CN204991747U - AlGaInP base LED of lateral wall alligatoring - Google Patents
AlGaInP base LED of lateral wall alligatoring Download PDFInfo
- Publication number
- CN204991747U CN204991747U CN201520784343.1U CN201520784343U CN204991747U CN 204991747 U CN204991747 U CN 204991747U CN 201520784343 U CN201520784343 U CN 201520784343U CN 204991747 U CN204991747 U CN 204991747U
- Authority
- CN
- China
- Prior art keywords
- layer
- algainp
- roughened
- led
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Led Devices (AREA)
Abstract
Description
技术领域 technical field
本实用新型涉及一种侧壁粗化的AlGaInP基LED的结构技术,属于半导体技术领域。 The utility model relates to a structure technology of an AlGaInP-based LED with a roughened side wall, which belongs to the technical field of semiconductors.
背景技术 Background technique
与GaAs衬底晶格匹配的AlGaInP基材料是一种直接带隙半导体,通过调整Al和Ga的比例,禁带宽度可在1.9eV至2.3eV之间变化,AlGaInP基LED的波长范围可以覆盖550nm-650nm。因此,AlGaInP基材料已广泛应用于红光、橙光、黄绿光LED的制造。由于AlGaInP基材料的折射率n高达3.0至3.5,远高于环氧树脂、硅胶(n≈1.5)等LED常规封装材料。根据光的全反射定律可知,光从光密媒质进入光疏媒质会在界面处产生全反射现象,而且界面两侧的折射率差异越大,全反射临界角越小。这使得AlGaInP基LED的出光效率很低。事实上,该问题也存在于GaAsLED和GaNLED中。 The AlGaInP-based material that matches the GaAs substrate lattice is a direct bandgap semiconductor. By adjusting the ratio of Al and Ga, the forbidden band width can be changed between 1.9eV and 2.3eV, and the wavelength range of AlGaInP-based LEDs can cover 550nm -650nm. Therefore, AlGaInP-based materials have been widely used in the manufacture of red, orange, and yellow-green LEDs. Since the refractive index n of AlGaInP-based materials is as high as 3.0 to 3.5, it is much higher than conventional LED packaging materials such as epoxy resin and silica gel (n≈1.5). According to the law of total reflection of light, it can be seen that when light enters an optically thinner medium from an optically denser medium, total reflection will occur at the interface, and the greater the difference in refractive index on both sides of the interface, the smaller the critical angle of total reflection. This makes the light extraction efficiency of AlGaInP-based LEDs very low. In fact, this problem also exists in GaAs LED and GaN LED.
对此,I.Schnitzer等提出了表面粗化提高GaAsLED的外量子效率的方法[Appl.Phys.Lett.,Vol.63,No.16,2174-2176,(1993)]。S.Fan等提出采用二维光子晶体将有源区发出的光耦合输出,从而提高出光效率[Phys.Rev.Lett.,Vol.78,No.17,3294-3297,(1997)]。M.R.Krames等将AlGaInPLED芯片切割成截角倒金字塔形(truncated-inverted-pyramid),从而改变射向侧壁的光线与侧壁法向之间的夹角,减少界面全反射,提高出光效率[Appl.Phys.Lett.,Vol.75,No.16,2365-2367,(1999)]。C.S.Chang等采用光刻制备掩膜图形,再采用ICP干法刻蚀在GaNLED侧壁形成半圆形周期性图案,提高出光效率[IEEEPhotonic.Technol.Lett.,Vol.16,No.3,750-752,(2004)]。 In this regard, I. Schnitzer et al. proposed a method of improving the external quantum efficiency of GaAs LED by roughening the surface [Appl.Phys.Lett., Vol.63, No.16, 2174-2176, (1993)]. S.Fan et al. proposed to use two-dimensional photonic crystals to couple the light emitted by the active region, thereby improving the light extraction efficiency [Phys.Rev.Lett., Vol.78, No.17, 3294-3297, (1997)]. M.R.Krames cut the AlGaInPLED chip into a truncated-inverted-pyramid (truncated-inverted-pyramid), so as to change the angle between the light incident on the side wall and the normal direction of the side wall, reduce the total reflection of the interface, and improve the light output efficiency [Appl . Phys. Lett., Vol.75, No.16, 2365-2367, (1999)]. C.S.Chang et al. used photolithography to prepare mask patterns, and then used ICP dry etching to form semicircular periodic patterns on the side walls of GaN LEDs to improve light extraction efficiency [IEEEPhotonic.Technol.Lett.,Vol.16,No.3,750-752 , (2004)].
在上述方法中,通过表面粗化来提高LED出光效率的方法已被业界广泛采用,成为LED行业的一种惯用技术。在AlGaInP基LED中,现有技术主要是对外延层表面进行粗化,侧壁粗化方法仅有少量报道。左致远等人提出采用光刻制备掩膜图形,再利用湿法腐蚀在AlGaInPLED侧壁形成周期性图形的方法,见中国专利申请号201310108349.2。 Among the above methods, the method of improving the light extraction efficiency of LEDs through surface roughening has been widely adopted in the industry and has become a common technique in the LED industry. In AlGaInP-based LEDs, the existing technology is mainly to roughen the surface of the epitaxial layer, and there are only a few reports on the sidewall roughening method. Zuo Zhiyuan and others proposed a method of preparing mask patterns by photolithography, and then using wet etching to form periodic patterns on the side walls of AlGaInPLEDs, see Chinese Patent Application No. 201310108349.2.
但至目前为止,非周期性无规则的亚微米尺寸图形是常规光刻制备掩膜图形方法无法实现的。 But so far, non-periodic and random sub-micron-sized patterns cannot be realized by conventional photolithography methods for preparing mask patterns.
实用新型内容 Utility model content
针对上述提到的由于界面全反射现象导致AlGaInP基LED的出光效率很低的问题,在已有表面粗化技术的基础上,本实用新型提出一种侧壁粗化的AlGaInP基LED结构。 Aiming at the above-mentioned problem that the light extraction efficiency of AlGaInP-based LEDs is very low due to interface total reflection phenomenon, on the basis of the existing surface roughening technology, the utility model proposes an AlGaInP-based LED structure with roughened side walls.
本实用新型在具有背电极的永久衬底上依次设置有金属键合层、ODR反射镜、外延层、n型扩展电极和主电极;ODR反射镜由金属反射层和介质膜层构成,介质膜层与外延层相连接;金属反射层和金属键合层相连接;n型扩展电极和主电极电学连接;其特点是外延层表面和侧壁都是呈粗化状。 The utility model is provided with a metal bonding layer, an ODR reflector, an epitaxial layer, an n-type extended electrode and a main electrode in sequence on a permanent substrate with a back electrode; the ODR reflector is composed of a metal reflective layer and a dielectric film layer, and the dielectric film The layer is connected with the epitaxial layer; the metal reflective layer is connected with the metal bonding layer; the n-type extended electrode is electrically connected with the main electrode; it is characterized in that the surface and side walls of the epitaxial layer are roughened.
本实用新型有益效果:(1)可以进一步提高AlGaInP基LED的出光效率,将LED芯片亮度提高10%至30%,从而提高电光转换效率;(2)由于出光效率提高,LED材料本身吸收的光减少,发热量也相应减小,从而可以延长LED的寿命;(3)由于侧壁粗化使LED芯片的发光角度相应增大,这对于LED显示屏而言,可以增大可视角度,提高LED屏的显示效果。 The utility model has the beneficial effects: (1) the light extraction efficiency of the AlGaInP-based LED can be further improved, and the brightness of the LED chip can be increased by 10% to 30%, thereby improving the electro-optical conversion efficiency; (2) due to the improvement of the light output efficiency, the light absorbed by the LED material itself (3) Due to the roughening of the side wall, the light-emitting angle of the LED chip increases accordingly, which can increase the viewing angle and improve the viewing angle of the LED display screen. The display effect of the LED screen.
进一步地,本实用新型所述粗化状的形貌为非周期性的无规则图形,所述图形尺寸为亚微米级。这种亚微米级图形具有与可见光波长范围380nm至760nm相比拟的尺寸。非周期性的无规则图形,可以对不同波长的光都有散射和衍射效果,如果是周期性的规则图形,则只对特定波长的光有效。由于本实用新型所述LED为可见光LED,亚微米级的图形能够更加有效地对这一波段的光产生散射和衍射。 Furthermore, the appearance of the roughened shape in the present invention is a non-periodic random pattern, and the size of the pattern is submicron. Such submicron-scale patterns have dimensions comparable to those of visible light in the wavelength range of 380nm to 760nm. Non-periodic random patterns can have scattering and diffraction effects on light of different wavelengths. If it is a periodic regular pattern, it is only effective for light of a specific wavelength. Since the LED described in the utility model is a visible light LED, the submicron-level graphics can more effectively scatter and diffract light in this band.
所述图形尺寸为100nm~1μm。 The size of the pattern is 100nm-1μm.
本实用新型所述外延层可以采用常规外延层,包括:p-GaP窗口层、p-AlGaInP限制层、MQW多量子阱有源层、n-AlGaInP限制层、n-AlGaInP电流扩展层、n型粗化层、n-GaAs欧姆接触层。 The epitaxial layer described in the utility model can adopt a conventional epitaxial layer, including: p-GaP window layer, p-AlGaInP confinement layer, MQW multi-quantum well active layer, n-AlGaInP confinement layer, n-AlGaInP current spreading layer, n-type Roughened layer, n-GaAs ohmic contact layer.
本实用新型沿LED的厚度方向,所述外延层的p-GaP窗口层侧壁为未粗化,或部分粗化,或完全粗化中的任意一种。如果在生产加工中切割道蚀刻深度刚好到达p-GaP表面,则p-GaP侧壁将是未粗化状态;如果切割道蚀刻到p-GaP内部一定深度,则p-GaP侧壁将是部分粗化状态;如果切割道贯穿p-GaP,则p-GaP侧壁将是完全粗化状态,这三种状态都是正常的。 In the utility model, along the thickness direction of the LED, the side wall of the p-GaP window layer of the epitaxial layer is not roughened, partially roughened, or completely roughened. If the scribe line etching depth just reaches the p-GaP surface during production processing, the p-GaP sidewall will be in an unroughened state; if the scribe line is etched to a certain depth inside the p-GaP, the p-GaP sidewall will be partially Coarsened state; if the kerf runs through p-GaP, the p-GaP sidewall will be in a fully roughened state, and all three states are normal.
所述ODR反射镜的介质膜层为SiO2、Si3N4、MgF2、ITO中的至少任意一种,金属反射层为Ag、Al、Au、AuZn合金、AuBe合金中的至少任意一种。该设计的出发点是为了获得高反射率的ODR反射镜,所述介质膜层和金属反射层可以进行不同的组合。 The dielectric film layer of the ODR mirror is at least any one of SiO 2 , Si 3 N 4 , MgF 2 , and ITO, and the metal reflection layer is at least any one of Ag, Al, Au, AuZn alloy, and AuBe alloy. . The starting point of this design is to obtain an ODR mirror with high reflectivity, and the dielectric film layer and the metal reflective layer can be combined in different ways.
附图说明 Description of drawings
图1为制作过程中在外延片表面制作完ODR反射镜和金属键合层的结构示意图。 FIG. 1 is a schematic diagram of the structure of an ODR mirror and a metal bonding layer fabricated on the surface of an epitaxial wafer during the fabrication process.
图2为制作过程中在永久衬底上制作完金属键合层后的结构示意图。 FIG. 2 is a schematic diagram of the structure after the metal bonding layer is fabricated on the permanent substrate during the fabrication process.
图3为本实用新型的一种剖面结构示意图。 Fig. 3 is a schematic cross-sectional structure diagram of the utility model.
图4为图3的俯视图。 FIG. 4 is a top view of FIG. 3 .
图5为图3的另一种俯视图。 FIG. 5 is another top view of FIG. 3 .
图6为扫描电子显微镜拍摄的本实用新型外延层表面或侧壁粗化后的典型表面形貌。 Fig. 6 is a typical surface morphology of the roughened epitaxial layer surface or sidewall of the present invention taken by a scanning electron microscope.
具体实施方式 detailed description
一、如图1和2所示是本实用新型优选实例在制作过程中的结构示意图,制造步骤如下: One, as shown in Figure 1 and 2 is the structural representation of the preferred example of the present utility model in the manufacturing process, and the manufacturing steps are as follows:
1、如图1所示,采用MOCVD设备在GaAs临时衬底101上生长外延层,外延层包括缓冲层102、GaInP截止层103、n-GaAs欧姆接触层104、n-AlGaInP粗化层105、n-AlGaInP电流扩展层106、n-AlGaInP限制层107、MQW多量子阱有源层108、p-AlGaInP限制层109、p-GaP窗口层110。 1. As shown in FIG. 1, MOCVD equipment is used to grow an epitaxial layer on a GaAs temporary substrate 101. The epitaxial layer includes a buffer layer 102, a GaInP cut-off layer 103, an n-GaAs ohmic contact layer 104, an n-AlGaInP roughening layer 105, n-AlGaInP current spreading layer 106 , n-AlGaInP confinement layer 107 , MQW multi-quantum well active layer 108 , p-AlGaInP confinement layer 109 , p-GaP window layer 110 .
其中n-GaAs欧姆接触层104优选厚度为20nm至100nm,掺杂浓度在1×1019cm-3以上,掺杂元素为Si,以便与n型扩展电极204形成良好的欧姆接触。p-GaP窗口层110的优选厚度为600nm至8000nm,掺杂浓度在1×1018cm-3以上,掺杂元素为Mg,以保证p面良好的欧姆接触和电流扩展能力。 The n-GaAs ohmic contact layer 104 preferably has a thickness of 20nm to 100nm, a doping concentration above 1×10 19 cm −3 , and Si as the doping element, so as to form a good ohmic contact with the n-type extended electrode 204 . The preferred thickness of the p-GaP window layer 110 is 600nm to 8000nm, the doping concentration is above 1×10 18 cm -3 , and the doping element is Mg, so as to ensure good ohmic contact and current spreading ability of the p-plane.
采用丙酮、异丙醇、去离子水依次清洗外延片正面的p-GaP窗口层110,氮气吹干,在p-GaP窗口层上沉积SiO2介质膜层111,通过旋涂正性光刻胶,曝光,显影做出掩膜图形,采用BOE溶液将SiO2(或Si3N4、MgF2、ITO中的任意一种或组合)介质膜层111蚀刻出导电孔,在介质膜层111表面蒸镀厚度为300nm的AuZn和500nm的Al作为金属反射层112。金属反射层112也可以采用Ag、Al、Au、AuZn合金、AuBe合金中的任意一种或组合。由SiO2介质膜层111和AuZn/Al金属反射层112共同构成ODR反射镜,同时SiO2介质膜导电孔中AuZn与p-GaP窗口层经过440℃退火10min形成良好的电学接触。 Use acetone, isopropanol, and deionized water to clean the p-GaP window layer 110 on the front side of the epitaxial wafer successively, blow dry with nitrogen, and deposit SiO on the p-GaP window layer Dielectric film layer 111, by spin-coating positive photoresist , exposure, and development to make a mask pattern, use BOE solution to etch the SiO 2 (or any one or combination of Si 3 N 4 , MgF 2 , ITO) dielectric film layer 111 to form conductive holes, and on the surface of the dielectric film layer 111 AuZn with a thickness of 300 nm and Al with a thickness of 500 nm were evaporated as the metal reflective layer 112 . The metal reflective layer 112 may also use any one or combination of Ag, Al, Au, AuZn alloy, and AuBe alloy. The ODR mirror is composed of the SiO 2 dielectric film layer 111 and the AuZn/Al metal reflection layer 112. At the same time, AuZn and the p-GaP window layer in the conductive hole of the SiO 2 dielectric film are annealed at 440°C for 10 minutes to form good electrical contact.
在制作好的ODR反射镜上蒸镀厚度为1000nm的Au作为金属键合层113。 Au with a thickness of 1000 nm was vapor-deposited on the prepared ODR mirror as the metal bonding layer 113 .
2、如图2所示,在永久衬底——Si衬底201上蒸镀厚度为1000nm的Au作为金属键合层202。 2. As shown in FIG. 2 , evaporate Au with a thickness of 1000 nm on the permanent substrate—Si substrate 201 as the metal bonding layer 202 .
永久衬底也可以采用Mo衬底、Cu衬底、SiC衬底、Ge衬底、钼铜合金衬底或钨铜合金衬底中的任意一种。 The permanent substrate can also be any one of Mo substrate, Cu substrate, SiC substrate, Ge substrate, molybdenum-copper alloy substrate or tungsten-copper alloy substrate.
3、将步骤1制作好的制品和步骤2制作好的制品浸入丙酮溶液中超声清洗10min,然后分别用异丙醇和去离子水冲洗干净,氮气吹干。将金属键合层113和202相对,在300℃、5000kg压力作用下经过20min将两者键合到一起。 3. Immerse the product made in step 1 and the product made in step 2 into the acetone solution for ultrasonic cleaning for 10 minutes, then rinse with isopropanol and deionized water respectively, and blow dry with nitrogen. The metal bonding layers 113 and 202 are opposed to each other, and the two are bonded together at 300° C. under a pressure of 5000 kg for 20 minutes.
4、利用机械研磨方式将步骤3制作好的制品的临时衬底——GaAs衬底101减薄至剩余约20μm,再用体积比为1:5的NH4OH和H2O2混合溶液蚀刻10min,去除GaAs临时衬底101和缓冲层102,化学蚀刻停止在GaInP截止层103上,再浸入体积比为1:2的HCl和H3PO4混合溶液中蚀刻1min,去除GaInP截止层103,露出n-GaAs欧姆接触层104。 4. Use mechanical grinding to thin the GaAs substrate 101, the temporary substrate of the product produced in step 3, to the remaining 20 μm, and then etch it with a mixed solution of NH 4 OH and H 2 O 2 with a volume ratio of 1:5 10min, remove the GaAs temporary substrate 101 and the buffer layer 102, stop the chemical etching on the GaInP cut-off layer 103, then immerse in the mixed solution of HCl and H3PO4 with a volume ratio of 1 : 2 and etch for 1min, remove the GaInP cut-off layer 103, The n-GaAs ohmic contact layer 104 is exposed.
5、通过在n-GaAs欧姆接触层104上旋涂正性光刻胶,软烘、曝光、显影、硬烘后,再浸入体积比为1∶2∶2的H3PO4、H2O2和H2O的混合溶液,蚀刻出n-GaAs欧姆接触层104图形,然后去胶、清洗。 5. Spin-coat positive photoresist on the n-GaAs ohmic contact layer 104, after soft baking, exposure, development, and hard baking, then immerse in H 3 PO 4 , H 2 O with a volume ratio of 1:2:2 2 and H 2 O to etch out the pattern of the n-GaAs ohmic contact layer 104, and then remove the glue and clean it.
6、在制作好图形的n-GaAs欧姆接触层104上采用电子束蒸镀的方式蒸镀厚度为400nm的AuGeNi合金材料,再经过上胶,光刻,显影等工艺后采用体积比为1∶2∶5的I2、KI和H2O的混合溶液蚀刻出n型扩展电极204。通过350℃氮气氛围退火炉进行退火10min处理,使n型扩展电极204与n-GaAs欧姆接触层104形成良好的电学接触。 6. Evaporate an AuGeNi alloy material with a thickness of 400nm by electron beam evaporation on the n-GaAs ohmic contact layer 104 that has been patterned, and then use a volume ratio of 1: after gluing, photolithography, and development. The n-type extended electrode 204 is etched by a 2:5 mixed solution of I 2 , KI and H 2 O. Annealing is performed in a nitrogen atmosphere annealing furnace at 350° C. for 10 minutes, so that the n-type extended electrode 204 and the n-GaAs ohmic contact layer 104 form a good electrical contact.
可以先将GaAs蚀刻出图形,再制作n型扩展电极,也可以先在n-GaAs欧姆接触层表面制作n型扩展电极,再将n-GaAs蚀刻出图形。 The GaAs can be etched out of the pattern first, and then the n-type extended electrode can be made, or the n-type extended electrode can be made on the surface of the n-GaAs ohmic contact layer, and then the n-GaAs can be etched out of the pattern.
7、将制作好n型扩展电极204后的制品浸入丙酮溶液超声清洗10min,然后依次用异丙醇和去离子水冲洗,氮气吹干。再进行光刻流程,旋涂负性光刻胶,软烘、曝光、显影、旋干,然后进行等离子打胶,蒸镀4μm的Au覆盖在n-AlGaInP粗化层105和n型扩展电极204上,剥离后形成主电极205。主电极205可以是部分覆盖或完全覆盖n型扩展电极204,分别如图4和图5所示。 7. Dip the manufactured n-type extended electrode 204 into an acetone solution and ultrasonically clean it for 10 minutes, then rinse it with isopropanol and deionized water in sequence, and dry it with nitrogen. Then carry out the photolithography process, spin-coat negative photoresist, soft bake, expose, develop, and spin-dry, and then perform plasma bonding, and evaporate 4 μm of Au to cover the n-AlGaInP roughening layer 105 and the n-type extended electrode 204 above, the main electrode 205 is formed after peeling off. The main electrode 205 may partially cover or completely cover the n-type extended electrode 204, as shown in FIG. 4 and FIG. 5 respectively.
图4中主电极205部分覆盖扩展电极204,图5中主电极205完全覆盖扩展电极204。 In FIG. 4 , the main electrode 205 partially covers the extension electrode 204 , and in FIG. 5 the main electrode 205 completely covers the extension electrode 204 .
蚀刻出的n-GaAs欧姆接触层104的图形和n型扩展电极204的图形既可以相同也可以不同。 The pattern of the etched n-GaAs ohmic contact layer 104 and the pattern of the n-type extended electrode 204 can be the same or different.
8、在具有n型扩展电极204和主电极205的表面旋涂正性光刻胶,软烘、曝光、显影、硬烘,形成蚀刻切割道时的掩蔽层图形,再采用ICP干法蚀刻外延层,深度达到p-GaP窗口层110,形成切割道,然后去胶、清洗。 8. Spin-coat positive photoresist on the surface with n-type extended electrode 204 and main electrode 205, soft bake, expose, develop, and hard bake to form a masking layer pattern when etching dicing lines, and then use ICP dry etching to epitaxy layer, the depth of which reaches the p-GaP window layer 110, forming dicing lines, and then removing the glue and cleaning.
蚀刻切割道时也可以采用湿法蚀刻、刀片切割、激光切割中的任意一种方法。 Any one of wet etching, blade cutting, and laser cutting may be used for etching the dicing lines.
9、将制作好切割道的制品浸入体积比为1∶1∶7的H3PO4、H2SO4和CH3COOH的混合溶液中,对n-AIGaInP粗化层105表面和切割道侧壁进行粗化处理,形成非周期性无规则的亚微米尺寸形貌,典型形貌特征如图6所示,图形尺寸为亚微米级,具有与可见光波长范围380nm至760nm相比拟的尺寸。 9. Immerse the product with the scribe line in the mixed solution of H 3 PO 4 , H 2 SO 4 , and CH 3 COOH with a volume ratio of 1:1:7. The wall is roughened to form non-periodic and random sub-micron-sized topography. The typical topographic features are shown in Figure 6. The size of the pattern is sub-micron and has a size comparable to that of the visible light wavelength range of 380nm to 760nm.
沿切割道深度方向,外延层的p-GaP窗口层110侧壁可以是未粗化,或部分粗化,或完全粗化中的任意一种。 Along the depth direction of the scribe line, the sidewall of the p-GaP window layer 110 of the epitaxial layer may be unroughened, partially roughened, or completely roughened.
10、在永久衬底——Si衬底201背面采用电子束热蒸镀的方式分别蒸镀厚度为20nm和100nm的Ti、Au,完成器件背电极的制作。 10. Evaporate Ti and Au with a thickness of 20nm and 100nm respectively on the back of the permanent substrate——Si substrate 201 , by means of electron beam thermal evaporation to complete the fabrication of the back electrode of the device.
当永久衬底为Si衬底、Ge衬底、SiC衬底中的任意一种时,步骤10需要包含衬底减薄、背电极蒸镀、背电极合金三项内容。 When the permanent substrate is any one of Si substrate, Ge substrate, and SiC substrate, step 10 needs to include three items: substrate thinning, back electrode evaporation, and back electrode alloy.
二、制成的产品结构特点: 2. The structural characteristics of the finished product:
如图3、4、5所示,在具有背电极203的永久衬底201上依次设置有金属键合层202和113、ODR反射镜112和111、外延层104-110、n型扩展电极204和主电极205。 As shown in Figures 3, 4, and 5, metal bonding layers 202 and 113, ODR mirrors 112 and 111, epitaxial layers 104-110, and n-type extended electrodes 204 are sequentially arranged on a permanent substrate 201 with a back electrode 203 and main electrode 205 .
其中,ODR反射镜由金属反射层112和介质膜层111构成,介质膜层111与外延层相连接;金属反射层112和金属键合层113相连接;n型扩展电极204和主电极205电学连接。 Wherein, the ODR mirror is composed of a metal reflection layer 112 and a dielectric film layer 111, and the dielectric film layer 111 is connected to the epitaxial layer; the metal reflection layer 112 is connected to the metal bonding layer 113; the n-type extended electrode 204 and the main electrode 205 are electrically connect.
外延层包括:p-GaP窗口层110、p-AlGaInP限制层109、MQW多量子阱有源层108、n-AlGaInP限制层107、n-AlGaInP电流扩展层106、n型粗化层105、n-GaAs欧姆接触层104。LED芯片外延层表面和侧壁是粗化的,形貌是非周期性的无规则图形,图形特征尺寸为100nm~1μm,为一种亚微米量级,具有与可见光波长范围380nm至760nm相比拟的尺寸。 The epitaxial layer includes: p-GaP window layer 110, p-AlGaInP confinement layer 109, MQW multi-quantum well active layer 108, n-AlGaInP confinement layer 107, n-AlGaInP current spreading layer 106, n-type roughening layer 105, n - GaAs ohmic contact layer 104 . The surface and sidewall of the epitaxial layer of the LED chip are roughened, and the morphology is aperiodic random pattern. The characteristic size of the pattern is 100nm to 1μm, which is a submicron level, and has a wavelength range of 380nm to 760nm compared with that of visible light. size.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201520784343.1U CN204991747U (en) | 2015-10-12 | 2015-10-12 | AlGaInP base LED of lateral wall alligatoring |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201520784343.1U CN204991747U (en) | 2015-10-12 | 2015-10-12 | AlGaInP base LED of lateral wall alligatoring |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN204991747U true CN204991747U (en) | 2016-01-20 |
Family
ID=55126082
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201520784343.1U Expired - Lifetime CN204991747U (en) | 2015-10-12 | 2015-10-12 | AlGaInP base LED of lateral wall alligatoring |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN204991747U (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105185883A (en) * | 2015-10-12 | 2015-12-23 | 扬州乾照光电有限公司 | Coarsened-sidewall AlGaInP-base LED and manufacture method thereof |
| CN105679906A (en) * | 2016-03-18 | 2016-06-15 | 厦门乾照光电股份有限公司 | Gallium nitride-based light-emitting diode with lateral wall microstructure and processing technology of gallium nitride-based light-emitting diode |
| CN108231962A (en) * | 2018-02-08 | 2018-06-29 | 扬州乾照光电有限公司 | A kind of light emitting diode and preparation method thereof |
| CN110660888A (en) * | 2019-11-08 | 2020-01-07 | 扬州乾照光电有限公司 | Light emitting diode and manufacturing method thereof |
-
2015
- 2015-10-12 CN CN201520784343.1U patent/CN204991747U/en not_active Expired - Lifetime
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105185883A (en) * | 2015-10-12 | 2015-12-23 | 扬州乾照光电有限公司 | Coarsened-sidewall AlGaInP-base LED and manufacture method thereof |
| CN105679906A (en) * | 2016-03-18 | 2016-06-15 | 厦门乾照光电股份有限公司 | Gallium nitride-based light-emitting diode with lateral wall microstructure and processing technology of gallium nitride-based light-emitting diode |
| CN108231962A (en) * | 2018-02-08 | 2018-06-29 | 扬州乾照光电有限公司 | A kind of light emitting diode and preparation method thereof |
| CN110660888A (en) * | 2019-11-08 | 2020-01-07 | 扬州乾照光电有限公司 | Light emitting diode and manufacturing method thereof |
| CN110660888B (en) * | 2019-11-08 | 2021-02-02 | 扬州乾照光电有限公司 | Light emitting diode and manufacturing method thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105185883A (en) | Coarsened-sidewall AlGaInP-base LED and manufacture method thereof | |
| CN105702820B (en) | Reverse-polarity AlGaInP-based LED covered with ITO and its manufacturing method | |
| CN105957938B (en) | A kind of the AlGaInP based light-emitting diodes wafer and its manufacturing method of high brightness reversed polarity | |
| TWI491073B (en) | Method for preparing light emitting diode | |
| TWI464904B (en) | Light-emitting diode | |
| CN103474546B (en) | Semiconductor structure | |
| CN103474547B (en) | Light emitting diode | |
| CN103474521B (en) | Manufacturing method of light-emitting diode | |
| CN105428485A (en) | GaP surface roughened AlGaInP-based LED and manufacturing method therefor | |
| CN204991747U (en) | AlGaInP base LED of lateral wall alligatoring | |
| CN103474522B (en) | The preparation method of light-emitting diode | |
| CN104681678A (en) | LED (light emitting diode) with dual-reflector structure and manufacturing method of LED with dual-reflector structure | |
| CN109004075B (en) | Light emitting diode | |
| CN108987547A (en) | A kind of light emitting diode and preparation method thereof | |
| CN103474524B (en) | The preparation method of light-emitting diode | |
| CN103474549B (en) | Semiconductor structure | |
| CN103474545B (en) | Light emitting diode | |
| KR20150089548A (en) | Vertical light emitting diode including porous GaN layer and method for thereof | |
| CN104134728B (en) | A kind of manufacturing method of light emitting diode | |
| TWI786276B (en) | Manufacturing method of light-emitting device | |
| KR101054229B1 (en) | Method of manufacturing III-V compound semiconductor light emitting device having surface roughness | |
| CN103474533B (en) | led |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |