CN202719916U - Straightening device for gas processing vessel - Google Patents
Straightening device for gas processing vessel Download PDFInfo
- Publication number
- CN202719916U CN202719916U CN 201220412367 CN201220412367U CN202719916U CN 202719916 U CN202719916 U CN 202719916U CN 201220412367 CN201220412367 CN 201220412367 CN 201220412367 U CN201220412367 U CN 201220412367U CN 202719916 U CN202719916 U CN 202719916U
- Authority
- CN
- China
- Prior art keywords
- gas
- horizontal
- container
- introduction port
- guide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005452 bending Methods 0.000 claims description 10
- 230000005465 channeling Effects 0.000 claims 1
- 230000008676 import Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 description 118
- 238000000926 separation method Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 9
- 238000001816 cooling Methods 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Images
Abstract
Description
技术领域 technical field
本实用新型涉及气体处理容器用整流装置,所述气体处理容器用整流装置设置在需要将导入容器的气体均匀输送的气体调温塔、气体冷却器、气体冷却装置、冷却塔等气体处理容器内的入口部分上。The utility model relates to a rectification device for a gas processing container. The rectification device for a gas processing container is arranged in a gas processing container such as a gas temperature regulating tower, a gas cooler, a gas cooling device, and a cooling tower that need to uniformly transport the gas introduced into the container. on the entrance part.
背景技术 Background technique
例如在垃圾焚烧炉的气体调温塔中,为了向气体(废气)中喷射冷却水以调整温度,需要将从上部导入的气体均匀地送向下方。For example, in the gas temperature control tower of a waste incinerator, in order to spray cooling water into the gas (exhaust gas) to adjust the temperature, it is necessary to uniformly send the gas introduced from the upper part downward.
现有的气体调温塔如图12、图13所示,在塔主体1的上部设置有气体导入口1a,在气体导入口1a上连接有弯曲管道2。在塔主体1的气体导入口1a上设有多枚垂直叶片3和水平叶片4。此外,在塔主体1的上部具有台阶部5、倾斜导向板6、以及沿整个平面断面设置的整流格栅7。As shown in Fig. 12 and Fig. 13, the existing gas tempering tower is provided with a gas inlet 1a on the upper part of the tower main body 1, and a
由此,从热回收用锅炉排出的废气借助弯曲管道2首先以45度的角度导向斜上方后以90度的角度向下方弯折,从而以45度的角度从上方导入塔主体1上部的气体导入口1a。然后,在塔主体1的入口部将导入的气体向水平方向引导并利用垂直叶片3和水平叶片4进行整流,进而利用台阶部5和倾斜导向板6使气体转向下方。而且,利用整流格栅7进行整流,使塔主体1的横断面中的气流变得均匀。In this way, the exhaust gas discharged from the heat recovery boiler is first directed obliquely upward at an angle of 45 degrees through the
然而,上述以往的结构中,由于使用弯曲管道2导入气体,存在弯曲管道2比设备建筑物最上部所设置的气体调温塔更向上方突出的问题。因此,为了配合弯曲管道2,需要对建筑物顶部进行加高施工。However, in the above-mentioned conventional structure, since gas is introduced using the
实用新型内容 Utility model content
为了解决上述问题,本实用新型的目的在于提供一种气体处理容器用整流装置,不必利用弯曲管道暂时向上方迂回,也可以将下方送来的气体在容器的入口处充分整流并导向容器内的下方。In order to solve the above problems, the purpose of this utility model is to provide a rectification device for a gas processing container, which can fully rectify the gas sent from below at the entrance of the container and guide it to the gas flow in the container without using a curved pipe to temporarily detour upwards. below.
为了实现上述目的,本实用新型第1方式所述的气体处理容器用整流装置在容器上形成有从容器上部向下方输送气体的气体通路,在容器的上部侧面开设有气体导入口,并且将气体从气体导入口导入容器内并进行整流,所述气体处理容器用整流装置的特征在于包括:气体导入流路,将从斜下方供给的气体转向水平方向并送入气体导入口;迂回空间,形成于气体通路的上端部,且使气体导入口从侧方连通;台阶部和倾斜导向部,设置在迂回空间;水平叶片,沿上下方向以多层配置在气体导入口的开口面上;以及整流格栅,配置在比气体导入口更低位的气体通路中,台阶部包括下垂壁,所述下垂壁距气体导入口规定距离且从顶壁垂下,倾斜导向部从台阶部向下游侧下方倾斜,将气体导向下方,越低位的水平叶片对气流的阻力越大。In order to achieve the above object, the rectification device for the gas processing container according to the first aspect of the present utility model is formed on the container with a gas channel for conveying gas from the upper part of the container to the lower part, and a gas inlet is opened on the upper side of the container, and the gas It is introduced into the container from the gas inlet and rectified. The rectification device for the gas processing container is characterized in that it includes: a gas introduction flow path, which turns the gas supplied from obliquely downward to the horizontal direction and sends it into the gas inlet; a detour space forms It is located at the upper end of the gas passage, and connects the gas inlet from the side; the step portion and the inclined guide portion are arranged in the detour space; the horizontal blades are arranged in multiple layers on the opening surface of the gas inlet along the vertical direction; and rectification The grill is disposed in the gas channel at a position lower than the gas inlet, the stepped portion includes a hanging wall, the hanging wall is a predetermined distance from the gas inlet and hangs down from the top wall, and the inclined guide portion is inclined downward from the stepped portion to the downstream side, Directing the gas downward, the lower the horizontal blades, the greater the resistance to the airflow.
按照上述结构,废气气流向斜上方流过气体导入流路后,转向水平方向并从气体导入口送入迂回空间,在流路断面的中央和外周(上部)成为高速流。但是,由多个水平叶片分离的气流中,高速地流入分离流路部的最上层的气流受到下垂壁的阻力而大幅减速。此外,中央部的分离流路部中,尽管气流被急剧加速暂时成为高速,但是由于与水平叶片接触而产生的摩擦阻力、从最上层的分离流路部汇合的气流、以及因倾斜导向部而急剧扩大的流路面积,构成巨大阻力而逐渐减速,并被导入整流格栅。此外,在最下层的分离流路部中,由于气流被下层的水平叶片向下方大幅改变方向,所以气流没有加速。而且,中央部分流速相对较快的气流因整流格栅的作用和气流相互的接触而被平均化。According to the above structure, the exhaust gas flows obliquely upward through the gas introduction channel, then turns to the horizontal direction and is sent into the detour space from the gas introduction port, and becomes a high-speed flow in the center and outer periphery (upper part) of the channel cross section. However, among the airflows separated by the plurality of horizontal blades, the airflow flowing into the uppermost layer of the separation flow path portion at high speed is greatly decelerated by the resistance of the hanging wall. In addition, although the air flow is rapidly accelerated to a high speed temporarily in the separation flow path part in the center, the frictional resistance generated by contact with the horizontal blade, the air flow converging from the separation flow path part at the uppermost stage, and the inclined guide part The sharply expanded flow path area constitutes a huge resistance and gradually decelerates, and is guided into the rectification grille. In addition, in the lowermost separation channel portion, the air flow is not accelerated because the direction of the air flow is largely changed downward by the lower horizontal blades. Moreover, the relatively fast airflow in the center is averaged due to the effect of the rectifying grille and the contact of the airflows with each other.
因此,从下方供给的气流即使利用气体导入流路从斜下方转向水平方向后送入容器,也可以在迂回空间中利用多层的水平叶片和台阶部使气流减速,而且利用整流格栅使流速均匀化,可以向90°弯曲的气体通路中输送均匀的气流。因此,不必使气体导入流路向上方突出并将气体从上方送入,不需要对容器的收纳建筑物进行加高施工。Therefore, even if the airflow supplied from below is turned from obliquely downward to the horizontal direction by the gas introduction flow path and then sent into the container, the airflow can be decelerated by the multi-layered horizontal blades and steps in the detour space, and the flow velocity can be reduced by the rectifying grille. Homogenization, which can deliver uniform gas flow to the 90° curved gas path. Therefore, it is not necessary to protrude the gas introduction flow path upward and feed the gas from above, and it is not necessary to increase the height of the container storage building.
此外,本实用新型第2方式所述的气体处理容器用整流装置中,越低位的水平叶片越向下游侧下方倾斜。In addition, in the rectifying device for a gas processing container according to the second aspect of the present invention, the lower horizontal blades are inclined downward toward the downstream side.
此外,本实用新型第3方式所述的气体处理容器用整流装置中,水平叶片在从前端到中间的弯曲位置为止的范围上以规定的导入角倾斜,并且从弯曲位置到后端为止的范围上以规定的排出角倾斜,排出角被设定为大于导入角。In addition, in the rectifying device for a gas processing container according to the third aspect of the present invention, the horizontal vane is inclined at a predetermined introduction angle in the range from the front end to the middle bending position, and the range from the bending position to the rear end Inclined at a prescribed discharge angle, the discharge angle is set to be greater than the lead-in angle.
此外,本实用新型第4方式所述的气体处理容器用整流装置中,多个水平叶片中位于最上层的水平叶片不倾斜,在顶壁与最上层的水平叶片之间形成的分离流路部的后方,下垂壁相对配置。In addition, in the rectifying device for a gas processing container according to the fourth aspect of the present invention, the uppermost horizontal blade among the plurality of horizontal blades is not inclined, and the separation flow path formed between the top wall and the uppermost horizontal blade At the rear, the pendant walls are relatively arranged.
如上所述,按照第1方式所述的实用新型,向斜上方流过气体导入流路后被转向水平方向并被送入气体导入口的废气气流,在流路断面的中央和外周成为高速流。而且,在气体导入口上,由多个水平叶片分离的气流中位于最上层的气流,虽然以高速流入但被下垂壁和水平叶片包围而大幅减速。此外,中央部的气流尽管被急剧加速而暂时成为高速,但因与水平叶片接触而产生的摩擦阻力、以及流路面积急剧扩大的倾斜导向部,使气流减速并导入整流格栅。最下层的气流由于被下层的水平叶片大幅向下方改变方向,所以没有加速。而且,中央部分流速相对较快的气流利用整流格栅的作用和气流相互的接触而被平均化。As described above, according to the utility model described in the first aspect, the exhaust gas flow that flows obliquely upward through the gas introduction channel, is turned horizontally, and is sent to the gas introduction port becomes a high-speed flow at the center and outer periphery of the channel section. . Furthermore, at the gas inlet, the uppermost airflow among the airflows separated by the plurality of horizontal blades flows in at a high speed, but is greatly decelerated by being surrounded by the hanging wall and the horizontal blades. In addition, although the airflow in the central part is rapidly accelerated to a high speed for a while, the frictional resistance generated by contact with the horizontal blades and the inclined guide part with a rapidly enlarged flow path area decelerate the airflow and guide it into the rectifying grille. The air flow in the lowermost layer is not accelerated because it is substantially redirected downward by the lower horizontal blades. Furthermore, the relatively fast air flow in the central portion is averaged by the action of the rectifying grill and the mutual contact of the air flow.
因此,即使利用气体导入流路把下方供给的气流从斜下方转向水平方向后导入容器,也可以在向下方输送气体的气体通路中将气流整流成流速均匀,能进行均匀的气体处理,不必使气体导入管道向上方突出,不需要对收纳建筑物进行加高施工。Therefore, even if the gas flow supplied from below is diverted from obliquely downward to the horizontal direction by the gas introduction channel and then introduced into the container, the gas flow can be rectified so that the flow rate is uniform in the gas channel that sends the gas downward, and uniform gas treatment can be performed without using The gas introduction pipe protrudes upwards, so there is no need to heighten the storage building.
附图说明 Description of drawings
图1是表示本实用新型实施方式的整流装置的结构图。FIG. 1 is a configuration diagram showing a rectifying device according to an embodiment of the present invention.
图2是表示相同整流装置的要部的局部放大断面图。Fig. 2 is a partially enlarged cross-sectional view showing main parts of the rectifying device.
图3是表示相同整流装置的要部放大立体图。Fig. 3 is an enlarged perspective view showing essential parts of the rectifying device.
图4是表示相同整流装置的气流的模拟结果的纵断面图。Fig. 4 is a longitudinal sectional view showing the simulation results of the air flow of the same rectification device.
图5是表示图4所示的a-a′位置的流速的速度分布图。Fig. 5 is a velocity distribution diagram showing the flow velocity at the position a-a' shown in Fig. 4 .
图6是表示图4所示的b-b′位置的流速的速度分布图。Fig. 6 is a velocity distribution diagram showing the flow velocity at the position b-b' shown in Fig. 4 .
图7是表示图4所示的c-c′位置的流速的速度分布图。Fig. 7 is a velocity distribution diagram showing the flow velocity at the c-c' position shown in Fig. 4 .
图8是表示图4所示的d-d′位置的流速的速度分布图。Fig. 8 is a velocity distribution diagram showing the flow velocity at the position d-d' shown in Fig. 4 .
图9是表示图4所示的e-e′位置的流速的速度分布图。Fig. 9 is a velocity distribution diagram showing the flow velocity at the e-e' position shown in Fig. 4 .
图10是表示图4所示的f-f′位置的流速的速度分布图。Fig. 10 is a velocity distribution diagram showing the flow velocity at the f-f' position shown in Fig. 4 .
图11是表示图4所示的g-g′位置的流速的放大速度分布图。Fig. 11 is an enlarged velocity distribution diagram showing the flow velocity at the g-g' position shown in Fig. 4 .
图12是表示以往的整流装置的结构图。Fig. 12 is a configuration diagram showing a conventional rectifying device.
图13是表示以往的整流装置的要部放大立体图。Fig. 13 is an enlarged perspective view showing a main part of a conventional rectifying device.
附图标记说明Explanation of reference signs
10整流装置10 rectification device
11调温塔11 Tempering Tower
12容器12 containers
13气体通路13 gas passage
15气体导入口15 gas inlet
16气体导入管道(气体导入流路)16 Gas introduction pipe (gas introduction flow path)
16a垂直连接部16a vertical connection
16b倾斜部16b inclined part
16c水平送入部16c horizontal feeding part
17迂回空间17 roundabout space
18顶壁18 top wall
18a平面部18a plane part
18b台阶部18b step part
18c倾斜导向部18c inclined guide
18d下垂壁18d pendant wall
20A~20D分离流路部20A~20D separation channel
21A~21C水平翼(水平叶片)21A~21C horizontal wing (horizontal blade)
22整流格栅22 rectification grille
22b横叶片22b horizontal blade
具体实施方式 Detailed ways
在此,根据图1~图11说明本实用新型的气体整流装置的实施方式。Here, an embodiment of the gas rectifying device of the present invention will be described based on FIGS. 1 to 11 .
所述整流装置10例如设置在调温塔11上,所述调温塔11设置在垃圾焚烧炉设备的废气路径上,在调温塔11的容器12内的、从上部向下部送入气体的矩形断面的气体通路13中,向废气中喷射冷却水以得到规定温度的废气。因此,如果气体通路13的流速不均匀,则不能有效冷却。The
所述整流装置10在铅直方向的气体管道14和调温塔11的气体导入口15之间,连接有气体导入管道16(气体导入流路的一例)。气体导入口15开口于调温塔11的上部侧壁,并连通于气体通路13。此外,气体导入管道16的出口处形成宽度为w、高度为h的矩形流路断面,矩形断面与气体通路13的断面积之比例如为1:2。而且,气体导入管道16包括:垂直连接部16a,连接于气体管道14;倾斜部16b,从该垂直连接部16a以弯曲角θ(40~50°)向斜上方弯曲;以及水平送入部16c,从倾斜部16b的上端进一步向水平方向弯曲,并与气体导入口15连接。气体导入管道16使从斜下方供给的气体转向水平方向并送入气体导入口15。The
所述气体通路13形成流路宽度为W(=w)、高度(进深)为H的矩形断面。在气体通路13的上端部形成有迂回空间17,迂回空间17使从气体导入口15向水平方向吹入的气流向下方迂回。在所述迂回空间17的与气体导入口15的上边相连的顶壁18上形成有:平面部18a,从水平送入部16c隔着气体导入口15沿水平面延伸;台阶部18b,向下方突出;以及倾斜导向部18c,向台阶部18b的里侧下方倾斜。The
即,台阶部18b包括:高度为Ho的下垂壁18d,从顶壁18的平面部18a上的距气体导入口15规定距离Lo的位置垂下,且与气体导入口15相对;以及长度为Lp的水平壁18e,连接于该下垂壁18d的下端部。台阶部18b对气流施加巨大阻力。此外,倾斜导向部18c从水平壁18e的后端部以流路断面使气流扩展的方式向下方迂回,并以从水平朝向下方的倾斜角α=30~40°的方式进行安装。That is, the stepped
此外,所述迂回空间17中配置有例如上层、中层和下层的三枚水平翼21A~21C(水平叶片的一例),所述水平翼21A~21C从气体导入口15的开口面向后方延伸。这些水平翼21A~21C在上下方向上配置成分隔出规定高度HA~HD的分离流路部20A~20D,且横跨迂回空间17的整个宽度方向安装在侧壁之间。此外,水平翼21A~21C中越低位的水平翼越向下游侧的下方倾斜,以增大对气流的阻力。In addition, three
具体参照图2进行说明,上层水平翼21A的全长为LA,形成向水平方向后方延伸的平板状,导入角βA(未图示)=0°,排出角γA(未图示)=0°。即,上层水平翼21A(相当于最上层的水平叶片)不倾斜,在顶壁18的平面部18a与上层水平翼21A之间形成的最上层的分离流路部20A的后方,下垂壁18d相对配置。此外,中层水平翼21B的全长为LB,从前端到中间的弯曲位置PB为止以导入角βB倾斜设置,而且从弯曲位置PB到后端为止以排出角γB倾斜设置。此外,下层水平翼21C的全长为LC,从前端到中间的弯曲位置PC为止以导入角βC倾斜设置,而且从弯曲位置PC到后端为止以排出角γC倾斜设置。另外,弯曲位置PB、PC也可以是具有半径的圆弧状。Specifically referring to FIG. 2 for description, the upper level
此处,为了加大最上层的分离流路部20A的阻力,将其高度HA设定为与下垂壁18d的高度Ho相同或更小(HA≤Ho)。当然,上层水平翼21A的长度LA设定为小于平面部18a的长度Lo(LA<Lo),以形成用于排出分离流路部20A的气体的空间20a。此外,水平翼21A~21C的长度为LA>LB(LBf+LBr)>LC(LCf+LCr),而且导入角βA<βB<βC,排出角γA<γB<γC。此外,导入角βB<排出角γB,导入角βC<排出角γC。Here, in order to increase the resistance of the uppermost
这是因为,当气流从水平方向导入气体导入口15并在迂回空间17中向下方旋转时,存在离旋转中心越远流速越快的倾向,所以有必要对这种情况加以限制,可以利用水平翼21A~21C使其接触阻力作用于气流而进行减速。此外,由于越靠近旋转中心侧旋转半径越小,所以通过加大设定导入角β和排出角γ,能使气流顺畅地旋转。This is because, when the airflow is introduced into the
此外,在从气体导入口15的下边隔开规定距离Δh的下方位置上设有整流格栅22,整流格栅22由多个纵叶片22a和多个横叶片22b以一定的间隔组合而成,多个纵叶片22a沿导入气体的输送方向设置,多个横叶片22b沿导入气体的横断方向设置。In addition, a
按照上述结构,从气体管道14导入到气体导入管道16的废气,在倾斜部16b处向斜上方转向后,进一步向水平转向并从水平送入部16c送入气体导入口15。此时,流路断面的中央和外周形成高速的气流。According to the above structure, the exhaust gas introduced from the
在气体导入口15上,被水平翼21A~21C分离的分离流路部20A~20D中,最上层的分离流路部20A的气流原本以相当高的速度流入,但是因与气体导入口15相对配置的下垂壁18d和水平翼21A而被大幅减速,不会加速。此外,中央部的分离流路部20B、20C处,气流被急剧加速后暂时成为高速,但是因与水平翼21A~21C接触而产生的摩擦阻力、从空间20a流入的气流、以及在倾斜导向部18c处急剧扩大的流路面积,气流被减速并导入整流格栅22。最下层的分离流路部20D处,由于气流被下层的水平翼21C向下方大幅改变方向,所以气流不会加速。而且,在整流格栅22处,虽然因中央部分的相对高流速而出现稍高速的气流,但是利用整流格栅22的作用和气流相互的接触而被平均化。In the
此处,参照图4~图11说明上述结构的整流装置10的模拟结果。在此设定的气体导入管道16(气体导入口15)的高度为h=1000、宽度为w(=W)=2000,水平翼21A~21C配置为HA=HB=HC=HD=250,长度为LA=600、LBf=300、LBr=300、LCf=200、LCr=250,导入角和排出角为βA=0、βB=7°、γB=45°、βC=12°、γC=67°(各角度±2.5°),整流格栅22为高度Hm=300、间距150,气体通路13为高度h=20000(长度的单位为mm)。此处,气体流量为10000~30000Nm3/h,入口的气体温度对应于240℃。Here, simulation results of the
从图4所示的流速分布和图5~图11所示的各断面位置上的流速分布可知,从整流格栅22向下方输送的气体的流速分布均匀化。From the flow velocity distribution shown in FIG. 4 and the flow velocity distribution at each cross-sectional position shown in FIGS. 5 to 11 , it can be seen that the flow velocity distribution of the gas sent downward from the rectifying
根据上述实施方式,利用气体导入管道16从下方朝向斜上方、水平方向转向后被送入气体导入口15的废气气流,在迂回空间17中由于高速的上部气流导入到被下垂壁18d阻挡的分离流路部20A后,其流动被上层水平翼21A分离,并从上层水平翼21A和下垂壁18d之间的空间20a送出,所以在迂回侧外方急剧加速的气流可以被大幅减速。此外,导入中央部的分离流路部20B、20C的气流因与水平翼21A~21C接触而产生的摩擦阻力、以及急剧扩大的流路面积而被有效减速。而且,下部的分离流路部20D中流入的气流由于下层水平翼21C的大转向角而不会被加速。据此,利用整流格栅22在气体通路13内不会产生局部高速的气流,可以得到均匀流速的气流,从而可以进行均匀高效的废气温度调整。According to the above-mentioned embodiment, the waste gas flow sent into the
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201220412367 CN202719916U (en) | 2012-08-17 | 2012-08-17 | Straightening device for gas processing vessel |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201220412367 CN202719916U (en) | 2012-08-17 | 2012-08-17 | Straightening device for gas processing vessel |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN202719916U true CN202719916U (en) | 2013-02-06 |
Family
ID=47621738
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 201220412367 Expired - Lifetime CN202719916U (en) | 2012-08-17 | 2012-08-17 | Straightening device for gas processing vessel |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN202719916U (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103246176A (en) * | 2013-04-02 | 2013-08-14 | 华中科技大学 | Isolation chamber for isolating laser produced plasma extreme ultraviolet light source fragments |
-
2012
- 2012-08-17 CN CN 201220412367 patent/CN202719916U/en not_active Expired - Lifetime
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103246176A (en) * | 2013-04-02 | 2013-08-14 | 华中科技大学 | Isolation chamber for isolating laser produced plasma extreme ultraviolet light source fragments |
| CN103246176B (en) * | 2013-04-02 | 2015-01-28 | 华中科技大学 | Isolation chamber for isolating laser produced plasma extreme ultraviolet light source fragments |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2017156802A1 (en) | Flow stabilizing structure and ventilation device using same | |
| CN102080443B (en) | Multi-power source adjustable voltage-transforming fire-proof exhaust passage system | |
| KR20080024379A (en) | Ventilation | |
| JP5915416B2 (en) | Air curtain device for cooling room | |
| KR101747609B1 (en) | Combustion device | |
| CN105805835A (en) | Air conditioner and indoor unit thereof | |
| CN105805912B (en) | Drainage component and air conditioner | |
| JP2014126282A (en) | Ceiling mounted indoor unit | |
| JP6547132B2 (en) | Air conditioner | |
| CN202719916U (en) | Straightening device for gas processing vessel | |
| US3426667A (en) | Air intake apparatus | |
| CA2366889A1 (en) | Air mixing device having series of parallel airflow passages | |
| JP6143837B1 (en) | Painting booth and rectifier | |
| JP2005114211A (en) | Blowoff port device for floor blowoff air conditioning | |
| CN107605525A (en) | Tunnel jet blower guiding device and method of river diversion | |
| JP3841600B2 (en) | Rectifier for gas processing vessel | |
| JP2015203558A (en) | water heater | |
| WO2014011980A1 (en) | Methods and apparatuses to moderate an airflow | |
| CN106193538B (en) | A kind of fire prevention flow-guiding type flue and difunctional exhaust system | |
| JPWO2015155855A1 (en) | Air conditioner | |
| WO2020204693A1 (en) | Fluid discharge conduit assembly of air conditioning unit | |
| JP2017161165A (en) | Airflow control system and booth including the same | |
| CN205935554U (en) | Fire prevention water conservancy diversion formula flue and difunctional exhaust system | |
| CN113639315B (en) | Air conditioner and induced air outlet device for air conditioner | |
| JP5528835B2 (en) | Method and apparatus for inducing gas flow in an industrial furnace for heat treatment of metal materials / metal semi-products |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CX01 | Expiry of patent term | ||
| CX01 | Expiry of patent term |
Granted publication date: 20130206 |