discrete and non-discrete structures as a combination of layered or laminated conductive, semiconductive and non-conductive dielectric separate materials. These layers can be combined to form unique circuits that can be set up and powered up in the system. Embodiments of the invention include layers of conductive, semiconductive, and nonconductive planes that make up sets of common conductive channel electrodes, conductors, deposits, plates (all referred to herein as "channels"), and dielectric planes. These layers are oriented in a generally parallel relationship to one another, towards predetermined pairs or groups of elements, which also include various combinations of channels and their layering in predetermined fabrication structures.
这些发明元件不仅仅限于介电层、多个电极传导通道、薄板、叠层、沉积体、多个共用传导通道或屏蔽、薄板、叠层或沉积体。该发明也包括组合和连接所述介电层、多个电极传导通道、薄板、叠层、沉积体、多个共用传导通道或屏蔽、薄板、叠层或沉积体在一起,用于以预定方式通电到更大的电系统中。These inventive elements are not limited to dielectric layers, multiple electrode conduction paths, sheets, stacks, deposits, multiple common conduction paths or shields, sheets, stacks or deposits. The invention also includes combining and connecting said dielectric layers, multiple electrode conducting paths, sheets, stacks, deposits, multiple common conducting paths or shields, sheets, stacks or deposits together for Feed into a larger electrical system.
结构化层装置在被制造时或之后,能被定形、埋入、封装于或插入各种电系统或其它子系统中,以执行线调节、去耦和/或辅助改变能量的电传输。该发明可以是单独、独立的实施例,或者成组地制造成更大的电结构,诸如集成电路。该发明也以非通电的、独立的、分立的器件的形式存在,与一个组合一起通电,作为其它实施例中更大电路的子电路,这些实施例诸如但不限于印刷电路板(PCB)、干涉仪、基底、连接器、集成电路、光学电路或原子结构。也可以将备择的发明实施例构造成另一个器件的形式,诸如PCB、干涉仪或基底,具有与较小的分立形式的发明实施例的作用不同的作用。这类备择实施例可作为可能的连同电路一起含有有源和无源部件的系统或子系统,层叠起来提供所述的用于调节从一个源至一个负载并返回的传播能量的多数好处。现有技术的印刷电路板已经在用具有VIA的分层配置来服务或分接(tap)位于介电和绝缘材料之间的各种电能、信号和地层。Structural layer devices can be shaped, embedded, encapsulated, or inserted into various electrical systems or other subsystems, either as they are fabricated or thereafter, to perform line conditioning, decoupling, and/or assist in altering the electrical transfer of energy. The invention can be implemented as a single, stand-alone system or in groups of larger electrical structures such as integrated circuits. The invention also exists as a de-energized, self-contained, discrete component, energized together with a combination, as a sub-circuit of a larger circuit in other embodiments such as, but not limited to, printed circuit boards (PCBs), Interferometers, substrates, connectors, integrated circuits, optical circuits or atomic structures. Alternative inventive embodiments may also be constructed in the form of another device, such as a PCB, interferometer or substrate, having a different function than the smaller, discrete form of the inventive embodiment. Such alternative embodiments may be stacked to provide most of the benefits described for regulating propagating energy from a source to a load and back as possible systems or subsystems containing active and passive components along with circuitry. Prior art printed circuit boards have been used in layered configurations with VIAs to service or tap various power, signal and ground planes located between dielectric and insulating materials.
至少一对电反向互补对准(aligned)和层叠传导能量通道电极几乎都被组合成电极笼状结构、包含至少一个中心的和共享、共用传导通道或区的对称地对准和层叠的屏蔽电极包围。在通电时,内部/外部共用能量通道电极和/或区变成一个共享的基准地平面,用于在两个反相位或电反向差动传导能量通道电极之间存在的电路电压,这两个电极在电学上或物理上位于共用能量通道电极以及中心和共享共用传导电极通道或外部共用传导区的相反端。这些类型的配置显著地有助于消除E场和H场、散杂电容、散杂电感、寄生物,并允许不同位置的信号、电能和返回通道的电场的互相取消。建立有PCB或使用PCB的发明体系结构的实施例变体能用各种接地方案来提高现在被大PCB制造商使用的现有结构的效率。At least one pair of electrically reversed complementary aligned and stacked conductive energy channel electrodes are substantially all assembled into an electrode cage structure, symmetrically aligned and layered shields comprising at least one central and shared, common conductive channel or region surrounded by electrodes. When energized, the inner/outer common energy channel electrodes and/or zones become a shared reference ground plane for circuit voltages present between two anti-phase or electrically reversed differential conduction energy channel electrodes, which The two electrodes are electrically or physically located at opposite ends of the common energy channel electrode and the central and shared common conduction electrode channels or the outer common conduction region. These types of configurations contribute significantly to the cancellation of E and H fields, stray capacitance, stray inductance, parasites, and allow mutual cancellation of signals, electrical energy, and electric fields of the return channel at different locations. Embodiment variants of the inventive architecture built with or using PCBs can use various grounding schemes to improve the efficiency of existing structures now used by large PCB manufacturers.
为了传播电磁干扰能量,需要两个场,即一个电场和一个磁场。电场两点或多点之间的电压差把能量耦合到电路中。在空间中的改变电场能产生磁场。任何时间变化的磁通量产生电场。结果,纯电或纯磁的时间变化场不可能彼此独立地存在。尽管不必建立发明实施例来比另一种场更多地调节一种类型的场,可以设想使用不同类型的材料来建立进行这种特定的对一个能量场比另一个更多的调节的实施例。In order to propagate EMI energy, two fields are required, an electric field and a magnetic field. A voltage difference between two or more points in an electric field couples energy into a circuit. Changing electric fields in space can generate magnetic fields. Any time varying magnetic flux produces an electric field. As a result, purely electric or purely magnetic time-varying fields cannot exist independently of each other. Although it is not necessary to create embodiments of the invention to modulate one type of field more than another, it is conceivable to use different types of materials to create embodiments that do this particular modulation of one energy field more than another .
对于所述的本发明的几乎所有实施例和没有描述的实施例,申请人设想制造商可选择将各种各样的可能材料组合起来,在制造时组合成本发明的构成,与此同时仍然保留发明实施例的某些或几乎所有需要的程度的电功能。For nearly all of the embodiments of the invention described and those not described, applicant contemplates that the manufacturer may choose to combine a wide variety of possible materials to combine the constituents of the invention at the time of manufacture, while still retaining the Some or nearly all of the required degrees of electrical functionality of embodiments of the invention.
用于发明实施例的组成的材料可包含一个或多个与现有加工技术相符的材料元件层,并且不限于任何可能的介电材料。这些材料可以是半导体材料,诸如硅、锗、镓-砷化物,或者半绝缘或绝缘材料之类,诸如但不限于任何K、高K和低K电介质。同样地,发明实施例不限于任何可能的传导材料,诸如磁性、镍基材料、MOV型材料、铁素体材料、诸如聚酯薄膜的薄膜,或几乎任何种类的能产生传导材料的传导通道的物质和过程,以及几乎任何种类的诸如但不限于掺杂多晶硅、烧结多晶物质、金属、或多晶硅硅酸盐、传导材料沉积物、The materials used in the composition of inventive embodiments may comprise one or more layers of material elements consistent with existing processing techniques and are not limited to any possible dielectric material. These materials may be semiconductor materials such as silicon, germanium, gallium-arsenide, or semi-insulating or insulating materials such as but not limited to any K, high K and low K dielectrics. Likewise, inventive embodiments are not limited to any possible conductive material, such as magnetic, nickel-based materials, MOV-type materials, ferritic materials, thin films such as Mylar, or virtually any kind of conductive material that can create conductive channels. Substances and processes, and virtually any kind such as but not limited to doped polysilicon, sintered polycrystalline substances, metals, or polysilicon silicates, conductive material deposits,
使用附接在通电的成对导线之间的发明实施例或单元将减轻电容失衡或电路电压失衡的问题,或减轻通常与现有技术器件相关联的在高频操作时加重的制造失衡的问题。Use of an inventive embodiment or cell attached between energized pairs of wires will alleviate the problem of capacitive imbalance or circuit voltage imbalance, or the problem of manufacturing imbalance that is exacerbated at high frequency operation commonly associated with prior art devices .
现有技术在相同生产批量中制造的电容器容易在不同部件间有电容偏差,范围在>.05%-25%。因此,当把现有技术的电容器放入电路并通电时,它们的制造容限被带入电路,在这种情况中,例如差动成对电路加重电路中的电压失衡。即使现有技术的单元被制造得在分立单元之间具有小于10%的最小电容偏差,也要由用户支付某个成本或一定的费用,以便制造商收回检测、手工分类制造品的成本,以及用于更专用的电介质和用于制造具有差动信号或过滤所要求的降低个体偏差的现有技术单元所需的制造技术的额外成本。该发明允许使用非常价廉的介电材料(相对于其它可用材料而言)来获得两个导线之间的平衡。Prior art capacitors manufactured in the same production batch are prone to capacitance variation from part to part in the range >.05%-25%. Therefore, when prior art capacitors are placed in a circuit and energized, their manufacturing tolerances are brought into the circuit, in which case, for example, differential pairing circuits accentuate voltage imbalances in the circuit. Even though prior art units are manufactured with less than 10% minimum capacitance variation between discrete units, there is some cost or fee paid by the user for the manufacturer to recoup the cost of inspection, manual sorting of artifacts, and Additional cost for more specialized dielectrics and for fabrication techniques required to manufacture prior art units with reduced individual variation required for differential signaling or filtering. This invention allows the use of a very cheap dielectric material (relative to other available materials) to obtain the balance between the two wires.
发明实施例的使用将允许放入到差动操作的电路或几乎任何电反向和差动成对线电路中,以提供互补和基本相等的电容容限,因为发明单元,那将被在以电方式使用发明实施例的电路的每个成对线之间的传播能量的各部分均匀地共享和互补。在发明实施例内的共享中央传导通道之间的发明电压容限和/或电容和电感平衡和/或最小化将几乎总是被相对地保持在起初在工厂制造发明实施例时的水平,即使是使用X/R电介质,普通规定其在分立单元中具有多达20%的允许电容偏差。Use of the inventive embodiments will allow placement into differentially operated circuits or virtually any electrically reversed and differential paired wire circuit to provide complementary and substantially equal capacitance tolerances, because of the inventive unit, that will be used in the following Electrically, portions of the propagating energy between each pair of wires are evenly shared and complementary using circuits of embodiments of the invention. Inventive voltage tolerance and/or capacitive and inductive balancing and/or minimization between the shared central conduction channel within an inventive embodiment will almost always be relatively maintained at the level at which the inventive embodiment was originally manufactured in the factory, even if is to use X/R dielectrics, which are commonly specified with as much as 20% allowable capacitance variation in discrete units.
所以,以大于0至至少5%的容限的值制造的发明,当按说明书中所述被制造时,将几乎总是也具有一个大于0至至少5%的容限的相关值,通电系统中的成对线之间的电容容限,和具有一个所述发明实施例的旁通成对线的两个现有技术器件的附加好处交换。因此,旁通和/或去耦操作不再需要昂贵的、专用的介电材料来试图在两个系统传导通道之间保持电容平衡,且让发明用户有机会在整个电路的材料构成中采用同类的电容元件。将新发明置于传导通道之间,同时将也构成发明实施例的共用传导通道连接到第三传导通道,后者对共用传导通道的所有元件共用,是外部传导区。Therefore, an invention manufactured at a value greater than 0 to at least 5% tolerance, when manufactured as described in the specification, will almost always also have an associated value greater than 0 to at least 5% tolerance, energized system Capacitance tolerance between paired lines in , and the additional benefit of two prior art devices having a bypassed paired line of an embodiment of the invention traded. As a result, bypassing and/or decoupling operations eliminate the need for expensive, specialized dielectric materials in an attempt to maintain capacitive balance between the two system conduction channels, and give the inventor the opportunity to use similar materials in the material construction of the entire circuit. the capacitive element. The new invention is placed between the conduction channels, while the common conduction channel, which also constitutes an embodiment of the invention, is connected to a third conduction channel, which is common to all elements of the common conduction channel, and is the outer conduction area.
当通用多功能共用传导屏蔽结构加两个电反向差动性能量通道被制造并在随后附接到外部制造的、与也在使用发明实施例的电反向差动性能量通道分开的传导通道时,发明实施例将总是同时提供能量调节功能,至少包括旁通、能量、电力线去耦、能量磁场和过滤。在发明实施例内几乎所有电反向差动性能量通道或电极几乎完全被封装在屏蔽结构内,将几乎总是相对地免受几乎所有内部生成的试图从包围被封装的差动传导通道电极的封装容器区中逃逸的电容或能量寄生体的影响。同时,通用多功能共用传导屏蔽结构阻止几乎任何外部生成的诸如“浮动电容”的电容或能量寄生体耦合到非常相同的封装差动传导通道上,这是因为与静电屏蔽效应不相干的物理屏蔽,静电屏蔽效应是由共用传导屏蔽结构及其附接通过公知的工业附接装置创建的,现有技术已知后者连接到位于外部的工业传导区。When a general purpose multifunctional shared conductive shield structure plus two electrically reversed differential energy channels is fabricated and subsequently attached to an externally fabricated conductive When channeling, inventive embodiments will always provide energy conditioning functions simultaneously, including at least bypass, energy, power line decoupling, energy field, and filtering. Almost all electrically reversed differential energy pathways or electrodes within inventive embodiments are almost entirely encapsulated within the shielding structure, and will almost always be relatively immune to almost all internally generated attempts to escape from surrounding encapsulated differential conductive pathway electrodes. The impact of escaping capacitance or energy parasites in the packaging container area. At the same time, the common multifunctional shared conductive shielding structure prevents almost any externally generated capacitive or energy parasitics such as "floating capacitance" from coupling onto the very same package differential conductive paths due to physical shielding that is independent of electrostatic shielding effects , the electrostatic shielding effect is created by the common conductive shielding structure and its attachment by known industrial attachment means, the latter being known in the art to be connected to externally located industrial conductive areas.
共用外部传导区的附接包括诸如通常被描述为“浮动的”、无电势传导区(在给定时刻)、电路系统回路、底盘或PCB接地、甚至大地接地等区。通过其它功能,诸如取消互相反向的能量场和内部连接的平行电路,发明实施例允许在高斯-法拉第笼状或共用传导屏蔽单元之上或之内相对于其封装传导共用屏蔽通道电极生成低阻抗通道,随后能便于各部分能量持续地移动出去,值位于外部的共用传导区,由此完成也用于利用不需要的EMI噪声的低阻抗的能量通道的产生或便于其生成。Attachments to common external conductive areas include areas such as what are often described as "floating", potential-free conductive areas (at a given moment), circuitry loops, chassis or PCB ground, or even earth ground. Through other features, such as cancellation of mutually opposing energy fields and interconnected parallel circuits, embodiments of the invention allow generation of low conductive common shield channel electrodes on or within a Gauss-Faraday cage or common conductive shield element with respect to its encapsulating conductive common shield. The impedance path, which then facilitates the continuous movement of the various parts of the energy out, is located in the common conduction area outside, thereby accomplishing or facilitating the creation of a low impedance energy path also for exploiting unwanted EMI noise.
这个附接方案将几乎总是允许在共享中央和共用传导通道的相对各端上生成一个“0”电压基准,对于每个定位的差动导体,其(差动导体)结构的每个和外部使用等共用传导表面。发明实施例的使用允许电压被保持并互补,即使在位于集成电路内的栅之间有SSO(同时转换操作)状态并且当发明实施例在电路系统内被被动地操作时没有返回到电路系统中的贡献破坏性能量寄生体。This attachment scheme will almost always allow a "0" voltage reference to be generated on opposite ends of the shared central and common conductive channel, for each positioned differential conductor, each of its (differential conductor) structures and the outer Use such shared conductive surfaces. The use of inventive embodiments allows voltages to be maintained and complementary even if there is an SSO (Simultaneous Switching Operation) state between gates located within the integrated circuit and not returned to the circuitry when the inventive embodiments are passively operated within the circuitry The contribution of destructive energy parasites.
因此,由于打破被制造成非通电的发明的电容平衡,寄生体被阻止或最小化,这与不使用传导屏蔽结构的每个其它现有技术单元中所发生的相反。现有技术一般允许自由寄生体作用于破坏电路,尽管作出了与迄今为止几乎所有现有技术的器件相反的最佳努力。Thus, parasitics are prevented or minimized due to breaking the capacitive balance of the invention which is made non-energized, as opposed to what happens in every other prior art cell which does not use a conductive shielding structure. The prior art generally allows free parasites to act to destroy the circuit, despite best efforts contrary to almost all prior art devices to date.
如前所述,被传播的电磁干扰可能分别是电场和磁场的产物。直到最近,本领域中一直在强调用DC能量或电流从携带高频噪声的能量导体中过滤EMI。然而,发明实施例能够调节使用沿电系统或测试设备中传导通道的DC、AC和AC/DC混合型能量传播的能量。这包括使用发明实施例来在相同的电系统平台内调节含有许多不同类型的能量传播格式的系统中的能量、在含有许多种电路传播特性的系统中的能量。As mentioned earlier, the propagated EMI can be the product of electric and magnetic fields respectively. Until recently, there has been an emphasis in the art on filtering EMI with DC energy or current from energy conductors carrying high frequency noise. Embodiments of the invention, however, are capable of conditioning energy using DC, AC, and AC/DC hybrid type energy propagation along conductive pathways in electrical systems or test equipment. This includes using inventive embodiments to regulate energy in systems containing many different types of energy propagation formats, in systems containing many types of circuit propagation characteristics, within the same electrical system platform.
应当注意,尽管没有显示,图2、3、8和9中的各种电极层被设想为具有分离的电极设置或具有其它非分离设置的组合。由于时间的关系,本说明书在特定附图中省略了各种组合。It should be noted that although not shown, the various electrode layers in Figures 2, 3, 8 and 9 are contemplated as having separate electrode arrangements or in combination with other non-split arrangements. Due to time constraints, this specification omits various combinations in certain drawings.
法拉第笼状结构的要点在将共用传导通道彼此连接时被使用,所述通道组与更大的外部传导区或表面一起协作,以消除辐射的电磁辐射,提供一个更大的、在其中消耗过电压和电冲击的传导表面区,并同时启动寄生物和其它瞬变的共用传导电极笼状静电动态消除,此时,多个共用传导通道电连接到系统或底盘接地,依赖于将发明实施例放置在其中并通电的电路的基准接地。电反向差动传导能量电极或结构是电分离的并且也彼此屏蔽,一般不触及发明实施例内部。The point of a Faraday cage structure is used when connecting common conductive channels to each other, the set of channels working together with a larger outer conductive area or surface to cancel radiated electromagnetic radiation, providing a larger, dissipated Conductive surface area for voltage and electrical shocks, and simultaneous initiation of parasitic and other transient common conduction electrode cage static dynamic elimination where multiple common conduction channels are electrically connected to system or chassis ground, depending on the inventive embodiment Reference ground for circuits placed in it and energized. The electrically reversed differentially conducting energy electrodes or structures are electrically separated and also shielded from each other and generally do not touch the interior of the inventive embodiments.
构成法拉第笼状结构的附接的内部共用传导电极通道允许共用外部传导区或共用能量通道实际上变成一个扩展的、位置紧密的、并且大体平行的、相对它们位置的所述共用传导元件的装置-如果在随后通电时位于预定的分层PCB或类似的电子电路内部的话。The attached inner common conducting electrode channels that make up the Faraday cage structure allow the common outer conducting region or the common energy channels to actually become one extended, closely located, and generally parallel relative to their positions of said common conducting elements. Device - if located inside a predetermined layered PCB or similar electronic circuit when subsequently energized.
图1、图2和图3中表示了带有叠层传导分层步进通用法拉第屏蔽体系结构,该体系结构具有成对的电反向差动传导通道。所以,将在图1、图2、和图3之间来回自由地讨论,以便披露如图3中所示的实施例9905那样的独立的并可交换地配置的法拉第笼状共用传导屏蔽结构的成对差动传导通道的一部分,当放入图1、图2和图3中的各种内部和外部共用传导通道(未予完全示出)的传导组合中时,它能便于多重且独立操作的能量调节。Figure 1, Figure 2, and Figure 3 show a general Faraday shield architecture with stacked conduction layered steps with pairs of electrically reversed differential conduction channels. Therefore, discussions will be made freely back and forth between FIGS. 1, 2, and 3 in order to disclose the benefits of a separate and interchangeably configured Faraday cage-like shared conductive shielding structure such as embodiment 9905 shown in FIG. Part of a pair of differential conduction channels which, when placed in the conduction combinations of the various inner and outer shared conduction channels (not fully shown) in Figures 1, 2, and 3, facilitate multiple and independent operation energy regulation.
图2中,实施例9900中的共用传导屏蔽电极通道850F/850F-IM、840F、830F、820F、810F、800/800-IM、810B、820B、830B、840B和850B/850B-IM包含一个通用法拉第屏蔽体系结构的实施例,该体系结构具有所示的叠层传导分层步进,没有成对的、电反向差动传导通道。最后和可选的包夹的850F/850F-IM和850B/850B-IM共用传导屏蔽通道在实施例9900中被用作图像罩,作为在图3中的9905所示的使用各种共用电极通道的一个变体的一部分,可以发现需要的话,后者也包含带有具有传导差动通道的叠层传导分层步进的通用法拉第屏蔽体系结构的一部分。In Figure 2, the common conductive shield electrode channels 850F/850F-IM, 840F, 830F, 820F, 810F, 800/800-IM, 810B, 820B, 830B, 840B, and 850B/850B-IM in embodiment 9900 contain a common An embodiment of a Faraday shielding architecture with the stack conduction layered steps shown without paired, electrically reversed differential conduction channels. The final and optional sandwiched 850F/850F-IM and 850B/850B-IM common conductive shield channel is used in embodiment 9900 as an image mask as shown at 9905 in Figure 3 using various common electrode channels Part of a variant of , it may be found that the latter also contains part of a general Faraday shielding architecture with stacked conductive layered steps with conductive differential channels, if desired.
应当注意到,这里所述的总体要点大多-但不是全部-对该新发明和备择实施例是通用的。涉及共用传导通道800/800-IM的段落,就连接到相同的电势外部共用通道而非外部差动通道(二者在图1和图2中都没有示出)来说,也适用于其它共用传导通道。It should be noted that most - but not all - of the general gist described here is common to the new invention and alternative embodiments. The paragraphs referring to the
图1显示图2的完整屏蔽电极容器800E的局部。回到图1,差动传导旁通电极通道855BB被夹在共享的中央共用传导通道800/800-IM与共用传导屏蔽电极通道810B之间(810B在图1中没有表示出来,但表示在图2中)。FIG. 1 shows a portion of the complete shielded
位于通道855BB之上和之下的是一个介电材料或介电介质801。沉积、制造和/或放置介电材料或介电介质801的行动,大部分是在由本领域中已知的标准装置进行的制造过程中对预定介电材料或介质801的封装和插入。Above and below channel 855BB is a dielectric material or
介电材料801在实施例边沿817和共用电极通道边沿805之间形成一个分隔区或空间,并对差动传导通道电极边沿803和实施例边沿817形成总体相等距离的间隔。共用传导通道800/800-IM和810B、以及电极通道855BB,几乎都有大部分被用顶着它们放置的预定介电材料或介质801彼此隔开一个大致平行的中间距离814C。814C距离存在于855BB的边界或表面或表面边沿803和800-/800-IM-1和2的805的至少两端上,每个对应的平面电极(2)主表面区以及所述的每个周边边缘大部分与材料801接触,例外的地方是,分别地对每个传导电极分层位置,分别通过延长部分812A和79-GNDA使各种传导连接连接到各种电极连接材料798_GNDA和890A。The
应当注意到,元件806的嵌入距离或区是通电期间能量通量部分的包容区的边界,这个间隔几乎总是相对于周边共用屏蔽电极边沿805和包夹的共用传导屏蔽电极通道和几乎任何包夹的差动传导电极通道(未予示出)的电反向差动电极边沿803。在发明实施例的几乎任何共用屏蔽电极通道799G传导材料区的共用电极边沿805内的几乎任何差动传导电极通道电极边沿803的这种定位和后退距离806被认为是发明实施例的一个原则。该原则适用于几乎任何包含并使用无论在容器中还是在如图3所示的屏蔽800“x”容器的外部的屏蔽电极分层结构的成对的差动传导通道,并且包括至少一对在该屏蔽电极分层结构之外的外部电反向差动电极,不过图3中所示的两个外部电反向差动电极将总是在某种程度上利用分立或非分立形式的实施例(在这里可能没有被显示)中屏蔽方式的屏蔽电极分层结构。It should be noted that the embedding distance or area of
开始,如图2中所示的发明实施例的一部分以及从图1中开始之后的两个单一的共用传导容器800“X”现在分别各以两个共用传导罩形成。然而,在制造过程中,不使用四个共用屏蔽电极,人们能建立两个具有三个共用屏蔽电极的共用传导屏蔽电极容易,以建立例如800E和800F。所以,每个单一的共用传导容器800E和800F在共享一个位于中心位置的屏蔽电极通道,该屏蔽电极通道是两个传导屏蔽电极结构和容器共用的,后者在本例中又构成一个标记为900A的共用传导法拉第中心结构。Initially, the part of the inventive embodiment shown in FIG. 2 and the two single shared
应当注意到,不仅形成了共用传导法拉第中心结构900A,更大的共用传导屏蔽电极结构9900的分别被记为900“X”或900B和900C的共用传导屏蔽电极结构的各部分现在被建立。It should be noted that not only is the common conductive
图2中所示的共用传导屏蔽电极结构900A、900B和900C每个足以独自地作为一个共用传导法拉第笼状结构与电反向差动电极一起操作,如果个个都是这样建立的,并且如果它们包括至少一对由同一个共用传导法拉第笼状结构分隔并且在屏蔽电极分层结构内部之外的外部电反向差动电极,则它们将几乎总是仍然都双双在某种程度上利用分立或非分立形式的实施例(在这里可能没有被显示)中屏蔽方式的屏蔽电极分层结构。Each of the common conductive
当发明实施例利用分别配对的电反向差动能量通道(未予示出)的放置并且通电时,并且如果一个像900A、900B和900C那样结构也被连接在一起并被连接到一个外部共用能量通道,而不是利用电反向的并且外部的差动能量通道,则能量调节功能将几乎总是在附接到通电电路中时发生。When inventive embodiments utilize the placement and energization of separately paired electrical reverse differential energy pathways (not shown), and if a structure like 900A, 900B, and 900C is also connected together and connected to an external common Instead of using an electrically reversed and external differential energy channel, the energy conditioning function will almost always occur when attached to an energized circuit.
相对于图1的800/800_IM-内的电极855BB的嵌入的相对嵌入或重叠屏蔽距离和区806,使得能从这个位置关系和发明实施例内各种元件关系产生静电屏蔽效应等等。这些空间/距离关系有些包含几乎所有种类的(差动的和共用的)电极相对于彼此的垂直定位,通过就互相以及在内部隔离这些电极所用的隔离介电材料801量,对内部电极位置的各自相对横向定位。这也包括各种相对于外部实施例边界的间隔和距离关系或能量调节功能以及它们在这些边界内的为在这些位置和边界内发生的适当能量交互作用所需的效用。应当注意到,共用传导通道800/800-IM应当在周边或边沿把重叠距离扩展到电极通道855BB的周边或边沿以外,以提供对各种类型的能量通量场(位于示出)的各部分的屏蔽,若不是因为有共用电极800/800-IM-,810F,这些能量通量场可能已经正常地试图逃离或延展到电极通道855BB的电极边沿803以外,以连接到一个“牺牲”传导通道(未完全示出)上。The relative embedding or overlapping shielding distance and
由通电的、由一组法拉第笼状系统组成的这些共用电极通道的组合产生的静电屏蔽效应导致在几乎所有任何位于内部的、诸如一般位于附近的875BB(未予示出)的差动电极通道之间的近场耦合的减少或最小化。可以说水平电极嵌入距离806的范围在约大于0至20+乘以垂直距离或电极嵌入距离或814C,作为一个差动到一个共用电极屏蔽嵌入806的近似测量的嵌入间隔,这在电极通道855BB与共用传导通道800/800-IM之间产生一定的距离关系。这是以标准制造方法和距离为根据的。The electrostatic shielding effect produced by the combination of these common electrode channels that are energized, consisting of a set of Faraday cage systems, results in a differential electrode channel in almost any internally located, such as a typically nearby 875BB (not shown) reduction or minimization of near-field coupling between It can be said that the horizontal
换言之,主表面电极传导区大小、较小的延长部分(如果使用的话)、或者任何相邻的差动电极通道的传导平面的大小,将几乎总是小于与之相邻和平行的任何一个共用传导屏蔽通道的对应的主表面电极传导区大小、较小的延长部分(如果使用的话)、或者任何相邻的差动电极通道的传导平面的大小,而不管另一个差动电极(诸如有分离的电极搭配的)以外的几乎任何分隔这两个相邻发明元件为何。这意味着尽管有介电材料801或分离的差动电极搭配,下一个相邻的共用传导屏蔽电极通道将几乎总是至少在覆盖大小上更大并且将被视为屏蔽同一个相邻的差动电极。In other words, the size of the major surface electrode conducting region, the smaller extension (if used), or the size of the conducting plane of any adjacent differential electrode channel, will almost always be smaller than any adjacent and parallel common The size of the corresponding major surface electrode conduction area of the conductive shield channel, the smaller extension (if used), or the size of the conduction plane of any adjacent differential electrode channel, regardless of another differential electrode (such as a separate Almost anything other than an electrode pair) separates the two adjacent invention elements. This means that despite the
有一个对一般规则的大小例外,这仅适合于如图3中所示的865BB和865BT的外部包夹差动电极通道。这些特殊的外部包夹差动电极通道的传导区大小、传导材料覆盖范围或传导平面大小可以大于或者小于其相邻的共用传导屏蔽电极通道,并且,如图3中所示的外部包夹差动电极通道这些865BB和865BT的大小不必互相等同,因为有其它的发明点功能变体配置。There is one size exception to the general rule, which applies only to the externally encased differential electrode channels of the 865BB and 865BT as shown in FIG. 3 . The conduction area size, conductive material coverage, or conduction plane size of these special externally encased differential electrode channels can be larger or smaller than its adjacent shared conductive shield electrode channels, and, as shown in Figure 3, the externally encased differential The moving electrode channels of these 865BB and 865BT are not necessarily equal in size to each other, as there are other inventive point functional variant configurations.
所以,除非任何成对的差动电极通道集合的总体对应的传导主电极表面区大小、主电极传导材料的覆盖的或传导平面大小与任何下一个相邻的共用传导屏蔽电极主电极表面或通道相同,这个原则的变体被视为拥有所公开的能量调节功能部分的发明实施例。Therefore, unless the overall corresponding conductive main electrode surface area size, covered or conductive plane size of the main electrode conductive material of any paired set of differential electrode channels is the same as that of any next adjacent common conductive shield electrode main electrode surface or channel Likewise, variations of this principle are considered inventive embodiments possessing portions of the disclosed energy conditioning functionality.
电嵌入距离806可以为特定应用进行优化,但是共用/差动电极叠合806的周边距离、每个各被包容的差动电极的与共用屏蔽电极通道对的距离814、806A和814C和叠合关系在整个发明实施例中理想地是近似相同的,如制造容限所允许的那样。The electrical embedding
此外,像855BB那样的被包夹在图3诸如800/800-IM和810B(未予示出)的两个共用传导通道内的内部差动传导电极通道,在差动传导电极855BB的电极边沿803之间保持一个806距离关系,它将相对于差动传导电极800/800-IM的周边电极805,使得电极边沿805具有一个暴露的或“探出”电极边沿803的周边,其距离至少是说明书的图7A中所示的垂直隔离距离814C,该图显示一个相对介电厚度,它允许一个距离或区嵌入是一个与806的相对横向距离有关的规则,它是加到相对800E的差动电极通道电极边沿803测量的从共用传导屏蔽电极边沿805的三维距离806的结果,使得差动传导通道电极855BB的外电极边沿803被嵌入其间并被包夹的共用传导通道800/800-IM和810B(未予示出)的共用电极边沿周边805重叠,覆盖一个距离或区域806,沿着几乎位于800/800-IM、810B上并归于800/800-IM、810B的805和803的整个距离,同时相对于被包夹的差动传导能量电极通道855BB或等同物。在通道之间总体上或个别的806、814和814C距离的较小差别并不重要,只要不损害带有包含成对的电反向差动传导通道的层叠传导分层步进的通用法拉第屏蔽体系结构的静电屏蔽功能(未予示出)。In addition, internal differential conduction electrode channels such as 855BB sandwiched within two common conduction channels of FIG. 3 such as 800/800-IM and 810B (not shown), at the
共用传导屏蔽电极通道,诸如图1和图2中所示805F/850F-IM、840F、830F、820F、810F、800/800-IM、810B、820B、830B、840B和850B/850B-IM,以及例如图3中所示的系列,最好一般几乎都分别对用户所希望的类型的成品实施例以及如正常制造限制允许的那样具有接近相同大小的共用传导屏蔽电极通道材料799G,以保证各种相邻共用传导通道的几乎任何组合有同类的区域大小关系。这适合于在几乎任何一般发明实施例构成中各自按屏蔽电极分组的共用传导通道的每个成员的大小关系。所以,任何一个被包夹在内部的差动传导通道,无论是单个地还是与其相同大小的配对对象,都将几乎总是被至少两个更大的但是相对彼此相同大小的共用传导屏蔽电极通道在物理上完全屏蔽,这两个通道将几乎总是由一个比它们屏蔽的差动电极的屏蔽传导电极区更大的屏蔽传导电极区。这个相同大小的共用传导屏蔽电极原则适合于相对本发明的任何法拉第笼状共用传导屏蔽结构容器内的包夹的差动传导通道或电极(诸如图2中表示的以及图3中部分表示的记为800A、800B、800C、800D、800E、800F、800G和800H(每个被统称为800“X”))来说至少大小相同或更大的共用电极能量通道元件的传导材料区的大小关系。Common conductive shield electrode channels such as 805F/850F-IM, 840F, 830F, 820F, 810F, 800/800-IM, 810B, 820B, 830B, 840B, and 850B/850B-IM shown in Figures 1 and 2, and A series such as that shown in FIG. 3 is generally preferably each nearly identically sized common conductive shield
也应当注意到,几乎任何一个包夹共用传导通道具有的顶部和底部传导材料区的总和将几乎总是大于任何一个被包夹的差动传导通道单独的顶部和底部的总传导区材料的总和。任何一个被包夹的差动传导通道将几乎总是几乎完全地在物理上被共用传导屏蔽电极材料屏蔽,以构成典型的具有包含成对的电反向差动传导通道的层叠传导分层步进的通用法拉第屏蔽体系结构。It should also be noted that the sum of the top and bottom conductive material areas that almost any one of the sandwiched common conductive channels will almost always be greater than the sum of the separate top and bottom total conductive material areas of any one of the sandwiched differential conductive channels . Any one of the sandwiched differential conductive channels will almost always be almost completely physically shielded by the common conductive shield electrode material to form a typical stacked conductive layered step with pairs of electrically opposite differential conductive channels. Advanced general-purpose Faraday shield architecture.
图1和图2中所示的所有传导共用传导通道,包括共用传导屏蔽电极通道805F/850F-IM、840F、830F、820F、810F、800/800-IM、810B、820B、830B、840B和850B/850B-IM,一般被从实施例9905(未予示出)的外边沿817嵌入一个预定的三维距离814,这可由图1的800E详细看出。All conduction common conduction channels shown in Figures 1 and 2, including common conduction shield electrode channels 805F/850F-IM, 840F, 830F, 820F, 810F, 800/800-IM, 810B, 820B, 830B, 840B, and 850B /850B-IM is generally embedded a predetermined three-
应当注意到,元件813是显示发明实施例(未予示出)内发生的三维能量调节功能的中心轴点的动态表示,相对于通电电路中实施例的最终大小、形状和位置。It should be noted that
所以,成对的和相同大小的电反向差动成对通道,与更大的包夹共用传导通道如图2的800/800-IM和810B一起,按相同种类分组内互相的同类的种类分组(共用的或差动的),在相关制造能量允许的情况下,将分别几乎总是相同大小的。这个相同大小的传导通道电极种类原则,对几乎所有包含几乎新发明实施例的一般构成内的一些只要元件的传导通道种类分组都有效。So, paired and identically sized electrically reversed differential paired channels, together with larger double-tethered shared
继续看图1,差动传导电极通道855BB可包含一个沉积的、掺杂、化学生成的或放置的、或者简单屏蔽的传导电极材料区799,任何差动传导通道将几乎总是在总的传导区大小上比任何一个共用传导屏蔽电极材料区799G的大小更小,并且当计算总的传导电极材料2区的比率时,几乎总是相对于任何给定的包夹共用传导通道的,诸如800/800-IM和810B的,传导电极通道材料799区。(应当注意到,就本说明书而言,799和799G一般是相同的传导材料类型,不过在其它实施例中它们可以是不同的材料类型,它们在本文中是相同的类型,但是有不同的标记,这是为了尽可能彻底地解释实施例。)。Continuing with FIG. 1, the differential conduction electrode channel 855BB may contain a deposited, doped, chemically generated or placed, or simply shielded
图2中所示的这些805F/850F-IM、840F、830F、820F、810F、800/800-IM、810B、820B、830B、840B和850B/850B-IM构成屏蔽电极容器800A、800B、800C、800D、800E、800F、800G和800H,一直到包裹差动对,以构成像成对的传导屏蔽一样的容器800X,这些包夹功能将再次在很大程度上帮助执行相对外部附接的共用传导区或共用能量通道的能量传播部分,并将同时便于为发明实施例内包含的电路生成电压图像基准辅助。These 805F/850F-IM, 840F, 830F, 820F, 810F, 800/800-IM, 810B, 820B, 830B, 840B and 850B/850B-IM shown in FIG. 800D, 800E, 800F, 800G, and 800H, all the way down to wrapping differential pairs to form a container like a pair of conductive shields 800X, these wrapping functions will again largely help in performing common conduction against external attachment region or the energy propagation portion of the common energy channel and will also facilitate the generation of voltage image reference aids for circuits contained within embodiments of the invention.
应当注意到,构成发明实施例一部分的相同数量的屏蔽电极容器结构800“X”,在按照被遵循的预定层叠序列的实施例结构内是平衡的,在制造过程中错误地或故意地增加的几乎任何额外的单个共用传导屏蔽通道层将不足以妨碍或影响能量调节操作。增加的额外共用传导电极层实际上能暴露制造过程中的潜在的成本节省,其中几乎任何自动的层处理都可能加入额外的一个或多个外层,或者实际上不包括记为-IM的这两个共用传导屏蔽电极之一。这些制造错误,无论是故意的还是偶然的,都不会对包含按照正确顺序层叠的的共用传导屏蔽电极容器800X的发明实施例的平衡有根本的损害,如所讨论的那样,申请人完全考虑到了这一点。然而,这个原则在有额外的外部间隔的成对的大小相同的电反向差动传导通道存在时就不成立。在这种情况中,构成发明实施例一部分的相同数量的屏蔽电极容器结构800“X”,必须在按照被遵循的预定层叠序列的实施例结构内保持平衡。在应用另外的外部分隔的成对的大小相同的电反向差动传导通道之前,不应放置任何另外的单个的共用传导屏蔽通道层。因此,在制造过程中,在放置另外的外部分隔的成对的大小相同的电反向差动传导通道之前被错误地或故意地添加的几乎任何另外的单个的共用传导屏蔽通道层都不会损害或影响能量调节操作。发明实施例的几乎任何变体内的成对的大小相同的电反向差动传导通道的数量必须示偶数。It should be noted that the same number of shielded
进一步查看图2可见,共用传导屏蔽电极通道850F/850F-IM、840F、830F、820F、810F、800/800-IM、810B、820B、830B、840B和850B/850B-IM,在被按分立部件设置时,也被提供支持的介电材料801和发明实施例的外罩包围。标记为798-"X"的公用传导连接材料或结构,被施加到为该配置所显示的至少两端上的结构9900内含有的共用通道电极材料799G的电极边沿805处的所述共用屏蔽通道电极扩展79-GNDA的一个加长的相邻部分,如图2中所示,以及如对图1中的共用电极能量通道800/800-IM详细显示的那样。应当注意到任何电极边沿805处的共用屏蔽通道电极扩展79-GNDA的数量。Looking further at Figure 2, it can be seen that the shared conductive shield electrode channels 850F/850F-IM, 840F, 830F, 820F, 810F, 800/800-IM, 810B, 820B, 830B, 840B, and 850B/850B-IM When deployed, it is also surrounded by the
各种介电材料801也使预定的电调节功能能在沿在实施例AOC内或使用实施例AOC的电反向成对差动传导能量通道的各种组合传输的传播能量的各部分上操作。Various
进一步查看图2发现,元件类型798-GND"X"共用传导附加装置、电极或端接结构将允许共用传导屏蔽电极通道850F/850F-IM、840F、830F、820F、810F、800/800-IM、810B、820B、830B、840B和850B/850B-IM分别互相地电连接和物理连接,并与如图3中所示的相同的电传导外部共用传导通道或外部共用传导能量通道或区域6803电连接或物理连接。Further inspection of Figure 2 reveals that component type 798-GND "X" shared conductive add-on, electrode or termination structure will allow shared conductive shield electrode channels 850F/850F-IM, 840F, 830F, 820F, 810F, 800/800-IM , 810B, 820B, 830B, 840B, and 850B/850B-IM are electrically and physically connected to each other, respectively, and are electrically conductive with the same external common conduction channel or external common conduction energy channel or area 6803 as shown in FIG. 3 connection or physical connection.
通用多功能共用传导屏蔽结构9900包含如图所示的多个层叠的、共用传导笼状结构900A、900B和900C,进而包含总体呈平行关系的多个层叠的、共用传导笼状结构800A、800B和800C(每个都统称为800X)。每个共用电极屏蔽笼状结构800X都包含至少一个共用传导通道电极850F/850F-IM、840F、830F、820F、810F、800/800-IM、810B、820B、830B、840B和850B/850B-IM。层叠的、共用传导笼状结构800X的数量并不仅限于这里所显示的数量,并且可以是几乎任何偶数整数。因此层叠的、共用传导笼状结构900X的数量也并不仅限于这里所显示的数量,并且可以是几乎任何偶数或奇数整数。The general multifunctional shared conductive shielding structure 9900 comprises a plurality of stacked, shared
尽管没有显示,在其他应用中, 每个成对的共用传导笼状结构800X包夹至少一个传导电极通道,如前文结合图1所述的那样。共用传导笼状结构800X在图中被显示为分离的,目的是强调它们是被配对在一起的,几乎任何类型的成对的传导通道都可以被插入各个共用传导笼状结构800X内。所以,共用传导笼状结构800X有一个通用的应用,当被配对在一起时,生成更大的共用传导笼状结构900X,后者分别被描述为900B、900A和900C,可以与成对的传导通道组合在一起用于分立的或非分立的配置,诸如但不限于内嵌在硅树脂内或者作为PCB、分立部件网络之类的一部分。Although not shown, in other applications, each pair of shared conductive cage structures 800X encloses at least one conductive electrode channel, as previously described in connection with FIG. 1 . The common conductive cage structures 800X are shown separated in the figures to emphasize that they are paired together, and virtually any type of paired conductive channels can be inserted into each common conductive cage structure 800X. So, the shared conductive cage 800X has a general application, when paired together, to generate the larger shared conductive cage 900X, described as 900B, 900A and 900C respectively, which can be combined with paired conductive Channels are grouped together for discrete or non-discrete configurations such as, but not limited to, embedded within silicone or as part of a PCB, discrete component network, or the like.
如图2中已经描述的那样,介电材料801将共用传导通道电极850F/850F-IM、840F、830F、820F、810F、800/800-IM、810B、820B、830B、840B和850B/850B-IM与被包夹在其中的成对的、相同大小的电反向差动传导电极通道或传导通道电极(未予示出)绝缘,并且也绝缘以及屏蔽外部的至少一对相同大小的电反向差动传导通道。As already described in FIG. 2,
此外,如结合图1和图2所描述的那样,最少需要两个笼(例如构成更大的笼900A的800E和800D)来构成一个用于本发明的几乎所有分层化实施例的多功能线调节结构。相应地,如图2中所示的那样,每个900A、900B和900C分别需要至少两个共用传导茏状结构800X。(除介电材料等以外的)任何序列的非常基本的共用传导通道制造结果应当表现为一个屏蔽电极实施例结构,它包含最少三个共用传导互连的层叠共用屏蔽电极通道,并进一步包含至少两组成对的电反向差动电极能量通道,一个成对的组在该最少三个共用传导互连的层叠共用屏蔽电极通道之内,一个成对的组在该最少三个共用传导互连的层叠共用屏蔽电极通道之外,它们能被连接并通电,使得它在通电时含有至少一部分的操作电路。Furthermore, as described in conjunction with Figures 1 and 2, a minimum of two cages (e.g., 800E and 800D forming
概言之,当将单个的更大的法拉第笼状结构900“X”附接到更大的外部传导区(未予示出)时,该组合有助于同时地执行对沿着被包夹在在笼状结构900“X”内的各种成对的电反向差动传导电极通道分组(未予示出)的能量传播的通电的线调节和过滤功能,以及绝缘至少一对位于外部的、大小大致相同的(这些特殊的电极有例外)电反向差动传导通道。In summary, when a single larger Faraday cage structure 900 "X" is attached to a larger outer conductive region (not shown), the combination facilitates simultaneous performance of Energized line conditioning and filtering functions for energy propagation of various pairs of electrically reversed differentially conductive electrode channel groupings (not shown) within the cage structure 900 "X", and insulation of at least one pair located externally (with the exception of these particular electrodes) electrically reversed differential conduction channels of roughly the same size.
具有层叠的传导分层步进的通用法拉第屏蔽结构的几乎所有变体都以互连的屏蔽结构的形式被使用,该结构包含各种个别地分层的屏蔽电极,它们共享一个共用的传导连接,连接彼此,并连接位于外部的、不是差动传导通道的能量通道。Almost all variants of the common Faraday shield structure with stacked conductive layered steps are used in the form of interconnected shield structures containing various individually layered shield electrodes that share a common conductive connection , to connect with each other, and to connect the energy channels which are located outside, which are not the differential conduction channels.
位于内部的屏蔽电极彼此的传导共用连接,以及与不是差动传导通道的外部能量通道的连接,允许这个第三通道被同时用作一个单独的能量通道,它能向发明实施例内包含的各部分电路提供基准电压。被分组的电极屏蔽通道所用的第三能量通道同时也便于生成一个由利用差动通道进行传播的各部分能量所用的预定低阻抗。The conductive common connection of the internally located shield electrodes to each other, and to the external energy channel, which is not a differential conductive channel, allows this third channel to be used simultaneously as a single energy channel, which can contribute to the various energy channels contained within the inventive embodiments. Some circuits provide reference voltages. The third energy path for the grouped electrode shielding paths also facilitates the creation of a predetermined low impedance for the portions of energy propagated by the differential paths.
能量通过发明实施例的差动传播,便于在发明实施例AOC内生成提供各部分能量的器件或实施例,以便以互补的和平衡的方式利用发明实施例的各部分,以利使电路系统效率优于类似的现有技术电路的效率。这个单独的并且通常被共享的第三通道,因其在通常更大型通电电路中实际的物理和电路位置,不仅仅起着见于预定通电电路中的能量的分压器的作用。这个物理和电路位置,最恰当地说是通电操作期间在至少一组内部的、成对的和反向地协作的差动传导能量通道与至少一对位于外部的、大小大致相同的(这些特殊的电极有例外)电反向差动传导通道之间的屏蔽电极中间和电共用位置。The differential propagation of energy through inventive embodiments facilitates the creation of devices or embodiments within an inventive embodiment AOC that provide portions of energy to utilize portions of inventive embodiments in a complementary and balanced manner to facilitate circuit system efficiency outperforms the efficiency of similar prior art circuits. This separate and often shared third channel, due to its actual physical and circuit location in the often larger energized circuit, does not merely act as a voltage divider for the energy found in the intended energized circuit. This physical and electrical location, most appropriately during energized operation, is between at least one set of internal, paired and counter-cooperating differentially conducted energy pathways and at least one pair of externally located, approximately the same size (these special Exceptions are the shield electrodes between the electrically reversed differential conduction channels and the electrically common position between the shield electrodes.
这个单独的第三通道,也变得作为共用的电压基准节点而被使用和共享,这不仅是对于发明实施例和/或其813AOC(未予示出)内的电路操作而言的,也是对于通电操作期间的至少一组成对的和反向地协作的差动传导能量通道和相同电路的至少一对位于外部的、大小大致相同的(这些特殊的电极有例外)电反向差动传导通道而言的。This separate third channel also becomes used and shared as a common voltage reference node, not only for the operation of circuits within the inventive embodiment and/or its 813AOC (not shown), but also for At least one set of paired and oppositely cooperating differentially conductive energy pathways during energized operation and at least one pair of externally located, substantially identically sized (with the exception of these special electrodes) electrically opposite differentially conductive pathways of the same circuit In terms of.
本发明也将最小化或消除分别源于与电路相连的成对的和反向协作的差动传导能量通道的任何之一的无益的能量寄生的彼此干扰,发明实施例的AOC内的各部分传播电路能量电路或电压平衡。该发明也将最小化有害和无益的能量寄生,为以共用方式能量之类的形式逃脱而将后继的传导通道释放回到电路系统中,以妨害AOC影响之外的电路。The present invention will also minimize or eliminate the mutual interference of unwanted energy parasitics originating respectively from any of the paired and counter-cooperating differentially conducted energy paths connected to the circuit, the various parts within the AOC of the inventive embodiment Spreading circuit energy circuit or voltage balance. The invention will also minimize detrimental and unwanted energy parasitics, releasing subsequent conduction pathways back into the circuitry for escape in the form of shared mode energy or the like to interfere with circuits outside of the AOC's influence.
现在参看图3,可以将总体结构9905分解成更小的成对的笼状传导结构部分,以揭示例如各种小至900A的重叠传导屏蔽结构的更小分组,900A进一步包含共用传导屏蔽电极通道810F-、800/800-IM、810B-,各个屏蔽种类分组将几乎总是被用外部共用传导材料6805或工业标准连接装置(未予示出)传导地组合和附接在一起,以允许使用位于外部的共用传导区或通道6803,它不属于能被发现附接到或传导地连接到该新发明的典型应用的发明实施例的各种外部的电反向差动传导能量通道。Referring now to FIG. 3 , the overall structure 9905 can be broken down into smaller pairs of cage-like conductive structure portions to reveal, for example, smaller groupings of various overlapping conductive shield structures as small as 900A further comprising common conductive
如在图3中所见,为了调节如内部855BB和内部855BT的成对电反向差动传导旁通方式能量通道以及如图3的外部865BB和外部865BT的成对电反向差动传导旁通方式能量通道,更大的容器800“X”叠层将包含共用传导通用屏蔽电极结构9905或等同物,其方式使得能以预定的方式添加各种共用传导通道屏蔽电极,以构成成对的900“X”结构,后者进而形成类似于图2中所示的一个更大的总体屏蔽电极结构。As seen in Fig. 3, in order to regulate the energy path of the paired electrical reverse differential conduction bypass mode such as the inner 855BB and the inner 855BT and the paired electrical reverse differential conduction bypass of the outer 865BB and the outer 865BT as shown in Fig. 3 Through mode energy channels, the
只要共用传导连接材料连接798-GNDA能通过如图3中所示的、分别记为79-GND“X”的、统记的电极扩展部分的延伸而保持与共用通道电极边沿805的某种物理或电接触,则完全配置的发明实施例就应正确工作。As long as the common conductive connection material connection 798-GNDA can maintain some physical contact with the common
在图3中,每一个如图3的内部855BB和内部855BT的成对电反向差动传导旁通方式能量通道都被认为分别包夹每个共用互连传导通道,诸如共用成对电极屏蔽电极通道810F、800/800-IM、810B的各种组合,它们把855BB和855BT差动传导通道包夹在内部,后者自己以大致相等806定位后缩(图1)。此外,每一个如外部865BB和外部865BT的成对电反向差动传导旁通方式能量通道也被层叠并电绝缘。在这些条件下,传导电路在被通电时将实施本发明实施例的功能,诸如以互补和共用的方式对刚刚讨论过的位于内部的共用传导屏蔽电极和材料区或沉积物进行噪声或能量场消除或最小化、过滤和电冲击消除。如图3中所见,每个容器800D和800E能容纳相等数量的大小相同的差动电极,诸如内部855BB和内部855BT,它们在更大的结构900A内互相之间在某种程度上是物理反向的,不过它们被调整方向,将分别以总体上物理和电平行的方式操作,这就使得各种能量调节功能能被保持。In Fig. 3, each of the paired electrical reverse differential conduction bypass mode energy paths as shown in inner 855BB and inner 855BT of Fig. 3 are considered to respectively enclose each common interconnection conduction path, such as common paired electrode shielding Various combinations of
具有协作的各具有罩形结构的800D和800E的更大的传导法拉第共用传导屏蔽结构900A,当在电路内被通电,并通过连接到与共用传导区6803附接的电连接的外部施加的共用传导电极材料的电极扩展79-GNDA而附接到相同的外部共用传导通道区6803时,变成一个电(...)这是由传导焊接材料6805或用于传导附件的其它普通连接装置或如电阻设置等已知的工业方法、或各种已知的焊接方法(未予示出)并通过使用内部电极扩展79-GNDA、以及几乎任何通常可接受的工业附接方法(位于示出)诸如重注焊接、传导环氧树脂和黏合剂之类(但未予示出)而完成的。The larger conductive Faraday common
因此,任何制造顺序如下:(不包括介电材料等)一个差动传导通道865BB、然后是一个共用传导通道810B、然后是位于内部的差动传导通道855BB、然后是中央的和共享的共用传导通道电极800/800-IM,然后是内部差动传导通道855BT、然后是共用传导通道810F、然后是外部电反向差动传导通道865BT。当图3中的这个例子的完整结构被通电时将生成一个电压基准通道。Thus, any fabrication sequence would be as follows: (excluding dielectric materials, etc.) a differential conduction channel 865BB, then a
再次参看图3,包含810F、800/800-IM、810B的部分现在被显示包含图3的实施例9905的一部分。某些共用屏蔽电极被设置成包含两个798-GNDA电极扩展(图1中有详细显示)的屏蔽电极,并且进而与9905实施例的其它元件组合在一起,将几乎总是被放置在组合中,以形成一个具有两对成对的电反向差动传导旁通能量通道的实施例,其包含两个分别为内部855BT和外部865BT以及内部855BB和外部865BB的成对能量通道的子集合,并且也被视为共享共用屏蔽电极能量通道或结构900A的成对旁通传导通道元件。Referring again to FIG. 3 , the portion comprising 810F, 800/800-IM, 810B is now shown comprising a portion of embodiment 9905 of FIG. 3 . Certain common shield electrodes set up as shield electrodes comprising two 798-GNDA electrode extensions (shown in detail in Figure 1), and in turn combined with other elements of the 9905 embodiment, will almost always be placed in combinations , to form an embodiment with two pairs of electrically reversed differential conduction bypass energy channels comprising two subsets of paired energy channels respectively inner 855BT and outer 865BT and inner 855BB and outer 865BB, And are also considered pairs of bypass conductive channel elements that share a common shield electrode energy channel or
图3表示实施例9905的附接的剪切版本的各种元件,是以剪切的视图显示的。具有包含用于利用独立的操作旁通能量传播方式同时沿成对的电差动通道传播能量的独立的电路的层叠传导分层步进的通用法拉第屏蔽体系结构900A的概念是所显示的结构9905,它包含所示的层叠的共用传导茏状结构900A,共用传导笼状结构900A又是由多个层叠的共用传导笼状结构或容器800D和800E(每个都统称为800X)构成,共用传导笼状结构或容器800D和800E呈总体平行但互连的传导屏蔽关系。每个共用传导容器800叠合800E包含至少两个共用传导通道电极810F、800/800-IM、810B。层叠的共用传导互连屏蔽电极笼状结构800X的数量通常是偶整数。因此,层叠的共用传导笼状结构900X的数目也不仅限于这里所示的数目,通常是个偶数或奇数整数。Figure 3 shows various elements of an attached cutout version of embodiment 9905, shown in a cutaway view. The concept of a generalized
图3中也显示,每个成对的共用传导笼状结构800X包夹至少一个传导差动旁通方式通道电极,后者包含两对独立工作的电反向的大小相同的传导差动旁通方式通道电极。层叠的共用传导互连屏蔽电极茏状结构800X几乎都能与分立或非分立设置中的独立但成对的外部差动成对能量通道组合起来使用,所述分立或非分立设置诸如但不限于如图3和图7A中所示的分立的独立部件,或者其它没有被显示的部件;诸如但不限于部件组合、硅集成电路内分立或非分立的内嵌、插入物、模块、基底或PCB的局部、能量调节网络等等。It is also shown in Fig. 3 that each pair of shared conductive cage structure 800X encloses at least one conductive differential bypass mode channel electrode, which contains two pairs of independently operating electrically opposite conductive differential bypass channels of the same size. mode channel electrodes. The stacked common conductive interconnection shield electrode embroidered structure 800X can almost always be used in combination with independent but paired external differential paired energy channels in discrete or non-discrete arrangements such as but not limited to discrete stand-alone components as shown in Figures 3 and 7A, or other components not shown; such as but not limited to component assemblies, discrete or non-discrete inlays, interposers, modules, substrates or PCBs within silicon integrated circuits local, energy regulation network, etc.
共用传导通道电极810F、800/800-IM、810B都如图中所示地在79-GNDA(s)传导地互连,79-GNDA(s)通过焊接材料6805或本领域内已知的任何其它附接装置提供与外部共用传导能量通道或区6803的传导互连点。每个共用传导通道电极810F、800/800-IM、810B都是在介电材料801上形成的,外露侧带仅由介电材料801而不是传导电极材料799G构成。Common
也应当注意到,如图3中所示,所示的成对设定的电反向差动能量通道成对的、共同大小的、近乎完全叠盖彼此的主电极表面区,尽管被更大的共用屏蔽电极和801介电材料分隔。它们对电反向操作(当通电时)的传导附件来说是互补成对的。这些共同大小、互补成对的电差动(在操作中)传导电极或能量通道总是物理地彼此分隔,并且分别位于电相反的各端,共用传导屏蔽电极能量通道的两个主传导部分之一相对于互相充电。由于所有这些电极形状和外观是平面的,分别按它们的同类分组排列,在被能量传播的各个部分有效地利用的部分内许多层次上具有对称性。It should also be noted that, as shown in FIG. 3 , the paired sets of electrically reversed differential energy pathways shown are paired, co-sized, and nearly completely overlap each other's main electrode surface area, albeit by a larger The common shield electrode is separated from the 801 dielectric material. They are complementary pairs to conductive appendages that operate electrically in reverse (when energized). These co-sized, complementary pairs of electrically differential (in operation) conductive electrodes or energy channels are always physically separated from each other and located at electrically opposite ends, between the two main conductive portions of the common conductive shield electrode energy channel One charges relative to each other. Since all of these electrodes are planar in shape and appearance, respectively arranged in groups of their own kind, there is symmetry on many levels within the portion effectively utilized by the various parts of energy propagation.
结合的共用传导包夹多个共用屏蔽电极通道810F、800/800-IM、810B分别与一个共用的位于中央的共用传导通道800/800-IM的传导连接,将几乎总是变成像图3中所示的外部共用传导元件或外部共用传导能量通道6803一样。多个共用屏蔽电极通道810F、800/800-IM、810B将几乎总是以这样的多平行的方式被插入之间,提供差动电极导体内部855BT和内部855BB的包夹,同时自身也被位于外部的865BB和内部855BT包夹,同时还保持这样的状态,即共用屏蔽电极通道810F、800/800-IM、810B将对介电体801的互补的成对电反向差动电极855BB、865BB及855BT和865BT有一个最小的814C距离间隔或“回路区”。The combined common conduction sandwich multiple common
如图3中所示的798-GNDA的外部传导元件将有助于由共用屏蔽电极通道810F、800/800-IM、810B所执行的静电屏蔽(未予示出)功能的性能等等。该结构也便于如刚才所述的通电连接组合,将允许外部共用传导能量通道或区域6803的加强,以帮助实施例9905内互连的共用屏蔽电极辅助对组合体9905的不同电极导体855BB、865BB及855BT和865BT上的各部分能量传播提供有效、同时的调节。作为9905内这些传导通道的一部分的能量通道被传导连接扩展812A和812B结构在外部连接,该结构附接到包含成对差动电极855BB、865BB和855BT、865BT的电路分组的传导连接装置890B和891B。组合的互连共用屏蔽电极810F、800/800-IM、810B的内部和外部的并行装置分组也将帮助取消或消除可能通过AOC逃出或进入包含分别被各部分能量在沿这些披露的传导通道传播到有源组体负载(未予示出)时使用的成对差动电极内部855BB和855BT的各部分以及成对差动电极外部865BB和865BT的各部分的无益的寄生物和电磁辐射。通用屏蔽电极结构将也便于获得和图3的物理屏蔽电极结构9905相同类型的各部分传播电路能量(未予示出),便于为各部分子电路能量通道得到差动通道的共用低阻抗能量通道(未予示出)和基准图象(未予示出),以和谐地工作。The external conductive elements of 798-GNDA as shown in FIG. 3 will aid in the performance of the electrostatic shielding (not shown) function performed by the common
在一个瞬间,同时在相同时间内,各部分能量传播电路能量将几乎总是被提供以一个瞬间的高阻抗的能量阻塞功能,用于相对于非常相同的第三能量通道和基准图形的AOC的各部分内包含的能量传播的某些其它反向和屏蔽分隔的部分,同时在非常相同的瞬间,这个高阻抗转换现象还在以径反向方式发生,在相同的瞬间,并且以互补方式对相对于相互位于相反位置的各部分的能量传播发生,但是以电和谐方式沿着同一个共享的更大的通用屏蔽电极结构的反面。At one instant, simultaneously at the same time, the energy of each part of the energy propagation circuit will almost always be provided with an instantaneous high impedance energy blocking function for the AOC with respect to the very same third energy channel and reference pattern Some other inverse and shielding separation of the energy propagation contained within each part, while at the very same instant this high impedance transformation phenomenon is also occurring in a radially opposite manner, at the same instant, and in a complementary manner to Energy propagation occurs with respect to parts located opposite each other, but in an electrically harmonious manner along opposite sides of the same shared larger common shield electrode structure.
这将包括例如实施例9905的如图2和图3中所示的种类表示的多个大致平面的层次。图3中的这些大致平面的层次例如包括陶瓷介电材料801,在制造过程中外加或沉积一种799G传导电极材料。各共用屏蔽电极层(多得数不清)的主电极表面位于与实施例层9905的主介电材料805表面大致平行的位置(二者在图3中都未予示出)。This would include a number of generally planar layers such as the kind represented in Figures 2 and 3 of embodiment 9905. The generally planar layers in FIG. 3 include, for example, ceramic
如图3中所示,为了便于在具有叠层传导层次步进的通用法拉第屏蔽结构内的各种反向差动能量通道之间的最佳可能的磁场耦合消除,一般的规矩是,成对的并且仅仅一个互相之间最小的距离应当操作地隔离反向差动导体。可能有某些例外。然而,通过以总体反向或异相的方式操作,位置相反的能量通道对855BB和865BB连同855BT和865BT的互相耦合,增强它们各自相反磁场的互相消除,与此同时,还互相地同时协作,利用也发生在沿着发明实施例AOC内相同的位置相反的能量通道对的各种电路部分能量传播的各部分上的静电或法拉第屏蔽效应。As shown in Figure 3, to facilitate the best possible magnetic field coupling cancellation between the various reverse differential energy channels within a generic Faraday shield structure with stacked conduction level steps, the general rule is that pair and only a minimum distance from each other should operatively isolate the reverse differential conductors. Certain exceptions may apply. However, by operating in a generally opposite or out-of-phase manner, the mutual coupling of oppositely positioned energy channel pairs 855BB and 865BB, along with 855BT and 865BT, enhances mutual cancellation of their respective opposing magnetic fields, while simultaneously cooperating with each other, The electrostatic or Faraday shielding effects that also occur on portions of the energy propagation of the various circuit portions along the same oppositely positioned pair of energy pathways within the inventive embodiment AOC are exploited.
也应当注意到,通过用通用屏蔽电极体系结构的预定元件,以沉积的或外加的介电介质材料的大致相等的间隔放置刚才所述的两个差动传导通道,产生的发明实施例将产生对位于刚才所述的AOC内的差动传导通道上的电路能量的各部分的有益的能量调节。刚才所述的成对的反向差动传导通道也保持一个通电的关系,其互相之间是电互补的,同时也是电反向的,不管沿着各个成对的差动能量通道855BB和865BB以及855BT和865BT上驻留的各部分传播能量的普遍方向如何。It should also be noted that by placing the two differential conduction channels just described at approximately equal intervals of deposited or applied dielectric material with predetermined elements of a common shield electrode architecture, the resulting inventive embodiments will produce Beneficial energy conditioning of portions of circuit energy on differential conduction channels within the just described AOC. The pairs of reverse differential conduction channels just mentioned also maintain an energized relationship, and they are electrically complementary to each other, and at the same time, they are also electrically reversed, no matter along each pair of differential energy channels 855BB and 865BB And what is the general direction in which the parts residing on the 855BT and 865BT spread the energy.
如图3中所示的这样一种包含例如855BB和865BB以及855BT和865BT的设置,分别将产生两个相应的电定位为能量通道的差动能量通道855BT和865BT之一,在本例中,能量通道被电定位在一个能量源和一个由800-IM中央共用传导屏蔽元件和其它元件隔开的使用能量的负载之间,而其余各个差动能量通道855BB和865BB也将被考虑能量通道的形式被电定位,定位在一个连接回到其能量源起始器的使用能量的负载之间,该能量源起始器与一个确定的电路一起以某种形式启动过各能量传播部分,确定电路可以认为是来自在电路通电的起始时间开始的能量传播的源。就是说,两个相应的、相邻的但是被屏蔽和分隔的差动能量通道或差动电极-例如855BB和865BB的之一,处于彼此互相共同活动的关系中的通电状态,但是在物理上和电学上都屏蔽的体系结构之间,然而所保持的实际的物理分隔的范围,在小于50mm到更小但大于或等于0的数目之间,只要每个处理相对于另一个的电路能量部分的传播。Such an arrangement as shown in Fig. 3 comprising, for example, 855BB and 865BB and 855BT and 865BT would produce one of two corresponding differential energy channels 855BT and 865BT respectively electrically positioned as energy channels, in this example, Energy channels are electrically positioned between an energy source and an energy-using load separated by the 800-IM central common conductive shield element and other elements, while the remaining individual differential energy channels 855BB and 865BB will also be considered for the energy channels The form is positioned electrically between a load using energy connected back to its source of energy initiator which in some form activates through the parts of the energy transmission with a defined circuit defining the circuit can be considered as a source from energy propagation starting at the initial time of energization of the circuit. That is, two corresponding, adjacent but shielded and separated differential energy channels or differential electrodes - such as one of 855BB and 865BB, are energized in mutual co-active relationship to each other, but physically and electrically shielded architectures, however the actual physical separation maintained ranges from less than 50 mm to a smaller but greater than or equal to zero number, as long as each processes a fraction of the circuit energy relative to the other Spread.
联合的共用传导和封装多重共用屏蔽通电分别与共用的、中央定位的共用传导通道800“X”-IM的传导连接,将几乎总是变得像例如图3中所示的外部传导元件6803的扩展一样,并且将几乎总是被以多重并行的方式被插入,使得所述共用传导元件将几乎总是相对于互补、相差动电极相隔数微米的距离或“回路区”,后者本身被包夹。但与例如图3中所示的外部传导能量通道或区6803的扩展隔开一个包含一个介电介质的距离。The combined common conduction and conductive connection of the encapsulated multiple common shield energies respectively to the common, centrally located
这使图3中所示的外部传导能量通道或区6803的电或传导扩展能帮助提高静电屏蔽功能等的性能,刚才所述的通电的组合将几乎总是加强和产生对静电屏蔽组件(assembly)900A的外部差动导体865BB和865BT上的能量传播的有效和同时的调节。组合的共用传导900A的内部和外部平行排列(arrangement)分组将几乎总是也取消或消除可能逃出或进入被各部分能量在沿这些披露的传导通道传播到有源组体负载(图3中未予示出)时使用的所述差动导体855BT和855BB的各部分的无益的寄生物和电磁辐射。This enables the electrical or conductive extension of the external conductive energy channel or region 6803 shown in FIG. Efficient and simultaneous regulation of energy propagation on the outer differential conductors 865BB and 865BT of ) 900A. The combined inner and outer parallel arrangement groupings of the
所以,由标准方法类似地构造或制造的、用于标准的、单一的、成对线电路情形并作为相同配置的发明实施例之间的唯一重要变化而具有一个介电差动的发明实施例的几乎所有实施例和变体,将几乎总是以预料外的和不明显的方式产生一个插入损失性能测量,考虑到现有技术各个已知的介电材料响应。类似发明单元(介电材料以外的)的比较清楚地明确地揭示了导致这个结果的主要原因,电路性能是实施例内各单元、更大的共用传导屏蔽结构和共用外部传导单元的传导连接的平衡,共用外部传导单元组合起来工作,使用静电消除、物理屏蔽来影响对在采用各种发明实施例的电路系统内传播的能量的调节。各种发明实施例的用户可以使用所有类型的工业标准连接方法和/或传导材料或结构来把所有共用传导能量通道互相地传导连接和/或连接到一般与差动成对通道分隔的相同的位于外部的传导能量通道。Therefore, an inventive embodiment similarly constructed or fabricated by standard methods for a standard, single, paired wire circuit situation and having a dielectric differential as the only significant change between identically configured inventive embodiments Almost all embodiments and variants of , will almost always produce an insertion loss performance measurement in unexpected and unobvious ways, given the respective known dielectric material responses of the prior art. Comparison of similar inventive units (other than the dielectric material) clearly and definitively reveals the main reason for this result, the circuit performance is a function of the units within the example, the larger shared conductive shielding structure and the conductive connection of the shared external conductive unit Balanced, shared external conduction elements work in combination, using static elimination, physical shielding to effect regulation of energy propagating within circuitry employing various inventive embodiments. Users of various inventive embodiments can use all types of industry standard connection methods and/or conductive materials or structures to conductively connect all common conductive energy channels to each other and/or to the same channel that is generally separated from the differential paired channels. Conductive energy channels located on the outside.
所有位于或可被外部传导能量通道连接接触的现有共用传导电极通道的完全平衡连接的关键性质,已经在过去的文件中被披露,在能实现同时执行多重和不同能量调节功能方面,被认为非常关键,这些能量调节功能例如是利用相对于“0”的反面的电定位的电力和信号去耦、过滤、电源平衡。在单一的位于中央的共用和共享传导电极通道的反面上生成的电压基准和那些文件中所公开的原理体现在发明实施例中。The critical nature of a fully balanced connection of all existing common conductive electrode channels located at or accessible by external conductive energy channel connections, has been disclosed in past papers, in terms of enabling simultaneous performance of multiple and different energy conditioning functions, is considered Crucially, these energy conditioning functions are, for example, power and signal decoupling, filtering, power balancing utilizing electrical positioning opposite to "0". The voltage reference generated on the opposite side of a single centrally located common and shared conductive electrode channel and the principles disclosed in those documents are embodied in an inventive embodiment.
与所有共用和传导地连接的共用电极元件的同一个共用传导外部区或通道的发明连接,当连接到一个单独的返回路径、内在的地、机壳地或不是差动传导通道的低阻抗通道时,将几乎总是允许AOC传播的能量与源和负载电平行地工作,以及与其它共用传导结构电并行地工作,不仅是相对彼此、也是相对于几乎任何主电路定位的共用传导结构。用所述的在通电电路中放置或附接的USS,所公开的与内部和外部差动能量通道并行的共用传导能量通道将几乎总是由此再次增强或降低AOC内的第三传导/共用传导通道的阻抗,以允许所传播的能量-返回路径能使用从一个源起源的部分能量。Inventive connection to the same common conductive outer area or path for all common and conductively connected common electrode elements when connected to a separate return path, intrinsic ground, chassis ground or low impedance path that is not a differential conductive path , will almost always allow the energy propagated by the AOC to operate in parallel with the source and load electrical, as well as electrically parallel with other common conductive structures, not only with respect to each other, but with respect to almost any common conductive structure located in the main circuit. With the USS placed or attached in the energized circuit as described, the disclosed shared conduction energy path in parallel with the inner and outer differential energy paths will almost always thereby again enhance or reduce the third conduction/commonization within the AOC The impedance of the conduction channel to allow the propagated energy - the return path can use some of the energy originating from a source.
应当注意到,尽管一旦发明被放置到共用传导区上,通常外部和内部差动电极能量通道二者是平衡的。位于外部的共用传导通道的增加,加回传导能量通道平衡并偏移在类似类型的发明中所指出的自谐振。如图2和图3中所示的那样,那些标记为(#-IM)的、与内在的中央共享图象“0”电压基准平面附接的额外地放置的共用传导能量通道,将几乎总是以多种方式增加发明实施例的屏蔽效果。这些额外地放置的、位于外部的、包夹其紧邻的位于内部的邻居的共用传导能量通道,是为了大于向USS实施例增加电容。这些额外放置的共用传导能量通道是在至少一组外部差动电极对的任何应用之前被放置的。It should be noted though that usually both the outer and inner differential electrode energy pathways are balanced once the invention is placed on the common conduction area. The addition of externally located common conduction channels, adding back conduction energy channels balances and shifts the self-resonance noted in similar types of inventions. As shown in Figures 2 and 3, those additionally placed common conduction energy paths, labeled (#-IM), attached to the intrinsic central shared image "0" voltage reference plane, will almost always There are several ways to increase the shielding effect of embodiments of the invention. These additionally placed, externally located, shared conduction energy pathways sandwiching their immediate internally located neighbors are for greater capacitance addition to the USS embodiment. These additionally placed common conductive energy channels are placed prior to any application of at least one set of outer differential electrode pairs.
发明实施例内的磁滞效应被显著地减少至接近零,这是由于放置在以在插入的共用传导能量通道的反面上同时相反和异相的几乎180度的方式到达的材料上的互补应力的作用。如所公开那样的这些应力处理技术如果用现有技术的部件是难以复制的。对于在馈通传播方式和应用中配置的现有技术部件来说尤其如此。用作传导电极扩展部分的795”X”允许部分传播能量流经位于内部的、从按照标准工业装置和方法附接的外部传导连接结构(未予示出)到达的差动传导电极。The hysteresis effect within the inventive embodiments is significantly reduced to near zero due to the complementary stresses placed on the material arriving in an almost 180 degree manner that is simultaneously opposite and out of phase on the opposite side of the interposed common conductive energy channel role. These stress management techniques as disclosed are difficult to replicate with prior art components. This is especially true for prior art components configured in feedthrough propagation schemes and applications. The 795"X" used as a conductive electrode extension allows part of the propagating energy to flow through the internally located differential conductive electrode from an external conductive connection structure (not shown) attached according to standard industry devices and methods.
如图7A和7B中所示的9210那样的新发明实施例的组成可以是,分支电极7300C和7300D直接馈通版本,它们被相对彼此紧密地定位并间隔,其方式使得传导电极材料799的分支差动电极平面的每组通常呈现为一个完全的9210中的单个,具有与现有技术机构的体积相同或稍小的体积。The composition of the new inventive embodiment like 9210 shown in FIGS. 7A and 7B may be that the branch electrodes 7300C and 7300D are direct feed-through versions, which are closely positioned and spaced relative to each other in such a way that the branches of the
然而,这个用于如图7A和7B中所示的9210之类的那样的新发明实施例内的单独的同类电极分组(仅差动电极或仅共用电极)或者两个分组(差动电极和共用电极)的小而重要的分支差动电极配置,便于有更多利用传导电极材料799的每组分支差动电极平面的能量传输和能量传播能力,以及通过占据更小的区域而便于有更少的、任何单一共用或差动电极原本需要的层次,这便于有更多的电路传导连接,与此同时处理多个正常电极能量通道的额外能力调节需求,其能量处理能力,比含有不同数量的大小相同的分支差动馈通传导差动电极或共用屏蔽电极的相同大小的现有技术器件的能力处理能力更有效和更强大。However, this is used within a single homogeneous electrode grouping (differential electrodes only or common electrodes only) or two groups (differential electrodes and The small but important branch differential electrode configuration of the common electrode) facilitates more energy transmission and energy propagation capabilities of each group of branch differential electrode planes utilizing the
使用这些位置紧密的、如图5中所示的7300C和7300D那样的分支电极对的现有技术器件,将仍然没有新发明那样有效或者有能效。Prior art devices using these closely spaced branched electrode pairs like 7300C and 7300D shown in Figure 5 will still not be as efficient or energy efficient as the new invention.
例如,当只为分支差动电极设置时,仅仅因为把各种分支或非分支电极分组组合成一个预定位置的体系结构,就得出一个使用类似分层和排列的现有技术叠层中的总电极的较少分支层次的器件或实施例。For example, when only branched differential electrodes are provided, simply because of the architecture of grouping various branched or non-branched electrodes into a predetermined location, one results in a prior art stack using similar layering and arrangement. Less branched level devices or embodiments of the total electrode.
在例如一个差动的三通道电路附接方案中,现有技术器件有效地具有双倍数量的传输电流的电极,用于增加其能量处理能力,具有较少的相同数量的分支电极通道的新发明将能够比现有技术处理更多的能量,这是由于分支和非分支共用和差动传导电极能量传输通道二者的预定安排。In e.g. a differential three-channel circuit attachment scheme, prior art devices effectively have double the number of current-carrying electrodes for increasing their energy handling capabilities, newer devices with fewer equal number of branch electrode channels The invention will be able to handle more energy than the prior art due to the predetermined arrangement of both branched and non-branched common and differential conductive electrode energy transfer channels.
所以,7300C和7300D,即分支差动电极7300C和7300D一起,被定义为至少两个单个的、大小相同的能量通道,它们被至少一个更大的第三共用传导屏蔽电极或内部能量通道分隔,后者以插入的方式放置,以便被7300C和7300D二者共享,用于能量调节,而仍然使用如非分支对所用的相同的电压基准作为实施例9210中的电路基准功能。它们仍然包含一组电反向的、成对的、大小相同的传导电极主区797“X”,用于每组被放置的电极材料799和使用共用电压基准作电路基准功能的能量调节实施例的许多变体的一部分的平面区。这在具有分支电极配置的发明中是通用的。这两个共同大小的传导材料或电极能量通道区7300C和7300D仍然小于共用屏蔽电极810F-1和2、800/800-IM-1和2、810B-1和2,这几个共用屏蔽电极一起包含一组四个不同的却紧密间隔的对,每对有两个单元,各是薄传导电极797SF1-A、797SF1-B、797SF2-A和797SF2-B,分别处于平行的关系,由一个薄层的介电罩材料801在它们之间将它们间隔开来。So, 7300C and 7300D, i.e. branch differential electrodes 7300C and 7300D together, are defined as at least two single, equally sized energy channels separated by at least one larger third common conductive shield electrode or inner energy channel, The latter is placed in an inset so as to be shared by both the 7300C and 7300D for energy regulation, while still using the same voltage reference as used for the non-branched pair for the circuit reference function in
参看图7A,应当注意到,类似地,每个共用屏蔽电极能量通道不必由一对对应的紧密间隔的薄共用屏蔽电极能量通道元件组成,因为没有必要在所有情况中都让这些屏蔽电极的这些共用屏蔽电极能量通道单元因为使用这个设置而具有双倍的总电极表面区,包含更大的具有叠层的层次步进的通用共用传导屏蔽电极结构体系结构的共用屏蔽电极结构元件不处理能量、像现有技术的那些一样的主输入或输出能量传播通道功能。相反,在多数情况中,共用屏蔽电极结构元件在发明实施例9210之类中被用作不是外部差动能量通道(未予示出)的第三个额外能量传输通道。Referring to Figure 7A, it should be noted that, similarly, each common shield electrode energy channel need not consist of a corresponding pair of closely spaced thin common shield electrode energy channel elements, as it is not necessary in all cases to have these The common shielded electrode energy channeling unit has double the total electrode surface area due to the use of this setup, contains a larger common common conductive shielded electrode structure architecture with stacked hierarchical steps the common shielded electrode structure elements do not process energy, Main input or output energy propagation channel functions like those of the prior art. Instead, in most cases, the common shield electrode structural element is used in the like of
现在参看图7B,图7A中所示的9210叠层,现在被显示为一个制成的能量调节部件。六个外部传导连接电极,被标记为798-“X”,并各自被它们相应的外部传导连接结构或电极特别标记,它们围绕着9210体。能量调节部件910包含两个外部共用传导连接电极798-GNDA和798-GNDB,用于所有位于内部的GNDG屏蔽电极与一个不是任何差动外部能量通道或电路(未予示出)的外部共用传导能量通道(未予示出)的共用传导连接。四个用于传导连接外部差动传导电路通道(未予示出)的跨接馈通外部传导连接电极798FA、798FD、798FC和798DB,以及两个外部共用传导连接电极798-GNDA和798-GNDB,用于与第三差动传导电路通道(未予示出)的传导连接。Referring now to FIG. 7B, the 9210 stack shown in FIG. 7A is now shown as a fabricated energy conditioning component. Six external conductive connection electrodes, labeled 798-"X" and each specifically identified by their corresponding external conductive connection structures or electrodes, surround the 9210 body. The energy conditioning component 910 includes two external common conduction connection electrodes 798-GNDA and 798-GNDB for all internally located GNDG shield electrodes to an external common conduction that is not any differential external energy path or circuit (not shown). Common conductive connections for energy channels (not shown). Four jumper feedthrough external conductive connection electrodes 798FA, 798FD, 798FC, and 798DB for conductively connecting external differential conductive circuit channels (not shown), and two external common conductive connection electrodes 798-GNDA and 798-GNDB , for conductive connection with a third differential conductive circuit channel (not shown).
为了进一步改善和简化说明书中所涉及的元件,如图7A中所示的发明公开了一个在同一个能量调节实施例内配备的单电路、高-低压处理能力,以便在需要时允许低压能量调节功能被用于预定的通电电路、但同时对使用高压能量通道的电路起作用,以及允许在非常相同的多层发明内的调节功能。In order to further improve and simplify the elements involved in the description, the invention as shown in Figure 7A discloses a single circuit, high-low voltage processing capability within the same energy conditioning embodiment to allow low voltage energy conditioning when required Functions are used to energize circuits as intended, but at the same time act on circuits using high voltage energy pathways, as well as allow regulation functions within the very same multi-layered invention.
所以,图7A的有些其它实施例(未予示出)适合于同时包含低压和高压电路应用的电路系统,将几乎总是通过利用平衡的配备电极体系结构提供极佳的可靠性,该体系结构采用成对的和更小的(相对于共用屏蔽通电电极)电极,也采用相同大小和成对的差动直接馈通配置的和成对的差动馈通设置的传导和电反向电极,例如图5中所示的那样。Therefore, some other embodiments (not shown) of FIG. 7A suitable for circuit systems that include both low-voltage and high-voltage circuit applications will almost always provide excellent reliability by utilizing a balanced electrode-equipped architecture that Using pairs and smaller (relative to the common shield energized electrodes) electrodes, also using conductive and electrically counter electrodes of the same size and paired differential direct feedthrough configurations and paired differential feedthrough arrangements, For example as shown in Figure 5.
最好使分支传导电极元件对797F4A、797F4B和797F3A、797F3B以及797F1A、797F1B和797F2A、797F2B之间的间隔最小化,一般小于1.0mil,但大于0,具体视目前具有的制造容限而定。电极材料能量处理特性将几乎总是利于所希望的效果,而位于被插入的差动和共用能量通道电极例如797F1B和810B-1和2以及797F2A和810B-1和2之间的介电距离814C实质上大于814-B间隔的距离。It is desirable to minimize the spacing between branch conductive electrode element pairs 797F4A, 797F4B and 797F3A, 797F3B and 797F1A, 797F1B and 797F2A, 797F2B, generally less than 1.0 mil, but greater than 0, depending on the manufacturing tolerances presently available. The electrode material energy handling characteristics will almost always be conducive to the desired effect, and the
应当注意到,每个成对的和分支传导电极通道的传导区大小基本上非常相似,但是最好与其分支对偶相同,因此,成双的板797F4A、797F4B和797F1A、797F1B分别只是797F3A、797F3B和797F2A、797F2B的反向传导电极材料镜像。然而,电反向差动电极对797F3A、797F3B和797F2A、797F2B总体上分别将几乎总是被认为是797F4A、797F4B和797F1A、797F1B,每个几乎总是相对于其在实施例9210内的位置。It should be noted that the conduction area size of each paired and branched conducting electrode channel is substantially similar, but preferably the same as its branched pair, therefore, the paired plates 797F4A, 797F4B and 797F1A, 797F1B are only 797F3A, 797F3B and 797F1B respectively. The reverse conductive electrode material mirror image of 797F2A, 797F2B. However, the electrically reversed differential electrode pairs 797F3A, 797F3B and 797F2A, 797F2B will almost always be generally considered to be 797F4A, 797F4B and 797F1A, 797F1B respectively, each almost always relative to its position within
现在将大致描述图7中的分立变体中的一个用于建立这些特定能量传导通道结构之一的实际实施例9210制造顺序。首先,制造介电材料801的一个沉积或设置,然后设置和定位一层电极材料799G,以便形成差动传导通道797F2B,然后制造一层814B很薄的、分隔的介电材料801,接着是一层电极材料799,用于形成差动传导通道797F2A,然后放置介电材料801的814C应用,然后设置定位一层电极材料799G,用于形成共用传导屏蔽电极通道810B-1和2,然后是一层814C介电材料801,接着是一层电极材料799,用于形成差动传导通道797F2B,使用一个间隔以介电材料801的距离的非常薄的层,然后是另一层电极材料799,用于形成差动传导通道797F1A,然后是一层814C介电材料801,接着是一层电极材料799G,用于形成共用传导屏蔽电极通道800/800-IM-1和2,它也是实施例9210的通用传导笼状结构的共享、中央屏蔽电极结构平衡点和中央共用通道点,然后是一层814C介电材料801,然后是一层电极材料799,以便形成差动跨接馈通电极通道797F3B,接着是介电材料801的814B沉积,然后是一层电极材料799,以便形成差动跨接馈通电极通道797F3A,接着是介电材料801的814B沉积,然后是一层电极材料799G,用于形成共用传导屏蔽电极通道810F-1和2,然后是一层814C介电材料801,然后是一层电极材料799,以便形成差动跨接馈通电极通道797F4B,接着是介电材料801的814B沉积,然后是一层电极材料799,以便形成差动跨接馈通电极通道797F4A;最后施加814介电材料801,以包含9210的物理叠层组成的一些主要层次结构和支持元件。A
尽管分支电极7300C和7300D构造的电流传输能力大约能比一个单一的成对能量通道组合的能量翻一番,这个差动电极特点将几乎总是允许如图7A所示的9210那样的几乎任何发明实施例的分压功能,跨接类型的差动传导电极进一步利用发明实施例的电路分压体系结构来增加发明实施例自己的总体电流处理能力,在减小体积的同时,仍然为包含发明实施例的各种799电极材料元件的各种799电极材料元件保持一个较小压力的能量调节环境。Although the current transfer capability of the branched electrode 7300C and 7300D configuration can approximately double the combined energy of a single paired energy channel, this differential electrode feature will almost always allow for almost any inventive For the voltage dividing function of the embodiment, the crossover type differential conductive electrode further utilizes the circuit voltage dividing architecture of the embodiment of the invention to increase the overall current handling capacity of the embodiment of the invention, while reducing the volume, it is still for the implementation of the invention. Examples of the various 799 electrode material elements of the various 799 electrode material elements maintain a less stressful energy conditioning environment.
所以,新发明也适合于同时包含低压和高压两种电路应用的电系统,通过利用包含成对的和小型的(相对与共用屏蔽通道电极而言)差动通道电极的平衡的屏蔽电极体系结构而提供很好的可靠性。此外,发明实施例也能与包含各种低和高电流电路应用的点系统组合并适合于这种电系统。也应当注意到,各种异类组合,无论是二者大小相同的还是混合的为电反向成对操作而设置的成对差动旁通和成对差动馈通能量通道的组合,都能用所述的各种能量传播方式,在纵向或横向层叠,或者按纵向和横向上混合和配对的差动电路通道的组合层叠。Therefore, the new invention is also suitable for electrical systems containing both low voltage and high voltage circuit applications by utilizing a balanced shielded electrode architecture comprising pairs and small (as opposed to common shielded channel electrodes) differential channel electrodes And provide good reliability. In addition, inventive embodiments can also be combined with point systems including various low and high current circuit applications and adapted to such electrical systems. It should also be noted that heterogeneous combinations, whether both of equal size or mixed pairs of differential bypasses and pairs of differential feedthrough energy paths provided for electrically reversed pair operation, can Laminate vertically or horizontally, or in combination of mixed and paired differential circuit channels in the vertical and horizontal directions, using the various energy propagation modes described.
所以,类似地构造的或由标准装置制造并用于标准的、成对的线电路情形并作为与类似设置的发明实施例之间的唯一重要变化而具有介电差动的发明实施例的几乎所有实施例和变体,将几乎总是产生一个插入损耗性能测量,其方式是至今为止考察现有技术的各个已知介电材料响应所预料不到和不明显的。So almost all of the embodiments of the invention that are similarly constructed or manufactured from standard devices and used in standard, paired line circuit situations and have dielectric differential as the only significant change from similarly arranged inventive embodiments The embodiments and variants will almost always result in an insertion loss performance measurement in a manner that was unexpected and unobvious heretofore examining the response of each known dielectric material in the prior art.
类似类型发明单元(而不是介电材料)的这个比较,清楚而明确地揭示了导致这个结果的一个更大原因或因素,电路性能是把静电屏蔽用于消除寄生体、物理屏蔽和用于影响对在采用所述发明的电路系统内传播的能量的调节的组合地工作的新共用传导屏蔽结构和外部传导连接单元。所以,使用所公开的共用传导屏蔽结构和外部传导连接单元并使用已经主要为一定的电调节功能或结果而分类的介电质的分立的或非分立的实施例,将几乎总是发现,用以等同元件构造的发明实施例元件,将几乎总是取得比所用的电极材料的以前有限的使用知识更多的预料不到的有益特点。这包括几乎任何可能的使用能在例如制成的分立硅片之类内包含发明实施例的变体的非分立电容或电感结构的分层应用,或超级电容器应用,甚至原子级的能量调节结构。This comparison of a similar type of inventive unit (rather than the dielectric material) clearly and definitively reveals a larger cause or factor leading to this result, circuit performance is the use of electrostatic shielding for parasitic elimination, physical shielding and for influence New common conductive shield structure and external conductive connection unit working in combination for regulation of energy propagated within a circuit system employing said invention. Therefore, discrete or non-discrete embodiments using the disclosed common conductive shield structure and external conductive connection elements and using dielectrics that have been classified primarily for certain electrical adjustment functions or results will almost always be found to be Elements of inventive embodiments constructed with equivalent elements will almost always achieve more unexpected beneficial properties than previously limited knowledge of the use of the electrode materials used. This includes virtually any possible layered application using non-discrete capacitive or inductive structures capable of incorporating variations of inventive embodiments within, for example, fabricated discrete silicon chips, or supercapacitor applications, or even atomic-scale energy-regulating structures .
返回图7A,介电材料801的分隔或分隔等同物(未予示出)的隔离距离806A、806、814、814A、814B、814C和814D(未予全部示出)几乎总是与器件相关的。查看图7A中的截面,可以注意到其它重要的纵向和横向距离隔离关系(未予全部示出),即所示的预定电极和传导通道叠层排列的关系(未予全部示出)。Returning to FIG. 7A , separation distances 806A, 806, 814, 814A, 814B, 814C, and 814D (not all shown) of
注意到例如9210器件内的元件的几乎所有隔离距离,都是相对于包含在器件内的各种电极通道结构的,尽管对许多电路能量调节应用来说,保持对特定系统电路内的平衡的控制并非绝对必要,这些材料距离关系在实施例间隔考虑和分布中应当均匀。已经试验过,这些成对的材料体积或距离的大的差动或不一致,对本发明的多数一般电学应用的电路平衡是有害的。Note that almost all separation distances for components within a device such as the 9210 are relative to the various electrode channel configurations contained within the device, although for many circuit energy conditioning applications it is important to maintain control of the balance within a particular system circuit It is not strictly necessary that these material distance relationships should be uniform in the embodiment spacing considerations and distributions. Large differences or inconsistencies in material volume or distance between these pairs have been tested to be detrimental to circuit balance for most general electrical applications of the invention.
例如在图7中,各种隔离距离814“X”引起一个应用相关的、预定的、三维距离或填充以801材料的间隔区,如分别在共用电极能量路径容器800叠合800E与各种差动电极、分支电极或其它电极之间所测量的那样。For example in FIG. 7 ,
隔离距离814A(未予示出)是在诸如共用电极通道的多个相邻共用电极材料通道与例如含有薄介电材料801或隔离等同物(未予全部示出)或其它类型的隔离物(未予示出)的共用电极通道图像屏蔽800/800-IM-之间具有的三维间隔距离的总体很小的平行相邻区。Separation distance 814A (not shown) is between multiple adjacent common electrode material channels, such as common electrode channels, and, for example, a spacer containing thin
间隔距离814C是在诸如共用电极通道的各共用电极通道与诸如差动电极通道的各差动电极通道之间具有的纵向间隔。间隔距离814B是在诸如分支差动传导通道797F1-A和797F1-B和797F2-A和797F2-B的各分支差动电极通道之间具有的纵向间隔。
这些独特的动态和静态力(未予示出)组合同时地在屏蔽电极结构的容器内发生,并且由于其作为管道的使用而作用到一个与差动通道不同的第三能量通道。因此,通过使用和组合各种物理元件距离和传导能量通道之间的能量场间隔,提供了在能量调节能力范围内具有的在通电电路通道内发生的介电材料、非传导材料以及动态能量关系。These unique combinations of dynamic and static forces (not shown) occur simultaneously within the container of the shielded electrode structure and, due to its use as a conduit, act on a third energy channel, distinct from the differential channel. Thus, by using and combining various physical element distances and energy field separations between conductive energy channels, dielectric materials, non-conductive materials, and dynamic energy relationships occurring within energized circuit channels are provided within the scope of energy regulation capabilities .
在不在反向差动环境中工作的现有技术的能量调节器内的不平衡电路内将几乎总是产生各种程度的磁滞效应、材料记忆效应、角应力、由各有不同热膨胀系数的各种材料的热应力引起的不均匀膨胀,它们的有效分压能力都由在本发明实施例内发生的互相反向互补能量传播内发生的而降低。Unbalanced circuits in prior art energy conditioners that do not operate in a reverse differential environment will almost always produce various degrees of hysteresis effects, material memory effects, angular stresses, Thermal stress-induced non-uniform expansion of various materials, their effective pressure-dividing capabilities are all reduced by the mutually inverse complementary energy propagation that occurs within embodiments of the present invention.
现在看图4和图5,图中可见各种不同配置的成对的介电/电极层或成对的电极层。对于图4和图5来说,这些电极对或电极层对每个都有差动电极通道和介电材料801(未予示出)至少两个部分。Referring now to Figures 4 and 5, various configurations of pairs of dielectric/electrode layers or pairs of electrode layers can be seen. For Figures 4 and 5, these electrode pairs or electrode layer pairs each have at least two portions of differential electrode channels and dielectric material 801 (not shown).
图4中很好地表示了这些结构中一些结构之间的差别。图4是一个顶视图,图中是两个相邻的、顶靠顶的叠层7200A和7200B,叠层中有不同的馈通差动电极通道799F1A、799F2A和799F1B、799F2B。总称为7200A和7200B的设置被统称为跨接馈通差动电极通道799F1A、799F2A和799F1B、799F2B,因为通过每个通道的能量传播都必须跨越通过另一个的能量传播,但是插在这个行动之间的是一个共用屏蔽电极通道,这个第三能量通道(未予示出)的类型,不是这些电反向跨接馈通差动电极通道799F1A、799F2A和799F1B、799F2B,它们都位于发明813AOC(未予示出)内,以便使总的发明(未予示出)能从这个定位和能量流效果中提供和利用一部分能量调节。The differences between some of these structures are well represented in FIG. 4 . Figure 4 is a top view of two adjacent, top-to-
该对的跨接部分或截面和能量传播(未予示出)的快速扭结的相对间隔维数814-“X”对降低或最小化813AOC(图7A)内的电路部分阻抗有积极的效果,并且由于传播能量沿跨接馈通差动电极通道(未予示出)799F1A、799F2A和799F1B、799F2B对的对彼此的影响的集中效应而导致一个统一的阻抗,这样,与直馈通对传播方法相比,在相反方向上和相同方向上的传播发生的各个扭结效应以某种方式增强对与消除效应的交互作用。扭结的或跨接电反向差动电极通道对利用对诸如成对跨接馈通差动电极通道799F1A、799F2A和799F1B、799F2B的成对电极隔离效应的非常短的距离(由工业功能所定义)(未予示出),并允许它们为使用几乎任何新发明实施例变体内的技术的每个电路(未予示出)充分利用这个有益的电调节效应。The relative spacing dimension 814-"X" of the pair's bridging portions or cross-sections and fast kinks for energy propagation (not shown) has a positive effect on reducing or minimizing the circuit section impedance within 813AOC (FIG. 7A), And due to the concentration effect of propagating energy on each other along the cross-feed-through differential electrode channels (not shown) 799F1A, 799F2A and 799F1B, 799F2B pairs result in a unity impedance, thus, unlike the feed-through pair propagating The individual kink effects that occur with propagation in the opposite direction and in the same direction somehow enhance the interaction with the cancellation effect compared to the method. Kinked or jumper electrically reversed differential electrode channel pairs take advantage of the very short distance (defined by industry function ) (not shown) and allow them to take full advantage of this beneficial electrical modulation effect for every circuit (not shown) using the technology within almost any of the new inventive embodiment variants.
概括地命名为7300A和7300B的两个并列的叠层配置一般包含所谓的电反向直馈通差动电极通道,后者在这里由799SF1A、799SF2A(未予示出,但在799SF1A之下)和799SF2B、799SF1B(未予示出,但在799SF2B之下)表示,因为电反向直馈通差动电极通道有用于各个能量部分的入口/出口点,它们互相排列成行,并加入刚才所述的79SF1A、79SF2A和79SF2B、79SF1B传导电极扩展对。通过每个差动电极通道799SF1A、799SF2A和799SF1B、799SF2B的能量传播进入差动电极通道799SF1A、799SF2A和799SF1B、799SF2B的更大区域,使得在相反方向上通过差动电极通道799SF1A、799SF2A和799SF1B、799SF2B的能量传播部分对AOC内各部分传播能量提供各种同时的能量调节效应。The two side-by-side stack configurations, broadly designated 7300A and 7300B, generally contain so-called electrical inverse feed-through differential electrode channels, the latter being represented here by 799SF1A, 799SF2A (not shown, but below 799SF1A) and 799SF2B, 799SF1B (not shown, but below 799SF2B) represent that because the electrical reverse feed-through differential electrode channel has entry/exit points for each energy portion, they line up with each other and join just described The 79SF1A, 79SF2A and 79SF2B, 79SF1B conductive electrode extension pairs. The energy passing through each of the differential electrode channels 799SF1A, 799SF2A and 799SF1B, 799SF2B propagates into a larger area of the differential electrode channels 799SF1A, 799SF2A and 799SF1B, 799SF2B such that in opposite directions through the differential electrode channels 799SF1A, 799SF2A and 799SF1B, The energy spreading section of the 799SF2B provides various simultaneous energy conditioning effects on the energy spreading to various sections within the AOC.
过去,一直通过将介电材料制成比较薄的薄片来制造含有分层结构的无源部件。在烧制前处于较柔性或“绿色”状态期间,介电薄片是被电极或丝网隔离的(silk-screened),有耐熔或传导金属或金属沉积物来界定选定区域的薄传导电极。将多个这种基于介电的上有传导电极的薄片层叠在一起,然后烧制,把这些薄片制成刚性而致密的、实质上是单片的壳结构,内部嵌置有差动和共用传导电极,与已经形成的差动共用传导电极的预定分层序列有预定的介电间隔。在使用流经共用板电极的电流的馈通操作中,薄电极板所具有的固有电阻,导致至少一些以热为形式的能量损失,尽管在诸如具有本发明的缩短到外部传导区或其它类型的附接的共用传导板的旁通配置中可被视为是最小的。电极板电力损耗以及由此引起的在馈通类操作中的板加热,是电能的函数。如果板能量足够高,即使持续较短的时间,也会发生足以导致电极/板故障的板加热,尤其是薄电极板和/或其连接对传导终端部件的局部破坏。用于起搏器和电振发生器应用的现有技术的过滤电容器经常遇到高峰电流中的相当高的脉冲,因而易受过度加热和相关的故障,这些都是说明这种问题的很好的例子。解决这种问题的一个方法是增加多层次电路调节组合体的分层结构内的电极板层的厚度。然而,层厚的显著增加是无益的,或者说,用现有的电极制板和丝网隔离技术是不实际的。过度厚的层或板导致脱层和相关的可靠性问题。就此而言,电极板的重要一点是要有薄而连续的结构,以选定的介电颗粒生长渗透并集成整个结构成一个高低不平的单片结构。另一个方法是增加传导电极板的总表面面积,但是这个构思需要显著地增加结构的物理大小的体积,这与许多电路应用是不适应的。In the past, passive components containing layered structures have been fabricated by forming relatively thin sheets of dielectric material. During its more flexible or "green" state prior to firing, the dielectric sheets are silk-screened with refractory or conductive metal or metal deposits to define thin conductive electrodes in selected areas . Lamination of multiples of these dielectric-based sheets with conductive electrodes on them, followed by firing, forms the sheets into a rigid and dense, essentially monolithic shell structure with embedded differential and common The conduction electrode has a predetermined dielectric interval with the predetermined layered sequence of the already formed differential common conduction electrodes. In feedthrough operation using current flowing through a common plate electrode, the inherent resistance of the thin electrode plates results in at least some loss of energy in the form of heat, although in such conditions as with the shortened to outer conductive region of the present invention or other types of The bypass configuration of the attached common conductive plate can be considered to be minimal. Plate power losses, and the resulting plate heating in feedthrough type operations, are a function of electrical energy. If the plate energy is high enough, even for short periods of time, plate heating sufficient to cause electrode/plate failure can occur, especially localized destruction of thin electrode plates and/or their connections to conductive terminal parts. Prior art filter capacitors used in pacemaker and shock generator applications often experience relatively high pulses in peak currents and are thus susceptible to overheating and related failure, which is a good illustration of the problem. example of. One way to solve this problem is to increase the thickness of the electrode plate layers within the layered structure of the multilayer circuit regulation assembly. However, a significant increase in layer thickness is not beneficial, or impractical with existing electrode plate-making and wire-mesh isolation techniques. Excessively thick layers or boards lead to delamination and associated reliability issues. In this regard, it is important for electrode plates to have a thin, continuous structure, with selected dielectric particle growth penetrating and integrating the entire structure into a rugged monolithic structure. Another approach is to increase the total surface area of the conductive electrode plates, but this concept requires a significant increase in the physical size of the structure, which is incompatible with many circuit applications.
制造类似于多层的工业大小的单元的实施例的旁通或馈通装置的一种方法与制造多层陶瓷电容器的常规方法相同。由于本领域的熟练人员熟悉这种方法,所以只对其作简短的说明。介电部件是通过浇注薄薄的一层细介电构成材料而构成的,这种介电构成材料诸如是悬浮在包括粘结剂的填质(matrix)中的钛酸钡(barium titanate)。“绿色”陶瓷表面被用构成颜料的电极印上所希望形状的图案。该颜料通常包含一种金属,例如钯。将有图案的绿色陶瓷叠置起来,以提供所需层数,协调相邻层的图案,以取得所需的重叠条件。将叠置的各层分隔成各个单元,以露出预烧芯片的相反端上的基部分。然后要将被分隔的各单元在第一温度下灼烧联结,然后在更高温度下烧结成单块。将端接头分别连接到一端露出的基部分和另一端的基部分。端接头的形成有各种已知方法,包括蒸镀(vapor deposition)方法,以提供与单块的相反端上露出的电极基的电和机械联结,然后在溅射层施加一个或多个金属层,以便能焊接到母板上。需要表面安装时可以将端接头延伸到端边缘。One method of fabricating a bypass or feedthrough device similar to an embodiment of a multilayer industrial-sized cell is the same as conventional methods of fabricating multilayer ceramic capacitors. Since this method is familiar to those skilled in the art, it will only be briefly described. Dielectric components are constructed by casting a thin layer of a fine dielectric constituent material such as barium titanate suspended in a matrix including a binder. The "green" ceramic surface is patterned with the desired shape using electrodes that constitute pigments. The pigment usually contains a metal such as palladium. The patterned green ceramics are stacked to provide the desired number of layers, coordinating the patterns of adjacent layers to achieve the desired overlapping conditions. The stacked layers are separated into individual cells to expose the base portions on opposite ends of the burn-in chip. The separated units are then joined by firing at a first temperature and then sintered into a monolith at a higher temperature. Connect the end fittings to the exposed base portion at one end and the base portion at the other end, respectively. Terminations are formed by various known methods, including vapor deposition methods to provide electrical and mechanical bonding to the exposed electrode bases on opposite ends of the monolith, followed by the application of one or more metals in the sputtered layer. layer so that it can be soldered to the motherboard. The end connector can be extended to the end edge when surface mounting is required.
备择的端接方法包括在施加碳后接着施加银质外层,在碳层和银层之间可以有也可以没有金属层。各层材料元素也与可用的和将来的处理技术兼容。本发明克服了现有技术中遇到的问题和缺点,因为本发明用内置电极层/板图案提供了一种改进的电路调节功能,能处理某些预定应用中的显著地更高的RF的传播部分,而不需要显著地增加体积。Alternative termination methods include applying an outer layer of silver followed by carbon, with or without a metal layer between the carbon and silver layers. Layer material elements are also compatible with available and future processing technologies. The present invention overcomes the problems and disadvantages encountered in the prior art because the present invention provides an improved circuit conditioning capability with built-in electrode layer/plate patterns capable of handling significantly higher RF levels in certain intended applications. Spread sections without adding significant volume.
理想情况下,共用传导电极层共享共用连接的多个点或传导通道,在能量以并行方式传导或影响共用元件时,它们互相连接或连接到相同的外部传导区或外部共用传导通道。通电的发明作为由各层单元构成的整体,具有多个互补的、不同密度或程度的动态能量通道,这些互补的动态能量通道就同时的能量传输方向而言可以被看成是三维的和多方向的。Ideally, the common conductive electrode layer shares multiple points or conductive channels of a common connection, which are interconnected or connected to the same external conductive region or external common conductive channel when energy is conducted in parallel or affects the common element. The invention of electrification, as a whole composed of units of each layer, has multiple complementary dynamic energy channels of different densities or degrees, and these complementary dynamic energy channels can be seen as three-dimensional and multi-dimensional in terms of simultaneous energy transmission directions. direction.
通过本发明整体的能量移动相对于本发明的单一的分层单元的能量传输通道或移动通道来说是不同的,不过两种类型的移动或影响的发生是互补的、动态的,并同时通过非平行和平行这两种能量传输通道。由于这些平行的和非平行的能量传输移动在本发明内是同时发生的,它们影响电路功能。这些移动总是动态的并同时影响一些或所有的分层元件。The movement of energy through the whole of the present invention is different relative to the energy transmission channels or movement channels of the single layered units of the present invention, but the occurrence of the two types of movement or influence is complementary, dynamic, and simultaneously through There are two energy transfer channels, non-parallel and parallel. As these parallel and non-parallel energy transfer movements occur simultaneously within the present invention, they affect circuit function. These moves are always dynamic and affect some or all layered elements simultaneously.
例如,当被用作电容能量调节器并被放置在一个差动应用中和附接到三个独立的能量通道或放置在一个共用电极通道附接到一个独立的共用传导通道的电路中时,被每个能量调节器电极层携带的电流载荷是电容能量调节器中使用的层数的一个函数。For example, when used as a capacitive energy conditioner and placed in a differential application and attached to three independent energy channels or placed in a circuit where a common electrode channel is attached to an independent common conductive channel, The current load carried by each energy conditioner electrode layer is a function of the number of layers used in the capacitive energy conditioner.
就是说,用两倍数量的电极层使给定电路应用中的每个层携带的电流降低一半。所以,通过使电极层数加倍,必须由每个层以热的形式发散的电力被减少四分之三。That is, using twice the number of electrode layers reduces the current carried by each layer in a given circuit application by half. So, by doubling the number of electrode layers, the electricity that must be dissipated as heat by each layer is reduced by three quarters.
相应地,仅仅根据电力散发,具有两倍数量的电极层的电容能量调节器就能在没有因热导致损害的情况下有大得多的电流处理能力。然而在过去,要使能量调节器层的层数加倍,就需要相应地增加电容能力调节器的体积,而所要求的体积则不适于某些操作环境。Correspondingly, a capacitive energy conditioner with twice the number of electrode layers is capable of much greater current handling capability without damage due to heat, based solely on power dissipation. In the past, however, doubling the number of energy modifier layers required a corresponding increase in the volume of the capacitive capacity modifier, and the required volume was not suitable for some operating environments.
本发明认识到,可以将电容能量调节器中的电极层数有效地加倍,以提供显著改进的电流处理能力,但是在高压应用中,所要求的介电间隔较厚,如果使用仅用于共用传导电极的分立层技术,电容能量调节器的物理大小只有很少的增加。如果使用仅用于差动传导电极的分立层技术,电容能量调节器的物理大小也是如此。如果一起使用用于共用传导电极和用于差动传导电极的分立层技术,电容能量调节器的物理大小也是如此。The present invention recognizes that the number of electrode layers in a capacitive energy conditioner can be effectively doubled to provide significantly improved current handling capabilities, but in high voltage applications the required dielectric spacing is thicker and if used only for common With the discrete layer technology of the conductive electrodes, there is only a small increase in the physical size of the capacitive energy regulator. The same goes for the physical size of the capacitive energy regulator if using discrete layer technology for only differentially conductive electrodes. The same goes for the physical size of the capacitive energy regulator if separate layer technologies for the common conductive electrodes and for the differential conductive electrodes are used together.
转至图6,将图1中的电极800/800-IM作为一个共用的紧密配对的对称电极组合体或者由相同大小的、在本例中由介电材料801组成的非常薄的层814B隔离的800/800-IM-1和800/800-IM-2电极各为一半的分立配对的800/800-IM如上所述地放入双层单元800/800-IM-1和800/800-IM-2电极。这是通过将例如800/800-IM电极层次按是否是差动电极(未予示出)细分成紧密配对的对称电极和相同大小的、由介电材料801组成的非常薄的层814B隔离的单元,介电材料可能视814B薄层的属性而不同于材料801,该薄层不仅需要保留电极元件整体本身的能力,还需要保留整个能量调节器的能力和可靠性,以抗击电场或通电操作的能量出入,包括诸如电压脉冲和电冲击等异常。分立电极之间的距离一般大于零至分隔距离的25%的范围,该距离或者是预先计划的,或者是任何两个分立电极之间的正常距离,或者是任何两个由被材料801之类互相隔离的一个差动电极组和一个共用电极组的分立配对之间的正常的电极间隔。Turning to FIG. 6, the
按照这种构造,每个有源层元件800/800-IM-1和2作为一个整体被按需要的正常的介电间隔关系放置,具有一个对应的差动电极(未予示出)。In this configuration, each
对于给定数量的如800/800-IM-1和2或800“X”-1和2这样的共用电极层来说,能量调节器总大小的唯一增加涉及到用于每对双层单元800/800-IM-1和2之间的像801的特定介电材料或其它介电材料的最小厚度间隔814B。For a given number of common electrode layers such as 800/800-IM-1 and 2 or 800"X"-1 and 2, the only increase in the overall size of the energy conditioner involves using 800 /800-IM-
现在参看图5中所示的各种元件。美国专利号5,978,204公开了一种包含多个有源接地电极板的分层电容器体系结构,有源接地电极板叠放并内置在陶瓷之类的介电质外壳内,每个有源接地电极板由一对紧密间隔的导电板元件界定,这显著地增加了每个电极板的总面积,并由此相应地增加现有技术电容器的电流处理能力。Referring now to the various elements shown in FIG. 5 . U.S. Patent No. 5,978,204 discloses a layered capacitor architecture comprising multiple active ground electrode plates stacked and built into a dielectric housing such as ceramic, each active ground electrode plate Bounded by a pair of closely spaced conductive plate elements, this significantly increases the total area of each electrode plate and thereby correspondingly increases the current handling capability of prior art capacitors.
在进一步解释如何进一步改进和简化所引用的专利号5,978,204中的某些元件之前,如图5中所示的一部分新发明实施例现在将用各个实施例公开一种能包括和单独区分通电电路的高-低电压处理能力,这些实施例没有在图7中显示,也不像图7中的9210所示的那样,它们是以变化的、但是基本的屏蔽电极能量调节实施例或结构的形式提供的,能允许低压能量调节功能既被用于预定的通电电路,同时又对使用高压能量通道的电路起作用,以及需要时允许相同的多层发明内的调节功能。Before further explaining how to further improve and simplify certain elements of the cited patent number 5,978,204, a portion of the new invention embodiments as shown in FIG. High-low voltage handling capabilities, these embodiments are not shown in Figure 7, nor are they shown as 9210 in Figure 7, they are provided in the form of varying but basic shield electrode energy conditioning embodiments or structures Yes, allowing the low voltage energy conditioning function to be used both for the intended energized circuit and for the circuit using the high voltage energy path, and allowing the conditioning function within the same multi-layered invention if desired.
图5显示电反向差动电极对7300C和7300D。每个完全差动电极7300C和7300D分别包含分立电极797SF1-A和797SF1-B以及797SF2-A和797SF2-B,它们构成7300C和7300D,它们被分组并配对,但是电直接馈通差动电极能量通道在结构上类似于包含图7A的实施例9210一部分的电反向差动电极对。父797SF2和797SF1的每个分立差动电极在发明实施例内的位置如此接近,以至分立差动电极对797SF1-A和797SF1-B以及797SF2-A和797SF2-B在被电定义时每个分别作为一个单一的电容器板7300C和7300D。图5的79-SF1和79-SF2是所构造的电极形状的简单延长部分,用于表示传导电极延长部分,传导电极延长部分允许从按标准工业装置和方法附接的外部传导连接结构(未予示出)到达的各部分传播能量流经位于内部的差动传导电极。Figure 5 shows electrically inverted differential electrode pair 7300C and 7300D. Each fully differential electrode 7300C and 7300D contains discrete electrodes 797SF1-A and 797SF1-B and 797SF2-A and 797SF2-B respectively, which make up 7300C and 7300D, which are grouped and paired, but electrically fed directly through the differential electrode energy The channels are structurally similar to the electrically inverted differential electrode pairs that comprise part of the
这些双板元件797SF1-A和797SF1-B以及797SF2-A和797SF2-B分别合作地定义两个差动传导通道电极父7300C和7300D电极元件的电反向配对集合,电极元件有显著增加的总电极表面积,将总是引起通电电路的电路处理能力的相应增加,而不显著增加总体能量调节结构(未予示出)的总体积。These two-plate elements 797SF1-A and 797SF1-B and 797SF2-A and 797SF2-B cooperatively define two differential conduction channel electrode parent 7300C and 7300D electrode elements. The electrode surface area will always result in a corresponding increase in the circuit handling capability of the energized circuit without significantly increasing the overall volume of the overall energy regulating structure (not shown).
为了进一步定义对现有技术的电流状态的改进,发明实施例(未予示出)允许使用这些差动电极对797SF1-A和797SF1-B以及797SF2-A和797SF2-B,它们被放置在由814B分隔的位置,彼此相距仅数微米,因此将总是允许部分传播能量经过这些差动传导通道,以利用紧密定位的分立对797SF1-A和797SF1-B以及797SF2-A和797SF2-B,在电路(未予示出)内,所述的每组分立电极将呈现为一个单一的差动传导电极,并且这还不需要设置额外的共用传导屏蔽电极。使用成对的分立电极的优点是,通过使用额外的电极所获得的额外的区,与没有这个特点的一组非分立配对的电反向差动传导通道7300E和7300E(未予示出)的电流携带能力相比,将总是显著地增加两个电反向差动传导通道797SF1-A和797SF1-B以及797SF2-A和797SF2-B电极元件的电流处理能力。In order to further define the current state improvement over the prior art, an inventive embodiment (not shown) allows the use of these differential electrode pairs 797SF1-A and 797SF1-B and 797SF2-A and 797SF2-B, which are placed between The location of the 814B separations, only a few microns apart from each other, will therefore always allow some of the propagating energy to pass through these differential conduction channels to take advantage of the closely positioned discrete pairs 797SF1-A and 797SF1-B and 797SF2-A and 797SF2-B, in In an electrical circuit (not shown), each set of discrete electrodes will appear as a single differential conductive electrode, and this does not require the provision of an additional common conductive shield electrode. The advantage of using pairs of discrete electrodes is that the additional area obtained by using the additional electrodes is comparable to that of a non-discrete paired set of electrically reversed differential conduction channels 7300E and 7300E (not shown) that would not have this feature. The current handling capability of the two electrically reversed differential conduction channels 797SF1-A and 797SF1-B and 797SF2-A and 797SF2-B electrode elements will always be significantly increased compared to the current carrying capability.
尽管分立电极7300C和7300D的构造大约能使电流携带能力比单一配对的能量通道分组的电流携带能力加倍,这个差动电极特点将几乎总是也允许如图7A中所示的9210那样的几乎任何发明实施例的分压功能,其具有的跨接类型的差动传导电极进一步利用发明实施例的电路的分压体系结构来增加发明实施例自己的总体电流处理能力,同时仍然对包含发明实施例的各种799电极材料元件的各种799电极材料元件保持压力较小的能量调节环境。Although the configuration of discrete electrodes 7300C and 7300D approximately doubles the current carrying capacity of a single paired energy channel grouping, this differential electrode feature will almost always also allow almost any The voltage dividing function of the inventive embodiment, which has a bridge-type differential conductive electrode, further utilizes the voltage dividing architecture of the circuit of the inventive embodiment to increase the overall current handling capability of the inventive embodiment itself, while still containing the inventive embodiment The various 799 electrode material elements maintain a less stressful energy conditioning environment.
转至图7A,标识为806A、806、814、814A、814B、814C和814D(未予完全示出)的介电材料801间隔或间隔等同物(未予完全示出)分隔距离几乎总是与器件相关的。观察图7A的截面,观察者将注意到所示的预定电极和传导通道层叠安排(未予完全示出)的其它重要的纵向距离和纵向分隔关系(未予完全示出)。Turning to FIG. 7A, the
注意到例如9210器件内的元件的所有间隔距离都是相对于器件内含有的各种电极通道结构的,尽管对许多能量调节应用来说不是绝对必要,为了保持对特定的系统电路内的平衡的控制,这些材料距离关系在实施例间隔考虑和分布中应当是均匀的。对材料的这些成对的量或距离的较大变化或不一致进行过的试验表明它们对本发明的多数通用电应用的电路平衡是有害的。可以为例如图2设想具有分立电极的屏蔽结构的用途和多用性。在图2中,可以将图3中所示的分隔距离814用于一个应用-如分别在共用屏蔽电极能量通道容器800C、800D、800E、800F之间所测量的间隔或分隔的相对的、需要预定的三维距离或区。图2也能含有一个或一组分立差动电极,诸如包含共用屏蔽810B-1和2和820F-1和2以及包含图7A中所示的差动传导通道797SF2的800F,包括在这些结构的传导材料表面或“表皮”上相邻的区,它们会影响各部分能量传播的移动,在一个例子中,诸如在810F-1和2和820F-1和2或包含810B-1和2和820B1和2-并含有如图3中所示的差动旁通电极通道865BT的800F-1和2中,也可以在通电状态中的这种定义区内找到,其包括在这些结构的传导材料表面或“表皮”上相邻的区,它们会影响也可以其它例子中(未予示出)在通电状态中的这种定义区内找到的各部分能量传播的移动。Note that all spacing distances of components within a device such as the 9210 are relative to the various electrode channel configurations contained within the device, although not strictly necessary for many energy conditioning applications, in order to maintain balance within a particular system circuit Controlling, these material distance relationships should be uniform in embodiment spacing considerations and distributions. Experiments with large variations or inconsistencies in these paired amounts or distances of material have shown that they are detrimental to circuit balance for most general electrical applications of the invention. The use and versatility of shielding structures with discrete electrodes can be envisaged, for example in FIG. 2 . In FIG. 2, the
分隔距离814是在多个相邻共用电极材料通道之间的间隔的三维分隔距离或邻近的非常小的平行相邻区,例如共用电极通道820B和共用电极通道图形屏蔽850B/850B-IM-含有薄介电材料801或间隔等同物(未予完全示出)或其它类型的间隔物(未予示出)。
分隔距离814C是诸如共用电极通道820B-的共用电极通道与诸如差动电极通道865BT的差动电极通道之间的纵向分隔。分隔距离814B是诸如分立差动传导通道797SF1-A和797SF1-B的分立差动传导通道之间的纵向分隔。
这些动态和静态力(未予示出)的独特组合同时发生在屏蔽电极结构的可容度内,并且由于其作为管道的使用,至不同于差动通道的第三能量通道。因此通过使用和组合物理元件距离的各种规则和传导能量通道、介电材料、非传导材料之间的能量场间隔以及在通电电路通道中发生的动态能量关系,提供了一种新颖实用的电路能量调节能力。The unique combination of these dynamic and static forces (not shown) occurs simultaneously within the confines of the shield electrode structure and, due to its use as a conduit, to a third energy channel distinct from the differential channel. Thus by using and combining various rules of physical element distance and conduction energy pathways, dielectric materials, energy field spacing between nonconductive materials, and dynamic energy relationships that occur in energized circuit pathways, a novel and practical circuit is provided Energy regulation ability.
在内部,不在反向差动环境中操作的现有技术能量调节器内的失衡电路,将几乎总是产生各种程度的滞后效应、材料记忆效应、角应力、由各具有不同膨胀温度系数的各种热应力材料导致的膨胀,并且它们的分压能力都从互反向能量传播内发生中被减少,相比之下,互反向能量传播在发明实施例内是全方位发生的。Internally, unbalanced circuits in prior art energy conditioners that do not operate in a reverse differential environment will almost always produce various degrees of hysteresis effects, material memory effects, angular stresses, The expansion caused by the various thermally stressed materials, and their ability to divide pressure are all reduced from the mutual counter energy propagation that occurs omnidirectionally in the inventive embodiments, in contrast.
因此,在发明实施例内,滞后效应被显著地降低到接近零,这是由于在材料以几乎180度的方式到达后置于放在之间的共用电极能量通道能量的另一边上的互补应力的作用。所公开的这些应力处理技术,用现有技术的部件(如果有的话)是非常难以复制的。对于现有技术的以馈通传播方式配置的部件以及应用来说尤其如此。被用作传导电极扩展部分的名称的79S"X"允许各部分传播能量流经从被标准工业装置或技术附接的外部传导连接结构(未完全示出)到达的位于内部的差动传导电极。Thus, within an inventive embodiment, the hysteresis effect is significantly reduced to near zero due to the complementary stress placed on the other side of the common electrode energy channel energy placed in between after the material arrives at almost 180 degrees role. These disclosed stress management techniques are very difficult to replicate with prior art components, if any. This is especially true for prior art components and applications configured in feedthrough propagation. The 79S "X" used as the designation for the conductive electrode extensions allows the sections to propagate energy flow through the internally located differential conductive electrodes from the external conductive connection structures (not fully shown) attached by standard industry devices or techniques .
如图7A和7B中9210的新发明可以由分支电极7300C和7300D直接馈通版本构成,它们的位置互相接近并有间隔,使得传导电极材料799的每组分之差动电极平面一般看起来包含一个完整的9210,其体积与现有技术的结构的体积相同或者稍小,但是其能量处理功能比相同大小的含有不同数量的相同大小的分支差动馈通传导差动电极的现有技术器件的能量处理功能更有效或更大。The new invention of 9210 in Figures 7A and 7B can be constructed of direct feedthrough versions of branch electrodes 7300C and 7300D positioned close to each other and spaced apart so that the differential electrode planes of each component of
差别就在于,新发明用更少的层次、占据更小的区域,却允许更多的能量传输或能量传播能力,允许更多电路连接,而同时处理多个能量通道的能量调节需求。新发明配置内的这个小而重要的设置如图7A的9210等等。The difference is that the new invention uses fewer layers and occupies a smaller area, but allows more energy transmission or energy propagation capabilities, allows more circuit connections, and simultaneously handles the energy regulation needs of multiple energy channels. This small but important setting within the new invention configuration is 9210 in Figure 7A and so on.
由于电极定位体系结构的原因,利用这些位置靠近的分支电极对7300C和7300D进行能量调节的现有技术器件的效率或能效,不如大约少用1/3的类似地分层的现有技术叠层中总电极的分支层次的新发明。尽管现有技术器件会有效地有双倍数量的传输电流的电极来增加其能量处理能力,具有数量少了约25-30%的分支电极通道的新发明将能够比现有技术的器件处理更多的能量,原因在于对分支的和非分支的这两种共用和差动传导电极能量传输通道的预定安排。Due to the electrode positioning architecture, prior art devices utilizing these closely located branch electrodes to energy condition 7300C and 7300D are not as efficient or energy efficient as a similarly layered prior art stack with approximately 1/3 less A new invention of the branching hierarchy of the central electrode. While prior art devices would effectively have double the number of current-carrying electrodes to increase their energy handling capabilities, the new invention with about 25-30% fewer branched electrode channels would be able to process more energy than prior art devices. More energy is due to the predetermined arrangement of both common and differential conduction electrode energy transfer channels, branched and non-branched.
因此,将7300C和7300D一起定义为至少两个单一的、大小相同的能量通道,它们被至少一个更大的第三共用传导屏蔽电极能量通道分隔,后者位于一个中间位置,由7300C和7300D二者共享,用于能量调节和用于实施例中电路基准功能的电压基准。Thus, 7300C and 7300D together are defined as at least two single, equally sized energy channels separated by at least one larger third common conductive shield electrode energy channel located in an intermediate position between 7300C and 7300D Or shared, for energy regulation and for the voltage reference used in the circuit reference function in the embodiment.
分支的差动电极7300C和7300D包含一组电反向的、成对的、类似大小的传导材料区,用于使用共用电压基准用于电路基准功能的能量调节实施例许多变体的一部分。这两个类似大小的传导材料或电极能量区7300C和7300D仍然小于共用屏蔽电极810F-1&2、800/800-IM-1&2和797SF2-A和797SF2-B,后者所有共同包含由四对不同的而又紧密间隔的各含两个单元的薄传导电极元件797SF1-A、797SF1-B、797SF2-A、797SF2-B,它们之间呈大致平行的关系,分别由一层薄的介电壳体材料801间隔(参看图7A,用797F1-A、797F1-B、797F2-A、797F2-B分别替换797SF1-A、797SF1-B、797SF2-A、797SF2-B)Branched differential electrodes 7300C and 7300D comprise a set of electrically opposed, paired, similarly sized regions of conductive material for use as part of many variations of energy conditioning embodiments using a common voltage reference for circuit reference functionality. These two similarly sized conductive material or electrode energy regions 7300C and 7300D are still smaller than
参看图7A,应当注意到,类似地,每个共用屏蔽电极能量通道也包含对应的一对紧密间隔的薄的共用屏蔽电极能量通道,因为在有些配置中,这些屏蔽电极的这些共用屏蔽电极结构元件有双倍的总电极表面区是有好处的。由于使用这个配置,在有些附属配置中,包含带有层叠分层步进的更大的通用共用传导屏蔽电极结构体系结构共用传导屏蔽电极结构将也处理主要输入或输出能量传播通道功能。共用屏蔽电极结构元件在多数情况中在发明实施例9210等中被用作第三个附加的非外部差动能量通道的能量传输通道(未予示出)。Referring to Figure 7A, it should be noted that, similarly, each common shield electrode energy channel also contains a corresponding pair of closely spaced thin common shield electrode energy channels, since in some configurations the common shield electrode structures of these shield electrodes It is advantageous for the element to have double the total electrode surface area. As a result of using this configuration, in some subsidiary configurations, architectures comprising a larger common common conductive shield electrode structure with stacked layered steps will also handle the primary input or output energy propagation channel function. The common shield electrode structural element is in most cases used as an energy transmission channel (not shown) for a third additional non-external differential energy channel in
转至图8,显示的实施例9915,是相对元件对称平衡电极配对的新概念,被用于各种平衡的和成对的和相同大小的电反向差动传导通道概念,然而处于相对元件平衡配对状态。Turning to Figure 8, the shown embodiment 9915, is a new concept of opposite element symmetric balanced electrode pairing, used for various balanced and paired and same size electrically reversed differential conduction channel concepts, however in the opposite element Balance pairing status.
相对元件对称平衡电极配对适合于更大型包夹共用传导通道以及差动传导通道,涉及到对一个新系列的分立多功能能量调节器的继续改进,这些调节器不同于前文述及的互补型相同大小原则,现在将涉及该新系列的分立多功能能量调节器的另一个变化概念。Symmetrically balanced electrode pairs with respect to the elements are suitable for larger sandwiched shared conduction channels as well as differential conduction channels, involving the continued improvement of a new series of discrete multifunctional energy regulators, which are different from the complementary types mentioned above. The size principle will now relate to another variant concept of this new series of discrete multifunctional energy conditioners.
从根本上说,本发明形成各种内部电极模式799和799G,使得主电极区(不包括例如延长部分79-GNDA或812A)对于多个成组的和个别的以及成对的内部电极来说处于彼此相关的位置,它们的位置沿着陶瓷片的层积方向从介电体1的表面的中心部分逐渐(或逐步地)减少。或者,形成内部电极模式(不包括例如延长部分79-GNDA或812A),使得由多个内部电极的传导主表面区(以上未予示出)占据的区域,在离开起着对称平衡点的中央共用屏蔽电极的位置对称地在两个向外的方向上逐渐(或逐步)地减少。在这种情况中的配对位于分割800-1和2/800-IM-1和2中央共用屏蔽电极之间。Fundamentally, the present invention forms various
在发明实施例的更大的迭层(5个共用和差动能量通道迭层组合)中,例如图8的9915中,通过从中央共用共享电极通道800/800-IM查看发明实施例的横断面并观察一个成对的电反向差动传导通道855BB、855BT、865BB、865BT、875BB、875BT、885BB、885BT(它们都可能是分支电极),可以观察到一个差别(为了概念简洁,-9915的其他材料元件在这部分说明中被省略),差别在于,在第一和第二共用传导屏蔽能量通道810F-1和2以及810B-1和2的位置有第一对相同大小的电反向差动传导通道855BB和855BT。In larger stacks of inventive embodiments (combined 5 common and differential energy channel stacks), such as 9915 of FIG. Surface and observe a pair of electrical reverse differential conduction channels 855BB, 855BT, 865BB, 865BT, 875BB, 875BT, 885BB, 885BT (they may all be branch electrodes), and a difference can be observed (for the sake of concept simplicity, -9915 The other material elements are omitted in this part of the description), the difference is that there is a first pair of electrical reversed Differential conduction channels 855BB and 855BT.
可以看到,可以放置第三和第四缩小的或第三和第四增大的下一组电反向差动传导通道,如865BB和865BT,它们然后被放置得包夹整个以前布置的中央共用共享电极通道800/800-IM、第一对相同大小的电反向差动传导通道855BB和855BT、以及第一和第二共用传导屏蔽能量通道810F-1和2/810B-1和2。It can be seen that a third and fourth reduced or third and fourth enlarged next set of electrically reversed differential conduction channels can be placed, such as 865BB and 865BT, which are then placed to sandwich the entire previously arranged central Common shared
这样,器件或实施例与成比例地缩小或增大的相同大小的第三和第四差动传导通道865BB和865BT成比例地和对称地平衡,可以看到,它们仍然是平坦的,但是最好在后继的包夹的第四和第五共用传导屏蔽能量通道820B-1和2/820F-1和2等等内后退40、41、42、43。提供一个另外的发明变体9915,它仍然遵循局部使用具有层叠传导层次步进的法拉第屏蔽结构的通用多功能共用传导屏蔽结构加两个电反向差动能量通道(9915中的855BT和855BB)的一般原理。Thus, the device or embodiment is proportionally and symmetrically balanced with proportionally smaller or larger third and fourth differential conduction channels 865BB and 865BT of the same size, as can be seen, they are still flat, but most Fortunately, the fourth and fifth shared conduction-shielding energy channels 820B-1 and 2/820F-1 and 2 etc. of the subsequent double-teaming retreat 40, 41, 42, 43. An additional inventive variant 9915 is provided which still follows the partial use of a common multifunctional shared conductive shield structure with a layered conduction layer stepping Faraday shield structure plus two electrically reversed differential energy channels (855BT and 855BB in 9915) general principle.
这个构思也可以用于包含利用旁通或馈通(未予示出)能量传导方式沿成对和电差动通道855BB、855BT、865BB、865BT、875BB、875BT、885BB、885BT同时进行能量(未予示出)传播的电路的通用多功能共用传导屏蔽结构(未予示出)。This concept can also be used to include simultaneous energy transfer along paired and electrically differential channels 855BB, 855BT, 865BB, 865BT, 875BB, 875BT, 885BB, 885BT using bypass or feedthrough (not shown) energy conduction (not shown). A common multifunctional shared conductive shielding structure (not shown) for circuits propagating.
所以,预定模式的对称地匹配的、大小相同的、成对的差动传导通道855BB、855BT、865BB、865BT、875BB、875BT、885BB、885BT,物理地彼此平行并相对彼此定位,位于中央共用传导屏蔽能量通道800/800-IM-1和2的反面,并可以与例如后退方案40、41、42、43放置在一起,使得855BB、855BT、865BB、865BT、875BB、875BT、885BB、885BT不必与放在其前面的对应的相邻差动电极(例如885BT和875BT)匹配。所披露的相对成对原理概念是,这些匹配的、物理上平行的、相同大小的成对的差动传导通道855BB、855BT、865BB、865BT、875BB、875BT、885BB、885BT主要是在大小上分别相对彼此(855BB与855BT、865BB与865BT、875BB与875BT、885BB与885BT)匹配的,但是不一定要像例如图3的9905那样的其它实施例那样在大小上与相邻的匹配(例如855BB与865BB与875BB与885BB),相反,不必相对于以前沉积的传导通道相邻体(被至少一个共用传导屏蔽能量通道830F-1和2、820F-1和2、810F-1和2、800/800-IM-1和2、810B-1和2、820B-1和2、830B-1和2分隔的)。Therefore, symmetrically matched, identically sized pairs of differential conductive channels 855BB, 855BT, 865BB, 865BT, 875BB, 875BT, 885BB, 885BT of a predetermined pattern, physically parallel to each other and positioned relative to each other, are located in the central common conductive channel. Shielded
所以一个相对配对概念和后退方案甚至扩展到与后退方案44、45、46、47一样包括屏蔽电极结构元件的共用通道电极830F-1和2、820F-1和2、810F-1和2、800/800-IM-1和2、810B-1和2、820B-1和2、830B-1和2,只要每个发明实施例变体能包含一定部分的各种其他材料和像801材料那样的方法放置概念元件,814-"X"相对后退区(814A、814b、814C、814D等等,如果需要的话)或各种分立形式的像798-GND"X"那样的连接元件(例如尽管不是总以被用于非分立的形式),它们在制造时被沉积在关键的、自明的共用共享电极通道800/800-IM(800/800-IM总是在相对于任何后继的分层或沉积的起点起作用,但不必是制造起点)。So a relative pairing concept and fallback scheme is even extended to common channel electrodes 830F-1 and 2, 820F-1 and 2, 810F-1 and 2, 800 including shield electrode structural elements as fallback schemes 44, 45, 46, 47 /800-IM-1 and 2, 810B-1 and 2, 820B-1 and 2, 830B-1 and 2, as long as each inventive embodiment variant can contain a certain part of various other materials and methods like 801 materials Place conceptual elements, 814-"X" relative to setbacks (814A, 814b, 814C, 814D, etc., if desired) or various discrete forms of connection elements like 798-GND "X" (e.g. although not always are used in non-discrete form), they are deposited at fabrication in the critical, self-explanatory common shared
只要各种相对配对对互补反向调整是匹配的和对称地配对的并且保持其它距离关系和在相对成对的或相对平衡对称关系中的后退,发明实施例变体将以预定的电调节方式对用户要求的各种能量调节进行操作。这个相对平衡、相对“双对”或相对“镜像”元件匹配或配对平衡,是对诸如9905的以前的实施例的新颖改进,是一种结构性改进,将产生许多预料不到的结果,只要具有包含成对的电反向差动传导通道的叠层传导层次步进的通用法拉第屏蔽体系结构静电屏蔽功能(未予示出)不受损害,就将是可行的。这个相对配对概念也适合于在其它共有的和共同待定的申请中所描述的不使用外部的、成对的电反向差动传导通道的发明实施例。应当注意到,9915可能是后退方案40、41、42、43、44、45、46、47或任何可能的后退的变体的锥形的反转,是申请人完全考虑到的。As long as the various relative pairs of complementary reverse adjustments are matched and symmetrically paired and other distance relationships and setbacks in relative paired or relative balanced symmetric relationships are maintained, the inventive embodiment variants will be electrically adjusted in a predetermined manner Operate various energy adjustments required by users. This relative balance, relative "double pair" or relative "mirror" element matching or pair balance, is a novel improvement over previous embodiments such as the 9905, and is a structural improvement that will produce many unexpected results as long as A general Faraday shielding architecture with stacked conduction level steps comprising pairs of electrically reversed differential conduction channels would be feasible without compromising the electrostatic shielding function (not shown). This relative pairing concept is also applicable to embodiments of the invention described in other commonly-owned and co-pending applications that do not use external, paired electrically reversed differential conduction channels. It should be noted that 9915 may be a tapered inversion of back-off schemes 40, 41, 42, 43, 44, 45, 46, 47 or any possible back-off variant, and is fully contemplated by the applicant.
通电时,前文中预定分支电极分层装置的外部迹线通路、传导通道和导体等等与所完整地描述的或不在本文件中的众多实施例之一的组合,能构造一个完整的发明配置。在不限制本发明的前提下,以下在图9中举出按照本发明的一个组合体的例子。When energized, the combination of the external trace paths, conduction channels and conductors, etc. of the previously predetermined branch electrode layering device with one of the many embodiments fully described or not in this document can construct a complete inventive configuration . Without limiting the invention, an example of an assembly according to the invention is shown below in FIG. 9 .
图9中的电路和电极简单地示意性地表示一个双通道,如图所示,它是由位于预定装置外部的预定传导材料附件(未予示出)和构成发明实施例的各种分支电极组成的。不管实施例包装如何,都能制造这些传导电路附件,因为预定导体的分立或非分立的实施例本身实际不是利用发明的连接分支电极部分附到外部结构通道上的层。以下列出电路中涉及的各部分:The circuit and electrodes in Fig. 9 simply and schematically represent a dual channel, as shown in the figure, it consists of a predetermined conductive material attachment (not shown) positioned outside the predetermined device and various branch electrodes constituting an embodiment of the invention consist of. These conductive circuit attachments can be made regardless of the packaging of the embodiments, since the discrete or non-discrete embodiments of the predetermined conductors themselves are not actually layers attached to the external structural channels utilizing the inventive connection stub electrode portions. The parts involved in the circuit are listed below:
300分支电极通道,共电源的差动电极层,和共同连接和共负载源的分支电极屏蔽层,被组合成一个整体电路,由显示一个源、通道301、负载302和返回通道303的通电和附接配置生成。The 300 branch electrode channels, the differential electrode layers for the common power supply, and the branch electrode shields for the common connection and common load source, are combined into an overall circuit consisting of energized and The attached configuration is generated.
301“电力输入”传导能量通道或Vcc的示意表示。301 "Power In" Schematic representation of the conduction energy channel or Vcc.
302动态功能的高亮区的示意表示。302 Schematic representation of a highlighted area of a dynamic function.
303一个非共用、差动传导分支电极至外部导体的附接点和/或结构的示意表示,该外部导体有约1/2的能量部分从一个单个的外部电力路径(进入到"A"和"B"差动分支电极的能量部分的分支)被输送,使得该部分能量从303和309在相反方向进入分层的电极装置。303 Schematic representation of the attachment point and/or structure of a non-common, differentially conductive branch electrode to an external conductor having approximately 1/2 the energy fraction from a single external power path (into "A" and "A" B" branch of the energy portion of the differential branch electrode) is delivered such that this portion of energy enters the layered electrode arrangement from 303 and 309 in opposite directions.
304在差动分支电极与共用返回分支电极/通道之间形成的能量调节器的示意表示。304 Schematic representation of the energy conditioner formed between the differential branch electrodes and the common return branch electrodes/channels.
305表示相对于屏蔽分支电极或返回分支电极329、330、331的两种差动分支电极的“0”电压电路基准以及所生成的屏蔽效应的示意表示。305 represents a schematic representation of the "0" voltage circuit reference of two differential branch electrodes with respect to shielding branch electrodes or return
306能量路径进入分支电极313、314的分支点的示意表示。306 Schematic representation of the branch points where the energy path enters the
307共用差动传导分支电极的固有电感的示意表示。307 Schematic representation of the inherent inductance of the common differential conduction stub electrodes.
308共用差动传导分支电极的固有电阻的示意表示。308 is a schematic representation of the intrinsic resistance of the common differential conduction branch electrodes.
309一个共用、差动传导分支电极至外部导体的附接点和/或结构的示意表示,该外部导体有约1/2的能量部分从一个单个的外部电力路径(进入到"A"和"B"差动分支电极的能量部分的分支)被输送,使得该部分能量从303和309在相反方向进入分层的电极装置。309 Schematic representation of the attachment point and/or structure of a common, differentially conductive branch electrode to an outer conductor having approximately 1/2 the energy fraction from a single external power path (into "A" and "B") The branch of the energy portion of the "differential branch electrode") is delivered such that this portion of energy enters the layered electrode arrangement from 303 and 309 in opposite directions.
310表示差动传导分支电极的同一个附接点和/或结构309的动态功能的高亮区。310 represents the same attachment point of the differential conduction branch electrodes and/or the highlighting of the dynamic function of the
311形成一组的分层差动分支电极和共用分支电极屏蔽元件。311 forms a group of layered differential branch electrodes and common branch electrode shielding elements.
312为解释电路部分中的层次而把分支电极设置去掉一边的分层发明。312 In order to explain the layering in the circuit part, the layering invention with the branch electrode setting removed on one side.
313差动分支电极"A"。313 Differential branch electrode "A".
314差动分支电极"B"。314 Differential branch electrode "B".
315电路与能量传输的分支部分的再组合点的连接的表示。315 Representation of the connections of the circuit with the recombination points of the branched parts of the energy transfer.
316电路与能量传输的分支部分(可选的)的再组合点的连接的表示。316 Representation of the connection of the circuit to the (optional) recombination point of the branching portion of the energy transfer.
317接收部分能量共使用的负载。317 receives loads that are partially used by energy.
318传导分支电极的固有电阻的表示。318 A representation of the intrinsic resistance of the conduction stub electrodes.
319消除的传导分支电极的固有电感的表示。319 is a representation of the inherent inductance of the conductive stub electrodes eliminated.
320 305个区内的动态功能的高亮区。Highlighted areas of dynamic functions within 320 305 areas.
321在通电期间形成的线至线电容元件的表示。321 is a representation of the line-to-line capacitive element formed during power-up.
322传导能量返回路径VSS。322 conducts energy back to path VSS.
323表示发明区312内的动态功能区。323 represents the dynamic function area in the
324各部分能量从馈通共用传导分支电极和负载返回到源的出口点。324 Portions of energy are returned from the feedthrough common conduction branch electrodes and loads to the exit point of the source.
325共用差动传导分支电极的固有电阻。325 share the inherent resistance of the differential conduction branch electrodes.
326能量的馈通返回部分从进入共用传导分支电极的负载返回到源的入口点。326 A feed-through return portion of the energy returns from the load entering the common conduction stub electrode back to the entry point of the source.
327在通电期间形成的线至共用分支电极-能量调节器。327 Lines formed during energization to common stub electrodes - energy conditioners.
328表示(1)传导分支电极303的相同附接点和/或结构。328 represents the same attachment points and/or structures of (1)
329共用传导分支电极。329 shared conduction branch electrodes.
330共用传导分支电极。330 common conduction branch electrodes.
331共用传导分支电极。331 common conduction branch electrodes.
图9中所示的两线电路中的电路和功能没有选择第三通道连接。图9中所示的发明电路和器件功能在预定排列的层叠的、分支电极329、330、331和313和314的两个独立工作的分组的更小和更大分组中像具有电容和电感消除的屏蔽转换调节器那样地工作。这两组分支电极还是共用的,在本例中现在仅仅由字的方向感而差动。所以,产生一个在Vdd和Vss之间的大的理想能量调节电路,具有通过本发明的电路共用分支电极屏蔽的返回,使主电路部分元件有双重功能,既用作一部分能量返回,又用作具有屏蔽中央共用电极330的电压图象。The circuits and functions in the two-wire circuit shown in Figure 9 do not have the third channel connection selected. The inventive circuit and device function shown in FIG. 9 functions like capacitive and inductive cancellation in smaller and larger groupings of two independently operating groupings of stacked,
为了使去耦性能最优,应当将发明电路和器件放置得尽可能靠近负载317,这将使与电路踪迹301、322的内部电极部分314、313相关联的漂泊感应和电阻(未予示出)最小化,由此充分地利用发明电路和器件的性能,由占据其中的能量路径的各部分用它们的传播来进行调节。在这个例子中,电路中的各部分能量将在旁通传播方式中相对各个物理差动旁通分支电极313和314的所有处理而工作,并将在馈通关系中、在器件通过现在也被用作能量返回322的一部分的中央共用分支电极330和包夹的分支电极329、331返回到源(未予示出)时,完全通过该器件工作。附接配置的屏蔽分支电极也有可能旁通可被通过325和326端接结构或源(未予示出)与负载317之间的连接点325和326而连接的能量通道(未予示出)上的传播能量,建立一个备择的第三通道和更低的阻抗和电阻之一,并让不需要的能量部分从现在也作为能量返回322一部分的共用分支电极流回到源(未予示出)。In order to optimize decoupling performance, the inventive circuit and devices should be placed as close as possible to the
也应当注意到,在调节下的能量部分的当前路径将在旁通方式中相对各个物理差动旁通分支电极313和314的所有处理而工作,并将在馈通关系中、在其通过现在也在一个附接设置可能性中被完全用作能量返回和屏蔽分支电极的中央共用分支电极的过滤器300而工作。It should also be noted that the current path of the energy portion under regulation will work in bypass mode with respect to all processing of the respective physical differential
312中的层次的数目不受限制,但是,在所使用的单元中的共用电极屏蔽电极数需要是奇整数。这便于在这种情况中屏蔽电极329和331的平衡,以便能均匀地分布于有关的中央屏蔽电极330的每一边,因为能使用相同地分层的元件,尽管每个电路差别很大。The number of layers in 312 is not limited, however, the number of common electrode shield electrodes in the cell used needs to be an odd integer. This facilitates the balancing of the
当把发明的元件以工业标准插入或附接方法组合到更大的电系统中并通电时,形成电路中具有与外部差动分支电极或路径的预定附接和具有与共用传导结构、区或路径的预定附接的差别。The inventive components, when combined into a larger electrical system and energized by industry standard insertion or attachment methods, form electrical circuits with intended attachment to external differential branch electrodes or paths and with common conductive structures, regions or The difference in the intended attachment of the path.
所获得的功能包括但不限于,同时的、差动方式和共用方式过滤、电冲击保护和去耦、某些类型的电磁能量场传播的相互通量消除、各种寄生辐射,具有最小部分的能量降级,这在不含有如前文所述的元件的现有实施例中一般是不具有的。Capabilities obtained include, but are not limited to, simultaneous, differential mode and common mode filtering, electrical shock protection and decoupling, mutual flux cancellation for certain types of electromagnetic energy field propagation, various spurious emissions, with minimal part Energy degradation, which is not generally present in existing embodiments that do not contain elements as previously described.
应当注意到,使用具有所公开的共用外部传导元件以及使用主要按一定电调节功能或结果分类的各种介电体的分立和非分立的两种发明实施例变体将几乎总是发现,作为发明元件构造的新用途将几乎总是取得增加到以前对所使用的特定介电材料的有限用途知识的预料不到和有意的特点。这包括几乎任何可能的使用能在例如制成的分立硅片之类内采用发明实施例变体的非分立电容或电感结构的分层应用、或超级电容器应用,甚至原子级能量调节结构。It should be noted that the use of both discrete and non-discrete variations of the inventive embodiment with the disclosed common external conducting element and the use of various dielectrics classified primarily by a certain electrical modulation function or result will almost always be found, as New uses of inventive component configurations will almost always take on unexpected and intentional features that add to previous limited knowledge of the use of the particular dielectric material used. This includes virtually any possible layered application, or supercapacitor application, or even atomic scale energy regulating structures using non-discrete capacitive or inductive structures that can employ variations of the inventive embodiments within, for example, fabricated discrete silicon chips.
所以,几乎所有类似构造的或用标准方法制造的并用于标准的多重成对线-电路情形并具有一个介电差别作为相同配置的发明实施例之间的唯一重要差别的发明实施例的实施例和变体,考虑到现有技术的各个已知介电材料响应,将几乎总是以预料不到和非显而易见的方式产生一个插入损耗性能测量。类似类型的发明单元(介电材料以外的)的这个比较清楚明确地揭示导致这个结果的主要原因或因素,电路性能是实施例内元件、更大共用传导屏蔽结构和利用静电消除、物理屏蔽来影响在采用各种发明实施例的电路系统内传播的能量的调节的组合地工作的共用外部传导元件的传导附接的平衡。Thus, nearly all similarly constructed or manufactured embodiments of the invention that are used in standard multiple paired wire-circuit situations and have one dielectric difference as the only significant difference between identically configured inventive embodiments and variants, given the respective known dielectric material responses of the prior art, will almost always produce an insertion loss performance measurement in unexpected and non-obvious ways. This comparison of similar types of inventive units (other than dielectric materials) clearly and definitively reveals the main cause or factors leading to this result, circuit performance is the components within the embodiment, a larger shared conductive shielding structure and the use of static elimination, physical shielding to The balance of conductive attachments of the collectively operating common external conductive elements affects regulation of energy propagated within circuit systems employing various inventive embodiments.
与所有共用和传导地附接的共用电极元件的同一个共用传导外部区或通道的发明附接,将几乎总是允许AOC(区或汇聚点)传播的能量与源和负载电平行地工作,以及与其它的共用传导结构平行地工作,该其它的共用传导结构,不仅包括互相定位的共用传导结构,而且包括相对几乎任何连接到不是差动传导通道的单独的返回路径、固有地、外壳地或低阻抗通道的主要电路定位的共用传导结构。将USS(通用屏蔽结构)如所描述的那样放置和附接在通电电路后,如所公开的那样的与内部和外部的差动能量通道平行的共用传导能量通道将几乎总是增加或降低AOC内的第三传导/共用传导通道的阻抗,以让所传播能量有一个能被起源于一个源的部分能量使用的可能的返回通道。Inventive attachment to the same common conductive outer zone or channel for all common and conductively attached common electrode elements will almost always allow AOC (zone or sink) propagated energy to work in parallel with source and load electrical, and work in parallel with other common conductive structures, including not only mutually positioned common conductive structures, but also relatively nearly any connection to a separate return path, intrinsic ground, case ground Or common conductive structure for the location of the main circuit of the low impedance path. After placing and attaching a USS (Universal Shielding Structure) as described, behind an energized circuit, a common conducted energy path as disclosed parallel to the inner and outer differential energy paths will almost always increase or decrease the AOC Impedance of the third conduction/common conduction path in the inner so that the propagated energy has a possible return path that can be used by a portion of the energy originating from one source.
应当注意到,尽管外部和内部的差动电极能量通道二者一般是互补的,一旦将发明放到共用传导区上,诸如由在检测过程中放置的熔焊材料可能产生的共用传导区上,则在共用传导板之间产生一个轻微但不重要的失衡。位于外部的共用传导通道的增加,加回传导能量通道平衡并抵消频率比类似类型的发明检测中更高的自振荡。图2和3中所示的揭示,额外放置的、标记为(#-IM)的与内在的中央共享图形“0”电压基准平面的共用传导能量通道将几乎总是增加发明实施例的屏蔽有效性。这些是额外放置的位于外部的共用传导能量通道,紧邻其相邻的位于内部的邻居包夹,是为了大于向USS实施例增加电容的目的。这些额外放置的共用传导能量通道是在至少一组外部差动电极对的任何最终应用之前放置的。It should be noted that although both the outer and inner differential electrode energy pathways are generally complementary, once the invention is placed on a common conduction area, such as may be created by weld material placed during testing, A slight but insignificant imbalance is then created between the common conductive plates. The addition of externally located common conduction channels, adding back conduction energy channels balances and counteracts self-oscillations at higher frequencies than detected in similar types of inventions. The disclosure shown in Figures 2 and 3, the additional placement of a shared conduction energy path, labeled (#-IM) with the intrinsic central shared pattern "0" voltage reference plane will almost always increase the shielding effectiveness of the inventive embodiments. sex. These are additionally placed externally located common conduction energy pathways sandwiched next to their adjacent internally located neighbors for the purpose of adding capacitance to the USS embodiment. These additionally placed common conductive energy channels are placed prior to any eventual application of the at least one set of outer differential electrode pairs.
这些外部成对差动传导通道在成对传导屏蔽类容器800X的基本分组之间的包夹功能将几乎总是有助于相对于外部附接的共用传导区和/或是个共用传导区的第三能量通道的能量传播。The sandwiching function of these external pairs of differential conductive channels between the basic grouping of pairs of conductive shield-like containers 800X will almost always be helpful with respect to the externally attached common conductive area and/or the first common conductive area of a common conductive area. Energy propagation of three energy channels.
这些外部成对差动传导通道在成对传导屏蔽类容器800X的基本分组之间的包夹和嵌入(inlet)功能将几乎总是再次帮助相对于外部附接的共用传导区和/或是个共用传导区的第三能量通道的能量传播。应当注意,构成屏蔽800“X”容器结构应当按照所述的层叠顺序保持平衡。The sandwiching and inlet function of these external pairs of differential conductive channels between the basic grouping of pairs of conductive shield-like containers 800X will almost always help again with respect to externally attached common conductive areas and/or a common Energy propagation of the third energy channel in the conduction zone. It should be noted that the "X" container structures making up
在发明实施例的几乎任何变体内,只要包夹共用传导屏蔽能量通道的区脚印内的有源能量通道的电路屏蔽被保持和包容在AOC内,则将几乎总是出现至少三个不同的同时能量调节功能。可以将这些功能分解成至少三种在发明实施例内同时发生的电路屏蔽。In almost any variation of an inventive embodiment, there will almost always be at least three different simultaneous Energy regulation function. These functions can be broken down into at least three circuit shields that occur simultaneously within an embodiment of the invention.
物理法拉第笼状效应或静电屏蔽效应功能具有与有源差动传导能量通道屏蔽的内部生成的能量寄生体的充电包容度以及提供对与相同的有源差动传导能量通道相连的外部生成的能量寄生体的物理保护以及能量寄生体的最小化,原因在于利用包夹共用充电屏蔽能量通道的区脚印内的有源能量通道的嵌入的几乎总的通电和物理屏蔽外壳。Physical Faraday cage effect or electrostatic shielding effect features charge containment of internally generated energy parasites shielded from active differentially conducted energy channels and provides protection against externally generated energy connected to the same active differentially conducted energy channels Physical protection of parasites and minimization of energy parasites due to the use of an almost total energization and physical shielding enclosure of embedded active energy channels within the zone footprint enclosing the shared charging shield energy channels.
物理传导材料和介电屏蔽功能的叠置允许以电和磁控制的方式互相影响的共用能量通道内含有的相反充电的有源差动传导能量通道有很小的间隔距离。The superposition of physically conductive material and dielectric shielding functions allows for small separation distances of oppositely charged active differentially conductive energy channels contained within common energy channels that interact in an electrically and magnetically controlled manner.
沿成对的电反向互补电极或传导能量通道的各部分能量传播的相互能量通量场取消连同散逸的能量寄生互补充电的消除和物理屏蔽和电屏蔽包容效应是发明实施例具有的功能的主要原因。Mutual energy flux field cancellation of energy propagating along portions of pairs of electrically counter-complementary electrodes or conductive energy pathways along with cancellation of dissipated energy parasitic complementary charging and physical shielding and electrical shielding containment effects are features of embodiments of the invention. main reason.
因为磁通量线在传输线或线导体或层内是逆时针方向运转的,如果RF返回通道平行于并相邻于其对应的源轨道,在返回通道(逆时针方向场)中观测到与源通道(顺时针方向场)有关的磁通量线将几乎总是在相反方向。如果将顺时针场与逆时针场组合起来,就能观测到消除或最小化效应。通道之间越靠近,消除效应越佳。Because the magnetic flux lines run counterclockwise within a transmission line or line conductor or layer, if the RF return channel is parallel to and adjacent to its corresponding source track, the return channel (counterclockwise field) is observed to be the same as the source channel ( clockwise field) will almost always be in the opposite direction. If the clockwise field is combined with the counterclockwise field, the elimination or minimization effect can be observed. The closer the channels are, the better the cancellation effect will be.
由位于中央的共享共用屏蔽能量通道电极产生的“0”电压基准的使用,两个不同共用传导屏蔽结构的互补充电部分。平行移动屏蔽效应(与使用AOC的大多数能量部分的系列移动效应相对)中,每个能量部分在中央共用和共享传导能量通道的一端上工作,在电互补充电和/或磁操作中,这种效应将几乎总是有一个平行的、非增强性的但是互补充电的对应体,同时地以大致相反的消除类型或互补方式操作。Use of a "0" voltage reference generated by a centrally located shared common shield energy channel electrode, complementary charging sections of two different common common conductive shield structures. Parallel shifting shielding effect (as opposed to serial shifting effect using most energy parts of the AOC) where each power part works on one end of the central common and shared conduction energy channel, in electrically complementary charging and/or magnetic operation, this This effect will almost always have a parallel, non-reinforcing but complementary charged counterpart operating simultaneously in roughly the opposite type of elimination or in a complementary manner.
本发明也将使用包夹静电屏蔽功能来在由相对于差动电极边沿的共用电极边沿界定的预定电极区内进行同时的互补充电消除,以便如本说明中所述的那样在共用传导屏蔽结构之间或内部进行交互。The present invention will also use the sandwiched electrostatic shielding function to perform simultaneous complementary charge elimination within the predetermined electrode area bounded by the common electrode edge relative to the differential electrode edge so that the common conductive shield structure as described in this specification interact with each other or within.
所有或几乎所有传导分层电极或内部能量通道都同时被位于各部分被传播能量使用,该各部分能量关键的位于中央的共用传导能量通道电极和“0”电压基准平面(包括#-IM的额外的按非分立定义的共用电极罩)的相反的各端上。All or nearly all of the conductive layered electrodes or internal energy channels are simultaneously used by the propagated energy located in each part, the energy-critical common conductive energy channel electrode in the center and the "0" voltage reference plane (including #-IM's Additional non-discretely defined common electrode covers) on opposite ends.
一个相对于传导能量通道电平行的装置被部分被传播能量使用,该部分被传播能量来自一个操作源,被传播到AOC,然后被进一步传播到使用能量的源,然后,部分能量被从使用能量的源传播到AOC,然后,部分通过AOC返回到源通道,或者部分通过由在AOC内共用的第三组传导通道增强的低阻抗通道消除到位于外部的共用传导外部通道。如上所述,一个适当附接的发明,无论是分立的还是非分立的,将几乎总是有助于能同时执行多个不同的能量调节功能,诸如利用用于多个单独的不同电路的平行电定位原则进行的去耦、过滤、电压均衡,执行电路几乎总是相对于能量源、成对的传导能量通道、使用能量的负载和返回到源以完成电路的传导能量通道。A device that is electrically parallel to the conduction energy channel is used partly by propagating energy from an operating source, propagating to the AOC, then being propagated further to the source that uses the energy, and then part of the energy is used from the using energy The source propagates to the AOC, then, partly through the AOC back to the source channel, or partly through the low-impedance channel augmented by a third set of conduction channels shared within the AOC to a shared conduction external channel located outside. As noted above, a properly attached invention, whether discrete or non-discrete, will almost always facilitate the ability to perform multiple different energy conditioning functions simultaneously, such as by utilizing parallel Decoupling, filtering, voltage equalization performed by electrical positioning principles, implementing circuits almost always with respect to the energy source, pairs of conducted energy paths, loads using energy, and conducted energy paths back to the source to complete the circuit.
这也包括各部分传播能量的反向的但电消除和互补定位,这些传播能量在用关键的中央定位的共用和共享传导电极通道同时生成的“0”电压基准的相反端上以平衡的方式作用于传导能量通道。这个几乎总是平行的能量分布方案允许由所有制成的发明元件构成的材料与负载和位于电路内的源通道一起更有效地共同操作。通过以互补方式操作,材料压力与现有技术相比得到显著降低。因此,诸如弹性材料记忆或磁滞效应等现象被最小化。This also includes the reverse but electrically cancelled, and complementary positioning of the parts propagating energies in a balanced manner on opposite ends of the "0" voltage reference simultaneously generated with the critical centrally located common and shared conducting electrode channels Acts on the conduction energy channel. This almost always parallel energy distribution scheme allows the materials made up of all fabricated inventive elements to co-operate more efficiently with the load and source channels located within the circuit. By operating in a complementary manner, material stresses are significantly reduced compared to the prior art. Thus, phenomena such as elastic material memory or hysteresis effects are minimized.
对构成发明实施例各部分的材料的压电效应也实质上被最小化,因此能量在AOC内没有迂回或者被低效地利用,并自动地可为负载所用,极大地提高了标准和普通介电材料执行AOC和电路内功能的能力,用途更广,限制更少,因此降低成本,同时允许性能水平超过现有技术。在通电状态中,对发明实施例的AOC内的介电和传导材料压力的磁滞效应以及压电控制效应的最小化,相当于增加诸如SSO状态、去耦电力系统之类应用的性能水平。由有源部件对无源部件的更快利用,直接原因也是这些压力减少和允许使用传播能量以利用本发明的互补方式。Piezoelectric effects on the materials making up the various parts of the inventive embodiments are also substantially minimized so energy is not detoured or used inefficiently within the AOC and is automatically available to the load, greatly improving standard and common medium The ability of electrical materials to perform AOC and in-circuit functions is more versatile and less restrictive, thus reducing costs while allowing performance levels beyond existing technologies. In the energized state, the minimization of hysteresis effects on dielectric and conductive material pressure and piezoelectric control effects within the AOC of inventive embodiments corresponds to increased performance levels for applications such as SSO states, decoupled power systems. The faster utilization of passive components by active components is also a direct result of these stress reductions and allows the use of propagating energy in a complementary manner to exploit the invention.
然后,可以应用围绕共享中央定位传导能量通道的组合或围绕一组中心传导能量通道和多个差动传导电极的额外的共用传导能量通道来提供一个增加的内在地和优化的法拉第笼状功能和电冲击消散区以及增加或增强不被认为是如在所有实施例中所述的差动传导通道的一部分的共用传导通道和连接结构的低阻抗效应。A combination of centrally positioned conduction energy channels around a shared central conduction energy channel or additional shared conduction energy channels around a set of central conduction energy channels and differential conduction electrodes can then be applied to provide an increased intrinsic and optimized Faraday cage function and The electrical shock dissipating zone and the low impedance effect of adding or enhancing the common conductive path and connection structures not considered part of the differential conductive path as described in all embodiments.
此外,一个尽管没有示出的发明实施例能容易地被用硅制造并直接用于集成电路、微处理器电路或芯片。制造集成电路时总是带有在硅模或半导体模或硅基底内蚀刻的电容器,这使本发明的体系结构能容易地被采用到现今可用的技术中。Furthermore, an embodiment of the invention, although not shown, could easily be fabricated in silicon and used directly in an integrated circuit, microprocessor circuit or chip. Integrated circuits are always manufactured with capacitors etched in silicon or semiconductor dies or silicon substrates, which allows the architecture of the present invention to be readily adapted to today's available technology.
最后,注意到现有技术的能量调节器件一般以线至线就位方案连接在成对的和外部的电反向差动能量通道之间,以从电路内其它地方使用的其它需要的现有技术能量调节器件中改进能量调节功能,以便处理为被传播电路能量使用的电路的线至线部分发展的高输入阻抗(Z)。所以,线至线就位方案在确实具有改进的能量调节功能的同时,将几乎总是需要至少两个额外的、现有技术的能量调节器件分别线至地地放置在相同的外部电反向差动能量通道的每个之间和至一个地连接。需要这个额外的放置以调节仍然需要能量调节来保持刚刚描述的电路的正常操作的各部分传播能量。这个需要部分是由于内在地生成的内部感应电路元件,这些元件是在每个各种现有技术的能量调节器件内在通电电路内操作时发展的,并且几乎总是与它们的使用一起出现。Finally, note that prior art energy conditioning devices are typically connected in a wire-to-wire-in-place scheme between paired and external electrical back-differential energy channels to extract power from other needed existing energy used elsewhere in the circuit. Technology Energy Conditioning The energy conditioning function is improved in devices to handle the high input impedance (Z) developed for the line-to-line portion of the circuit used to propagate the circuit energy. So, a wire-to-wire-in-place solution, while indeed having improved energy conditioning capabilities, will almost always require at least two additional, prior art energy conditioning devices placed separately wire-to-ground on the same external electrical inverse. Each of the differential energy channels is connected between and to a ground. This additional placement is needed to regulate the energy propagated by parts that still require energy regulation to maintain normal operation of the circuit just described. This need is partly due to the inherently generated internal inductive circuit elements that are developed within each of the various prior art energy conditioning devices when operating within the energized circuit, and almost always occur in conjunction with their use.
这三个元件最少为内部各部分传播电路能量提供同时的取消和消除能量调节功能(因此非常有效的过滤),使得分层的发明装置的AOC电路部分内的传播电路能量不发展,在这部分通电电路内也不需要任何感应电路元件(“L”)。所以,新的能量调节发明实施例的几乎所有变体将几乎总是提供比现有技术的电容器或相同大小和电容值的现有技术的能量调节器件呈指数级地更宽的带宽过滤功能。These three elements provide a minimum of simultaneous cancellation and elimination of energy conditioning (and therefore very effective filtering) for the propagating circuit energy of the internal parts so that the propagating circuit energy within the AOC circuit portion of the layered inventive device does not develop, in this part There is also no need for any inductive circuit elements ("L") within the energization circuit. Therefore, almost all variations of the new energy conditioning invention embodiments will almost always provide an exponentially wider bandwidth filtering function than prior art capacitors or prior art energy conditioning devices of the same size and capacitance value.
最后,通过众多的实施例显然可见,形状、厚度或大小可以视电应用而不同,这些应用是由共用传导屏蔽电极通道的安排和附接结构导出,用来构成至少两个成对容器,它们随后生成至少一个更大的单个地传导和同类的法拉第笼式屏蔽结构或发明部分,后者又能包含至少一个或多个通电电路内的分立或非分立操作方式的各部分成对的差动传导电极或成对的能量通道。Finally, it is evident from the numerous embodiments that the shape, thickness or size may vary depending on the electrical application derived from the arrangement and attachment structure of the common conductive shield electrode channel to form at least two paired containers, which Subsequent creation of at least one larger single ground conductive and homogeneous Faraday cage shielding structure or inventive section which in turn can contain at least one or more differential pairs of sections operating in discrete or non-discrete modes within one or more energized circuits Conductive electrodes or paired energy channels.
尽管本文详细地描述了本发明的原则、最佳实施例和最佳操作,这不意味着是受限于所公开的特定的示例性形式。因此,本领域的熟练人员显然知道在不偏离所定义的发明实施例的精神和范围的情况下可以对最佳实施例作出各种修改。While the principles, best embodiment and best operation of the invention have been described in detail herein, it is not meant to be limited to the specific exemplary forms disclosed. Thus, it will be apparent to those skilled in the art that various modifications can be made in the preferred embodiment without departing from the spirit and scope of the defined inventive embodiments.
Claims (23)
Applications Claiming Priority (26)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US18010100P | 2000-02-03 | 2000-02-03 | |
| US60/180,101 | 2000-02-03 | ||
| US18532000P | 2000-02-28 | 2000-02-28 | |
| US60/185,320 | 2000-02-28 | ||
| US19119600P | 2000-03-22 | 2000-03-22 | |
| US60/191,196 | 2000-03-22 | ||
| US20032700P | 2000-04-28 | 2000-04-28 | |
| US60/200,327 | 2000-04-28 | ||
| US20386300P | 2000-05-12 | 2000-05-12 | |
| US60/203,863 | 2000-05-12 | ||
| US09/579,606 | 2000-05-26 | ||
| US09/579,606 US6373673B1 (en) | 1997-04-08 | 2000-05-26 | Multi-functional energy conditioner |
| US09/594,447 US6636406B1 (en) | 1997-04-08 | 2000-06-15 | Universal multi-functional common conductive shield structure for electrical circuitry and energy conditioning |
| US09/594,447 | 2000-06-15 | ||
| US21531400P | 2000-06-30 | 2000-06-30 | |
| US60/215,314 | 2000-06-30 | ||
| US09/632,048 | 2000-08-03 | ||
| US09/632,048 US6738249B1 (en) | 1997-04-08 | 2000-08-03 | Universal energy conditioning interposer with circuit architecture |
| US22549700P | 2000-08-15 | 2000-08-15 | |
| US60/225,497 | 2000-08-15 | ||
| US24112800P | 2000-10-17 | 2000-10-17 | |
| US60/241,128 | 2000-10-17 | ||
| US60/248,914 | 2000-11-15 | ||
| US60/252,766 | 2000-11-22 | ||
| US60/253,793 | 2000-11-29 | ||
| US60/255,818 | 2000-12-15 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 200710007920 Division CN101039020A (en) | 2000-02-03 | 2001-02-05 | Passive electrostatic shielding structure for electrical circuitry and energy conditioning with outer partial shielded energy pathways |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN1421062A true CN1421062A (en) | 2003-05-28 |
Family
ID=34199504
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 01807462 Pending CN1421062A (en) | 2000-02-03 | 2001-02-05 | Passive electrostatic shielding structures for electrical circuits and with external partial shielding energy channels |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN1421062A (en) |
-
2001
- 2001-02-05 CN CN 01807462 patent/CN1421062A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN1486526A (en) | energy channel device | |
| CN1377516A (en) | Universal energy conditioning interposer with circuit architecture | |
| CN1301050C (en) | Energy Pathway Arrangement | |
| JP2003533054A (en) | Electrical circuit with outer partial shielding energy path and passive electrostatic shielding structure for energy conditioning | |
| CN1502157A (en) | Predetermined symmetrically balanced amalgam with complementary paired portions comprising shielding electrodes and shielded electrodes and other predetermined element portions for symmetrically balan | |
| US7274549B2 (en) | Energy pathway arrangements for energy conditioning | |
| US10749443B2 (en) | High power multilayer module having low inductance and fast switching for paralleling power devices | |
| US7262949B2 (en) | Electrode arrangement for circuit energy conditioning | |
| US6636406B1 (en) | Universal multi-functional common conductive shield structure for electrical circuitry and energy conditioning | |
| CN1315360C (en) | Thermal management of power delivery systems for integrated circuits | |
| KR100912744B1 (en) | Energy Path Device and Method of Manufacturing Energy Path Device | |
| EP1222725B8 (en) | Universal multi-functional common conductive shield structure for electrical circuitry and energy conditioning | |
| JP2004527108A (en) | Arrangement of energy paths for energy adjustment | |
| US20100078199A1 (en) | Energy conditioning circuit arrangement for integrated circuit | |
| JP2004522295A (en) | Amalgam consisting of shielded and shielded energy paths and other elements for single or multiple circuits with common reference nodes | |
| KR20020007391A (en) | Energy conditioning circuit assembly | |
| EP3404819B1 (en) | Power converter | |
| CN1695408A (en) | Multilayer printed circuit board, electronic device, mounting method | |
| CN1110028A (en) | LC element, semiconductor device and method for manufacturing LC element | |
| CN1421062A (en) | Passive electrostatic shielding structures for electrical circuits and with external partial shielding energy channels | |
| CN101039020A (en) | Passive electrostatic shielding structure for electrical circuitry and energy conditioning with outer partial shielded energy pathways | |
| CN1689385A (en) | Energy pathway arrangements for energy conditioning | |
| CN1694328A (en) | Independent Passive Component Structure with Paired Multilayer Dielectrics | |
| KR20030065542A (en) | Energy pathway arrangements for energy conditioning | |
| KR20030065514A (en) | Energy pathway arrangement |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication |