CN1738206B - Non-inverting domino register and method for generating non-inverting output - Google Patents
Non-inverting domino register and method for generating non-inverting output Download PDFInfo
- Publication number
- CN1738206B CN1738206B CN 200510106477 CN200510106477A CN1738206B CN 1738206 B CN1738206 B CN 1738206B CN 200510106477 CN200510106477 CN 200510106477 CN 200510106477 A CN200510106477 A CN 200510106477A CN 1738206 B CN1738206 B CN 1738206B
- Authority
- CN
- China
- Prior art keywords
- node
- coupled
- channel
- high level
- frequency signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 31
- 230000000295 complement effect Effects 0.000 claims description 7
- 230000004913 activation Effects 0.000 claims 20
- 230000008569 process Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 14
- 238000012423 maintenance Methods 0.000 description 10
- 230000007704 transition Effects 0.000 description 9
- 230000008901 benefit Effects 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 239000000872 buffer Substances 0.000 description 5
- 230000001934 delay Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Landscapes
- Logic Circuits (AREA)
Abstract
Description
技术领域technical field
本发明涉及动态逻辑电路与缓存器函数的领域,尤其涉及一种非反相多米诺(domino)缓存器,其可解决速度与大小为重要因子的复杂逻辑电路的输出暂存问题。The present invention relates to the field of dynamic logic circuit and buffer function, and in particular to a non-inverting domino (domino) buffer, which can solve the output temporary storage problem of complex logic circuits whose speed and size are important factors.
背景技术Background technique
本申请要求了美国临时申请的优先权,其序号为60/553805,申请日为2004年3月17日;该申请被附入以作参考。本申请案优先权的申请也根据美国专利申请案号为11/023,145,申请日期为12/27/2004。This application claims priority from US Provisional Application Serial No. 60/553805, filed March 17, 2004; which application is incorporated by reference. Claim of priority to this application is also based on US Patent Application Serial No. 11/023,145, filed 12/27/2004.
本申请是下述美国专利申请的后续申请,该申请和本申请有共同的受让人和至少一个共同的发明人,该申请也被附入也作参考。This application is a continuation of the following United States Patent Application, which has a common assignee and at least one common inventor with the present application, which application is also incorporated by reference.
集成电路使用了大量的缓存器,尤其是那些具有同步管线结构的缓存器。暂存逻辑电路用来使装置与电路的输出维持一段时间,以使这些输出可被其它装置与电路所接收。在频率系统(例如管线化微处理器)中,缓存器用来闩锁(latch)给定管线级电路的输出信号,且同时维持此输出一个频率周期的期间,以使得后级电路中的输入电路在该给定管线级电路正同时产生新输出时,可接收前一输出信号。Integrated circuits use a large number of registers, especially those with synchronous pipeline architectures. Temporary logic circuits are used to maintain the outputs of devices and circuits for a period of time so that they can be received by other devices and circuits. In a frequency system (such as a pipelined microprocessor), the register is used to latch the output signal of a given pipeline stage circuit, and at the same time maintain the output signal for one frequency cycle, so that the input circuit in the subsequent stage circuit A previous output signal may be received while the given pipeline stage circuit is simultaneously generating a new output.
在过去,于复杂的逻辑运算电路,诸如多重输入多任务器(muxes)、多位编码器等的前后,常利用缓存器来维持欲进入该运算电路(evaluationcircuits)的输入信号与自该运算电路输出的信号。一般来说,这些缓存器均具有关联设定时间及维持时间的要求,而这两种要求均可限制前级电路中的运算电路。此外,缓存器还具有对应的数据-输出(data-to-output)的时间特性,其可限制后级电路中的运算电路。典型缓存器的「速度」判定是根据其数据-输出的时间,即其设定时间加上频率-输出时间。In the past, before and after complex logic operation circuits, such as multiple-input multiplexers (muxes), multi-bit encoders, etc., buffers were often used to maintain the input signals to enter the evaluation circuits and the signals from the evaluation circuits. output signal. Generally, these registers have associated set-up time and hold-time requirements, and both of these requirements can limit the arithmetic circuits in the front-end circuit. In addition, the register also has a corresponding data-to-output time characteristic, which can limit the operation circuit in the subsequent circuit. The "speed" of a typical register is determined based on its data-output time, that is, its setting time plus frequency-output time.
在逻辑运算电路的前后使用传统缓存器电路会于管线系统中产生延迟,其累积的结果将导致操作速度明显减缓。更特别的是,在这些延迟中,显著的来源为从数据端对应至输出端的时间的需求,其需满足逻辑运算电路,以确保稳定的暂存输出。因此,本发明的目的在于如何减少这些延迟,以使每一级电路中增加额外的时间,进而提升整个管线系统的速度。The use of conventional register circuits before and after logic operation circuits creates delays in the pipeline system, the cumulative result of which will significantly slow down the operation speed. More particularly, among these delays, the significant source is the time requirement from the data terminal to the output terminal, which needs to satisfy the logic operation circuit to ensure stable temporary storage output. Therefore, the object of the present invention is how to reduce these delays so that extra time is added to each stage of the circuit, thereby increasing the speed of the entire pipeline system.
在此会并入作为参考的文件编号为CNTR.2200的称为「非反相多米诺寄存器」的公知及相关揭示可处理上述的问题.在此现有技术中,非反相多米诺寄存器是叙述为会将逻辑运算函数与其对应的缓存器结合,而可达到比不需对输出稳定度妥协下的传统方法的频率-输出时间为快.与传统非反相多米诺寄存器的较慢的转态回应相较,在此所揭示的非反相多米诺寄存器的输出信号的转态会响应于频率讯号的转态,而显示为非常快.然而,公知的非反相多米诺寄存器对于运算逻辑电路不会特别有弹性,其必须为N信道逻辑电路.再者,当在高漏电流或高噪声工艺(例如是90奈米(nm)的绝缘硅(silicon-on-insulator,简称SOI))中具体实施时,公知的非反相多米诺寄存器可能会产生漏电流效应.A known and related disclosure called "Non-Inverting Domino Registers," document number CNTR.2200, which is hereby incorporated by reference, addresses the above-mentioned problems. In this prior art, the non-inverting domino registers are described as The logic operation function will be combined with the corresponding register, and the frequency-output time of the traditional method without compromising the output stability can be achieved. Compared with the slower transition response of the traditional non-inverting domino register In contrast, the transitions of the output signal of the non-inverting domino registers disclosed herein appear to be very fast in response to the transitions of the frequency signal. However, the known non-inverting domino registers are not particularly useful for arithmetic logic circuits. flexibility, which must be an N-channel logic circuit. Furthermore, when implemented in a high-leakage or high-noise process such as 90 nanometer (nm) silicon-on-insulator (SOI)), Known non-inverting domino registers may have leakage current effects.
想要提出的是一种改善的多米诺寄存器,其能产生公知的非反相多米诺寄存器的所有优点,并且对于多米诺级会更有弹性,并且可最佳地用于高漏电流或高噪声的环境中。What would like to be proposed is an improved domino register which yields all the advantages of the known non-inverting domino registers and which will be more resilient to domino stages and which can be optimally used in high leakage current or high noise environments middle.
发明内容Contents of the invention
根据本发明的一实施例的非反相多米诺寄存器,包括多米诺级电路、写入级电路、反相器、高电平及低电平维持路径、以及输出级电路。该多米诺级电路用以执行一多米诺级,该多米诺级基于至少一个输入数据信号及一频率信号,来运算逻辑函数。当该频率信号为低电平时,该多米诺级会将预充节点预充为高电平,若其进行运算,则会将该预充节点拉到低电平,而若其无法运算,则会使该预充节点保持在高电平。若该预充节点变为低电平,则该写入级电路会将第一初步输出节点拉到高电平,而若该预充节点保持在高电平,则其会将该第一初步输出节点拉到低电平。该反相器会将该第一初步输出节点反相,并且会产生第二初步输出节点。高电平维持路径当致能时,其会使该第一初步输出节点保持在高电平,而该低电平维持路径当致能时,其会使该第一初步输出节点保持在低电平。当该频率信号及该第二初步输出节点均为低电平时,该高电平维持路径会致能,否则其会不致能。当该第二初步输出节点及该预充节点均为高电平时,该低电平维持路径会致能,否则其会不致能。该输出级电路用以执行一输出级,该输出级基于该预充节点及该第二初步输出节点的状态,来产生一输出信号。A non-inverting domino register according to an embodiment of the present invention includes a domino stage circuit, a write stage circuit, an inverter, a high level and a low level sustain path, and an output stage circuit. The domino stage circuit is used for executing a domino stage, and the domino stage operates a logic function based on at least one input data signal and a frequency signal. When the frequency signal is low, the domino stage will precharge the precharge node to high level, if it performs calculations, it will pull the precharge node to low level, and if it cannot operate, it will Keep the precharge node high. If the precharge node goes low, the write stage pulls the first preliminary output node high, and if the precharge node remains high, it pulls the first preliminary output node high. output node pulled low. The inverter inverts the first preliminary output node and generates a second preliminary output node. The high hold path, when enabled, keeps the first preliminary output node high, and the low hold path, when enabled, keeps the first preliminary output node low. flat. When both the frequency signal and the second primary output node are at low level, the high level maintaining path is enabled, otherwise it is not enabled. When the second preliminary output node and the pre-charge node are both high, the low-level sustain path is enabled, otherwise it is disabled. The output stage circuit is used to implement an output stage, and the output stage generates an output signal based on the states of the precharge node and the second preliminary output node.
在不需对其输出的稳定度妥协之下,该非反相多米诺寄存器的频率至输出时间会比传统方法快速。并且进一步而言,该写入级电路不必克服低电平或高电平维持路径,而将该第一初步输出节点驱动到相反状态。例如,当该频率信号变为高电平时,若该第一初步输出节点为高电平,并且该多米诺级电路无法运算,则该写入级电路会运行,而将该第一初步输出节点拉到低电平。在此情况中,因为该频率信号为高电平,而使该高电平维持路径不致能,所以该写入级电路不必克服该高电平维持路径,而将该第一初步输出节点驱动到低电平。在一特定实施例中,该频率信号会驱动该高电平维持路径中的P信道元件的栅极,其中当该频率信号为高电平时,该P信道元件会关闭。并且进一步而言,此反相器会响应此该第一初步输出节点切换到低电平,而将该第二初步输出节点切换到高电平,而使该低电平维持路径致能,以在其余的周期期间,保持该第一初步输出节点及该第二初步输出节点的状态。The frequency-to-output time of the non-inverting domino register is faster than conventional methods without compromising the stability of its output. And further, the write stage circuit does not have to overcome the low or high sustain path to drive the first preliminary output node to the opposite state. For example, when the frequency signal becomes high level, if the first preliminary output node is high level and the domino stage circuit cannot operate, the writing stage circuit will operate, and the first preliminary output node will be pulled to low level. In this case, since the clock signal is high and the high sustain path is disabled, the write stage circuit does not have to overcome the high sustain path to drive the first preliminary output node to low level. In a specific embodiment, the clock signal drives a gate of a P-channel device in the high sustain path, wherein when the clock signal is high, the P-channel device is turned off. And further, the inverter will switch the second preliminary output node to high level in response to the switching of the first preliminary output node to low level, so as to enable the low level maintaining path, so as to During the remaining cycles, the states of the first preliminary output node and the second preliminary output node are maintained.
另一方面,当该频率信号变为高电平且该多米诺级电路进行运算时,若该第一初步输出节点为低电平,则该写入级电路会运行,而将该第一初步输出节点拉到高电平.在此情况中,因为该预充节点会变为低电平,而使该低电平维持路径不致能,所以该写入级电路不必克服该低电平维持路径,而将该第一初步输出节点驱动到高电平.在一特定实施例中,该预充节点会驱动该低电平维持路径中的N信道元件的栅极,其中当该预充节点为低电平时,该N信道元件会关闭.并且进一步而言,该反相器会响应该第一初步输出节点切换到高电平,而将该第二初步输出节点切换到低电平.在此情况中,当该频率信号为高电平时,该预充节点为低电平,其会使该第一初步输出节点保持在高电平.当该频率信号接着变为低电平时,低电平维持路径会致能,其在其余的周期期间,会保持该第一初步输出节点及该第二初步输出节点的状态.On the other hand, when the frequency signal becomes high level and the domino stage circuit operates, if the first preliminary output node is low level, the write stage circuit will operate, and the first preliminary output node node is pulled high. In this case, the write stage does not have to overcome the low sustain path because the precharge node will go low, disabling the low sustain path, And drive the first preliminary output node to a high level. In a specific embodiment, the pre-charge node will drive the gate of the N-channel element in the low-level sustain path, wherein when the pre-charge node is low level, the N-channel element will be turned off. Further, the inverter will respond to the first preliminary output node switching to a high level, and switch the second preliminary output node to a low level. In this case , when the frequency signal is high, the precharge node is low, which keeps the first preliminary output node high. When the frequency signal then goes low, the low level remains The path is enabled, which maintains the state of the first preliminary output node and the second preliminary output node during the remainder of the cycle.
与另外需克服强维持元件的元件相较,该非反相多米诺级电路可使用较小且较快的元件,而实施于高漏电流的环境的中。例如,该非反相多米诺级电路可在不需对速度妥协且不需大元件之下,使用会产生高漏电流问题的缩小的90奈米硅绝缘体(silicon-on-insulator)工艺或任何其它缩小化工艺而集成化。The non-inverting domino circuit can be implemented in high leakage current environments using smaller and faster components than would otherwise have to overcome strong sustaining components. For example, the non-inverting domino stage circuit can use scaled 90nm silicon-on-insulator process or any other without compromising speed and requiring large components. Miniaturization process and integration.
该多米诺级电路可以一P信道元件、一N信道元件及运算逻辑电路来实施。该P信道元件具有用以接收该频率信号的栅极,以及耦接于源极电压与该预充节点之间的漏极与源极。该N信道元件具有用以接收该频率信号的栅极、耦接至该预充节点的漏极、以及源极。该运算逻辑电路耦接于接地点与该N信道元件的源极之间。此配置使该运算逻辑电路能使用互补金氧半导体(CMOS)逻辑电路来实施。The domino stage circuit can be implemented with a P-channel element, an N-channel element and arithmetic logic circuits. The P-channel device has a gate for receiving the frequency signal, and a drain and a source coupled between the source voltage and the precharge node. The N-channel device has a gate for receiving the frequency signal, a drain coupled to the precharge node, and a source. The operation logic circuit is coupled between the ground and the source of the N-channel device. This configuration enables the arithmetic logic to be implemented using complementary metal oxide semiconductor (CMOS) logic.
该写入级电路包括一P信道元件,以及第一与第二N信道元件。该P信道元件具有耦接至该预充节点的栅极,以及耦接于源极电压与该第一初步输出节点之间的漏极与源极。第一N信道元件具有用以接收该频率信号的栅极、耦接至该第一初步输出节点的漏极、以及源极。第二N信道元件具有耦接至该预充节点的栅极、耦接至该第一N信道元件的源极的漏极、以及耦接至接地点的源极。在此配置的一实施例中,该高电平维持路径包括二个额外的P信道元件。第二P信道元件具有耦接至该第二初步输出节点的栅极、耦接至源极电压的源极、以及漏极。第三P信道元件具有用以接收该频率信号的栅极,以及耦接于该第二P信道元件的漏极与该第一初步输出节点之间的漏极与源极。在此配置的另一实施例中,该低电平维持路径包括该第二N信道元件,以及该第三N信道元件,其中该第三N信道元件具有耦接至该第二初步输出节点的栅极,以及耦接于该第一初步输出节点与该第二N信道元件的漏极之间的漏极与源极。The write stage circuit includes a P-channel element, and first and second N-channel elements. The P-channel device has a gate coupled to the precharge node, and a drain and a source coupled between a source voltage and the first preliminary output node. The first N-channel device has a gate for receiving the frequency signal, a drain coupled to the first preliminary output node, and a source. A second N-channel element has a gate coupled to the precharge node, a drain coupled to the source of the first N-channel element, and a source coupled to ground. In one embodiment of this configuration, the high-level sustain path includes two additional P-channel elements. A second P-channel element has a gate coupled to the second preliminary output node, a source coupled to a source voltage, and a drain. The third P-channel element has a gate for receiving the frequency signal, and a drain and a source coupled between the drain of the second P-channel element and the first preliminary output node. In another embodiment of this configuration, the low-level sustain path includes the second N-channel element, and the third N-channel element, wherein the third N-channel element has a a gate, and a drain and a source coupled between the first preliminary output node and the drain of the second N-channel device.
根据本发明的一实施例的多米诺寄存器,包括运算电路、写入电路、反相器、维持电路、以及输出电路。当一频率信号为低电平时,该运算电路会预充第一节点,而当该频率信号变为高电平时,其会运算用以控制该第一节点的一状态的一逻辑函数。当该频率信号变为高电平时,若该第一节点为低电平,则该写入电路会将第二节点驱动为高电平,而若该第一节点保持在高电平,则其会将该第二节点驱动为低电平。该反相器具有耦接至该第二节点的输入,以及耦接至第三节点的输出。当该第三节点及该频率信号均为低电平时,维持电路会使该第二节点保持在高电平,而当该第三节点及该第一节点均为高电平时,其会使该第二节点保持在低电平。该输出电路基于该第一节点及该第三节点的状态,来产生一输出信号。A domino register according to an embodiment of the present invention includes an arithmetic circuit, a write circuit, an inverter, a hold circuit, and an output circuit. When a frequency signal is at low level, the operation circuit precharges the first node, and when the frequency signal becomes high level, it operates a logic function for controlling a state of the first node. When the frequency signal becomes high, if the first node is low, the writing circuit will drive the second node to high, and if the first node remains high, its will drive the second node low. The inverter has an input coupled to the second node, and an output coupled to a third node. When the third node and the frequency signal are both at low level, the sustain circuit will keep the second node at high level, and when the third node and the first node are at high level, it will keep the The second node remains low. The output circuit generates an output signal based on the states of the first node and the third node.
该运算电路包括一P信道元件、一N信道元件及逻辑电路.该运算逻辑电路基于至少一个输入数据信号来运算该逻辑函数.当该频率信号变为高电平时,该N信道元件及该P信道元件均会接收该频率信号,并且会共同地使该逻辑电路致能,以控制该第一节点的此状态.此P信道元件(其耦接至该第一节点),当该频率信号为低电平时,其会将该第一节点预充为高电平.在一方面,该逻辑电路耦接至该第一节点,而该N信道元件耦接于该逻辑电路与接地点之间.在另一方面,该N信道元件耦接至该第一节点,而该逻辑电路耦接于该N信道元件与接地点之间.在此后面的无底部(footless)方面,该逻辑电路可以CMOS元件(而不是N信道元件)来实施.The operation circuit includes a P channel element, an N channel element and a logic circuit. The operation logic circuit operates the logic function based on at least one input data signal. When the frequency signal becomes a high level, the N channel element and the P The channel elements all receive the frequency signal, and jointly enable the logic circuit to control the state of the first node. The P channel element (which is coupled to the first node), when the frequency signal is When low, it precharges the first node to high. In one aspect, the logic circuit is coupled to the first node, and the N-channel element is coupled between the logic circuit and ground. In another aspect, the N-channel element is coupled to the first node, and the logic circuit is coupled between the N-channel element and ground. In this latter footless aspect, the logic circuit may be CMOS components (instead of N-channel components) to implement.
该写入电路包括一P信道元件,以及第一与第二N信道元件。该P信道元件耦接至该第一节点及该第二节点,若该第一节点变为低电平时,其会将该第二节点拉到高电平。该第一N信道元件耦接至该第二节点且用以接收该频率信号,而该第二N信道元件耦接至该第一N信道元件及该第一节点。当该频率信号变为高电平时,若该第一节点保持在高电平,则该第一与第二N信道元件,则会共同地将该第二节点拉到低电平。在此情况中,该维持电路可包括第二与第三P信道元件,以及第三N信道元件。该第二与第三P信道元件耦接在一起,并且会耦接至该第二与第三节点,其会共同形成高电平状态维持路径,当该第三节点及该频率信号均为低电平时,其会致能,而会将该第二节点拉到高电平,否则其会不致能。该第三N信道元件耦接至该第二与第三节点,并且会耦接至该第二N信道元件。该第二与第三N信道元件会共同形成低电平状态维持路径,当该第一与第三节点均为高电平时,其会致能,而会将该第二节点拉到低电平,否则其会不致能。The writing circuit includes a P-channel element, and first and second N-channel elements. The P-channel element is coupled to the first node and the second node, and when the first node goes low, it pulls the second node high. The first N-channel element is coupled to the second node for receiving the frequency signal, and the second N-channel element is coupled to the first N-channel element and the first node. When the frequency signal becomes a high level, if the first node remains at a high level, the first and second N-channel elements will jointly pull the second node to a low level. In this case, the sustain circuit may include second and third P-channel elements, and a third N-channel element. The second and third P-channel elements are coupled together and will be coupled to the second and third nodes, which will jointly form a high state maintenance path, when the third node and the frequency signal are both low When the voltage is low, it will be enabled, and the second node will be pulled to a high level, otherwise it will be disabled. The third N-channel element is coupled to the second and third nodes, and is coupled to the second N-channel element. The second and third N-channel elements jointly form a low-level state maintenance path, which is enabled when the first and third nodes are both high, and pulls the second node low , otherwise it will not be enabled.
该运算电路、写入电路、反相器、维持电路及输出电路可使用如先前所述的缩小的90奈米硅绝缘体工艺而集成化。The arithmetic circuit, write circuit, inverter, sustain circuit and output circuit can be integrated using a scaled 90nm silicon-on-insulator process as previously described.
根据本发明的另一观点的非反相多米诺寄存器,包括一P信道元件、一N信道元件、运算逻辑电路、写入级电路、维持电路、以及输出级电路。该P信道元件具有用以接收一频率信号的栅极,以及耦接于源极电压与预充节点之间的一漏极与源极。该N信道元件具有用以接收此频率信号的栅极、耦接至此预充节点的漏极、以及源极。该运算逻辑电路(其基于至少一个输入数据信号来运算一逻辑函数)耦接于该N信道元件的源极与接地点之间,并且以CMOS逻辑电路来实施。该写入级电路用以驱动第一初步输出节点,并且包括均会响应该预充节点的第一上拉元件及第一下拉元件,以及会响应该频率信号的第二下拉元件。此维持电路具有耦接至第一初步输出节点的输入,以及用以驱动第二初步输出节点的输出。该输出级电路用以驱动输出节点,并且包括均会回应该预充节点的第二上拉元件及第三下拉元件,以及均会响应第二初步输出节点的第三上拉元件及第四下拉元件。该运算逻辑电路(其实施于无底部多米诺级电路中)以CMOS逻辑电路来实施,由此会产生比需要N信道逻辑电路的公知配置明显较佳的输入电平噪声边限。A non-inverting domino register according to another aspect of the present invention includes a P-channel element, an N-channel element, an arithmetic logic circuit, a write stage circuit, a sustain circuit, and an output stage circuit. The P-channel device has a gate for receiving a frequency signal, and a drain and a source coupled between the source voltage and the precharge node. The N-channel device has a gate for receiving the frequency signal, a drain coupled to the precharge node, and a source. The arithmetic logic circuit, which operates a logic function based on at least one input data signal, is coupled between the source of the N-channel element and ground, and is implemented as a CMOS logic circuit. The writing stage circuit is used to drive the first primary output node, and includes a first pull-up element and a first pull-down element both responsive to the precharge node, and a second pull-down element responsive to the frequency signal. The sustain circuit has an input coupled to the first preliminary output node and an output for driving the second preliminary output node. The output stage circuit is used to drive the output node, and includes a second pull-up element and a third pull-down element both responding to the precharge node, and a third pull-up element and a fourth pull-down element both responding to the second preliminary output node element. The operational logic (which is implemented in a bottomless domino stage) is implemented in CMOS logic, thereby resulting in a significantly better input level noise margin than known arrangements requiring N-channel logic.
根据本发明的一实施例的暂存逻辑函数及产生非反相输出的方法,包括当一频率信号为低电平时,将第一节点预充为高电平、当该频率信号变为高电平时,运算一逻辑函数,以控制第一节点的状态、当该频率信号变为高电平时,以该第一节点的状态来控制第二节点的状态、将第三节点的状态定义为该第二节点的反相状态、当该第一节点及该第三节点均为高电平时,会使低电平状态维持路径致能,以保持该第二节点的低电平状态,否则会使该低电平状态维持路径不致能、当该频率信号及第三节点均为低电平时,会使高电平状态维持路径致能,以保持该第二节点的高电平状态,否则会使该高电平状态维持路径不致能、以及基于该第一节点及该第三节点的状态,来决定输出节点的状态。According to an embodiment of the present invention, the method for temporarily storing a logic function and generating a non-inverted output includes precharging the first node to a high level when a frequency signal is at a low level, and precharging the first node to a high level when the frequency signal becomes a high level. Usually, a logic function is calculated to control the state of the first node, when the frequency signal becomes high level, the state of the first node is used to control the state of the second node, and the state of the third node is defined as the state of the first node The inverting state of the two nodes, when the first node and the third node are both high, will enable the low-level state maintenance path to maintain the low-level state of the second node, otherwise the The low-level state maintenance path is disabled. When the frequency signal and the third node are both low-level, the high-level state maintenance path will be enabled to maintain the high-level state of the second node, otherwise the The high level state keeps the path disabled, and determines the state of the output node based on the states of the first node and the third node.
该方法可包括当该逻辑函数进行运算时,会将该第一节点拉到低电平,而当该逻辑函数无法运算时,会使该第一节点保持在高电平.该方法可包括当该频率信号变为高电平时,若第一节点拉到低电平,则会将该第二节点拉到高电平,而若该第一节点保持在高电平,则会将该第二节点拉到低电平.该方法可包括分别以该第一节点及该第三节点,来控制第一串接下拉元件及第二串接下拉元件.该方法可包括分别以该频率信号及该第三节点,来控制该第一串接上拉元件及该第二串接上拉元件.此方法可包括以一与非(NAND)函数,将该第一节点及该第三节点的状态进行逻辑上的组合.The method may include pulling the first node to a low level when the logic function is operating, and keeping the first node at a high level when the logic function cannot be operated. The method may include when When the frequency signal becomes a high level, if the first node is pulled to a low level, the second node will be pulled to a high level, and if the first node remains at a high level, the second node will be pulled to a high level. The node is pulled to a low level. The method may include controlling a first serial pull-down element and a second serial pull-down element with the first node and the third node respectively. The method may include using the frequency signal and the The third node, to control the first series pull-up element and the second series connection pull-up element. The method may include performing a state of the first node and the third node with a NAND function. logical combination.
附图说明Description of drawings
本发明的好处、特性、以及优点在参阅以下的说明,以及附图后,将会更加了解,其中:Benefits, characteristics, and advantages of the present invention will be better understood after referring to the following description and accompanying drawings, wherein:
图1为根据会并入作为参考的现有技术所实施的非反相多米诺寄存器的概图;FIG. 1 is a schematic diagram of a non-inverting domino register implemented according to the prior art which will be incorporated by reference;
图2所示为图1、3、4及5的非反相多米诺寄存器的运行的时序图;Figure 2 shows a timing diagram of the operation of the non-inverting domino registers of Figures 1, 3, 4 and 5;
图3为根据本发明的一范例实施例所实施的无底部的非反相多米诺寄存器的概图;3 is a schematic diagram of a bottomless non-inverting domino register implemented according to an exemplary embodiment of the present invention;
图4为根据使用改善的储存级电路的本发明的一范例实施例所实施的另一非反相多米诺寄存器的概图;以及4 is a schematic diagram of another non-inverting domino register implemented in accordance with an exemplary embodiment of the invention using improved storage stage circuitry; and
图5为使用图4的改善的储存级电路及根据本发明的一范例实施例所实施的无底部的非反相多米诺寄存器的概图。5 is a schematic diagram of a bottomless non-inverting domino register implemented using the improved storage stage circuit of FIG. 4 and an exemplary embodiment of the present invention.
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
100、300、400、500非反相多米诺寄存器100, 300, 400, 500 non-inverting domino registers
101,105节点101, 105 nodes
103一组N个节点103 A group of N nodes
104,301运算逻辑电路104, 301 Operational Logic Circuits
107第一中间输出节点107 first intermediate output node
109A、109B、401反相器109A, 109B, 401 inverters
111第二中间输出节点111 second intermediate output node
113输出节点113 output nodes
403与非门403 NAND gate
具体实施方式Detailed ways
所提出的以下说明使一般熟知此项技术者能达到及使用本发明,如特定实施例及其需求的内容中所提供的。然而,各种对此较佳实施例所做的修改,对熟知此项技术者而言乃显而易见,并且,在此所论的一般原理,也可应用至其它实施例。因此,本发明并不限于此处所展示与叙述的特定实施例,而是具有与此处所揭示的原理与新颖特征相符的最大范围。The following description is presented to enable one of ordinary skill in the art to make and use the invention, as provided in the context of specific embodiments and its requirements. However, various modifications to this preferred embodiment will be apparent to those skilled in the art, and the general principles discussed herein can be applied to other embodiments as well. Thus, the present invention is not limited to the specific embodiments shown and described herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
本发明的发明人体会到用于逻辑电路的暂存输出对于速度、大小与稳定度等关键因素的需求,其对于运算逻辑电路为弹性的,并且其可用于高漏电流或高噪声环境中.因此,其遂提出一种反相多米诺寄存器,其在不需对输出稳定度妥协下,可具有较快的数据-输出时间,其对于运算逻辑电路实施装置为弹性的,并且其可用于高漏电流或高噪声环境中,如将于如下配合图1至图5进一步说明.当使用高度依赖缓存器,以于各级电路中传送数据的管线化结构时,根据本发明的一具体实施例的非反相多米诺寄存器可使所有元件的操作速度有明显的提升.所有元件可在不需对速度妥协,并且不需大元件来克服维持元件之下,使用高漏电流或高噪声工艺中的较快或较小元件来实施.The inventors of the present invention have realized the need for critical factors such as speed, size and stability for temporary storage outputs for logic circuits, which are flexible for arithmetic logic circuits, and which can be used in high leakage current or high noise environments. Therefore, it proposes an inverting domino register, which can have a faster data-to-output time without compromising output stability, which is flexible for arithmetic logic circuit implementations, and which can be used for high-leakage In the current or high noise environment, as will be further described below with reference to FIGS. Non-inverting domino registers allow a significant increase in the speed of operation of all components. All components can be used in higher leakage or high noise processes without compromising speed and without requiring large components to overcome sustaining components. Faster or smaller components to implement.
图1为根据现有技术CNTR.2200所实施的非反相多米诺寄存器100的概图。非反相多米诺寄存器100包括逻辑运算输入级电路(或称多米诺级电路),其包含堆栈的P信道元件P1与N信道元件N2,以及运算逻辑电路104。P1元件与N2元件为互补成对的操作数件,其耦接于堆栈中的运算逻辑电路104的任一侧。运算逻辑电路104可与单一N信道元件一样简单,或可因为运算任何想要的逻辑函数而明显地较为复杂。P1的源极耦接至一电压源VDD,并且其漏极耦接至会产生信号TOP的节点105。运算逻辑电路104耦接于节点105与N2(其具有耦接至接地点的源极)的漏极之间。输入频率信号CLK会经由节点101,而传送到P1及N2的栅极。一组N个节点103会将N个输入的数据信号DATA传送到运算逻辑电路104,其中N为任意正整数。FIG. 1 is a schematic diagram of a non-inverting domino register 100 implemented according to the prior art CNTR.2200. The
非反相多米诺寄存器100的多米诺级电路紧接着储存级电路,其包括元件P2、N3与N4,以及弱维持电路109。元件P2、N3与N4可视为「写入级电路」,而维持电路109为储存级电路中的维持级电路。节点101耦接至N3的栅极,而节点105耦接至P2及N4的栅极。P2的源极耦接至VDD,并且其漏极耦接至会产生第一中间输出信号QII的第一中间输出节点107。节点107耦接至N3的漏极、反相器109A的输入、以及另一反相器109B的输出。反相器109A的输出耦接至会产生第二中间输出信号QI的第二中间输出节点111,其为耦接至反相器109B的输入。反相器109A及109B相互耦接于节点107与111之间,并且会共同形成弱维持电路109。N3的源极耦接至N4(其具有耦接至接地点的源极)的漏极。The domino stage circuit of the
非反相多米诺寄存器100的储存级电路为紧接着额外输出级电路,其包括P信道元件P3及P4,以及N信道元件N5及N6。节点105耦接至P4及N6的栅极,而节点111耦接至P3及N5的栅极。P3及P4的源极耦接至VDD,而其漏极在会产生输出信号Q的输出节点113处会耦接在一起。输出节点113耦接至N5(其具有耦接至N6(其具有耦接至接地点的源极)的源极)的漏极。P信道元件一般会用来当作上拉元件,而N信道元件一般会用来当作下拉元件。The storage stage circuit of the
图2所示为非反相多米诺寄存器100的运行的时序图,其中CLK、DATAN、TOP、QII、QI及Q信号是相对于时间而绘示出来。相对的转态时间会进行估测,并且会将延迟忽略。DATAN信号显示为代表N个DATA信号的群体组合的单独信号。当数据信号的群体状态能使运算逻辑电路104运算出来,由此将TOP拉到低电平时,DATAN信号显示为高电平,而当运算逻辑电路104不能进行运算(其会使TOP信号保持在高电平)时,DATAN信号显示为低电平。在时间T0,当CLK信号最初为低电平时,N2会关闭,而P1会导通,以至于多米诺级电路会将TOP信号预充为高电平。TOP信号会预充为高电平,在CLK的上升缘的后,会准备通过运算逻辑电路104,来运算DATAN信号,其中DATAN信号最初为高电平。预充的TOP信号会使N4及N6导通。QII信号会保持在先前状态(最初显示为低逻辑状态),并且会通过维持电路109而保持于此。QI信号最初为高电平而使N5导通,以至于Q输出信号最初会经由N5及N6元件而拉到低电平。FIG. 2 shows a timing diagram of the operation of the
在时间T1,CLK信号会变成高电平,因为DATAN信号为高电平,所以其能使TOP信号放电而变为低电平.特别而言,N2会导通,而运算逻辑电路104会经由N2来运算,而将TOP拉到低电平而接地点.QII信号会经由P2而拉到高电平,而Q信号会经由P4而拉到高电平.QII及Q信号约在时间T1同时会拉到高电平,而QI会通过反相器109A而拉到低电平.维持电路109的输出处的QI信号的反相状态会驱动元件P3及N5.当QI为高电平时,P3会关闭,而N5会导通;而当QI为低电平时,P3会导通,而N5会关闭.在接下来的时间T2,当CLK信号接着变为低电平时,TOP信号会再次地预充为高电平.P2及N3会关闭,以至于不会将节点107驱动成任一状态.然而,QII及QI信号的各自状态会经由维持电路109的运行而保持不变,以至于在CLK的所有其余的半周期,Q及QII信号会保持高电平,而QI信号会保持低电平.At time T1, the CLK signal will go high, because the DATAN signal is high, so it can discharge the TOP signal to go low. In particular, N2 will be turned on, and the
当CLK信号仍为低电平时,DATAN显示为在时间T3转变成低电平,而当DATAN信号为低电平时,CLK信号接着在时间T4会变为高电平。由于运算逻辑电路104无法进行运算,以至于当CLK为高电平时,TOP仍为高电平。CLK及TOP信号会分别使元件N3及N4导通,以至于在约时间T4时,QII信号会转为低电平,因此QI信号会通过反相器109A而拉到高电平。TOP信号为高电平,而使N6维持导通。QI信号会使N5导通且会使P3关闭,以至于Q信号会经由N5及N6而拉到低电平。在时间T5,CLK信号接着会变为低电平,而使TOP再次拉到高电平。QII及QI信号的各自状态会经由维持电路109的运行而保持不变。因为QI会使N5维持导通,以及TOP会使N6维持导通,所以在CLK的所有其余的周期,Q信号会保持低电平。While the CLK signal is still low, DATAN is shown transitioning low at time T3, and while the DATAN signal is low, the CLK signal then goes high at time T4. Since the
当运算逻辑电路104进行估算,而使TOP信号放电成低电平时,Q信号会响应CLK信号的上升缘,而相当快速地从低电平转态到高电平。经由元件N2及P4的可忽略延迟会造成输出转态。当运算逻辑电路104无法进行运算,而使TOP信号离开高电平时,Q信号会响应CLK信号的上升缘,而在经由元件N3、N5及反相器109A的可忽略延迟之后,会从高电平转态到低电平。经由反相器109A的延迟可通过实施为相当小的元件(具有最小电容)而最小化,这是因为其不需具有大小,也不需执行缓冲器的功能。普通的熟知此项技术者要了解到的是,非反相多米诺寄存器100的输出Q信号的转态会非常快速地响应CLK信号的转态。若需要或想要非反相输出,则与其它好处及优点的中的传统设计相较,非反相多米诺寄存器100会产生优越的数据至输出速度。非反相多米诺寄存器100只需通过增加输出反相器/缓冲器(未显示),即可转换成反相多米诺寄存器。When the
现有技术CNTR.2200所示范例的及(AND)逻辑与或(OR)逻辑(在此未显示),其可用来当作运算逻辑电路104。其中所述的是,会考虑任何合适之及与或门逻辑电路的组合,并且会考虑任何其它复杂的逻辑运算电路,包括例如是多个输入多任务器,多位编码器等等。任何想要的简单至复杂的运算逻辑电路可在不会不利地影响非反相多米诺寄存器100的速度或相关的功率限制之下,用来取代运算逻辑电路104。及与或逻辑电路只是范例,并且用以显示运算逻辑电路104可以是如普通的熟知此项技术者所了解的任何复杂的逻辑运算电路。然而,非反相多米诺寄存器100的可能限制是相对于运算逻辑电路104不会特别有弹性,其通常必须实施为N信道逻辑电路。N信道逻辑电路不会使输入噪声边限产生最佳电平。AND (AND) logic and OR (OR) logic (not shown here) exemplified in the prior art CNTR.2200 can be used as the
图3为根据本发明的一范例实施例所实施的另一种非反相多米诺寄存器300的概图.除了包含堆栈的P信道元件P1及N信道元件N2,以及运算逻辑电路104的逻辑运算输入级电路,或多米诺级电路之外,非反相多米诺寄存器300实质上与非反相多米诺寄存器100类似,其会记录成「无底部(footless)」配置,并且运算逻辑电路104是以运算逻辑电路301来取代.P1及N2元件为互补成对的操作数件,其在会产生TOP信号的节点105处会耦接在一起.在此情况中,N2的漏极耦接至节点105,而其源极耦接至运算逻辑电路301的顶端或上方端.运算逻辑电路301的下方或底部端耦接至接地点.以此方式,运算逻辑电路301若耦接于P1与N2之间,则其会位于P1/N2堆栈的底部(foot).对于非反相多米诺寄存器300而言,运行实质上很类似,并且图2的时序图仍同样有效.FIG. 3 is a schematic diagram of another non-inverting domino register 300 implemented according to an exemplary embodiment of the present invention. In addition to including stacked P-channel element P1 and N-channel element N2, and the logic operation input of the
运算逻辑电路301能以实质上与运算逻辑电路104相同的方式来进行配置。然而,如熟知此项技术者所了解的,运算逻辑电路301可替代地使用互补式金氧半导体(CMOS)逻辑电路(而不是N信道逻辑电路)来实施,再者,图2的时序图仍有效。当将CMOS逻辑电路用于多米诺级电路时,CMOS逻辑电路会比N信道逻辑电路产生明显较佳的输入电平噪声边限,以至于非反相多米诺寄存器300会比非反相多米诺寄存器100产生明显较佳的输入电平噪声边限。The
当实施于高漏电流或高噪声工艺(如90nm SOI及类似工艺)中时,非反相多米诺寄存器100及300均会经历漏电流效应。将电路缩小到90nm会产生有关漏电流的问题。因为通道长度缩短,所以缩小的工艺会出现较高的漏电流。因此,为了将新状态写入有关缓存器100及300中的任一个的储存级电路的节点107,在回授反相器内,必须克服弱元件(例如,在反相器109B内,弱的P信道元件会改变成低电平状态,而弱的N信道元件会改变成高电平状态)。克服元件的成本是速度及电流。此外,在有高漏电流或高噪声的工艺中,在回授反相器109B内的弱的N及P元件必须变大,以在出现漏电流或噪声时,可保持输出节点的状态。Both non-inverting domino registers 100 and 300 experience leakage current effects when implemented in high leakage current or high noise processes such as 90nm SOI and similar processes. Shrinking circuits to 90nm creates problems with leakage currents. Due to the shortened channel length, the scaled down process exhibits higher leakage current. Therefore, in order to write a new state to
要注意的是,例如,当CLK为低电平时,储存节点107(信号QII)会与输入级电路隔离。除了维持回授反相器109B(其包括内部弱的N及P元件(未显示))的外,并不会驱动QII信号。然而,由于对应于缩小工艺而增加的漏电流,较大量的漏电流会流经P2及N3元件。所以,反相器109B中的N及P元件必须够大,以克服漏电流。例如,若QII信号为高电平,则漏电流会经由N3及N4元件而流到地,以至于反相器109B内的P元件必须够大,以供应足够电流,来克服此漏电流,而使QII信号保持在高电平。在有高漏电流或高电流,且元件为关闭的工艺中,需要愈来愈宽的元件来保持状态。而且,因为当写入新状态时,必须克服正保持此状态的较宽元件,所以使用较宽的元件实质上会降低效能。为了补偿速度的降低,储存级电路元件P2、N3、以及N4会做的较大,以驱动新状态,来克服由维持回授反相器109B中的大元件所保持的状态。较大元件会耗费集成电路(IC)上的有用空间。Note that, for example, when CLK is low, the storage node 107 (signal QII) is isolated from the input stage circuitry. The QII signal is not driven except for maintaining the
图4为根据使用改善的维持电路的本发明的一范例实施例所实施的另一种非反相多米诺寄存器400的概图.非反相多米诺寄存器400包括输入多米诺级电路,紧接着是储存级电路及输出级电路.缓存器400中的多米诺级电路,以及储存级电路的初始部分与缓存器100中的那些类似.然而,缓存器400的维持电路通过去除克服元件的需求,以及就速度及电流的观点,来降低成本,而修改成能改善效能.多米诺级电路包括堆栈的P信道元件P1及N信道元件N2,以及运算逻辑电路104.与之前一样,P1与N2元件为互补成对的操作数件,其耦接于电压源VDD与接地点之间的运算逻辑电路104的任一侧.P1的源极耦接至VDD,而其漏极耦接至会产生TOP信号的节点105.运算逻辑电路104耦接于节点105与N2的漏极之间,而N2的源极耦接至接地点.输入频率信号CLK经由节点101而传送到P1、N2及N3的栅极.一组N个节点103会将N个输入数据信号DATA传送到运算逻辑电路104.与之前一样,会产生TOP信号的节点105耦接至元件P2及N4的栅极.储存级电路的初始部分实质上为相同的写入级电路,其包括堆栈的元件P2、N3及N4.P2的源极耦接至VDD,而其源极耦接至会产生第一中间输出信号QII的节点107.N3的漏极耦接至节点107,而其源极耦接至N4(具有耦接至接地点的源极)的漏极.4 is a schematic diagram of another non-inverting domino register 400 implemented in accordance with an exemplary embodiment of the present invention using an improved sustain circuit. The
非反相多米诺寄存器400的储存级电路包括写入级电路(包含元件P3、P4、以及P5)及维持级电路(包含元件P3、P4、以及N3),以及反相器401。在例示的实施例中,储存级电路是紧接着输出级电路,其包括二个输入的与非(NAND)门403。在此情况中,P3的源极耦接至VDD,而其漏极耦接至P4(其漏极耦接至节点107处的N5的漏极)的源极。N5的源极耦接至N4的漏极,进一步会耦接至N3的源极。会产生CLK信号的节点101耦接至P4的栅极。会产生QII信号的节点107耦接至反相器401(其输出耦接至会产生第二中间输出信号QI的节点111)的输入。节点111耦接至P3及N5的栅极,并且耦接至与非门403的一输入。会产生TOP信号的节点105耦接至与非门403的另一个输入,并且与非门403的输出会产生输出Q信号。The storage stage circuit of the
对于时序只有微小差异的此情况中,图2的时序图可应用于非反相多米诺寄存器400,其中会忽略这样的时序差异及微小的延迟(例如,会忽略经过反相器401及与非门403的延迟)。再者,会假设QII信号最初为低电平,并且会致能为高电平。参考图2,在时间T0,CLK、Q及QII信号最初为低电平,而QI信号为高电平。因为CLK为低电平,所以P1会导通,而TOP会预充为高电平,而使N4导通。因为QI及TOP均为高电平,所以与非门403的输出处的Q信号最初为低电平。当CLK为低电平且QI为高电平时,N5会导通,P3会关闭,而P4会导通。因此,在此情况中,N5及N4均位于提供节点107至接地点的「低电平」状态维持路径的上,其会使QII信号保持在低电平。每当第二初步输出节点111及预充节点105均为高电平时,低维持路径会致能,否则会不致能。In this case where there are only minor differences in timing, the timing diagram of FIG. 2 can be applied to
当在时间T1,CLK信号变为高电平时,N2会导通,而会通过运算逻辑电路104来启动DATA操作数的运算。与的前一样,代表输入DATA操作数的DADAN信号最初会显示为高电平,而使运算逻辑电路104耦接到节点105,而耦接至N2的漏极。这会经由N2而使TOP信号拉到低电平。在约时间T1时(在经过与非门403的短延迟的后),变为低电平的TOP会使与非门403导通,而使Q致能为高电平。再者,变为低电平的TOP会使N4关闭,由此会使从N5,经过N4,而往下到接地点的低电平维持路径不致能。并且,变为低电平的TOP会使P2导通,以至于在约时间T1时,QII信号会拉到高电平。当在时间T1,QII信号变为高电平时,反相器301会将QI信号拉到低电平,其会使P3导通,并且会使N5关闭。当QI信号为低电平时,Q输出信号会保持在低电平。When the CLK signal becomes high level at time T1, N2 is turned on, and the operation of the DATA operand is started by the
在此例中,当TOP信号变为低电平时,因为N4会关闭,所以经过N5的低电平维持路径会不致能。并且,因为N4会关闭,所以P2不必克服N5,而使QII信号拉到高电平。每当QII信号为低电平,且会响应运算(使TOP拉到低电平)而拉到高电平时,低电平维持路径总是会不致能(因为N4会关闭),以至于储存级电路中的写入级电路不必克服维持元件。In this example, when the TOP signal goes low, the low-hold path through N5 is disabled because N4 is turned off. Also, since N4 will be off, P2 does not have to overcome N5 to pull the QII signal high. Whenever the QII signal is low and pulled high in response to the operation (pulling TOP low), the low level maintenance path will always be disabled (because N4 will be closed), so that the storage stage The write stage in the circuit does not have to overcome sustain elements.
在时间T2,当CLK接着变为低电平时,TOP会再次地预充为高电平.再者,在时间T2,P4会导通,而产生从节点107,经由P4及P3而到VDD的「高电平」状态维持路径,由此会使QII信号保持在高电平.每当预充节点105及第二初步输出节点111均为低电平时,高电平维持路径会致能,否则会不致能.因此,当在时间T2,TOP变为高电平时,QII信号会保持在高电平,其依次会使QI保持在低电平,以保持Q输出信号的状态.在约时间T2,变为高电平的TOP信号会使N4导通,但因为QI信号为低电平,所以N5会关闭,由此在其余的周期期间,可使低电平维持路径保持关闭或不致能.At time T2, when CLK then goes low, TOP will be pre-charged high again. Furthermore, at time T2, P4 will be turned on, and a voltage from
在时间T3,DATAN信号会变为低电平,而在时间T4,CLK信号接着会变为高电平,而DATAN信号仍为低电平,以至于运算逻辑电路104不能进行运算。因此,在时间T4,TOP会保持在高电平,以至于N4会保持导通。变为高电平的CLK信号会使P4关闭,并且会使N3导通。因为P4会关闭,以及N3与N4均会将QII信号拉到低电平,所以从节点107到VDD的高维持路径会不致能。因为P4会关闭,所以N3及N4不必克服任何元件(包括弱维持元件),而会使QII拉到低电平。每当QII信号为高电平,并且会响应无法运算(其中TOP会保持在高电平)而拉到低电平时,高电平维持路径总是会不致能(因为P4会关闭),以至于储存级电路中的写入级电路不必克服维持元件。在约时间T4,反相器401会响应QII变为低电平,而会将QI拉到高电平。因为QI及TOP均为高电平,所以在约时间T4,与非门403会将Q拉到低电平。再者,变为高电平的QI会使N5导通,并且会使P3关闭,以至于高电平维持路径会不致能,而经过N5及N4的低电平维持路径会重新致能。当CLK在时间T5,接着变为低电平时,N3会关闭,而因为N5及N4会保持导通,所以QII会经过低电平维持路径而保持在低电平。TOP及QI均为保持在高电平,以至于在CLK的其余频率周期,Q会保持在低电平。At time T3, the DATAN signal becomes low level, and at time T4, the CLK signal then becomes high level, and the DATAN signal is still low level, so that the
非反相多米诺寄存器400是使用改善的技术,来使弱维持回授元件不致能,以至于当正写入新状态时,不必克服维持元件内部的强元件。因此,P3及N5元件会做的较宽,来克服漏电流,以保持状态,但是因为当将新状态写入储存节点107(QII信号)时,那些相同元件P3及N5会不致能,所以不会影响速度。当写入QII信号的新状态时,不必克服回授维持电路,以至于元件P2及N3可为正常大小的元件。非反相多米诺寄存器400的「维持器」只会致能用来储存此状态。特别而言,回授元件会致能,以保持此状态,而当写入新状态时,其会不致能。Non-inverting domino register 400 uses an improved technique to disable weak sustain feedback elements so that strong elements inside sustain elements do not have to be overcome when a new state is being written. Therefore, the P3 and N5 elements will be made wider to overcome the leakage current to maintain the state, but because those same elements P3 and N5 will be disabled when a new state is written to the storage node 107 (QII signal), it will not will affect the speed. When writing a new state of the QII signal, it is not necessary to overcome the feedback sustain circuit, so that elements P2 and N3 can be normal sized elements. The "keeper" of the
图5使用缓存器400的改善维持级电路,以及根据本发明的另一范例实施例所实施的另一种无底部非反相多米诺寄存器500的概图。除了包含堆栈的P信道元件P1及N信道元件N2,以及运算逻辑电路104的逻辑运算输入级电路,或多米诺级电路之外,非反相多米诺寄存器500实质上与非反相多米诺寄存器400类似,其会记录成「无底部」配置,并且运算逻辑电路104以运算逻辑电路301来取代。从缓存器500到400的改变是类似于从缓存器300到100的改变。以此方式,非反相多米诺寄存器500的运算逻辑电路301可以CMOS逻辑电路而不是N信道逻辑电路来实施,再者,图2的时序图仍然可用。如之前所述,当CMOS逻辑电路用于多米诺级电路时,CMOS逻辑电路会比N信道逻辑电路产生明显较佳的输入电平噪声边限,以至于非反相多米诺寄存器500会比非反相多米诺寄存器400产生稍微较佳的输入电平噪声边限。FIG. 5 is a schematic diagram of an improved sustain stage circuit using a
在不需对其输出Q的稳定度妥协之下,根据本发明的一实施例所实施的非反相多米诺寄存器的频率至输出时间会比传统方法快速。此外,与另外需克服强维持元件的元件相较,储存级电路可进一步地进行改善,而使较小,较快元件能用于高漏电流环境之中。这样可使非反相多米诺寄存器实施于高漏电流或高噪声工艺(如90nm SOI及类似工艺)中,而不会因为漏电流因素而造成效能降低。因此,缩小工艺(包含降低尺寸、电压、功率消耗等)的优点可在对应于这样的缩小工艺而不会造成效能降低之下来达到。Without compromising the stability of its output Q, the frequency-to-output time of the non-inverting domino register implemented according to an embodiment of the present invention is faster than conventional methods. In addition, storage stage circuits can be further improved to allow smaller, faster devices to be used in high leakage current environments compared to other devices that would have to overcome strong sustaining devices. This allows non-inverting domino registers to be implemented in high-leakage or high-noise processes such as 90nm SOI and similar processes without performance degradation due to leakage. Therefore, the advantages of a scaling process (including reducing size, voltage, power consumption, etc.) can be achieved without causing performance degradation corresponding to such scaling process.
虽然本发明及其目的、特性与优点已详细描述,然而本发明也可能还包括其它实施方式与变化。此外,虽然本发明所揭示的实施方式是利用金氧半导体(MOS)型态的元件(其包括互补式金氧半导体(CMOS)及类似的元件,如NMOS与PMOS晶体管等),然而其依然可以利用类似态样或模拟的技术型态与结构来实施,例如双极性元件等等。最后,虽然本发明为实现本发明的目的的最佳模式,然而熟知此项技术者应该了解到的是,其在不脱离所附的权利要求所定义的本发明的精神及范围之下,其可立即使用所揭示的概念及特定的具体实施例当作基础,来进行与本发明的目的相同的设计或修改成其它结构。Although the present invention and its objects, features and advantages have been described in detail, the present invention may also include other embodiments and variations. In addition, although the disclosed embodiments of the present invention utilize metal oxide semiconductor (MOS) type devices (which include complementary metal oxide semiconductor (CMOS) and similar devices, such as NMOS and PMOS transistors, etc.), it can still be Implemented using similar aspects or analog technology types and structures, such as bipolar components and the like. Finally, although the present invention is the best mode for carrying out the purpose of the present invention, those skilled in the art should understand that, without departing from the spirit and scope of the present invention defined by the appended claims, its The conception and specific embodiment disclosed may be immediately used as a basis for designing or modifying other structures for the same purposes of the present invention.
Claims (21)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/023,145 | 2004-12-27 | ||
| US11/023,145 US7187209B2 (en) | 2003-08-13 | 2004-12-27 | Non-inverting domino register |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1738206A CN1738206A (en) | 2006-02-22 |
| CN1738206B true CN1738206B (en) | 2010-05-05 |
Family
ID=36080886
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 200510106477 Active CN1738206B (en) | 2004-12-27 | 2005-09-26 | Non-inverting domino register and method for generating non-inverting output |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN1738206B (en) |
| TW (1) | TWI281319B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7317339B1 (en) * | 2006-06-16 | 2008-01-08 | Via Technologies, Inc. | N-domino register with accelerated non-discharge path |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6265899B1 (en) * | 1999-06-04 | 2001-07-24 | S3 Incorporated | Single rail domino logic for four-phase clocking scheme |
| US6560737B1 (en) * | 2000-02-16 | 2003-05-06 | Hewlett-Packard Development Company, L.P. | Method for adding scan controllability and observability to domino CMOS with low area and delay overhead |
-
2005
- 2005-09-13 TW TW94131402A patent/TWI281319B/en active
- 2005-09-26 CN CN 200510106477 patent/CN1738206B/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6265899B1 (en) * | 1999-06-04 | 2001-07-24 | S3 Incorporated | Single rail domino logic for four-phase clocking scheme |
| US6560737B1 (en) * | 2000-02-16 | 2003-05-06 | Hewlett-Packard Development Company, L.P. | Method for adding scan controllability and observability to domino CMOS with low area and delay overhead |
Non-Patent Citations (1)
| Title |
|---|
| 全文. |
Also Published As
| Publication number | Publication date |
|---|---|
| TWI281319B (en) | 2007-05-11 |
| CN1738206A (en) | 2006-02-22 |
| TW200623634A (en) | 2006-07-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7317339B1 (en) | N-domino register with accelerated non-discharge path | |
| EP1592133B1 (en) | N-domino output latch with accelerated evaluate path | |
| US6204696B1 (en) | Domino circuits with high performance and high noise immunity | |
| CN100514862C (en) | Non-inverting domino register and temporary storage method thereof | |
| US7348806B2 (en) | Accelerated N-channel dynamic register | |
| US7382161B2 (en) | Accelerated P-channel dynamic register | |
| CN100568734C (en) | P-Type Domino Register | |
| US7187209B2 (en) | Non-inverting domino register | |
| EP1732227B1 (en) | N-Domino output latch | |
| US7187211B2 (en) | P-domino output latch | |
| US7193445B2 (en) | Non-inverting domino register | |
| CN1738206B (en) | Non-inverting domino register and method for generating non-inverting output | |
| CN100550639C (en) | Domino output latch | |
| US7061265B2 (en) | Circuit for controlling leakage | |
| EP1542364B1 (en) | Dynamic logic register |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |