CN1822331A - Method for preparing titanium silicide nanowires by chemical vapor deposition - Google Patents
Method for preparing titanium silicide nanowires by chemical vapor deposition Download PDFInfo
- Publication number
- CN1822331A CN1822331A CN 200510097001 CN200510097001A CN1822331A CN 1822331 A CN1822331 A CN 1822331A CN 200510097001 CN200510097001 CN 200510097001 CN 200510097001 A CN200510097001 A CN 200510097001A CN 1822331 A CN1822331 A CN 1822331A
- Authority
- CN
- China
- Prior art keywords
- ticl
- nanowires
- gas
- sih
- tisi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002070 nanowire Substances 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title claims abstract description 21
- 229910021341 titanium silicide Inorganic materials 0.000 title claims abstract description 14
- 238000005229 chemical vapour deposition Methods 0.000 title claims abstract description 11
- 229910008484 TiSi Inorganic materials 0.000 claims abstract description 26
- 239000010936 titanium Substances 0.000 claims abstract description 22
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 14
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims abstract description 10
- 239000000126 substance Substances 0.000 claims abstract description 6
- 239000000376 reactant Substances 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 32
- 239000000758 substrate Substances 0.000 claims description 17
- 239000011521 glass Substances 0.000 claims description 15
- 239000013078 crystal Substances 0.000 claims description 13
- 239000010408 film Substances 0.000 claims description 11
- 239000012495 reaction gas Substances 0.000 claims description 10
- 239000010409 thin film Substances 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 239000010453 quartz Substances 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 238000010521 absorption reaction Methods 0.000 claims description 2
- 239000012895 dilution Substances 0.000 claims description 2
- 238000010790 dilution Methods 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims 1
- 229910008479 TiSi2 Inorganic materials 0.000 abstract description 10
- DFJQEGUNXWZVAH-UHFFFAOYSA-N bis($l^{2}-silanylidene)titanium Chemical compound [Si]=[Ti]=[Si] DFJQEGUNXWZVAH-UHFFFAOYSA-N 0.000 abstract description 9
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract 2
- 229910003074 TiCl4 Inorganic materials 0.000 abstract 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 abstract 2
- -1 TiSi2 compound Chemical class 0.000 abstract 1
- 238000005137 deposition process Methods 0.000 abstract 1
- 239000003085 diluting agent Substances 0.000 abstract 1
- 238000000151 deposition Methods 0.000 description 9
- 230000008021 deposition Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 238000002003 electron diffraction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229910019001 CoSi Inorganic materials 0.000 description 1
- 229910005883 NiSi Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000001350 scanning transmission electron microscopy Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Images
Landscapes
- Silicon Compounds (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
技术领域technical field
本发明涉及硅化钛纳米线的制备技术。尤其涉及是通过化学气相沉积方法在玻璃基板上快速形成高密度的硅化物纳米线。The invention relates to the preparation technology of titanium silicide nanowires. In particular, it relates to the rapid formation of high-density silicide nanowires on glass substrates by chemical vapor deposition.
背景技术Background technique
随着微电子技术的发展,近年来纳米线的制备引起了广泛注意,纳米线作为纳米电子和光电子制造技术中的基本模块有着广泛的应用前景。纳米材料在半导体技术中的应用能得到更高的器件密度,这是常规半导体技术所无法比拟的。金属硅化物在现代半导体技术中广泛应用于ULSI中的金属氧化物半导体(MOS)器件、金属氧化物半导体场效应晶体管(MOSFET)、动态随机存储器(DRAM)的门、源/漏极和互联、欧姆接触的制造当中。随着在微电子技术中器件尺寸的不断减小,许多一维尺寸的金属硅化物纳米线已经制备出来了。He等制备出了CoSi2纳米线,Chen等制备出了ErSi2纳米线,Lee等制备出了NiSi纳米线,Luo等制备出了Pt6Si5纳米线,Ragana等制备出了外延稀有金属硅化物纳米线,但这些纳米线都是由物理气相沉积方法形成的,主要是溅射法。该方法对设备的要求高,产量低。为克服了上述方法制备金属硅化物纳米线的缺点,我们通过化学气相沉积方法成功制备了硅化钛纳米线,这是一种生长金属硅化物纳米线的新方法,该方法既可应用于各种金属硅化物纳米线的制备,又可用于各种无机化合物纳米线的制备。With the development of microelectronics technology, the preparation of nanowires has attracted widespread attention in recent years. Nanowires have broad application prospects as basic modules in nanoelectronics and optoelectronics manufacturing technologies. The application of nanomaterials in semiconductor technology can achieve higher device density, which is unmatched by conventional semiconductor technology. Metal silicides are widely used in modern semiconductor technology for metal oxide semiconductor (MOS) devices in ULSI, metal oxide semiconductor field effect transistors (MOSFET), gates, source/drain and interconnection of dynamic random access memory (DRAM), During the manufacture of ohmic contacts. With the continuous reduction of device size in microelectronics, many one-dimensional metal silicide nanowires have been fabricated. He et al. prepared CoSi 2 nanowires, Chen et al. prepared ErSi 2 nanowires, Lee et al. prepared NiSi nanowires, Luo et al. prepared Pt 6 Si 5 nanowires, Ragana et al. prepared epitaxial rare metal silicide However, these nanowires are formed by physical vapor deposition methods, mainly sputtering. This method has high requirements on equipment and low output. In order to overcome the shortcomings of the above methods for preparing metal silicide nanowires, we successfully prepared titanium silicide nanowires by chemical vapor deposition, which is a new method for growing metal silicide nanowires, which can be applied to various The preparation of metal silicide nanowires can also be used in the preparation of various inorganic compound nanowires.
发明内容Contents of the invention
本发明的目的在于提供一种化学气相沉积法制备硅化钛纳米线的方法。The object of the present invention is to provide a method for preparing titanium silicide nanowires by chemical vapor deposition.
本发明解决其技术问题所采用的技术方案是该方法的步骤如下:The technical solution adopted by the present invention to solve its technical problems is that the steps of the method are as follows:
1)反应物为SiH4和TiCl4,以N2为稀释气体和保护气氛;1) The reactants are SiH 4 and TiCl 4 , with N 2 as the dilution gas and protective atmosphere;
2)TiCl4恒温在30~60℃;TiCl4所经过的管路保温至40~70℃;2) The constant temperature of TiCl 4 is 30-60°C; the pipeline through which TiCl 4 passes is kept warm to 40-70°C;
3)通过气体发生器,用N2来携带TiCl4;3) Carrying TiCl 4 with N 2 through a gas generator;
4)SiH4、TiCl4和N2在混气室混合;各路气体在混气室入口处的压力相等,压力保持在111325~131325Pa之间;4) SiH 4 , TiCl 4 and N 2 are mixed in the gas mixing chamber; the pressure of each gas at the inlet of the gas mixing chamber is equal, and the pressure is kept between 111325-131325Pa;
5)总反应气体中各物质的摩尔浓度:5) The molar concentration of each substance in the total reaction gas:
a)SiH4:0.33~5%;a) SiH 4 : 0.33-5%;
b)TiCl4:0.33~1.67%;b) TiCl 4 : 0.33-1.67%;
c)SiH4:TiCl4摩尔比:1~3;c) SiH 4 : TiCl 4 molar ratio: 1-3;
6)生长系统为石英管反应器,生长系统压力为101325~121325Pa;6) The growth system is a quartz tube reactor, and the pressure of the growth system is 101325-121325Pa;
7)玻璃基板置于石英管反应器内进行,玻璃基板温度为690~750℃,SiH4、TiCl4和N2混合气体输送到玻璃基板上进行反应,反应时间为30~300秒,在玻璃基板上先生成硅化钛薄膜层,然后在该金属硅化物薄膜上形成高密度的硅化物纳米线;7) The glass substrate is placed in a quartz tube reactor. The temperature of the glass substrate is 690-750 ° C. The mixed gas of SiH 4 , TiCl 4 and N 2 is transported to the glass substrate for reaction. The reaction time is 30-300 seconds. A titanium silicide film layer is first formed on the substrate, and then high-density silicide nanowires are formed on the metal silicide film;
8)废气经过吸收处理后排放。8) The exhaust gas is discharged after absorption treatment.
所述的薄膜为Ti5Si3、TiSi2或Ti5Si3与TiSi2复合。所述的纳米线为TiSi、Ti5Si3或TiSi2。所述的纳米线为单晶纳米线。所述的纳米线的直径在10~40nm之间,长度在0.2~10μm。The thin film is Ti 5 Si 3 , TiSi 2 or a compound of Ti 5 Si 3 and TiSi 2 . The nanowires are TiSi, Ti 5 Si 3 or TiSi 2 . Said nanowires are single crystal nanowires. The diameter of the nanowire is between 10-40nm, and the length is between 0.2-10μm.
本发明与背景技术相比具有的有益效果是:The beneficial effect that the present invention has compared with background technology is:
1、用CVD法制备金属硅化物纳米线,该方法对设备要求低,但产量大,效率高。比现有物理气相沉积方法有更大的优越性;1. Prepare metal silicide nanowires by CVD method. This method has low equipment requirements, but has large output and high efficiency. Compared with the existing physical vapor deposition method, it has greater advantages;
2、该方法没有使用模板和催化剂,快速大量的生成了单晶的硅化钛纳米线;2. This method does not use templates and catalysts, and quickly generates a large number of single-crystal titanium silicide nanowires;
3、通过对制备条件改变,可得到各种形貌的纳米线;3. By changing the preparation conditions, nanowires with various shapes can be obtained;
4、通过对制备反应物摩尔比的改变,可得到各种化学组成的纳米线。4. Nanowires with various chemical compositions can be obtained by changing the molar ratio of the prepared reactants.
附图说明Description of drawings
图1本发明的纳米线生长示意图;Fig. 1 nanowire growth schematic diagram of the present invention;
图2实施例1制备的TiSi纳米线样品的扫描电子显微镜剖面图;The scanning electron microscope sectional view of the TiSi nanowire sample prepared by Fig. 2
图3实施例2制备的TiSi纳米线的扫描电子显微镜图;The scanning electron micrograph of the TiSi nanowire prepared in Fig. 3
图4实施例2制备的TiSi纳米线的高分辨透射电子显微镜图及电子衍射图。Fig. 4 is a high-resolution transmission electron microscope image and an electron diffraction image of the TiSi nanowire prepared in Example 2.
具体实施方式Detailed ways
如图1所示,在普通玻璃基板1上,先沉积一层薄膜2,然后在该薄膜2上形成硅化钛纳米线3。As shown in FIG. 1 , on an
所述的薄膜为Ti5Si3、TiSi2或Ti5Si3与TiSi2复合。所述的纳米线为TiSi、Ti5Si3或TiSi2。所述的纳米线为单晶纳米线。所述的纳米线的直径在10~40nm之间,长度在0.2~10μm。The thin film is Ti 5 Si 3 , TiSi 2 or a compound of Ti 5 Si 3 and TiSi 2 . The nanowires are TiSi, Ti 5 Si 3 or TiSi 2 . Said nanowires are single crystal nanowires. The diameter of the nanowire is between 10-40nm, and the length is between 0.2-10μm.
下面是本发明的实施例:Below are embodiments of the present invention:
实施例1Example 1
反应温度690℃,TiCl4恒温在60℃,TiCl4所经过的管路保温至70℃,调节反应气体SiH4:TiCl4摩尔比为1,SiH4:1.67%,TiCl4:1.67%,N2:96.66%,各路气体在混气室入口处的压力为111325Pa,生长系统压力维持在101325Pa,沉积时间大约120秒。在玻璃基板上形成Ti5Si3薄膜和TiSi单晶纳米线。结果见附表和图2所示。The reaction temperature is 690°C, the constant temperature of TiCl 4 is 60°C, the pipeline through which TiCl 4 passes is kept warm to 70°C, the molar ratio of reaction gas SiH 4 : TiCl 4 is adjusted to 1, SiH 4 : 1.67%, TiCl 4 : 1.67%, N 2 : 96.66%, the pressure of each gas at the inlet of the gas mixing chamber is 111325Pa, the pressure of the growth system is maintained at 101325Pa, and the deposition time is about 120 seconds. Form Ti 5 Si 3 film and TiSi single crystal nanowire on the glass substrate. The results are shown in the attached table and Figure 2.
实施例2Example 2
反应温度690℃,TiCl4恒温在40℃,TiCl4所经过的管路保温至50℃,调节反应气体SiH4:TiCl4摩尔比为1,SiH4:1%,TiCl4:1%,N2:98%,各路气体在混气室入口处的压力为111325Pa,生长系统压力维持在101325Pa,沉积时间大约300秒。在玻璃基板上形成Ti5Si3薄膜和TiSi单晶纳米线。结果见附表和图3~4所示。The reaction temperature is 690°C, the constant temperature of TiCl 4 is 40°C, the pipeline through which TiCl 4 passes is kept warm to 50°C, and the molar ratio of reaction gas SiH 4 : TiCl 4 is adjusted to 1, SiH 4 : 1%, TiCl 4 : 1%, N 2 : 98%, the pressure of each gas at the inlet of the gas mixing chamber is 111325Pa, the pressure of the growth system is maintained at 101325Pa, and the deposition time is about 300 seconds. Form Ti 5 Si 3 film and TiSi single crystal nanowire on the glass substrate. The results are shown in the attached table and Figures 3-4.
实施例3Example 3
反应温度690℃,TiCl4恒温在30℃,TiCl4所经过的管路保温至40℃,调节反应气体SiH4:TiCl4摩尔比为1,SiH4:0.33%,TiCl4:0.33%,N2:99.34%,各路气体在混气室入口处的压力为111325Pa,生长系统压力维持在101325Pa,沉积时间大约210秒。在玻璃基板上形成Ti5Si3薄膜和TiSi单晶纳米线。结果见附表。The reaction temperature is 690°C, the constant temperature of TiCl 4 is 30°C, the pipeline passed by TiCl 4 is kept warm to 40°C, and the molar ratio of SiH 4 : TiCl 4 is adjusted to 1, SiH 4 : 0.33%, TiCl 4 : 0.33%, N 2 : 99.34%, the pressure of each gas at the inlet of the gas mixing chamber is 111325Pa, the pressure of the growth system is maintained at 101325Pa, and the deposition time is about 210 seconds. Form Ti 5 Si 3 film and TiSi single crystal nanowire on the glass substrate. See the attached table for the results.
实施例4Example 4
反应温度700℃,TiCl4恒温在40℃,TiCl4所经过的管路保温至50℃,调节反应气体SiH4:TiCl4摩尔比为2,SiH4:3%,TiCl4:1.5%,N2:95.5%,各路气体在混气室入口处的压力为121325Pa,生长系统压力维持在111325Pa,沉积时间大约120秒。在玻璃基板上形成Ti5Si3薄膜和Ti5Si3单晶纳米线。结果见附表。The reaction temperature is 700°C, the constant temperature of TiCl 4 is 40°C, the pipeline through which TiCl 4 passes is kept warm to 50°C, and the molar ratio of reaction gas SiH 4 : TiCl 4 is adjusted to 2, SiH 4 : 3%, TiCl 4 : 1.5%, N 2 : 95.5%, the pressure of each gas at the inlet of the gas mixing chamber is 121325Pa, the pressure of the growth system is maintained at 111325Pa, and the deposition time is about 120 seconds. Form Ti 5 Si 3 film and Ti 5 Si 3 single crystal nanowire on the glass substrate. See the attached table for the results.
实施例5Example 5
反应温度700℃,TiCl4恒温在60℃,TiCl4所经过的管路保温至70℃,调节反应气体SiH4:TiCl4摩尔比为3,SiH4:5%,TiCl4:1.67%,N2:93.33%,各路气体在混气室入口处的压力为121325Pa,生长系统压力维持在111325Pa,沉积时间大约30秒。在玻璃基板上形成TiSi2薄膜和TiSi2单晶纳米线。结果见附表。The reaction temperature is 700°C, the constant temperature of TiCl 4 is 60°C, the pipeline through which TiCl 4 passes is kept warm to 70°C, and the molar ratio of reaction gas SiH 4 : TiCl 4 is adjusted to 3, SiH 4 : 5%, TiCl 4 : 1.67%, N 2 : 93.33%, the pressure of each gas at the inlet of the gas mixing chamber is 121325Pa, the pressure of the growth system is maintained at 111325Pa, and the deposition time is about 30 seconds. TiSi2 thin films and TiSi2 single crystal nanowires were formed on glass substrates. See the attached table for the results.
实施例6Example 6
反应温度690℃,TiCl4恒温在40℃,TiCl4所经过的管路保温至50℃,调节反应气体SiH4:TiCl4摩尔比为3,SiH4:1.5%,TiCl4:0.5%,N2:98%,沉积时间大约60秒,各路气体在混气室入口处的压力为131325Pa,生长系统压力维持在121325Pa。在玻璃基板上形成TiSi2薄膜。然后,调节反应气体SiH4/TiCl4摩尔比为1,SiH4:1%,TiCl4:1%,N2:98%,沉积时间大约90秒,各路气体在混气室入口处的压力为131325Pa,生长系统压力维持在121325Pa。在TiSi2薄膜上形成TiSi单晶纳米线。结果见附表。The reaction temperature is 690°C, the constant temperature of TiCl 4 is at 40°C, the pipeline through which TiCl 4 passes is kept warm to 50°C, and the molar ratio of reaction gas SiH 4 : TiCl 4 is adjusted to 3, SiH 4 : 1.5%, TiCl 4 : 0.5%, N 2 : 98%, the deposition time is about 60 seconds, the pressure of each gas at the inlet of the gas mixing chamber is 131325Pa, and the pressure of the growth system is maintained at 121325Pa. Form a TiSi2 thin film on a glass substrate. Then, adjust the reaction gas SiH 4 /TiCl 4 molar ratio to 1, SiH 4 : 1%, TiCl 4 : 1%, N 2 : 98%, the deposition time is about 90 seconds, and the pressure of each gas at the inlet of the gas mixing chamber is 131325Pa, and the growth system pressure is maintained at 121325Pa. Formation of TiSi single crystal nanowires on TiSi2 films. See the attached table for the results.
实施例7Example 7
反应温度750℃,TiCl4恒温在40℃,TiCl4所经过的管路保温至50℃,调节反应气体SiH4:TiCl4摩尔比为1,SiH4:1%,TiCl4:1%,N2:98%,沉积时间大约40秒,各路气体在混气室入口处的压力为131325Pa,生长系统压力维持在121325Pa。在玻璃基板上形成Ti5Si3薄膜。然后,调节反应气体SiH4/TiCl4摩尔比为2,SiH4:2%,TiCl4:1%,N2:97%,沉积时间大约80秒,各路气体在混气室入口处的压力为131325Pa,生长系统压力维持在121325Pa。在Ti5Si3薄膜上形成TiSi2单晶纳米线。结果见附表。The reaction temperature is 750°C, the constant temperature of TiCl 4 is 40°C, the pipeline through which TiCl 4 passes is kept warm to 50°C, and the molar ratio of the reaction gas SiH 4 : TiCl 4 is adjusted to 1, SiH 4 : 1%, TiCl 4 : 1%, N 2 : 98%, the deposition time is about 40 seconds, the pressure of each gas at the inlet of the gas mixing chamber is 131325Pa, and the pressure of the growth system is maintained at 121325Pa. A Ti 5 Si 3 thin film was formed on a glass substrate. Then, adjust the reaction gas SiH 4 /TiCl 4 molar ratio to 2, SiH 4 : 2%, TiCl 4 : 1%, N 2 : 97%, the deposition time is about 80 seconds, the pressure of each gas at the inlet of the gas mixing chamber is 131325Pa, and the growth system pressure is maintained at 121325Pa. Formation of TiSi 2 single crystal nanowires on Ti 5 Si 3 film. See the attached table for the results.
附表 薄膜的表征
薄膜中晶相用X射线衍射仪测试。The crystal phase in the film was tested by X-ray diffractometer.
纳米线的化学组成由X射线衍射仪和电子衍射测试The chemical composition of the nanowires was tested by X-ray diffractometer and electron diffraction
纳米线的直径和长度由扫描电子显微镜和透射电子显微镜测试。The diameter and length of the nanowires were tested by scanning electron microscopy and transmission electron microscopy.
所含元素及其比例由X射线能量色散谱仪测试。The contained elements and their proportions are tested by X-ray energy dispersive spectrometer.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2005100970013A CN100356522C (en) | 2005-12-31 | 2005-12-31 | Method for preparing titanium silicide nano line by chemical gas phase deposition method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2005100970013A CN100356522C (en) | 2005-12-31 | 2005-12-31 | Method for preparing titanium silicide nano line by chemical gas phase deposition method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1822331A true CN1822331A (en) | 2006-08-23 |
| CN100356522C CN100356522C (en) | 2007-12-19 |
Family
ID=36923530
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB2005100970013A Expired - Fee Related CN100356522C (en) | 2005-12-31 | 2005-12-31 | Method for preparing titanium silicide nano line by chemical gas phase deposition method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN100356522C (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102400220A (en) * | 2011-12-02 | 2012-04-04 | 南昌大学 | Method for preparing titanium oxide nano wire with self-induction chemical vapor deposition method |
| US8158254B2 (en) | 2008-08-25 | 2012-04-17 | The Trustees Of Boston College | Methods of fabricating complex two-dimensional conductive silicides |
| US8216436B2 (en) | 2008-08-25 | 2012-07-10 | The Trustees Of Boston College | Hetero-nanostructures for solar energy conversions and methods of fabricating same |
| RU2629121C1 (en) * | 2016-07-18 | 2017-08-24 | Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" | Method for titanium silicides production |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5240739A (en) * | 1992-08-07 | 1993-08-31 | Micron Technology | Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers |
| CN1294098C (en) * | 2005-05-25 | 2007-01-10 | 浙江大学 | Titanium silicide coated glass with compound functions prepared by nitrogen protection under normal pressure and preparation method thereof |
-
2005
- 2005-12-31 CN CNB2005100970013A patent/CN100356522C/en not_active Expired - Fee Related
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8158254B2 (en) | 2008-08-25 | 2012-04-17 | The Trustees Of Boston College | Methods of fabricating complex two-dimensional conductive silicides |
| US8216436B2 (en) | 2008-08-25 | 2012-07-10 | The Trustees Of Boston College | Hetero-nanostructures for solar energy conversions and methods of fabricating same |
| CN102400220A (en) * | 2011-12-02 | 2012-04-04 | 南昌大学 | Method for preparing titanium oxide nano wire with self-induction chemical vapor deposition method |
| CN102400220B (en) * | 2011-12-02 | 2014-04-09 | 南昌大学 | Method for preparing titanium oxide nano wire with self-induction chemical vapor deposition method |
| RU2629121C1 (en) * | 2016-07-18 | 2017-08-24 | Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" | Method for titanium silicides production |
Also Published As
| Publication number | Publication date |
|---|---|
| CN100356522C (en) | 2007-12-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Geng et al. | Graphene single crystals: size and morphology engineering | |
| Bersch et al. | Selective-area growth and controlled substrate coupling of transition metal dichalcogenides | |
| CN107043922A (en) | A kind of preparation method of two-dimentional tungsten sulfide thin-film material | |
| Liu et al. | Periodical ripening for MOCVD growth of large 2D transition metal dichalcogenide domains | |
| CN1238555C (en) | Chemical Vapor Deposition for Amorphous Silicon and Formed Thin Films | |
| US9029190B2 (en) | Method for manufacturing graphene film and graphene channel of transistor | |
| CN1822331A (en) | Method for preparing titanium silicide nanowires by chemical vapor deposition | |
| US20250028237A1 (en) | Method for manufacturing graphene thin film for pellicle material using ozone gas | |
| US20050130417A1 (en) | Method for fabricating epitaxial cobalt-disilicide layers using cobalt-nitride thin film | |
| Seo et al. | Intergranular diffusion‐assisted liquid‐phase chemical vapor deposition for wafer‐scale synthesis of patternable 2D semiconductors | |
| KR20150011989A (en) | Healing method of defect using atomic layer deposition | |
| CN1872662B (en) | Titanium silicide nanowire cluster prepared by atmospheric pressure chemical vapor deposition method and preparation method thereof | |
| CN100582043C (en) | Titanium silicide nano-nail prepared by chemical vapor deposition under normal pressure and preparation method thereof | |
| CN1417844A (en) | SiGe/Si Chemical vapor deposition growth process | |
| CN111689519A (en) | Method for preparing two-dimensional transition metal chalcogenide by adopting precursor thermal decomposition | |
| CN115354392B (en) | A kind of preparation method of large-scale single crystal molybdenum disulfide | |
| CN111573658A (en) | Twisted angle double-layer graphene directly grown in large area and preparation method thereof | |
| JPS5982732A (en) | Manufacture for semiconductor device | |
| CN113353922B (en) | A method for preparing nitrogen-doped graphene and the prepared nitrogen-doped graphene | |
| Wu et al. | Oxidant‐Modulated Synthesis of Polycrystalline MoS2 on SiO2/Si with Near‐Single‐Crystal Mobility | |
| CN115274420B (en) | Preparation method of ALD hafnium dioxide thin film based on flexible substrate | |
| Liu et al. | Low Carbon Residue Growth of Wafer‐Scale MoS2 | |
| Yang et al. | Boosted growth rate using discrete reactant feeding method and novel precursor of indium oxide by atomic layer deposition | |
| KR102780502B1 (en) | Manufacturing method of transition metal dichalcogenides film and the transition metal dichalcogenides film manufactured thereby | |
| Kandoussi et al. | Undoped and arsenic-doped low temperature (∼ 165 C) microcrystalline silicon for electronic devices process |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20071219 Termination date: 20121231 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |