CN201742107U - Power quality regulating device based on stored energy of super capacitor - Google Patents
Power quality regulating device based on stored energy of super capacitor Download PDFInfo
- Publication number
- CN201742107U CN201742107U CN2010202849778U CN201020284977U CN201742107U CN 201742107 U CN201742107 U CN 201742107U CN 2010202849778 U CN2010202849778 U CN 2010202849778U CN 201020284977 U CN201020284977 U CN 201020284977U CN 201742107 U CN201742107 U CN 201742107U
- Authority
- CN
- China
- Prior art keywords
- power
- voltage
- converter
- bidirectional
- supercapacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000001105 regulatory effect Effects 0.000 title claims abstract 3
- 239000003990 capacitor Substances 0.000 title claims description 14
- 230000002457 bidirectional effect Effects 0.000 claims abstract description 37
- 238000004146 energy storage Methods 0.000 claims abstract description 20
- 230000008901 benefit Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 208000032368 Device malfunction Diseases 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/40—Arrangements for reducing harmonics
Landscapes
- Rectifiers (AREA)
Abstract
一种基于超级电容器储能的电能质量调节装置,属于电能质量调节技术领域。其特征在于:该装置包括超级电容器5、双向DC/DC变换器4、三相电压型PWM整流器3。其中,超级电容器5接于双向DC/DC变换器4的低压侧,双向DC/DC变换器4的高压侧接入三相电压型PWM整流器3的直流侧,三相电压型PWM整流器3的交流侧并联于电网系统1。本装置中,三相电压型PWM整流器3在dq旋转坐标系下可实现有功功率、无功功率的解耦控制;双向DC/DC变换器4采用了BUCK-BOOST型双向DC/DC变换器结构,改变其开关管占空比可精确控制两端电压、电流。本实用新型的效果和益处是:该装置采用简捷的设备结构同时实现了有无功、谐波补偿及低电压穿越;超级电容器5具有较长的使用寿命,降低了运行成本。
The invention relates to a power quality regulating device based on supercapacitor energy storage, which belongs to the technical field of power quality regulation. It is characterized in that the device includes a supercapacitor 5 , a bidirectional DC/DC converter 4 and a three-phase voltage type PWM rectifier 3 . Among them, the supercapacitor 5 is connected to the low-voltage side of the bidirectional DC/DC converter 4, the high-voltage side of the bidirectional DC/DC converter 4 is connected to the DC side of the three-phase voltage type PWM rectifier 3, and the AC side of the three-phase voltage type PWM rectifier 3 The side is connected in parallel with the grid system 1. In this device, the three-phase voltage-type PWM rectifier 3 can realize the decoupling control of active power and reactive power in the dq rotating coordinate system; the bidirectional DC/DC converter 4 adopts the BUCK-BOOST bidirectional DC/DC converter structure , Changing the duty ratio of the switching tube can precisely control the voltage and current at both ends. The effects and benefits of the utility model are: the device adopts a simple equipment structure to simultaneously realize active and reactive power, harmonic compensation and low voltage ride-through; the supercapacitor 5 has a long service life and reduces operating costs.
Description
技术领域technical field
本实用新型属于电能质量调节技术领域。涉及到一种加入超级电容器的新型电能质量调节装置通过并联方式接入电网系统,对电网系统的电能质量进行调节,特别涉及该装置中的三相电压型PWM整流器、双向DC/DC变换器、超级电容器的组合方式以及三相电压型PWM整流器、双向DC/DC变换器各自的组成结构及在电网系统正常运行、电网系统故障运行时的控制设计。The utility model belongs to the technical field of power quality adjustment. It involves a new type of power quality adjustment device with supercapacitors connected to the power grid system in parallel to adjust the power quality of the power grid system, especially the three-phase voltage PWM rectifier, bidirectional DC/DC converter, Combination of supercapacitors, three-phase voltage-type PWM rectifier, bidirectional DC/DC converter and their control design when the grid system is in normal operation or when the grid system is faulty.
背景技术Background technique
随着国民经济和科学技术的迅猛发展,各种电力电子设备得到广泛应用,必然使得各行各业对电能的需求量在增长,电力部门和用户对电能质量的关注也日益增加。With the rapid development of the national economy and science and technology, various power electronic devices are widely used, which will inevitably increase the demand for electric energy in all walks of life, and the power sector and users will pay more and more attention to power quality.
阻感负载在工业和生活用电中占有很大的比例,阻感负载必须吸收无功功率才能正常工作,这是由其本身的性质所决定的。电力系统中的异步电动机、变压器、各种相控装置,如相控整流器、相控交流功率调整电路和周波变流器,在工作时都要消耗大量的无功功率。同时,在电力系统中,负载具有非线性特性时,电流就会含有谐波,波形就会发生畸变,而成为含有谐波的非正弦波。引起电力系统谐波的主要谐波源有:电力变压器的非线性励磁;旋转电动机引起的谐波;电弧炉引起的波形畸变;电气化铁路引起的谐波;各电力电子装置产生的谐波。Resistive and inductive loads occupy a large proportion of industrial and domestic electricity consumption. Resistive and inductive loads must absorb reactive power to work normally, which is determined by their own nature. Asynchronous motors, transformers, and various phase-controlled devices in power systems, such as phase-controlled rectifiers, phase-controlled AC power adjustment circuits, and cycloconverters, all consume a large amount of reactive power during work. At the same time, in the power system, when the load has nonlinear characteristics, the current will contain harmonics, and the waveform will be distorted to become a non-sinusoidal wave containing harmonics. The main harmonic sources that cause harmonics in power systems are: nonlinear excitation of power transformers; harmonics caused by rotating motors; waveform distortion caused by electric arc furnaces; harmonics caused by electrified railways; harmonics generated by various power electronic devices.
电力系统中无功功率的盈亏及谐波电流的存在给电力系统带来的危害如下:会使电力设备和线路的损耗也随之增加;会使电网电压产生剧烈的波动,严重影响供电质量;谐波影响各种电气设备的正常工作,降低发电、输电及用电设备的效率;谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,引起严重事故;谐波会导致继电保护和自动装置的误动作。近年来,随着可再生能源技术尤其是风力发电技术的不断发展,风电装机容量及发电量大幅度增加。风电场并网运行是实现风能大规模利用的有效方式,但风电场输出功率具有不可控和不可预期性。当电力系统中接纳的风电机组容量超过一定比例,风电输出的波动功率在电力系统的无功功率、电网的谐波与闪变等电能质量方面给并网系统带来一系列的技术难题。由此可见,传统的静止无功补偿器在现代电力系统的安全、稳定运行方面具有越来越重要的意义。The profit and loss of reactive power in the power system and the existence of harmonic currents bring harm to the power system as follows: it will increase the loss of power equipment and lines; it will cause severe fluctuations in the grid voltage and seriously affect the quality of power supply; Harmonics affect the normal operation of various electrical equipment and reduce the efficiency of power generation, transmission and power consumption equipment; Cause relay protection and automatic device malfunction. In recent years, with the continuous development of renewable energy technology, especially wind power technology, the installed capacity and power generation of wind power have increased significantly. Grid-connected operation of wind farms is an effective way to realize large-scale utilization of wind energy, but the output power of wind farms is uncontrollable and unpredictable. When the capacity of wind turbines accepted in the power system exceeds a certain proportion, the fluctuating power output by wind power will bring a series of technical problems to the grid-connected system in terms of power quality such as reactive power of the power system, harmonics and flicker of the power grid. It can be seen that the traditional static var compensator is more and more important in the safe and stable operation of the modern power system.
并网风力发电机与其他的并网发电设备最大的区别在于,其在电网故障期间不能够维持电网的电压和频率,这对电力系统的稳定性非常不利。当风电在电网中占有较大比重时,若风机在电压跌落时仍采取被动的保护式解列,则会增加整个系统的故障恢复难度,甚至可能加剧故障,最终导致系统其他机组全部解列。为此各国电网公司依据自身实际对风电场风电机组并网提出了严格的技术要求,其中包括低电压穿越能力,即指在风机并网点电压跌落的时候,风机能够保持并网,甚至向电网提供一定的无功功率,支持电网恢复,直到电网恢复正常,从而“穿越”这个低电压时间(区域)。不同国家所提出的LVRT要求不尽相同。例如,美国风能协会制定的风电机组低电压穿越能力规定:电压跌落前,风电场并网点电压维持在额定水平。0s时电网发生短路故障引起电压跌落,风电场不低于额定电压的15%时,在625ms时间范围内风电场必须保持并网运行;另外当风电场并网点电压在电网故障3s恢复至额定电压的90%以上时,此过程中风电场必须保持并网运行。The biggest difference between grid-connected wind turbines and other grid-connected power generation equipment is that they cannot maintain the voltage and frequency of the grid during grid faults, which is very detrimental to the stability of the power system. When wind power accounts for a large proportion of the power grid, if the wind turbines still adopt passive protective disconnection when the voltage drops, it will increase the difficulty of fault recovery of the entire system, and may even aggravate the fault, eventually leading to the disconnection of all other units in the system. For this reason, the power grid companies of various countries have put forward strict technical requirements for the grid connection of wind farms and wind turbines based on their own actual conditions, including low voltage ride-through capability, which means that when the voltage at the grid connection point of the wind turbine drops, the wind turbine can remain connected to the grid, and even provide power to the grid. A certain amount of reactive power supports the recovery of the power grid until the power grid returns to normal, thereby "crossing" this low-voltage time (region). LVRT requirements vary from country to country. For example, the low-voltage ride-through capability of wind turbines stipulated by the American Wind Energy Association: before the voltage drops, the voltage at the grid-connected point of the wind farm is maintained at the rated level. When a short-circuit fault occurs in the power grid at 0s, the voltage drops. When the wind farm is not lower than 15% of the rated voltage, the wind farm must maintain grid-connected operation within the time range of 625ms; in addition, when the grid-connected point voltage of the wind farm returns to the rated voltage within 3s of the grid failure When more than 90% of the wind farm is connected to the grid during this process, the wind farm must maintain grid-connected operation.
传统并联式STATCOM依靠反馈控制维持其直流侧的电压稳定,同时实现交流侧无功功率的吞吐,在电力系统正常运行时能够满足谐波及无功动态补偿的要求。当风电并网系统发生短路故障时,电网电压的下降,实践表明此时电压环控制失效,导致STATCOM无法发出大量无功功率以支撑电网电压。若要保证STATCOM在电网发生故障时正常工作,必须给其提供稳定的直流侧电压,这可以通过额外增加一套与电网电压无关的电源装置来在电网发生故障时维持其直流侧电压稳定,但会造成设备的冗余与闲置。The traditional parallel STATCOM relies on feedback control to maintain the voltage stability of its DC side, and at the same time realizes the throughput of reactive power on the AC side, which can meet the requirements of harmonic and reactive power dynamic compensation when the power system is in normal operation. When a short-circuit fault occurs in the wind power grid-connected system, the grid voltage drops, and practice shows that the voltage loop control fails at this time, resulting in STATCOM being unable to generate a large amount of reactive power to support the grid voltage. To ensure the normal operation of STATCOM when the power grid fails, it must be provided with a stable DC side voltage, which can be maintained by adding an additional set of power supply devices that have nothing to do with the grid voltage. It will cause redundancy and idleness of equipment.
为解决上述问题,本实用新型将传统STATCOM装置的直流侧加入超级电容器及其控制系统。通过控制方式的切换,使得本装置能够满足电网正常运行和故障运行时对无功功率的不同需求,改善电能质量,在提高电网运行安全稳定性的同时,有效降低了投资成本。In order to solve the above problems, the utility model adds a supercapacitor and its control system to the DC side of the traditional STATCOM device. Through the switching of the control mode, the device can meet the different requirements for reactive power during normal operation and fault operation of the power grid, improve the power quality, and effectively reduce the investment cost while improving the safety and stability of the power grid operation.
发明内容Contents of the invention
本实用新型要解决的技术问题是:克服传统STATCOM装置的不足,设计一种加入储能装置的电能质量调节装置,使其在电网正常运行时,能够满足谐波、无功补偿需求的同时,还可在电网出现短路故障时,快速发出大量无功功率,对电网电压进行有效支撑,改善电压质量,增强电网系统运行的安全稳定性。电网故障运行时,该装置需能够不借助外部电源满足电网系统的无功需求;电网正常运行时,该装置需能够对超级电容器进行容量的补充,省去额外的充电装置。The technical problem to be solved by the utility model is: to overcome the shortcomings of the traditional STATCOM device, and to design a power quality adjustment device with an energy storage device, so that it can meet the harmonic and reactive power compensation requirements while the power grid is in normal operation. It can also quickly generate a large amount of reactive power when a short-circuit fault occurs in the grid, effectively support the grid voltage, improve the voltage quality, and enhance the safety and stability of the grid system operation. When the power grid is faulty, the device needs to be able to meet the reactive power demand of the power grid system without the help of an external power source; when the power grid is running normally, the device needs to be able to supplement the capacity of the supercapacitor, eliminating the need for additional charging devices.
本实用新型的技术方案是:基于超级电容器储能的电能质量调节装置,其特征在于:该装置包括超级电容器5、双向DC/DC变换器4、三相电压型PWM整流器3;其中,超级电容器5接于双向DC/DC变换器4的低压侧,双向DC/DC变换器4的高压侧接入三相电压型PWM整流器3的直流侧,三相电压型PWM整流器3的交流侧并行接入电网系统1。The technical solution of the utility model is: a power quality adjustment device based on supercapacitor energy storage, characterized in that: the device includes a
该电能质量调节装置的特征在于:三相电压型PWM整流器3组成结构为:功率开关管G3、G4、G5的漏极连接到一起接到直流侧电容C2的正极,功率开关管G3、G4、G5的源极分别与功率开关管G6、G7、G8的漏极相连接,功率开关管G6、G7、G8的源极连接到一起接到直流侧电容C2的负极。续流二极管D3、D4、D5、D6、D7、D8分别反并联在每个功率开关管的漏--源极之间。该整流器在DQ旋转坐标系下可以并行实现有功功率(直流侧电压)、无功功率的解耦的精确控制,并且通过对三相桥臂开关管的导通顺序和时间的改变可以灵活控制三相电压型PWM整流器3工作于不同模式下(整流模式、逆变模式)。The power quality adjustment device is characterized in that: the three-phase voltage
该电能质量调节装置的特征在于:双向DC/DC变换器4由储能电感L1、功率开关管G1、G2,续流二极管D1、D2及输出滤波电容C1组成,低压侧电源正级经过储能电感L1接到功率开关管G1的漏级、功率开关管G2的源级,功率开关管G1的源极接入变换器的负级,功率开关管G2的漏极接入高压侧电源的正级,滤波电容C1并联到高压侧两端,续流二极管D1、D2反并联到功率开关管G1、G2的漏--源级之间。通过控制该双向DC/DC变换器4中两个开关管的导通时间,可以精确控制变换器高压侧、低压侧的电压与电流。The power quality adjustment device is characterized in that: bidirectional DC/
由于超级电容器5具有循环寿命长、故障率低,响应速度快的特点,大大降低了运行和维护成本。Since the
本装置的运行控制策略分析如下:The operation control strategy analysis of this device is as follows:
(1)电网系统正常运行时(1) When the grid system is running normally
三相电压型PWM整流器在DQ旋转坐标下,可以并行实现有功功率和无功功率的解耦控制。当电网系统正常运行时,三相电压型PWM整流器运行于整流状态,维持其直流侧电压的稳定,同时根据需求实时控制交流侧与电网系统进行无功交换:当电网系统的功率因数不满足要求时,可以控制三相电压型PWM整流器发出相应无功功率维持电网功率因数的恒定;当电网系统的谐波电流不满足要求时,可以控制三相电压型PWM整流器发出相应的补偿电流,以抵消原有的谐波电流。由于三相电压型PWM整流器可以控制其直流侧电压的稳定,此时便可通过双向DC/DC变换器对超级电容器进行充电控制,一般采取先恒流再恒压的方式。当超级电容器充满后,可以采用控制双向DC/DC变换器低压侧电压恒定的方式来对超级电容器浮充。电网系统正常运行时,要随时保持超级电容器处于充满状态,以应对电网突发短路故障时的响应需求。The three-phase voltage-type PWM rectifier can realize decoupling control of active power and reactive power in parallel under DQ rotation coordinates. When the grid system is running normally, the three-phase voltage PWM rectifier operates in the rectification state to maintain the stability of its DC side voltage, and at the same time control the AC side to exchange reactive power with the grid system in real time according to the demand: when the power factor of the grid system does not meet the requirements When the three-phase voltage type PWM rectifier can be controlled to send corresponding reactive power to maintain a constant grid power factor; when the harmonic current of the grid system does not meet the requirements, the three-phase voltage type PWM rectifier can be controlled to send out corresponding compensation current to offset original harmonic current. Since the three-phase voltage-type PWM rectifier can control the stability of its DC side voltage, at this time, the supercapacitor can be charged and controlled through a bidirectional DC/DC converter, and the method of constant current and then constant voltage is generally adopted. When the supercapacitor is fully charged, the supercapacitor can be float-charged by controlling the voltage on the low voltage side of the bidirectional DC/DC converter to be constant. When the power grid system is operating normally, it is necessary to keep the supercapacitor fully charged at all times to meet the response requirements in case of sudden short-circuit faults in the power grid.
(2)电网系统发生短路故障时(2) When a short-circuit fault occurs in the grid system
电网系统发生短路故障时,电网电压会出现骤降,导致三相电压型PWM整流器无法保持直流侧电压的恒定,之前的控制环路失效。此时,超级电容器放电,双向DC/DC变换器工作于维持高压侧电压恒定的恒压输出状态,也即维持了三相电压型PWM整流器直流侧电压的稳定。三相电压型PWM整流器转而运行于逆变状态,根据电网的实时电压情况,发出无功功率用以支撑PCC点电压,改善电压质量,最短维持625ms,实现低电压穿越。When a short-circuit fault occurs in the grid system, the grid voltage will drop sharply, which will cause the three-phase voltage PWM rectifier to fail to maintain a constant DC side voltage, and the previous control loop will fail. At this time, the supercapacitor is discharged, and the bidirectional DC/DC converter works in a constant voltage output state that maintains a constant high voltage side voltage, that is, maintains the stability of the DC side voltage of the three-phase voltage type PWM rectifier. The three-phase voltage-type PWM rectifier turns to run in the inverter state. According to the real-time voltage situation of the power grid, it generates reactive power to support the PCC point voltage, improves the voltage quality, and maintains the shortest 625ms to realize low-voltage ride-through.
本装置中的超级电容器一般采用双电层电容器。在使用过程中,一般将多个单体超级电容器通过串并联组成超级电容器组,提高超级电容器的容量及耐压水平,使其性能满足实际使用需求。The supercapacitor in this device generally adopts an electric double layer capacitor. In the process of use, a plurality of single supercapacitors are generally connected in series and parallel to form a supercapacitor bank to increase the capacity and withstand voltage level of the supercapacitor, so that its performance can meet the actual use requirements.
本实用新型的效果和益处是:Effect and benefit of the present utility model are:
(1)本电能质量调节装置可以根据电网系统的运行情况,与电网系统进行无功功率交换,达到无功、谐波补偿的目的,综合改善电力系统的电能质量。(1) The power quality adjustment device can exchange reactive power with the grid system according to the operation of the grid system, achieve the purpose of reactive power and harmonic compensation, and comprehensively improve the power quality of the power system.
(2)本电能质量调节装置,在当电网系统发生短路故障时,可以维持三相电压型PWM整流器直流侧电压的稳定,使其发出大量无功功率以支撑电网电压,改善电压质量,提高风电并网系统的故障运行能力,增强其安全稳定性。(2) This power quality adjustment device can maintain the stability of the voltage on the DC side of the three-phase voltage-type PWM rectifier when a short-circuit fault occurs in the grid system, so that it can generate a large amount of reactive power to support the grid voltage, improve voltage quality, and increase wind power. The failure operation capability of the grid-connected system enhances its safety and stability.
(3)本电能质量调节装置中,直流侧的储能装置采用了超级电容器,同时配有相应的双向DC/DC变换器作为其充放电控制器。其中,双向DC/DC变换器除在电网故障时用于控制三相电压型PWM整流器的直流电压的稳定外,还可在电网正常运行时用于对超级电容器充电控制,补充超级电容器的能量。因此,超级电容器一经安装后,便会由本装置控制适时进行能量的充放,由于其能量最终都源于电网,因此无需额外的充电装置。(3) In this power quality adjustment device, the energy storage device on the DC side uses a supercapacitor, and is equipped with a corresponding bidirectional DC/DC converter as its charge and discharge controller. Among them, the bidirectional DC/DC converter is not only used to control the stability of the DC voltage of the three-phase voltage PWM rectifier when the power grid is faulty, but also can be used to control the charging of the supercapacitor and supplement the energy of the supercapacitor when the power grid is in normal operation. Therefore, once the supercapacitor is installed, it will be controlled by the device to charge and discharge energy in a timely manner. Since its energy is ultimately sourced from the grid, no additional charging device is required.
(4)超级电容器由于具有功率密度大、功率响应速度快、循环寿命长的优点,因此可有效降低运行、维护成本。(4) Due to the advantages of high power density, fast power response speed and long cycle life, supercapacitors can effectively reduce operation and maintenance costs.
(5)本电能质量调节装置,将谐波补偿、无功补偿、低电压穿越的功能集于一身,在满足了电网系统运行对电能质量调节装置需求的同时,有效降低了设备的冗余与闲置。(5) This power quality adjustment device integrates the functions of harmonic compensation, reactive power compensation, and low voltage ride-through. While meeting the needs of the power grid system for power quality adjustment devices, it effectively reduces equipment redundancy and idle.
附图说明Description of drawings
图1是基于超级电容器储能的电能质量调节装置接入电网系统结构图。Figure 1 is a structural diagram of a power quality adjustment device based on supercapacitor energy storage connected to the power grid.
图中:1电网系统;2负载;3三相电压型PWM整流器;4双向DC/DC变换器;5超级电容器。In the figure: 1 grid system; 2 load; 3 three-phase voltage type PWM rectifier; 4 bidirectional DC/DC converter; 5 supercapacitor.
图2是基于超级电容器储能的电能质量调节装置在电网正常运行状态时三相电压型PWM整流器控制框图。Fig. 2 is a control block diagram of a three-phase voltage-type PWM rectifier when the power quality adjustment device based on supercapacitor energy storage is in the normal operation state of the power grid.
图3是基于超级电容器储能的电能质量调节装置在电网故障状态时三相电压型PWM整流器控制框图。Fig. 3 is a control block diagram of a three-phase voltage-type PWM rectifier when a power quality adjustment device based on supercapacitor energy storage is in a grid fault state.
图4是基于超级电容器储能的电能质量调节装置中双向DC/DC变换器结构原理图。Fig. 4 is a structural schematic diagram of a bidirectional DC/DC converter in a power quality adjustment device based on supercapacitor energy storage.
图5是基于超级电容器储能的电能质量调节装置中三相电压型PWM整流器结构原理图。Fig. 5 is a structural schematic diagram of a three-phase voltage-type PWM rectifier in a power quality adjustment device based on supercapacitor energy storage.
具体实施方式Detailed ways
以下结合技术方案和附图详细叙述本实用新型的具体实施方式。The specific embodiment of the utility model is described in detail below in conjunction with technical scheme and accompanying drawing.
如图1所示,本实用新型基于超级电容器储能的电能质量调节装置通过并联方式接入电网系统1中。装置组成包括:三相电压型PWM整流器3、双向DC/DC变换器4、超级电容器5。超级电容器5接于双向DC/DC变换器4的低压侧,双向DC/DC变换器4的高压侧接于三相电压型PWM整流器3的直流侧,三相电压型PWM整流器3的交流侧以并联方式接入电网系统1中。As shown in FIG. 1 , the power quality adjustment device based on supercapacitor energy storage of the present invention is connected to the
电网系统1正常运行时,三相电压型PWM整流器3运行于整流状态,根据其数学模型分析可知道,在dq旋转坐标系下(同步速旋转),其有功功率与无功功率可以实现解耦的并行控制。其中,电压(有功功率)控制环用于控制直流侧电压的稳定,无功功率控制环用于根据电网系统1无功、谐波补偿的需求发出相应的无功功率和补偿电流。在电网电压沿q轴定向时,电网电流的q轴分量代表有功分量,d轴分量代表无功分量。电网电流的q轴分量用于调节直流侧电压的稳定,其目标值通过直流侧电压实测值与直流侧电压的目标值做差后经PI环节得到。电网电流的d轴分量用于调节无功功率、谐波电流的发出,因而其目标值是根据无功、谐波补偿的需求,经由瞬时无功理论得出。在得到电流d、q轴分量的目标值后,变可采取三相电压型PWM整流器3的经典解耦控制算法得到控制信号,用该控制信号驱动三相电压型PWM整流器3的三个桥臂开关管便可以实现对直流侧电压及交流侧无功功率、谐波电流的精确控制,此时的三相电压型PWM整流器3的控制框图如图2所示。由于三相电压型PWM整流器3维持了直流侧电压的稳定,因此三相电压型PWM整流器3相对于双向DC/DC变换器4等同于恒压源,可以根据需求从电网系统1中自动抽取有功功率。此时双向DC/DC变换器4通过加入PI环节的闭环控制可以精确控制低压侧电流、低压侧电压的大小,从而实现对超级电容器5先恒流,后恒压的充电控制。When the
电网系统1发生短路故障时,由于电网电压的骤降,导致三相电压型PWM整流器3的电压控制环无法维持其直流侧电压的稳定,导致无功环控制失败。此时应控制双向DC/DC变换器4运行于升压状态,通过对高压侧电压的闭环控制来维持高压侧输出电压的恒定,也即保证了三相电压型PWM整流器3直流侧电压的恒定。此时控制三相电压型PWM整流器3运行于逆变状态,同样采用同步速旋转下的dq解耦控制。其中,电流q轴分量(有功分量)的目标值设为0,电流d轴分量(无功分量)的目标值根据电网电压下降对无功功率的需求情况来设定,在设定好电流d、q分量的目标值后,采用三相电压型PWM整流器3的经典解耦控制算法得到控制信号,用该控制信号驱动三相电压型PWM整流器3的三个桥臂开关管便可以实现大量无功功率的输出,起到了支撑电网电压的作用,改善了电压质量。此时的三相电压型PWM整流器3的控制框图如图3所示When a short-circuit fault occurs in the
在本实用新型中,双向DC/DC变换器4在电网系统1正常运行及短路故障时分别起到了超级电容器5充电控制器和维持三相电压型PWM整流器3直流侧电压稳定的作用。这两种工作状态,需要变换器能够进行能量的双向流动控制,本实用新型所中的双向DC/DC变换器4采用BUCK-BOOST型双向DC/DC变换器结构,如图4所示:双向DC/DC变换器4由储能电感L1、功率开关管G1、G2,续流二极管D1、D2及输出滤波电容C1组成。低压侧电源正端经过储能电感L1接到功率开关管G1的漏级、功率开关管G2的源级,功率开关管G1的源极接入变换器的负级,功率开关管G2的漏极接入高压侧电源的正端,滤波电容C1并联到高压侧两端,续流二极管D1、D2反并联到功率开关管G1、G2的漏--源级之间。通过对功率开关管G1、G2的进行通断控制,可以实现能量由低压侧到高压侧或由高压侧到低压侧的双向流动,现将该变换器的工作模式进行如下分析(假设高压侧与低压侧都接有能量源):In the utility model, the bidirectional DC/
(1)模态1,功率开关管G1导通,功率开关管G2关断,低压侧电源通过G1对储能电感L1充电,电感电流增大。(1)
(2)模态2,功率开关管G1关断,功率开关管G2导通,此时由于电感L1电流不能突变,电流仍从低压侧到高压侧通过续流二极管D2续流,此时从低压侧到高压侧的电流逐渐减少。(2)
(3)模态3,此时仍然是功率开关管G1关断,功率开关管G2导通,当电感中从低压侧到高压侧的电流逐渐减小为零后,由高压侧电源经功率开关G2对电感L1进行反向充电,此时流经电感L1的反向电流逐渐增大。(3)
(4)模态4,功率开关管G1导通,功率开关管G2关断,此时由于电感L1电流不能突变,电感L1中的反向电流沿着续流二极管D1反向续流,此时电感L1中的反向电流逐渐减小,当电感L1中的反向电流减少到0时,又重新进入模态1,从而开始下一次控制循环。(4)
由上述分析可见,在一个循环周期内,通过对功率开关管G1,G2进行通断控制,可以实现能量在低压侧与高压侧之间的双向流动,当一个周期内由低压侧流向高压侧的能量大于由高压侧流向低压侧的能量时,变换器运行于升压斩波状态,反之变换器运行于降压斩波状态。每个周期内两个方向流动能量的大小取决于功率开关管G1,G2的通断时间,以及低压侧电源与高压侧电源能量的大小。通过对变换器加入闭环控制,不仅可以控制能量的流动方向,还可以对低压侧电压、电流及高压侧电压、电流的大小进行精确控制,这为该变换器在本实用新型中的使用奠定了技术基础。From the above analysis, it can be seen that in a cycle, by controlling the on-off of the power switch tubes G1 and G2, the bidirectional flow of energy between the low-voltage side and the high-voltage side can be realized. When the energy is greater than the energy flowing from the high-voltage side to the low-voltage side, the converter operates in the step-up chopping state, otherwise the converter operates in the step-down chopping state. The amount of energy flowing in two directions in each cycle depends on the on-off time of the power switch tubes G1 and G2, and the energy of the low-voltage side power supply and the high-voltage side power supply. By adding closed-loop control to the converter, not only can the flow direction of energy be controlled, but also the voltage and current of the low-voltage side and the voltage and current of the high-voltage side can be precisely controlled, which lays the foundation for the use of the converter in the utility model technical foundation.
三相电压型PWM整流器3的结构为(如图5所示):功率开关管G3、G4、G5的漏极连接到一起接到直流侧电容C2的正极,功率开关管G3、G4、G5的源极分别与功率开关管G6、G7、G8的漏极相连接,功率开关管G6、G7、G8的源极连接到一起接到直流侧电容C2的负极。续流二极管D3、D4、D5、D6、D7、D8分别反并联在每个功率开关管的漏--源极之间。L2、L3、L4为交流侧滤波电感,滤波输出后接入三相交流电网系统1中。通过对以上各开关管进行通断控制可以实现该变换器整流状态、逆变状态的灵活转换及直流侧电压、交流侧无功功率的精确控制。The structure of the three-phase voltage
上述双向DC/DC变换器4、三相电压型PWM整流器3的功率开关管可选用绝缘栅双极型晶体管(IGBT),它是一种可关断器件,具有开关响应速度快,导通压降低等特点。在实际使用过程中可采用IPM功率模块,IPM内部在集成了IGBT及其反并联二极管的基础上还带有驱动、逻辑、控制、检测和保护电路,不仅减少了装置的体积,缩短了开发时间,也增强了装置的可靠性,适应了当今功率器件的发展方向。The power switch tube of the above-mentioned bidirectional DC/
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2010202849778U CN201742107U (en) | 2010-08-03 | 2010-08-03 | Power quality regulating device based on stored energy of super capacitor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2010202849778U CN201742107U (en) | 2010-08-03 | 2010-08-03 | Power quality regulating device based on stored energy of super capacitor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN201742107U true CN201742107U (en) | 2011-02-09 |
Family
ID=43557385
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2010202849778U Expired - Fee Related CN201742107U (en) | 2010-08-03 | 2010-08-03 | Power quality regulating device based on stored energy of super capacitor |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN201742107U (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102570499A (en) * | 2011-12-23 | 2012-07-11 | 中电普瑞科技有限公司 | Constant-speed constant-frequency wind turbine low-voltage riding-through device and control method |
| CN102916593A (en) * | 2011-08-05 | 2013-02-06 | 英飞凌科技股份有限公司 | Power converter circuit |
| WO2013097526A1 (en) * | 2011-12-28 | 2013-07-04 | 艾默生网络能源有限公司 | Dc/dc circuit for uninterruptible power supply |
| CN103607117A (en) * | 2013-11-21 | 2014-02-26 | 无锡中星微电子有限公司 | DC-DC converter |
| CN104756392A (en) * | 2012-10-30 | 2015-07-01 | 株式会社安川电机 | Power conversion device |
| CN105470967A (en) * | 2016-01-11 | 2016-04-06 | 陕西科技大学 | Supercapacitor bank based low-voltage ride through apparatus |
| CN106972471A (en) * | 2017-04-27 | 2017-07-21 | 国家电网公司 | Multifunctional short circuit demand limiter |
| CN108886263A (en) * | 2016-05-18 | 2018-11-23 | 株式会社村田制作所 | Power supply device, power supply method and electrical storage device |
| CN110797910A (en) * | 2019-10-28 | 2020-02-14 | 天津大学 | A control method for improving low voltage ride-through capability of matrix converter system |
| CN111561416A (en) * | 2020-04-29 | 2020-08-21 | 国网山东省电力公司电力科学研究院 | A grid-friendly wave energy generation collection system and its operation control method |
| CN113328445A (en) * | 2021-06-18 | 2021-08-31 | 哈尔滨工业大学 | Full-power compensation device for restraining nonlinear load from influencing performance of ship generator |
| CN114336641A (en) * | 2022-03-17 | 2022-04-12 | 西南交通大学 | Three-phase power supply ride-through power utilization system and control method |
-
2010
- 2010-08-03 CN CN2010202849778U patent/CN201742107U/en not_active Expired - Fee Related
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102916593A (en) * | 2011-08-05 | 2013-02-06 | 英飞凌科技股份有限公司 | Power converter circuit |
| CN102916593B (en) * | 2011-08-05 | 2016-12-21 | 英飞凌科技股份有限公司 | Power converter circuit |
| CN102570499A (en) * | 2011-12-23 | 2012-07-11 | 中电普瑞科技有限公司 | Constant-speed constant-frequency wind turbine low-voltage riding-through device and control method |
| WO2013097526A1 (en) * | 2011-12-28 | 2013-07-04 | 艾默生网络能源有限公司 | Dc/dc circuit for uninterruptible power supply |
| CN104756392A (en) * | 2012-10-30 | 2015-07-01 | 株式会社安川电机 | Power conversion device |
| CN103607117A (en) * | 2013-11-21 | 2014-02-26 | 无锡中星微电子有限公司 | DC-DC converter |
| CN103607117B (en) * | 2013-11-21 | 2016-08-24 | 无锡中感微电子股份有限公司 | DC-to-dc converter |
| CN105470967A (en) * | 2016-01-11 | 2016-04-06 | 陕西科技大学 | Supercapacitor bank based low-voltage ride through apparatus |
| CN105470967B (en) * | 2016-01-11 | 2018-11-20 | 陕西科技大学 | A kind of low voltage ride through device based on supercapacitor group |
| CN108886263B (en) * | 2016-05-18 | 2021-10-15 | 株式会社村田制作所 | Power supply device, power supply method, and power storage device |
| CN108886263A (en) * | 2016-05-18 | 2018-11-23 | 株式会社村田制作所 | Power supply device, power supply method and electrical storage device |
| CN106972471A (en) * | 2017-04-27 | 2017-07-21 | 国家电网公司 | Multifunctional short circuit demand limiter |
| CN110797910A (en) * | 2019-10-28 | 2020-02-14 | 天津大学 | A control method for improving low voltage ride-through capability of matrix converter system |
| CN110797910B (en) * | 2019-10-28 | 2023-06-02 | 天津大学 | A Control Method for Improving Low Voltage Ride Through Capability of Matrix Converter System |
| CN111561416A (en) * | 2020-04-29 | 2020-08-21 | 国网山东省电力公司电力科学研究院 | A grid-friendly wave energy generation collection system and its operation control method |
| CN113328445A (en) * | 2021-06-18 | 2021-08-31 | 哈尔滨工业大学 | Full-power compensation device for restraining nonlinear load from influencing performance of ship generator |
| CN114336641A (en) * | 2022-03-17 | 2022-04-12 | 西南交通大学 | Three-phase power supply ride-through power utilization system and control method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN201742107U (en) | Power quality regulating device based on stored energy of super capacitor | |
| CN101950974A (en) | Electric energy quality regulating system based on energy storing of super capacitor | |
| Chen et al. | Integrating wind farm to the grid using hybrid multiterminal HVDC technology | |
| Ma et al. | A review of STATCOM on the electric power system | |
| CN105210277B (en) | High Voltage Direct Current (HVDC) Converter System and Method of Operation | |
| US9436200B2 (en) | Use of distributed generator (DG) inverters as statcoms for decreasing line losses | |
| CN103414205A (en) | Wind farm super capacitor energy storage type unified power quality conditioner | |
| CN103795081B (en) | The control method of direct-driving type wind power system low voltage crossing | |
| CN104377699B (en) | For the mixing induction type active power filtering of wind power plant and reactive compensation system and method | |
| CN101702610A (en) | Doubly-fed wind turbine excitation system based on supercapacitor and battery hybrid energy storage | |
| CN105634013A (en) | Control method for improving abnormal voltage withstand capability of wind turbine generator set by super capacitor | |
| CN106899025A (en) | A kind of comprehensive compensation type alternating current steady voltage plug | |
| CN107863777B (en) | A reactive power control method for sending-end converter station with high power fluctuation considering low reactance | |
| CN114094624B (en) | Coordinated control method for low voltage ride through of wave power generation system | |
| CN116914816A (en) | Alternating current side fault ride-through device and method for direct current series connection offshore wind farm | |
| CN108923450A (en) | A kind of current source type HVDC transmission system and its operation method | |
| CN114784847A (en) | Reactive voltage linkage control system and method for energy storage type double-fed wind turbine and SVG | |
| CN105140959A (en) | Adjustable-resistance crowbar circuit and regulation and control method therefor | |
| CN110323781A (en) | A kind of low voltage traversing control method of modular multilevel electric power electric transformer | |
| CN206673592U (en) | A kind of comprehensive compensation type alternating current steady voltage plug | |
| CN118367576A (en) | A low voltage ride-through control device and method based on supercapacitor | |
| CN103545839A (en) | Low voltage control device for wind power generating set | |
| Yao et al. | Review of the key technology of power quality improvement device for middle-low voltage distribution network | |
| CN207588460U (en) | A kind of double-fed fan motor unit fault processing system and set structure | |
| CN106451558A (en) | Power network system with large-scale wind power integration |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C17 | Cessation of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110209 Termination date: 20120803 |