CN207365912U - A kind of local laser-image co-registration measuring system for underwater object dimensional measurement - Google Patents
A kind of local laser-image co-registration measuring system for underwater object dimensional measurement Download PDFInfo
- Publication number
- CN207365912U CN207365912U CN201721466625.2U CN201721466625U CN207365912U CN 207365912 U CN207365912 U CN 207365912U CN 201721466625 U CN201721466625 U CN 201721466625U CN 207365912 U CN207365912 U CN 207365912U
- Authority
- CN
- China
- Prior art keywords
- underwater
- range finder
- laser range
- laser
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 27
- 238000011065 in-situ storage Methods 0.000 claims abstract description 16
- 230000004927 fusion Effects 0.000 claims abstract description 14
- 238000012545 processing Methods 0.000 claims description 15
- 238000013500 data storage Methods 0.000 claims description 7
- 238000000691 measurement method Methods 0.000 abstract 1
- 238000003384 imaging method Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003707 image sharpening Methods 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
本实用新型公开了一种用于水下目标物尺寸测量的原位激光‑图像融合测量系统,用于测量目标物体的尺寸信息,包括第一、第二、第三水下激光测距仪、水下云台、水下广角相机、第一姿态传感器、第二姿态传感器、控制单元等;该系统中水下云台通过控制单元使第三水下激光测距仪的激光光斑处于目标物体的适宜位置处,水下激光测距仪获取激光测距仪到目标物体的距离信息、水下广角相机拍摄含有目标物体和三个激光光斑的图像、姿态传感器测量水下广角相机和第三激光测距仪的三维姿态角信息,通过基于距离‑图像‑姿态的目标物尺寸测量方法实现水下目标物体尺寸的高精度测量。该系统可用于近距离测量水下不同目标物的尺寸,有测距精度高的优点。
The utility model discloses an in-situ laser-image fusion measurement system for measuring the size of an underwater target object, which is used for measuring the size information of the target object, including first, second, and third underwater laser range finders, Underwater pan-tilt, underwater wide-angle camera, first attitude sensor, second attitude sensor, control unit, etc.; in this system, the underwater pan-tilt makes the laser spot of the third underwater laser rangefinder at the target object through the control unit At a suitable position, the underwater laser rangefinder obtains the distance information from the laser rangefinder to the target object, the underwater wide-angle camera takes an image containing the target object and three laser spots, and the attitude sensor measures the distance between the underwater wide-angle camera and the third laser spot. The three-dimensional attitude angle information of the range meter realizes the high-precision measurement of the underwater target object size through the target size measurement method based on distance-image-attitude. The system can be used to measure the size of different underwater targets at close range, and has the advantage of high ranging accuracy.
Description
技术领域technical field
本实用新型涉及一种激光-图像融合测量系统,特别是一种用于水下目标物尺寸测量的原位激光-图像融合测量系统。The utility model relates to a laser-image fusion measurement system, in particular to an in-situ laser-image fusion measurement system for underwater target size measurement.
背景技术Background technique
水下目标物的尺寸信息通常可以使用船载多波速和近底AUV声学调查等手段来测量,这两种测量手段主要针对规模尺寸较大的目标物,难以对直径一般仅为米-亚米级的目标物进行有效识别。The size information of underwater targets can usually be measured by means of ship-borne multi-wave velocity and near-bottom AUV acoustic surveys. Level targets can be effectively identified.
实用新型内容Utility model content
本实用新型克服了普通小规模水下目标物尺寸测量误差大的缺点,提供了一种用于水下目标物尺寸测量的原位激光-图像融合测量系统,该系统采用光学探测手段(如水下光学)可以直观、详细地提供水下目标物的形态特征,原位激光-图像融合测量系统可搭载于载人深潜器和ROV上,用于水下近距离目标物几何尺寸的原位、快速、精确、低成本测量。The utility model overcomes the shortcoming of large size measurement error of ordinary small-scale underwater objects, and provides an in-situ laser-image fusion measurement system for underwater object size measurement. The system adopts optical detection means (such as underwater Optical) can provide intuitive and detailed morphological characteristics of underwater targets. The in-situ laser-image fusion measurement system can be mounted on manned deep submersibles and ROVs for in-situ, Fast, accurate, low-cost measurements.
为了解决上述技术问题,本实用新型是通过以下技术方案实现的:一种用于水下目标物尺寸测量的原位激光-图像融合测量系统,用于测量目标物体的尺寸信息,包括第一水下激光测距仪、第二水下激光测距仪、第三水下激光测距仪、水下云台、水下广角相机、第一姿态传感器、第二姿态传感器、控制单元、支架、水下密封舱;其中,所述第一水下激光测距仪、第二水下激光测距仪、水下云台、水下广角相机、水下密封舱均可拆卸地安装在支架上;所述第一水下激光测距仪与第二水下激光测距仪的中轴线平行;所述第三水下激光测距仪可拆卸地安装在水下云台上,第三水下激光测距仪与水下云台的中轴线平行;所述第一姿态传感器可拆卸地安装于第三水下激光测距仪内部,第二姿态传感器可拆卸地安装于水下广角相机内部;第三水下激光测距仪布置在第一水下激光测距仪与第二水下激光测距仪之间;所述控制单元设置在水下密封舱内;所述第一水下激光测距仪、第二水下激光测距仪、第三水下激光测距仪、水下云台、水下广角相机、第一姿态传感器和第二姿态传感器均与控制单元相连。In order to solve the above technical problems, the utility model is realized through the following technical solutions: an in-situ laser-image fusion measurement system for measuring the size of underwater targets, used for measuring the size information of target objects, including the first underwater Underwater laser range finder, second underwater laser range finder, third underwater laser range finder, underwater pan/tilt, underwater wide-angle camera, first attitude sensor, second attitude sensor, control unit, bracket, underwater Underwater sealed cabin; wherein, the first underwater laser rangefinder, the second underwater laser rangefinder, the underwater pan-tilt, the underwater wide-angle camera, and the underwater sealed cabin can all be detachably mounted on the bracket; The first underwater laser range finder is parallel to the central axis of the second underwater laser range finder; the third underwater laser range finder is detachably installed on the underwater platform, and the third underwater laser range finder The distance meter is parallel to the central axis of the underwater cloud platform; the first attitude sensor is detachably installed in the third underwater laser range finder, and the second attitude sensor is detachably installed in the underwater wide-angle camera; the third The underwater laser range finder is arranged between the first underwater laser range finder and the second underwater laser range finder; the control unit is arranged in the underwater sealed cabin; the first underwater laser range finder , the second underwater laser rangefinder, the third underwater laser rangefinder, the underwater pan-tilt, the underwater wide-angle camera, the first attitude sensor and the second attitude sensor are all connected to the control unit.
进一步的,所述控制单元与输出接口相连,所述输出接口安装在水下密封舱上。Further, the control unit is connected to the output interface, and the output interface is installed on the underwater airtight cabin.
进一步的,所述控制单元包括电源模块、控制模块、数据采集模块、数据处理模块、数据存储模块和显示模块;所述电源模块为原位激光-图像融合测量系统供电;所述第一水下激光测距仪、第二水下激光测距仪、第三水下激光测距仪、水下云台、水下广角相机、第一姿态传感器、第二姿态传感器、数据采集模块、数据处理模块和显示模块输入端均与控制模块的输出端相连;所述第一水下激光测距仪、第二水下激光测距仪、第三水下激光测距仪、水下广角相机、第一姿态传感器和第二姿态传感器的输出端均与数据采集模块的输入端相连,数据采集模块的输出端与数据处理模块的输入端相连,数据处理模块的输出端分别与显示模块和数据存储模块的输入端相连。Further, the control unit includes a power supply module, a control module, a data acquisition module, a data processing module, a data storage module and a display module; the power supply module supplies power for the in-situ laser-image fusion measurement system; the first underwater Laser range finder, second underwater laser range finder, third underwater laser range finder, underwater pan/tilt, underwater wide-angle camera, first attitude sensor, second attitude sensor, data acquisition module, data processing module and the input end of the display module are all connected to the output end of the control module; the first underwater laser range finder, the second underwater laser range finder, the third underwater laser range finder, the underwater wide-angle camera, the first underwater laser range finder The output ends of the attitude sensor and the second attitude sensor are connected to the input end of the data acquisition module, the output end of the data acquisition module is connected to the input end of the data processing module, and the output end of the data processing module is respectively connected to the display module and the data storage module. connected to the input.
本实用新型的有益效果是:该系统采用光学探测手段(如水下光学)可以直观、详细地提供水下目标物的形态特征,原位激光-图像融合测量系统可搭载于载人深潜器和ROV上,用于水下近距离目标物几何尺寸的原位、快速、精确、低成本测量。The beneficial effects of the utility model are: the system adopts optical detection means (such as underwater optics) to provide intuitive and detailed morphological characteristics of underwater targets, and the in-situ laser-image fusion measurement system can be carried on manned deep submersibles and On the ROV, it is used for in-situ, fast, accurate and low-cost measurement of the geometric dimensions of underwater close-range targets.
附图说明Description of drawings
图1是本实用新型的结构示意图;Fig. 1 is a structural representation of the utility model;
图2是本实用新型控制单元的结构框图;Fig. 2 is the structural block diagram of the utility model control unit;
图中,第一水下激光测距仪1、第二水下激光测距仪2、第三水下激光测距仪3、水下云台4、水下广角相机5、第一姿态传感器6、第二姿态传感器7、控制单元8、支架9、目标物体10、水下密封舱11、输出接口12。In the figure, the first underwater laser range finder 1, the second underwater laser range finder 2, the third underwater laser range finder 3, the underwater pan/tilt 4, the underwater wide-angle camera 5, and the first attitude sensor 6 , a second attitude sensor 7 , a control unit 8 , a bracket 9 , a target object 10 , an underwater airtight cabin 11 , and an output interface 12 .
具体实施方式Detailed ways
以下结合附图和具体实施例对本实用新型作进一步详细说明。Below in conjunction with accompanying drawing and specific embodiment the utility model is described in further detail.
本实用新型可用于近距离测量水下目标物的尺寸信息,如海底热液硫化物烟囱体几何尺寸的原位、快速、精确、低成本测量,同时可用于硫化物资源量大规模的准确估算。The utility model can be used for short-distance measurement of the size information of underwater targets, such as the in-situ, fast, accurate and low-cost measurement of the geometry of the seabed hydrothermal sulfide chimney, and can be used for large-scale accurate estimation of sulfide resources .
如图1所示,本实用新型的用于水下目标物尺寸测量的原位激光-图像融合测量系统,包括第一水下激光测距仪1、第二水下激光测距仪2、第三水下激光测距仪3、水下云台4、水下广角相机5、第一姿态传感器6、第二姿态传感器7、控制单元8、支架9、水下密封舱11;其中,所述第一水下激光测距仪1、第二水下激光测距仪2、水下云台4、水下广角相机5、水下密封舱11均可拆卸地安装在支架9上;所述第一水下激光测距仪1与第二水下激光测距仪2的中轴线平行;所述第三水下激光测距仪3可拆卸地安装在水下云台4上,第三水下激光测距仪3与水下云台4的中轴线平行;第三水下激光测距仪3布置在第一水下激光测距仪1与第二水下激光测距仪2之间;所述控制单元8设置在水下密封舱11内;所述第一水下激光测距仪1、第二水下激光测距仪2和第三水下激光测距仪3分别用于测量第一水下激光测距仪1、第二水下激光测距仪2和第三水下激光测距仪3到目标物体10之间的距离;所述第一水下激光测距仪1、第二水下激光测距仪2和第三水下激光测距仪3可以采用北京林阳智能技术研究中心的LY-0060型号的激光测距传感器,但不限于此。As shown in Figure 1, the in-situ laser-image fusion measurement system for underwater target size measurement of the utility model includes a first underwater laser rangefinder 1, a second underwater laser rangefinder 2, a first underwater laser rangefinder Three underwater laser range finders 3, underwater cloud platforms 4, underwater wide-angle cameras 5, first attitude sensors 6, second attitude sensors 7, control units 8, supports 9, and underwater sealed cabins 11; wherein, the The first underwater laser range finder 1, the second underwater laser range finder 2, the underwater cloud platform 4, the underwater wide-angle camera 5, and the underwater airtight cabin 11 can be detachably installed on the support 9; An underwater laser range finder 1 is parallel to the central axis of the second underwater laser range finder 2; the third underwater laser range finder 3 is detachably installed on the underwater cloud platform 4, and the third underwater laser range finder The laser range finder 3 is parallel to the central axis of the underwater cloud platform 4; the third underwater laser range finder 3 is arranged between the first underwater laser range finder 1 and the second underwater laser range finder 2; The control unit 8 is arranged in the underwater sealed cabin 11; the first underwater laser range finder 1, the second underwater laser range finder 2 and the third underwater laser range finder 3 are respectively used to measure the first The distance between the underwater laser range finder 1, the second underwater laser range finder 2 and the third underwater laser range finder 3 to the target object 10; the first underwater laser range finder 1, the second underwater laser range finder The underwater laser range finder 2 and the third underwater laser range finder 3 can use the LY-0060 laser range sensor of Beijing Linyang Intelligent Technology Research Center, but not limited thereto.
所述第一姿态传感器6可拆卸地安装于第三水下激光测距仪3内部,第二姿态传感器7可拆卸地安装于水下广角相机5内部;所述第一姿态传感器6和第二姿态传感器7分别用于测量第三水下激光测距仪3和水下广角相机5的三维姿态角;所述第一姿态传感器6和第二姿态传感器7可以采用上海朗尚科贸有限公司3CP-1000-D1型号的高精度三轴电子罗盘,但不限于此;所述水下广角相机5用于拍摄目标物体10和三个激光光斑的图像,可以采用尼康公司COOLPIX W300s型号的水下相机,但不限于此;所述水下云台4可以采用北京中瑞陆海科技有限公司SS260型号的水下云台,但不限于此。The first attitude sensor 6 is detachably mounted inside the third underwater laser rangefinder 3, and the second attitude sensor 7 is detachably installed inside the underwater wide-angle camera 5; the first attitude sensor 6 and the second The attitude sensor 7 is used to measure the three-dimensional attitude angle of the third underwater laser rangefinder 3 and the underwater wide-angle camera 5 respectively; the first attitude sensor 6 and the second attitude sensor 7 can adopt the 3CP of Shanghai Longshang Technology and Trade Co. The high-precision three-axis electronic compass of the -1000-D1 model, but not limited to this; the underwater wide-angle camera 5 is used to take images of the target object 10 and three laser spots, and can adopt the underwater camera of the COOLPIX W300s model of Nikon Company , but not limited thereto; the underwater platform 4 may be the underwater platform 4 of Beijing Zhongrui Luhai Technology Co., Ltd. SS260 model, but not limited thereto.
所述第一水下激光测距仪1、第二水下激光测距仪2、第三水下激光测距仪3、水下云台4、水下广角相机5、第一姿态传感器6和第二姿态传感器7均与控制单元8相连;所述控制单元8设置在水下密封舱11内;所述控制单元8与输出接口12相连,所述输出接口12安装在水下密封舱11上。The first underwater laser range finder 1, the second underwater laser range finder 2, the third underwater laser range finder 3, the underwater cloud platform 4, the underwater wide-angle camera 5, the first attitude sensor 6 and The second attitude sensors 7 are all connected to the control unit 8; the control unit 8 is arranged in the underwater airtight cabin 11; the control unit 8 is connected to the output interface 12, and the output interface 12 is installed on the underwater airtight cabin 11 .
如图2所示,所述控制单元包括电源模块、控制模块、数据采集模块、数据处理模块、数据存储模块和显示模块;所述电源模块为原位激光-图像融合测量系统供电;所述第一水下激光测距仪1、第二水下激光测距仪2、第三水下激光测距仪3、水下云台4、水下广角相机5、第一姿态传感器6、第二姿态传感器7、数据采集模块、数据处理模块和显示模块的输入端均与控制模块的输出端相连;所述第一水下激光测距仪1、第二水下激光测距仪2、第三水下激光测距仪3、水下广角相机5、第一姿态传感器6和第二姿态传感器7的输出端均与数据采集模块的输入端相连,数据采集模块的输出端与数据处理模块的输入端相连,数据处理模块的输出端分别与显示模块和数据存储模块的输入端相连。本实施例中电源模块可以采用西安华迈锂电池有限公司HM7L-J11Z25L型号的锂电池,但不限于此;控制模块、数据采集模块、数据处理模块、数据存储模块可以采用北京恒颐创科技有限公司PCMH9263型号的ATMEL AT91SAM9263开发板,但不限于此;显示模块可以采用深圳市晶联讯电子有限公司JLX12864C-1型号的液晶显示屏,但不限于此。As shown in Figure 2, the control unit includes a power supply module, a control module, a data acquisition module, a data processing module, a data storage module and a display module; the power supply module supplies power for the in-situ laser-image fusion measurement system; the first An underwater laser range finder 1, a second underwater laser range finder 2, a third underwater laser range finder 3, an underwater pan/tilt 4, an underwater wide-angle camera 5, a first attitude sensor 6, and a second attitude The input ends of the sensor 7, the data acquisition module, the data processing module and the display module are all connected to the output end of the control module; the first underwater laser range finder 1, the second underwater laser range finder 2, the third underwater laser range finder The output ends of the lower laser rangefinder 3, the underwater wide-angle camera 5, the first attitude sensor 6 and the second attitude sensor 7 are all connected to the input end of the data acquisition module, and the output end of the data acquisition module is connected to the input end of the data processing module. The output terminals of the data processing module are respectively connected with the input terminals of the display module and the data storage module. In this embodiment, the power module can use the lithium battery of the HM7L-J11Z25L model of Xi’an Huamai Lithium Battery Co., Ltd., but is not limited to this; the control module, data acquisition module, data processing module, and data storage module can use Beijing Hengyi Chuang Technology Co., Ltd. The company's PCMH9263 model ATMEL AT91SAM9263 development board, but not limited to this; the display module can use Shenzhen Jinglianxun Electronics Co., Ltd. JLX12864C-1 model LCD display, but not limited to this.
本实用新型的工作过程如下:The working process of the present utility model is as follows:
将本实用新型放置在水中,控制模块控制第一水下激光测距仪1、第二水下激光测距仪2、第三水下激光测距仪3打开激光,控制模块控制水下云台4调整第三水下激光测距仪3与第一水下激光测距仪1和第二水下激光测距仪2间的垂直角度使得第三水下激光测距仪3的激光光斑位于目标物体10上的合适位置,且三个激光光斑同时位于目标物体10上,第一水下激光测距仪1、第二水下激光测距仪2和第三水下激光测距仪3分别测量到目标物体10的距离;水下广角相机5拍摄含有目标物体10和三个激光光斑的图像,再将图像信息传输到数据处理模块,通过采用在数据处理模块中嵌入现有的基于暗通道先验去雾算法、图像锐化算法和中值滤波算法对图像进行预处理,根据目标物体10的形貌、颜色特征从图像中自动识别目标物体10与三个激光光斑间的像素差距离和图像中目标物体10的尺寸像素差距离;第一姿态传感器6和第二姿态传感器7分别测量第三水下激光测距仪3和水下广角相机5的三维姿态角信息;基于光学成像三角关系,图像中目标物体10的宽度、高度像素差距离与目标物体10实际宽度、高度信息间存在的成像比例关系和图像中三激光光斑的宽度、高度像素差距离与三个水下激光测距仪实际宽度和高度信息间存在的成像比例关系一致,此成像比例关系与三个水下激光测距仪的测量距离、图像中三个激光光斑间的像素差距离、图像中目标物体10尺寸的像素差距离、第三水下激光测距仪3和水下广角相机5的三维姿态角有关;使用MATLAB中数值拟合和优化的神经网络拟合工具箱分别得到已知目标物体10的宽度、高度的函数关系式,通过本实用新型测量待测物体的距离、图像、姿态信息输入宽度、高度的函数关系式得到待测目标物体的实际尺寸。The utility model is placed in water, the control module controls the first underwater laser range finder 1, the second underwater laser range finder 2, and the third underwater laser range finder 3 to turn on the laser, and the control module controls the underwater platform 4 Adjust the vertical angle between the third underwater laser range finder 3 and the first underwater laser range finder 1 and the second underwater laser range finder 2 so that the laser spot of the third underwater laser range finder 3 is located at the target Appropriate position on the object 10, and the three laser spots are located on the target object 10 at the same time, the first underwater laser range finder 1, the second underwater laser range finder 2 and the third underwater laser range finder 3 respectively measure The distance to the target object 10; the underwater wide-angle camera 5 shoots an image containing the target object 10 and three laser spots, and then the image information is transmitted to the data processing module, by adopting the existing method based on the dark channel algorithm embedded in the data processing module Defog algorithm, image sharpening algorithm and median filter algorithm are used to preprocess the image, and the pixel difference distance and image between the target object 10 and the three laser spots are automatically identified from the image according to the shape and color characteristics of the target object 10. The size pixel difference distance of the target object 10; the first attitude sensor 6 and the second attitude sensor 7 measure the three-dimensional attitude angle information of the third underwater laser rangefinder 3 and the underwater wide-angle camera 5 respectively; based on the optical imaging triangle relationship, The width and height pixel difference distance of the target object 10 in the image and the imaging ratio relationship between the actual width and height information of the target object 10 and the width and height pixel difference distance of the three laser spots in the image are related to the actual distance of the three underwater laser range finders. The imaging ratio relationship between the width and height information is consistent. This imaging ratio relationship is consistent with the measurement distance of the three underwater laser rangefinders, the pixel difference distance between the three laser spots in the image, and the pixel difference of the size of the target object in the image. The distance, the third underwater laser rangefinder 3 and the three-dimensional attitude angle of the underwater wide-angle camera 5 are related; use numerical fitting and optimized neural network fitting toolbox in MATLAB to obtain the width and height of the known target object 10 respectively The functional relational formula, the actual size of the target object to be measured can be obtained through the functional relational formula of the utility model for measuring the distance, image, and attitude information input width and height of the object to be measured.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| CN201721466625.2U CN207365912U (en) | 2017-11-07 | 2017-11-07 | A kind of local laser-image co-registration measuring system for underwater object dimensional measurement | 
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| CN201721466625.2U CN207365912U (en) | 2017-11-07 | 2017-11-07 | A kind of local laser-image co-registration measuring system for underwater object dimensional measurement | 
Publications (1)
| Publication Number | Publication Date | 
|---|---|
| CN207365912U true CN207365912U (en) | 2018-05-15 | 
Family
ID=62346168
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| CN201721466625.2U Expired - Fee Related CN207365912U (en) | 2017-11-07 | 2017-11-07 | A kind of local laser-image co-registration measuring system for underwater object dimensional measurement | 
Country Status (1)
| Country | Link | 
|---|---|
| CN (1) | CN207365912U (en) | 
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| CN107764183A (en) * | 2017-11-07 | 2018-03-06 | 浙江大学 | Local laser image co-registration measuring system and its measuring method for underwater object dimensional measurement | 
| CN109283179A (en) * | 2018-11-19 | 2019-01-29 | 国家海洋局第二海洋研究所 | Self-contained submarine hydrothermal plume in situ detection device | 
| CN110411339A (en) * | 2019-07-30 | 2019-11-05 | 中国海洋大学 | An underwater target size measurement device and method based on parallel laser beams | 
| CN110873555A (en) * | 2020-01-20 | 2020-03-10 | 上海彩虹鱼海洋科技股份有限公司 | System and method for observing underwater creatures | 
| CN114527446A (en) * | 2022-03-08 | 2022-05-24 | 灵动智能光学(杭州)有限公司 | Underwater four-point laser ranging system and method based on images | 
- 
        2017
        - 2017-11-07 CN CN201721466625.2U patent/CN207365912U/en not_active Expired - Fee Related
 
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| CN107764183A (en) * | 2017-11-07 | 2018-03-06 | 浙江大学 | Local laser image co-registration measuring system and its measuring method for underwater object dimensional measurement | 
| CN109283179A (en) * | 2018-11-19 | 2019-01-29 | 国家海洋局第二海洋研究所 | Self-contained submarine hydrothermal plume in situ detection device | 
| CN110411339A (en) * | 2019-07-30 | 2019-11-05 | 中国海洋大学 | An underwater target size measurement device and method based on parallel laser beams | 
| CN110411339B (en) * | 2019-07-30 | 2021-07-02 | 中国海洋大学 | A kind of underwater target size measurement device and method based on parallel laser beam | 
| CN110873555A (en) * | 2020-01-20 | 2020-03-10 | 上海彩虹鱼海洋科技股份有限公司 | System and method for observing underwater creatures | 
| CN110873555B (en) * | 2020-01-20 | 2020-05-05 | 上海彩虹鱼海洋科技股份有限公司 | System and method for observing underwater creatures | 
| CN114527446A (en) * | 2022-03-08 | 2022-05-24 | 灵动智能光学(杭州)有限公司 | Underwater four-point laser ranging system and method based on images | 
Similar Documents
| Publication | Publication Date | Title | 
|---|---|---|
| CN207365912U (en) | A kind of local laser-image co-registration measuring system for underwater object dimensional measurement | |
| CN107764183B (en) | In-situ laser-image fusion measurement system and measurement method for underwater target size measurement | |
| CN114488164B (en) | Synchronous positioning and mapping method for underwater vehicle and underwater vehicle | |
| CN111915678B (en) | A deep learning-based fusion estimation method for underwater monocular vision target depth localization | |
| CN108731672B (en) | Shearer attitude detection system and method based on binocular vision and inertial navigation | |
| CN102495420B (en) | Underwater object precision positioning system and method | |
| CN110246177B (en) | A Vision-Based Automatic Wave Measurement Method | |
| CN107110953A (en) | Underwater positioning system | |
| CN111156998A (en) | Mobile robot positioning method based on RGB-D camera and IMU information fusion | |
| CN214520204U (en) | Port area intelligent inspection robot based on depth camera and laser radar | |
| CN103353297A (en) | Airborne photoelectric measurement apparatus of dimensions and spacing of electric transmission line and target, and method thereof | |
| CN103292779A (en) | Method for measuring distance and image acquisition equipment | |
| CN110796681A (en) | Visual positioning system and method for cooperative work of ship | |
| CN110133667B (en) | Underwater 3D detection system based on mobile forward-looking sonar | |
| CN111307046A (en) | Tree Height Measurement Method Based on Hemisphere Image | |
| CN202074965U (en) | A full-featured day and night laser range finder | |
| CN208689169U (en) | A kind of indoor three-dimensional mapping device based on single line laser radar and target | |
| CN113074725A (en) | Small underwater multi-robot cooperative positioning method and system based on multi-source information fusion | |
| CN111913171A (en) | A low-altitude infrared target precise positioning method and system | |
| CN110672075A (en) | A remote water detection system and method based on three-dimensional stereo imaging | |
| CN106017871A (en) | High-precision large-aperture optical lens distortion calibration device and calibration method | |
| CN114527446A (en) | Underwater four-point laser ranging system and method based on images | |
| CN106403913A (en) | Surveying and mapping apparatus, system and method | |
| CN116027351A (en) | A handheld/backpack type SLAM device and positioning method | |
| CN105424059B (en) | Wide baseline near infrared camera position and orientation estimation method | 
Legal Events
| Date | Code | Title | Description | 
|---|---|---|---|
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date: 20180515 |