CN206379620U - A kind of generation device of 2.1 micron waveband pulse laser - Google Patents
A kind of generation device of 2.1 micron waveband pulse laser Download PDFInfo
- Publication number
- CN206379620U CN206379620U CN201621005081.5U CN201621005081U CN206379620U CN 206379620 U CN206379620 U CN 206379620U CN 201621005081 U CN201621005081 U CN 201621005081U CN 206379620 U CN206379620 U CN 206379620U
- Authority
- CN
- China
- Prior art keywords
- micron
- pulsed laser
- laser
- pump
- band
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Lasers (AREA)
Abstract
本实用新型适用于光学领域,提供了一种2.1微米波段脉冲激光的产生装置,包括半导体泵浦脉冲激光器、泵浦光聚焦耦合系统及谐振腔,所述谐振腔包括端面泵浦激光介质,所述端面泵浦激光介质为掺杂钕离子的钒酸盐晶体;所述半导体泵浦脉冲激光器产生的泵浦光经所述泵浦光聚焦耦合系统耦合进入所述掺杂钕离子的钒酸盐晶体,钕离子通过受激辐射,产生1.34微米波段脉冲激光,所述1.34微米波段脉冲激光在所述谐振腔内震荡;所述钒酸盐晶体对所述1.34微米波段脉冲激光进行三次拉曼变频作用及锁膜作用,输出2.1微米波段脉冲激光。本实用新型所提供的2.1微米波段脉冲激光的产生装置,避免了可饱和吸收体光损伤阈值较低的局限性,获得高功率、高能量的2.1μm波段脉冲激光。
The utility model is applicable to the field of optics, and provides a 2.1-micron band pulse laser generating device, including a semiconductor pump pulse laser, a pump light focusing coupling system, and a resonant cavity. The resonant cavity includes an end-pumped laser medium. The end-pumped laser medium is a vanadate crystal doped with neodymium ions; the pump light generated by the semiconductor pump pulse laser is coupled into the vanadate crystal doped with neodymium ions through the pump light focusing coupling system Crystal, neodymium ions generate 1.34 micron band pulsed laser through stimulated radiation, and the 1.34 micron band pulsed laser oscillates in the resonant cavity; the vanadate crystal performs Raman frequency conversion three times on the 1.34 micron band pulsed laser Function and film-locking function, output 2.1 micron band pulsed laser. The 2.1 micron band pulsed laser generator provided by the utility model avoids the limitation of a saturable absorber with a lower light damage threshold, and obtains a high-power, high-energy 2.1 micron band pulsed laser.
Description
技术领域technical field
本实用新型属于光学领域,尤其涉及一种2.1微米波段脉冲激光的产生装置。The utility model belongs to the optical field, in particular to a 2.1-micron band pulse laser generator.
背景技术Background technique
目前2.1μm波段脉冲激光的获取方式主要有两种:一、以三价稀土元素Tm3+、Ho3+为激活离子的固体或者光纤脉冲激光器。二、利用1μm波段脉冲激光泵浦ZnGeP(ZGP)或者KTiOPO4(KTP)晶体的光参量振荡器(OPO)。第二种获取方式由于所用器件结构复杂、成本较高、效率低而极少采用。At present, there are two main ways to obtain pulsed laser in the 2.1 μm band: 1. Solid-state or fiber-optic pulsed laser with trivalent rare earth elements Tm 3+ and Ho 3+ as active ions. 2. The optical parametric oscillator (OPO) of ZnGeP (ZGP) or KTiOPO 4 (KTP) crystal is pumped by 1 μm band pulsed laser. The second acquisition method is rarely used due to the complex structure, high cost and low efficiency of the devices used.
产生2.1μm波段超短脉冲激光的技术主要分为主动锁模和被动锁模两种。主动锁模由于所需要的调制元件响应时间比较长,而且其产生的损耗窗口非常宽,因此获得的脉宽较宽,通常在几十到上百皮秒(ps)量级。被动锁模利用可饱和吸收体的快速响应时间,可以获得短至飞秒(fs)量级的超短脉冲激光。目前2.1μm波段的可饱和吸收体主要有:(1)吸收晶体,如:PbS量子点玻璃、Cr2+:ZnS、Cr2+:ZnSe等;(2)半导体材料:如半导体可饱和吸收镜(SESAM)、InGaAs等;(3)新型一维、二维材料,如石墨烯、碳纳米管、MoS2等。然而,可饱和吸收体较低的光损伤阈值限制了2.1μm波段被动锁模超短脉冲激光的输出功率。The technologies for generating ultrashort pulse lasers in the 2.1 μm band are mainly divided into active mode-locking and passive mode-locking. Active mode-locking requires a relatively long response time of the modulation element, and the resulting loss window is very wide, so the obtained pulse width is relatively wide, usually on the order of tens to hundreds of picoseconds (ps). Passive mode-locking utilizes the fast response time of saturable absorbers to obtain ultrashort pulse lasers as short as femtoseconds (fs). At present, the saturable absorbers in the 2.1μm band mainly include: (1) Absorbing crystals, such as: PbS quantum dot glass, Cr 2+ : ZnS, Cr 2+ : ZnSe, etc.; (2) Semiconductor materials: such as semiconductor saturable absorbing mirrors (SESAM), InGaAs, etc.; (3) New one-dimensional and two -dimensional materials, such as graphene, carbon nanotubes, MoS2, etc. However, the low optical damage threshold of saturable absorbers limits the output power of passively mode-locked ultrashort pulse lasers in the 2.1 μm band.
因此,现有技术存在缺陷,需要改进。Therefore, there are defects in the prior art and need to be improved.
实用新型内容Utility model content
为解决上述技术问题,本实用新型提供了一种2.1微米波段脉冲激光的产生装置,旨在获得高功率、高能量的2.1微米波段超短脉冲激光,同时简化产生过程。In order to solve the above-mentioned technical problems, the utility model provides a 2.1-micron band pulse laser generating device, aiming at obtaining high-power, high-energy 2.1-micron-band ultrashort pulse laser while simplifying the production process.
本实用新型提供了一种2.1微米波段脉冲激光的产生装置,包括半导体泵浦脉冲激光器、泵浦光聚焦耦合系统及谐振腔,所述谐振腔包括端面泵浦激光介质,所述端面泵浦激光介质为掺杂钕离子的钒酸盐晶体;所述半导体泵浦脉冲激光器产生的泵浦光经所述泵浦光聚焦耦合系统耦合进入所述掺杂钕离子的钒酸盐晶体,钕离子通过受激辐射,产生1.34微米波段脉冲激光,所述1.34微米波段脉冲激光在所述谐振腔内震荡;所述钒酸盐晶体对所述1.34微米波段脉冲激光进行拉曼变频作用及锁模作用,产生1.52微米波段脉冲激光,所述1.52微米波段脉冲激光在所述谐振腔内震荡;所述钒酸盐晶体再对所述1.52微米波段脉冲激光进行拉曼变频作用及锁模作用,产生1.76微米波段脉冲激光,所述1.76微米波段脉冲激光在所述谐振腔内震荡;所述钒酸盐晶体对所述1.76微米波段脉冲激光进行拉曼变频作用及锁模作用,输出2.1微米波段脉冲激光。The utility model provides a 2.1 micron band pulsed laser generating device, comprising a semiconductor pumped pulsed laser, a pump light focusing coupling system and a resonant cavity, the resonant cavity includes an end-pumped laser medium, and the end-pumped laser The medium is a vanadate crystal doped with neodymium ions; the pump light generated by the semiconductor pump pulse laser is coupled into the vanadate crystal doped with neodymium ions through the pump light focusing coupling system, and the neodymium ions pass through Stimulated radiation to generate a 1.34-micron-band pulsed laser, the 1.34-micron-band pulsed laser oscillates in the resonator; the vanadate crystal performs Raman frequency conversion and mode-locking on the 1.34-micron-band pulsed laser, Generate a 1.52-micron-band pulsed laser, and the 1.52-micron-band pulsed laser oscillates in the resonant cavity; the vanadate crystal performs Raman frequency conversion and mode-locking on the 1.52-micron-band pulsed laser to generate a 1.76-micron Band pulsed laser, the 1.76 micron band pulsed laser oscillates in the resonant cavity; the vanadate crystal performs Raman frequency conversion and mode locking on the 1.76 micron band pulsed laser, and outputs 2.1 micron band pulsed laser.
进一步地,所述谐振腔还包括泵浦端腔镜,所述泵浦端腔镜位于所述泵浦光聚焦耦合系统和所述端面泵浦激光介质之间,用于反射1.34微米、1.52微米、1.76微米及2.1微米波段的脉冲激光、同时透过808纳米波段的泵浦光。Further, the resonant cavity also includes a pump end cavity mirror, and the pump end cavity mirror is located between the pump light focusing coupling system and the end pump laser medium, and is used to reflect 1.34 micron, 1.52 micron , 1.76-micron and 2.1-micron pulsed lasers, and simultaneously transmit pump light in the 808-nm band.
进一步地,所述谐振腔还包括输出镜,用于反射1.34微米、1.52微米及1.76微米波段、同时反射及透过2.1微米波段的脉冲激光。Further, the resonant cavity also includes an output mirror, which is used to reflect the pulsed laser light in the 1.34 micron, 1.52 micron and 1.76 micron bands, and simultaneously reflect and transmit the 2.1 micron band.
进一步地,所述谐振腔还包括声光Q开关,所述声光Q开关位于所述端面泵浦激光介质和所述输出镜之间,用于提高所述谐振腔内的脉冲激光功率密度。Further, the resonant cavity further includes an acousto-optic Q switch, and the acousto-optic Q switch is located between the end-pumped laser medium and the output mirror, and is used to increase the pulsed laser power density in the resonant cavity.
进一步地,所述泵浦光的波长为808纳米。Further, the wavelength of the pump light is 808 nanometers.
进一步地,所述端面泵浦激光介质为Nd:YVO4晶体或Nd:GdVO4晶体。Further, the end-pumped laser medium is Nd:YVO 4 crystal or Nd:GdVO 4 crystal.
本实用新型与现有技术相比,有益效果在于:本实用新型提供的一种2.1微米波段脉冲激光的产生装置,所述产生装置的谐振腔包括端面泵浦激光介质,所述端面泵浦激光介质为掺杂钕离子的钒酸盐晶体;先通过钕离子产生受激辐射,产生1.34微米波段脉冲激光,再以1.34微米波段脉冲激光为基频光,利用钒酸盐晶体的三次拉曼变频作用及锁模作用,输出2.1微米波段脉冲激光。本实用新型将掺杂钕离子的钒酸盐晶体所具有的优良的自拉曼变频特性和克尔透镜锁模特性结合起来,通过克尔透镜锁模、饱和拉曼增益和同步泵浦三种机制产生对2.1μm波段脉冲激光的稳定锁模,最终输出2.1μm波段的超短脉冲激光。本实用新型提供的2.1微米波段脉冲激光的产生装置,由于避免了可饱和吸收体光损伤阈值较低的局限性,从而可以获得高功率、高能量的2.1μm波段超短脉冲激光。Compared with the prior art, the utility model has the beneficial effect that: the utility model provides a 2.1 micron band pulsed laser generating device, the resonant cavity of the generating device includes an end-pumped laser medium, and the end-pumped laser The medium is a vanadate crystal doped with neodymium ions; first, stimulated radiation is generated by neodymium ions to generate a 1.34-micron-band pulsed laser, and then the 1.34-micron-band pulsed laser is used as the fundamental frequency light, using the three-time Raman frequency conversion of the vanadate crystal Function and mode-locking function, output 2.1 micron band pulsed laser. The utility model combines the excellent self-Raman frequency conversion characteristic of the vanadate crystal doped with neodymium ions and the mode-locking characteristic of the Kerr lens, through three modes of Kerr lens mode-locking, saturated Raman gain and synchronous pumping The mechanism produces stable mode-locking of the 2.1 μm band pulse laser, and finally outputs the ultrashort pulse laser of the 2.1 μm band. The 2.1 micron band pulse laser generating device provided by the utility model can obtain high-power, high-energy ultrashort pulse laser in the 2.1 micron band because it avoids the limitation of a saturable absorber with a lower optical damage threshold.
附图说明Description of drawings
图1是本实用新型实施例提供的2.1微米波段脉冲激光的产生装置的结构示意图。Fig. 1 is a schematic structural diagram of a 2.1 micron band pulsed laser generating device provided by an embodiment of the present invention.
具体实施方式detailed description
为了使本实用新型的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本实用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。In order to make the purpose, technical solution and advantages of the utility model clearer, the utility model will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the utility model, and are not intended to limit the utility model.
如图1所示,本实用新型实施例提供了一种2.1微米波段脉冲激光的产生装置100,包括半导体泵浦脉冲激光器(未示出)、泵浦光聚焦耦合系统2及谐振腔7,谐振腔7包括端面泵浦激光介质4;其中,1为半导体泵浦脉冲激光器的光纤输出端,端面泵浦激光介质4为掺杂钕离子的钒酸盐晶体;半导体泵浦脉冲激光器产生的泵浦光经泵浦光聚焦耦合系统2耦合进入掺杂钕离子的钒酸盐晶体(端面泵浦激光介质4),钕离子通过受激辐射,产生1.34微米波段脉冲激光,所述1.34微米波段脉冲激光在谐振腔7内震荡;所述钒酸盐晶体对所述1.34微米波段脉冲激光进行拉曼变频作用及锁模作用,产生1.52微米波段脉冲激光,所述1.52微米波段脉冲激光在谐振腔7内震荡;所述钒酸盐晶体再对所述1.52微米波段脉冲激光进行拉曼变频作用及锁模作用,产生1.76微米波段脉冲激光,所述1.76微米波段脉冲激光在谐振腔7内震荡;所述钒酸盐晶体对所述1.76微米波段脉冲激光进行拉曼变频作用及锁模作用,输出2.1微米波段脉冲激光。As shown in Figure 1, the utility model embodiment provides a kind of 2.1 micron band pulsed laser generating device 100, comprises semiconductor pump pulse laser (not shown), pumping light focusing coupling system 2 and resonant cavity 7, resonant The cavity 7 includes an end-pumped laser medium 4; wherein, 1 is an optical fiber output end of a semiconductor pump pulse laser, and the end-pump laser medium 4 is a vanadate crystal doped with neodymium ions; the pump generated by the semiconductor pump pulse laser The light is coupled into the vanadate crystal (end-pumped laser medium 4) doped with neodymium ions through the pump light focusing coupling system 2, and the neodymium ions generate 1.34 micron band pulsed laser through stimulated radiation, and the 1.34 micron band pulsed laser Oscillating in the resonant cavity 7; the vanadate crystal performs Raman frequency conversion and mode locking on the 1.34 micron band pulsed laser to generate a 1.52 micron band pulsed laser, and the 1.52 micron band pulsed laser is in the resonant cavity 7 Oscillation; the vanadate crystal performs Raman frequency conversion and mode-locking on the 1.52 micron band pulsed laser to generate a 1.76 micron band pulsed laser, and the 1.76 micron band pulsed laser oscillates in the resonant cavity 7; The vanadate crystal performs Raman frequency conversion and mode locking on the 1.76 micron band pulsed laser, and outputs a 2.1 micron band pulsed laser.
具体地,所述1.34微米波段脉冲激光在钒酸盐晶体所具有的自拉曼变频作用和克尔透镜锁模作用下,产生2.1微米波段脉冲激光。Specifically, the 1.34-micron-band pulsed laser generates a 2.1-micron-band pulsed laser under the self-Raman frequency conversion effect of the vanadate crystal and the mode-locking effect of the Kerr lens.
具体地,所述泵浦光的波长为808纳米。Specifically, the wavelength of the pump light is 808 nanometers.
谐振腔7还包括泵浦端腔镜3,泵浦端腔镜3位于泵浦光聚焦耦合系统2和端面泵浦激光介质4之间,用于反射1.34微米、1.52微米、1.76微米及2.1微米波段的脉冲激光、同时透过808纳米波段的泵浦光。The resonant cavity 7 also includes a pump end cavity mirror 3, which is located between the pump light focusing coupling system 2 and the end pump laser medium 4, and is used to reflect 1.34 microns, 1.52 microns, 1.76 microns and 2.1 microns The pulsed laser in the wavelength band and the pump light in the 808 nanometer band are transmitted simultaneously.
谐振腔7还包括输出镜6,用于反射1.34微米、1.52微米及1.76微米波段、同时反射及透过2.1微米波段的脉冲激光。The resonant cavity 7 also includes an output mirror 6, which is used to reflect the pulsed laser light in the 1.34 micron, 1.52 micron and 1.76 micron bands, and simultaneously reflect and transmit the 2.1 micron band.
具体地,泵浦端腔镜3可以为平面镜、平凸镜或平凹镜,镀对808nm波段脉冲激光高透和对1.34微米、1.52微米、1.76微米及2.1微米波段脉冲激光高反的介质膜;输出镜6可以为平面镜、平凸镜或平凹镜,镀对1.34微米、1.52微米及1.76微米波段脉冲激光高反及对2.1μm波段脉冲激光部分反射、部分透过的介质膜。Specifically, the cavity mirror 3 at the pump end can be a plane mirror, a plano-convex mirror or a plano-concave mirror, coated with a dielectric film that is highly transparent to 808nm-band pulsed lasers and highly reflective to 1.34-micron, 1.52-micron, 1.76-micron and 2.1-micron-band pulsed lasers The output mirror 6 can be a plane mirror, a plano-convex mirror or a plano-concave mirror, coated with a dielectric film that is highly reflective to 1.34 micron, 1.52 micron and 1.76 micron band pulsed lasers and partially reflective and partially transparent to 2.1 μm band pulsed lasers.
谐振腔7还包括声光Q开关5,声光Q开关5位于端面泵浦激光介质4和输出镜6之间,用于提高谐振腔7内的脉冲激光功率密度。The resonant cavity 7 also includes an acousto-optic Q switch 5 , which is located between the end-pumped laser medium 4 and the output mirror 6 to increase the pulsed laser power density in the resonant cavity 7 .
具体地,端面泵浦激光介质4可以为Nd:YVO4晶体或Nd:GdVO4晶体,Nd:YVO4晶体或Nd:GdVO4晶体以1.34μm波段的脉冲激光为基频光,利用钒酸盐晶体的890cm-1左右的三次拉曼变频作用及锁模作用,产生2.1μm波段脉冲激光。Specifically, the end-pumped laser medium 4 can be Nd:YVO 4 crystal or Nd:GdVO 4 crystal, and Nd:YVO 4 crystal or Nd:GdVO 4 crystal uses pulsed laser light in the 1.34 μm band as the fundamental frequency light, using vanadate The three-time Raman frequency conversion and mode-locking effect of the crystal around 890cm -1 produces 2.1μm-band pulsed laser light.
本实施例提供的2.1微米波段脉冲激光的产生装置,将掺杂钕离子的钒酸盐晶体所具有的890cm-1的拉曼变频特性和克尔透镜锁模特性结合起来,具体通过克尔透镜锁模、饱和拉曼增益和同步泵浦三种机制产生对2.1μm波段脉冲激光的稳定锁模,从而获得了高功率、高能量的2.1μm波段超短脉冲激光。The 2.1 micron band pulsed laser generating device provided in this embodiment combines the 890 cm -1 Raman frequency conversion characteristic of the vanadate crystal doped with neodymium ions and the mode-locking characteristic of the Kerr lens, specifically through the Kerr lens The three mechanisms of mode-locking, saturated Raman gain and synchronous pumping produce stable mode-locking of 2.1μm-band pulsed lasers, thus obtaining high-power, high-energy 2.1μm-band ultrashort pulsed lasers.
本实施例还提供了一种2.1微米波段脉冲激光的产生方法,包括以下步骤:This embodiment also provides a method for generating a 2.1 micron-band pulsed laser, comprising the following steps:
S1:半导体泵浦脉冲激光器产生的泵浦光经泵浦光聚焦耦合系统耦合进入掺杂钕离子的钒酸盐晶体,钕离子通过受激辐射,产生1.34微米波段的脉冲激光;S1: The pump light generated by the semiconductor pump pulse laser is coupled into the vanadate crystal doped with neodymium ions through the pump light focusing coupling system, and the neodymium ions generate pulsed laser light in the 1.34 micron band through stimulated radiation;
S2:以所述1.34微米波段的脉冲激光为基频光,利用钒酸盐晶体的拉曼变频作用及锁模作用,产生1.52微米波段脉冲激光;S2: Using the pulsed laser in the 1.34 micron band as the fundamental frequency light, using the Raman frequency conversion effect and mode locking effect of the vanadate crystal to generate a pulsed laser in the 1.52 micron band;
S3:利用钒酸盐晶体的拉曼变频作用及锁模作用,将所述1.52微米波段脉冲激光转变为1.76微米波段脉冲激光;S3: Using the Raman frequency conversion effect and mode locking effect of the vanadate crystal, converting the 1.52 micron band pulsed laser into a 1.76 micron band pulsed laser;
S4:再利用钒酸盐晶体的拉曼变频作用及锁模作用,将所述1.76微米波段脉冲激光转变为2.1微米波段脉冲激光。S4: Converting the 1.76-micron-band pulsed laser into a 2.1-micron-band pulsed laser by using the Raman frequency conversion and mode-locking effects of the vanadate crystal.
结合上述2.1微米波段脉冲激光的产生装置100:Combined with the above-mentioned 2.1 micron band pulsed laser generating device 100:
具体地,步骤S1中,半导体泵浦脉冲激光器产生的泵浦光由半导体泵浦脉冲激光器的光纤输出端1输出,进入泵浦光经泵浦光聚焦耦合系统2中,泵浦光聚焦耦合系统2将泵浦光聚焦于端面泵浦激光介质4(掺杂钕离子的钒酸盐晶体)中,其中的钕离子通过受激辐射,产生1.34微米波段脉冲激光,所述1.34微米波段脉冲激光在谐振腔7内震荡。Specifically, in step S1, the pump light generated by the semiconductor pump pulse laser is output from the fiber output end 1 of the semiconductor pump pulse laser, and enters the pump light through the pump light focusing coupling system 2, and the pump light focusing coupling system 2 Focusing the pump light on the end-pumped laser medium 4 (vanadate crystal doped with neodymium ions), wherein the neodymium ions generate 1.34-micron-band pulsed laser through stimulated radiation, and the 1.34-micron-band pulsed laser is Oscillation in the resonant cavity 7.
具体地,步骤S2中,钒酸盐晶体以输出的1.34微米波段脉冲激光为基频光,利用钒酸盐晶体的拉曼变频作用及锁模作用,以及泵浦端腔镜3和输出镜6的作用,产生1.52微米波段脉冲激光。Specifically, in step S2, the vanadate crystal uses the output 1.34 micron band pulse laser as the fundamental frequency light, utilizes the Raman frequency conversion function and mode locking function of the vanadate crystal, and the cavity mirror 3 at the pump end and the output mirror 6 The role of the 1.52 micron band pulsed laser.
具体地,步骤S3中,利用钒酸盐晶体的拉曼变频作用及锁模作用,以及泵浦端腔镜3和输出镜6的作用,将所述1.52微米波段脉冲激光转变为1.76微米波段脉冲激光。Specifically, in step S3, the 1.52-micron-band pulse laser is converted into a 1.76-micron-band pulse by using the Raman frequency conversion and mode-locking effects of the vanadate crystal, as well as the pumping end cavity mirror 3 and the output mirror 6 laser.
具体地,步骤S4中,利用钒酸盐晶体的拉曼变频作用及锁模作用,以及泵浦端腔镜3和输出镜6的作用,将所述1.76微米波段脉冲激光转变为2.1微米波段脉冲激光。Specifically, in step S4, the 1.76-micron-band pulse laser is converted into a 2.1-micron-band pulse by using the Raman frequency conversion and mode-locking effects of the vanadate crystal, as well as the pumping end cavity mirror 3 and the output mirror 6 laser.
具体地,所述泵浦光的波长为808纳米。泵浦端腔镜3可以为平面镜、平凸镜或平凹镜,镀对808nm波段脉冲激光高透和对1.34微米、1.52微米、1.76微米及2.1微米波段脉冲激光高反的介质膜;输出镜6可以为平面镜、平凸镜或平凹镜,镀反射1.34微米、1.52微米及1.76微米波段脉冲激光、同时部分反射、部分透过2.1微米波段脉冲激光的介质膜。所述掺杂钕离子的钒酸盐晶体可以为Nd:YVO4晶体或Nd:GdVO4晶体。Specifically, the wavelength of the pump light is 808 nanometers. The cavity mirror 3 at the pump end can be a plane mirror, a plano-convex mirror or a plano-concave mirror, coated with a dielectric film that is highly transparent to the 808nm band pulsed laser and highly reflective to the 1.34 micron, 1.52 micron, 1.76 micron and 2.1 micron band pulsed laser; the output mirror 6 can be a plane mirror, a plano-convex mirror or a plano-concave mirror, coated with a dielectric film that reflects pulsed lasers in the 1.34 micron, 1.52 micron, and 1.76 micron bands, and at the same time partially reflects and partially transmits the pulsed lasers in the 2.1 micron band. The vanadate crystal doped with neodymium ions may be Nd:YVO 4 crystal or Nd:GdVO 4 crystal.
具体地,步骤S2中的Nd:YVO4晶体或Nd:GdVO4晶体以1.34μm波段脉冲激光为基频光,利用钒酸盐晶体的890cm-1左右的三次拉曼变频作用及锁模作用,产生2.1μm波段脉冲激光。Specifically, the Nd:YVO 4 crystal or Nd:GdVO 4 crystal in step S2 uses the 1.34 μm band pulsed laser as the fundamental frequency light, and utilizes the three-time Raman frequency conversion effect and mode locking effect of the vanadate crystal at about 890 cm -1 , Produces 2.1μm band pulsed laser light.
本实施例提供的一种2.1微米波段脉冲激光的产生方法,由于避免了可饱和吸收体光损伤阈值较低的局限性,从而可以获得高功率、高能量的2.1μm波段超短脉冲激光。The method for generating a 2.1 μm-band pulsed laser provided in this embodiment can obtain high-power, high-energy 2.1 μm-band ultrashort pulse laser because it avoids the limitation of a saturable absorber with a low optical damage threshold.
本实施例还提供了上述2.1微米波段脉冲激光的应用,所述2.1微米波段脉冲激光在军事、医学、环境监测、材料加工、远程通信或计量学等领域具有广泛而重要的应用。This embodiment also provides the application of the 2.1 micron band pulsed laser, which has wide and important applications in military, medical, environmental monitoring, material processing, remote communication or metrology and other fields.
以上所述仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本实用新型的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型的保护范围之内。The above descriptions are only preferred embodiments of the present utility model, and are not intended to limit the present utility model. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present utility model shall be included in this utility model. within the scope of protection of utility models.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201621005081.5U CN206379620U (en) | 2016-08-31 | 2016-08-31 | A kind of generation device of 2.1 micron waveband pulse laser |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201621005081.5U CN206379620U (en) | 2016-08-31 | 2016-08-31 | A kind of generation device of 2.1 micron waveband pulse laser |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN206379620U true CN206379620U (en) | 2017-08-04 |
Family
ID=59401185
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201621005081.5U Expired - Fee Related CN206379620U (en) | 2016-08-31 | 2016-08-31 | A kind of generation device of 2.1 micron waveband pulse laser |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN206379620U (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112260052A (en) * | 2020-10-19 | 2021-01-22 | 江苏师范大学 | A sunlight-pumped solid-state laser with high-efficiency laser compensation capability |
-
2016
- 2016-08-31 CN CN201621005081.5U patent/CN206379620U/en not_active Expired - Fee Related
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112260052A (en) * | 2020-10-19 | 2021-01-22 | 江苏师范大学 | A sunlight-pumped solid-state laser with high-efficiency laser compensation capability |
| CN112260052B (en) * | 2020-10-19 | 2024-01-26 | 江苏师范大学 | Solar light pumping solid laser with efficient laser compensation capability |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101414729B (en) | Self-mode-locking laser | |
| CN103414093B (en) | An all-fiber pulsed laser | |
| CN101572380B (en) | 2.12 micron mode-locked laser | |
| CN104319614A (en) | 1.5-micron human eye safety wave band ultrashort pulse laser | |
| CN105261915A (en) | Compact type optical difference-frequency THz source | |
| CN102244361A (en) | Self-Raman frequency conversion self-mode locking solid laser | |
| CN104503183B (en) | Self frequency-changing's tera-hertz parametric oscillator | |
| CN102208745A (en) | Miniaturized passive Q-switching eye-safe Raman laser | |
| CN104009376A (en) | Mid-infrared super-continuum spectrum light source for Cr:II-VI-family crystal laser pumping | |
| WO2018040018A1 (en) | Generation device, generation method and application for 2.3-micron wave band pulse laser | |
| CN105098589A (en) | Dual-wavelength Raman mode locked laser | |
| CN206099036U (en) | A device for generating pulsed laser in the 2.3 micron band | |
| CN112003116A (en) | Ultrashort pulse Raman fiber amplifier | |
| CN202276060U (en) | Self-Raman frequency conversion self-locking mode solid laser | |
| CN107026387A (en) | A kind of 1.5 μm of human eye safe waveband pulse lasers | |
| Zhang et al. | Passively Q-switched mode-locked Tm, Ho: CaYAlO4 laser based on double-walled carbon nanotube saturable absorber | |
| CN206379620U (en) | A kind of generation device of 2.1 micron waveband pulse laser | |
| CN106253052A (en) | Generator, production method and the application of a kind of 2.3 micron waveband pulse lasers | |
| WO2018040021A1 (en) | GENERATION DEVICE AND METHOD FOR 2.1 μM WAVEBAND PULSE LASER AND USE THEREOF | |
| CN205122984U (en) | Compact optics difference frequency terahertz is source now | |
| CN103928839A (en) | A U-band high-power picosecond pulse laser generation method | |
| CN101159364A (en) | LD terminal pump Nd:YAG/SrWO4/KTP yellow light laser | |
| CN111180984A (en) | An all-fiber ultrafast laser based on polarization-maintaining fiber cross-splicing technology | |
| CN106410582A (en) | Shared chamber light parameter oscillator of human-eye safe wave-band continuous output | |
| Iliev et al. | Steady state mode-locking of a 1.34 μm Nd: YVO4 laser using a single-walled carbon nanotube saturable absorber |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170804 Termination date: 20200831 |