CN203245429U - Helical end milling cutter used for carbon fiber reinforced composite material - Google Patents
Helical end milling cutter used for carbon fiber reinforced composite material Download PDFInfo
- Publication number
- CN203245429U CN203245429U CN 201320054725 CN201320054725U CN203245429U CN 203245429 U CN203245429 U CN 203245429U CN 201320054725 CN201320054725 CN 201320054725 CN 201320054725 U CN201320054725 U CN 201320054725U CN 203245429 U CN203245429 U CN 203245429U
- Authority
- CN
- China
- Prior art keywords
- handed
- carbon fiber
- fiber reinforced
- end mill
- knife
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 30
- 239000004917 carbon fiber Substances 0.000 title claims abstract description 30
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 239000011208 reinforced composite material Substances 0.000 title claims abstract description 22
- 238000003801 milling Methods 0.000 title abstract description 26
- 241000234671 Ananas Species 0.000 claims abstract description 15
- 235000007119 Ananas comosus Nutrition 0.000 claims abstract description 15
- 238000000576 coating method Methods 0.000 claims abstract description 7
- 239000000956 alloy Substances 0.000 claims abstract description 5
- 239000002114 nanocomposite Substances 0.000 claims abstract description 5
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 238000012545 processing Methods 0.000 abstract description 25
- 230000032798 delamination Effects 0.000 abstract description 22
- 239000002131 composite material Substances 0.000 abstract description 21
- 238000000034 method Methods 0.000 abstract description 9
- 230000007547 defect Effects 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 238000005034 decoration Methods 0.000 abstract description 2
- 238000005520 cutting process Methods 0.000 description 52
- 239000000463 material Substances 0.000 description 19
- 238000003754 machining Methods 0.000 description 8
- 239000000835 fiber Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000011156 metal matrix composite Substances 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 201000005947 Carney Complex Diseases 0.000 description 1
- 241001269524 Dura Species 0.000 description 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 1
- 239000011153 ceramic matrix composite Substances 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Landscapes
- Milling Processes (AREA)
Abstract
本实用新型涉及一种用于碳纤维增强复合材料的菠萝立铣刀。一般情况下,在此类复合板材、叠层板上铣削加工时,容易产生分层、劈裂、烧伤等缺陷,其中尤以分层、劈裂对加工质量影响最大。用于碳纤维增强复合材料的菠萝立铣刀,其组成包括:刀柄(1),所述的刀柄连接合金材料的刀颈部(2),所述的刀颈部具有右旋刀齿带(3)和右旋刀齿(4),所述的右旋刀齿带上具有左旋齿(5)和左旋齿槽,所述的右旋刀齿和所述的左旋齿上具有纳米复合镀层。本方法可以广泛应用于航空航天,竞技汽车外壳制造、模具制版、广告装饰、精密电子零件等加工。
The utility model relates to a pineapple end mill used for carbon fiber reinforced composite materials. In general, when milling and processing such composite plates and laminated plates, defects such as delamination, splitting, and burns are prone to occur, among which delamination and splitting have the greatest impact on processing quality. A pineapple end mill for carbon fiber reinforced composite materials, which consists of: a tool handle (1), the tool handle is connected to a knife neck (2) made of alloy material, and the knife neck has a right-handed tooth belt (3) and right-handed knife teeth (4), the right-handed knife tooth belt has left-handed teeth (5) and left-handed tooth grooves, and the right-handed knife teeth and the left-handed teeth have nanocomposite coatings . The method can be widely used in the processing of aerospace, racing car shell manufacturing, mold plate making, advertising decoration, precision electronic parts and the like.
Description
技术领域:Technical field:
本实用新型提供一种用于航天和汽车竞技、电路板的碳纤维增强复合材料的立铣刀。The utility model provides an end milling cutter for carbon fiber reinforced composite materials used in aerospace and automobile competitions and circuit boards.
背景技术:Background technique:
碳纤维增强复合材料具有比强度高、比模量高、减振性好等优点,在航空航天领域得到了广泛应用,在汽车竞技、体育器械等行业的应用也日益增多。20世纪80年代后服役的战机均大量采用碳纤维增强复合材料,复合材料的用量已成为衡量飞机性能的重要指标之一。例如,法国阵风战机的复合材料用量占40%,瑞典JAS39战机占30%,欧洲“台风”战机大于40%,美国的杀手锏武器B-2战略轰炸机占到50%,美国空军最新的F-22“猛禽”战斗机复合材料用量达到了35%。1984年,日本东丽公司成功研制出高强度、大伸长量的碳纤维T800H,1986年,又研发成功T1000。随后,日本东邦、三菱人造丝公司和美国Hexcel公司相继研制出同类高性能碳纤维,为制造大飞机提供了新型复合材料。从此,碳纤维增强复合材料在大飞机上的用量直线上升。Carbon fiber reinforced composite materials have the advantages of high specific strength, high specific modulus, and good vibration damping. They have been widely used in the aerospace field, and their applications in automobile competitions, sports equipment and other industries are also increasing. Fighters in service after the 1980s all use a large number of carbon fiber reinforced composite materials, and the amount of composite materials has become one of the important indicators to measure the performance of aircraft. For example, the French Rafale fighter accounted for 40% of composite materials, the Swedish JAS39 fighter accounted for 30%, the European "Typhoon" fighter accounted for more than 40%, the U.S. killer weapon B-2 strategic bomber accounted for 50%, and the U.S. Air Force's latest F-22 The amount of composite materials used in the "Raptor" fighter jet reached 35%. In 1984, Toray Corporation of Japan successfully developed carbon fiber T800H with high strength and large elongation. In 1986, it successfully developed T1000. Subsequently, Toho of Japan, Mitsubishi Rayon and Hexcel of the United States successively developed similar high-performance carbon fibers, providing new composite materials for the manufacture of large aircraft. Since then, the use of carbon fiber reinforced composite materials in large aircraft has skyrocketed.
随着复合材料应用领域的扩大,解决复合材料的高精度、高效加工问题也日益迫切。 一般情况下,在此类复合板材、叠层板上铣削加工时,容易产生分层、劈裂、烧伤等缺陷,其中尤以分层、劈裂对加工质量影响最大。据介绍,在AV-8B飞机的制造中,由于加工造成的分层、劈裂导致的零件不合格率占全机CFRP零件不合格率的60%以上。With the expansion of the application field of composite materials, it is increasingly urgent to solve the problem of high-precision and high-efficiency processing of composite materials. Under normal circumstances, when milling and processing such composite plates and laminated plates, defects such as delamination, splitting, and burns are prone to occur, among which delamination and splitting have the greatest impact on processing quality. According to reports, in the manufacture of AV-8B aircraft, the failure rate of parts caused by delamination and splitting caused by processing accounts for more than 60% of the failure rate of CFRP parts in the whole aircraft.
出现分层、劈裂现象的主要原因为:(1)复合板由碳纤维层铺叠而成,层与层之间用树脂粘结。由于碳纤维增强复合是一种各向异性材料,其机械性能在不同方向各不相同,材料沿纤维铺层方向强度较高,而垂直于纤维铺层方向的强度则取决于树脂粘结强度,一般情况下,层间结合强度仅为纤维方向强度的2.2%。(2)加工时,存在垂直于纤维铺层方向的轴向力Fz,从而在叠层板内产生正应力,当切削力产生的正应力超过树脂结合强度,则会出现树脂断裂、纤维层分层或劈裂等现象,轴向力越大,分层、劈裂现象越严重。The main reasons for delamination and splitting are: (1) The composite panel is made of carbon fiber layers, and the layers are bonded with resin. Since carbon fiber reinforced composite is an anisotropic material, its mechanical properties are different in different directions, and the strength of the material along the direction of fiber layup is higher, while the strength perpendicular to the direction of fiber layup depends on the resin bond strength, generally In this case, the interlayer bonding strength is only 2.2% of the fiber direction strength. (2) During processing, there is an axial force Fz perpendicular to the direction of fiber layup, thereby generating normal stress in the laminate. When the normal stress generated by the cutting force exceeds the resin bonding strength, resin fracture and fiber layer separation will occur. Delamination or splitting and other phenomena, the greater the axial force, the more serious the delamination and splitting phenomenon.
发明内容:Invention content:
本实用新型提供一种在碳纤维复合材料叠层板上进行铣削加工的刀具,以克服现树脂断裂、纤维层分层或劈裂的问题。The utility model provides a cutting tool for milling on a carbon fiber composite laminated plate to overcome the existing problems of resin fracture, delamination or splitting of fiber layers.
本实用新型的目的是这样实现的:The purpose of this utility model is achieved in that:
一种用于碳纤维增强复合材料的菠萝立铣刀,其组成包括:刀柄,所述的刀柄连接合金材料的刀颈部,所述的刀颈部具有右旋刀齿带和右旋刀齿,所述的右旋刀齿带上具有左旋齿和左旋齿槽,所述的右旋刀齿和所述的左旋齿上具有纳米复合镀层。A pineapple end mill for carbon fiber-reinforced composite materials, comprising: a handle, the handle is connected to a knife neck of an alloy material, and the knife neck has a right-handed knife tooth belt and a right-handed knife The right-handed tooth belt has left-handed teeth and left-handed tooth grooves, and the right-handed knife teeth and the left-handed teeth have nanocomposite coatings.
所述的用于碳纤维增强复合材料的菠萝立铣刀,所述的右旋刀齿带上右旋齿齿数为2-8个,螺旋角30°-60°。In the pineapple end mill for carbon fiber reinforced composite materials, the number of right-handed teeth on the right-handed tooth belt is 2-8, and the helix angle is 30°-60°.
所述的用于碳纤维增强复合材料的菠萝立铣刀,所述的螺旋角40°-45°,单个刀具的螺旋角的变化不超过5°。For the pineapple end mill for carbon fiber reinforced composite materials, the helix angle is 40°-45°, and the change of the helix angle of a single cutter is not more than 5°.
所述的用于碳纤维增强复合材料的菠萝立铣刀,所述的刀径0.80mm至3.175mm,柄径3.175mm所述的刀颈部采用硬质合金棒材和钨钢棒材,所述的右旋刀齿和所述的左旋齿使用超细晶粒硬质合金材料。For the pineapple end mill for carbon fiber reinforced composite materials, the cutter diameter is 0.80mm to 3.175mm, and the cutter neck with a shank diameter of 3.175mm adopts carbide rods and tungsten steel rods. The right-handed cutter teeth and the left-handed teeth use ultra-fine grain cemented carbide materials.
有益效果:Beneficial effect:
碳纤维增强复合材料在应用过程中往往要与其他结构进行连接,连接是复合材料结构的薄弱环节。据统计,航空航天飞行器中60%~80%的破坏都发生在连接部位。连接中最常采用的机械连接需要先进行机械连接部位的加工。例如,一架波音747飞机有300多万个连接孔,而美国最先进的F-22战斗机每副机翼要14000个精孔需要铣削。复合材料是典型的难加工材料,其加工工艺复杂,对刀具和工艺参数的要求更高。因此,复合材料制孔工艺已成为复合材料应用的关键工艺之一。本实用新型有效的解决了精孔加工中的劈裂分层问题。Carbon fiber reinforced composite materials are often connected with other structures in the application process, and the connection is the weak link of the composite material structure. According to statistics, 60% to 80% of the damage in aerospace vehicles occurs at the joints. The most commonly used mechanical connection in the connection requires the processing of the mechanical connection part first. For example, a Boeing 747 aircraft has more than 3 million connecting holes, while the most advanced F-22 fighter jet in the United States requires 14,000 fine holes for each wing to be milled. Composite materials are typical difficult-to-machine materials, and their processing technology is complex, which requires higher requirements on cutting tools and process parameters. Therefore, the pore-making process of composite materials has become one of the key processes in the application of composite materials. The utility model effectively solves the problem of splitting and delamination in fine hole machining.
碳纤维增强复合材料是由质软而粘性大的基体材料和强度高、硬度大的碳纤维增强材料混合而成的二相或多相结构,其力学性能呈各向异性,层间强度低,切削时在切削力的作用下容易产生分层、劈裂等缺陷。Carbon fiber reinforced composite material is a two-phase or multi-phase structure composed of a soft and viscous matrix material and a high-strength, high-hardness carbon fiber reinforced material. Its mechanical properties are anisotropic, and the interlayer strength is low. Under the action of cutting force, defects such as delamination and splitting are easy to occur.
现有的碳纤维增强复合材料钻削加工中由于材料硬度大,其硬度HRC值可达53~65,相当于一般高速钢的硬度,因而铣削时切削刃磨损很快、由于层间强度是根据粘接数值的强度产生的,层间强度低,在加工过程中,易产生分层等缺陷;并且复合材料属于各向异性材料,应力集中较大时,极易引起毛刺、劈裂等缺陷,本实用新型采用特定的切削角、螺旋角,增加左旋刃的数量能有效的抵消切削时产生的轴向切削力,并尽可能减少毛刺与分层现象。分层是碳纤维复合材料加工中的主要缺陷。分层缺陷的大小可以用分层因子(Fd)来表示。分层因子可以用以下公式表示: Fd =Dmax/D ,其中,Dmax表示最大损伤区域的直径,D 表示孔的实际直径,如图2所示。分层因子Fd与平均轴向力Fz间存在着线性或分段线性关系:平均轴向力Fz越大,分层因子Fd越大,分层越严重。本实用新型通过特定螺旋角的设计有效的克服了分层阻力,得到精准的孔型。Due to the high hardness of the material in the existing drilling process of carbon fiber reinforced composite materials, its hardness HRC value can reach 53~65, which is equivalent to the hardness of general high-speed steel, so the cutting edge wears quickly during milling. Due to the strength of the connection value, the interlayer strength is low, and defects such as delamination are easy to occur during processing; and the composite material is an anisotropic material, and when the stress concentration is large, it is easy to cause defects such as burrs and splits. The utility model adopts a specific cutting angle and helix angle, and increasing the number of left-handed blades can effectively offset the axial cutting force generated during cutting, and reduce burrs and delamination as much as possible. Delamination is a major defect in the processing of carbon fiber composites. The size of delamination defects can be expressed by delamination factor (Fd). The delamination factor can be expressed by the following formula: Fd =Dmax/D, where Dmax represents the diameter of the maximum damaged area, and D represents the actual diameter of the hole, as shown in Figure 2. There is a linear or piecewise linear relationship between the delamination factor Fd and the average axial force Fz: the greater the average axial force Fz, the greater the delamination factor Fd, and the more serious the delamination. The utility model effectively overcomes the delamination resistance through the design of a specific helix angle, and obtains a precise hole shape.
本实用新型采用更多的左旋齿,将材料下压,提供工装刚性,获得较好表面质量。本产品的特定参数,专门用于加工碳纤维、玻璃纤维、蜂窝材料、MMC金属基等复合材料,0度刃倾角立铣刀:适用于绝大多少应用的各种复合材料(包括塑料基复合材料,金属基复合材料和陶瓷基复合材料);正3度以上(右旋)以上刃倾角立铣刀:加工过程中将材料下压,从而得到最好的上表面表面质量;负3度以上(左旋)刃倾角立铣刀:加工过程中将材料上推,从而得到最好的上表面表面质量。The utility model adopts more left-handed teeth, presses down the material, provides tooling rigidity, and obtains better surface quality. The specific parameters of this product are specially used for processing composite materials such as carbon fiber, glass fiber, honeycomb material, MMC metal matrix, etc., 0-degree edge angle end mill: suitable for a variety of composite materials (including plastic matrix composite materials) for most applications , metal matrix composites and ceramic matrix composites); more than positive 3 degrees (right-handed) and upper edge inclination end mills: the material is pressed down during processing to obtain the best surface quality of the upper surface; negative 3 degrees or more ( Left-handed) rake end mills: push the material up during machining to get the best surface quality on the upper surface.
本实用新型的刀颈部采用硬质合金棒材和钨钢棒材,具有高硬度,高耐磨性,高强度,抗弯曲,抗折损,刀具寿命长的优先,刀齿使用超细晶粒硬质合金材料,具有良好的铣削性能,保证工作高效率;有足够的抗弯强度和耐磨性;铣槽、孔及板边、表面洁净、整齐、无毛刺。本方法可以广泛应用于航空航天,竞技汽车外壳制造、模具制版、广告装饰、精密电子零件等加工。The knife neck of the utility model adopts cemented carbide rods and tungsten steel rods, which have high hardness, high wear resistance, high strength, bending resistance, and breakage resistance. Long tool life is preferred, and the knife teeth use ultra-fine grain Granular carbide material, with good milling performance to ensure high work efficiency; sufficient bending strength and wear resistance; milling slots, holes and board edges, the surface is clean, tidy, and burr-free. The method can be widely used in the processing of aerospace, racing car shell manufacturing, mold plate making, advertising decoration, precision electronic parts and the like.
附图说明:Description of drawings:
附图1是本实用新型的结构示意图。Accompanying drawing 1 is the structural representation of the utility model.
附图2是分层阻力的应力分布示意图。Accompanying drawing 2 is the stress distribution diagram of delamination resistance.
具体实施方式Detailed ways
实施例1:Example 1:
一种用于碳纤维增强复合材料的菠萝立铣刀,其组成包括:刀柄1,所述的刀柄连接合金材料的刀颈部2,所述的刀颈部具有右旋刀齿带3和右旋刀齿4,所述的右旋刀齿带上具有左旋齿5和左旋齿槽,所述的右旋刀齿和所述的左旋齿上具有纳米复合镀层。A pineapple end mill for carbon fiber reinforced composite materials, which consists of: a handle 1, the handle is connected to a knife neck 2 of an alloy material, and the knife neck has a right-handed
实施例2:Example 2:
实施例1 所述的用于碳纤维增强复合材料的菠萝立铣刀,所述的右旋齿齿数为2-8个,螺旋角30°-60°。螺旋刃立铣刀的常规的齿形有直形和螺旋形两种。由于螺旋刃立铣刀相对于直刃具有切削轻快、平稳、效率高和使用范围广等优点,因此在铣削加工中得到了广泛应用。根据加工设备和加工对象的不同要求,螺旋刃立铣刀有左刃、右刃和左螺旋、右螺旋之分的4种不同组合,其中左刃左螺旋和右刃右螺旋在加工中的轴向切削阻力有把立铣刀从刀夹中拔出的趋势,需采用拉紧螺栓克服轴向切削阻力。而左刃右螺旋和右刃左螺旋的轴向切削阻力刚好把立铣刀压向夹头方,故多采用锥柄加扁尾,以适应大功率切削。因为右刃右螺旋立铣刀可让切屑沿排屑槽向柄部排出,易保证切削的平稳进行,符合机床主轴旋向标准,在高性能夹头的支持下装卸方便,本实用新型使用中螺旋角在30°~45°比较好。Example 1 For the pineapple end mill for carbon fiber reinforced composite materials, the number of right-handed teeth is 2-8, and the helix angle is 30°-60°. The conventional tooth shapes of spiral edge end mills are straight and helical. Compared with the straight edge, the spiral edge end mill has the advantages of light cutting, smooth cutting, high efficiency and wide application range, so it has been widely used in milling. According to the different requirements of processing equipment and processing objects, helical edge end mills have four different combinations of left edge, right edge, and left helix and right helix. The axial cutting resistance has a tendency to pull the end mill out of the toolholder, so tension bolts are needed to overcome the axial cutting resistance. However, the axial cutting resistance of the left helix and the right helix just press the end mill to the chuck, so a tapered shank and a flat tail are often used to adapt to high-power cutting. Because the right-edged and right-helical end mill can let the chips discharge to the handle along the chip flute, it is easy to ensure the smooth cutting, conforms to the standard of the rotation direction of the machine tool spindle, and is easy to load and unload with the support of the high-performance chuck. The utility model is used The helix angle is better between 30° and 45°.
实施例3:Example 3:
实施例1或2 所述的用于碳纤维增强复合材料的菠萝立铣刀,所述的刀径0.80mm至3.175mm,柄径3.175mm。最适合薄层复合材料的加工。For the pineapple end mill for carbon fiber reinforced composite materials described in Embodiment 1 or 2, the cutter diameter is 0.80mm to 3.175mm, and the shank diameter is 3.175mm. Most suitable for processing thin-layer composite materials.
实施例4:Example 4:
实施例1或2或3 所述的用于碳纤维增强复合材料的菠萝立铣刀,所述的螺旋角35°-55°,采用变化的螺旋角,单个刀具的螺旋角的变化不超过5°。螺旋刃立铣刀的螺旋角β就是刃倾角λs,较大的螺旋角可以增加同时工作的齿数,减少铣削过程中的冲击和增加其平稳性,并使立铣刀刀刃锋利、实际前角增大。除此之外,逆铣侧总是出现过切,而与之相反,顺铣侧总是出现漏切,且过切量和漏切量的最大点在立铣刀伸出最远处。这一点符合逆铣、顺铣时的刀具变形规律和刀具伸出长度的变形规律。本实用新型采用是不相等(或不同)的螺旋角,包括2种含义,1是沿每一切削刃长度是相同的,而另一种设计是沿着切削刃的长度,其螺旋角是变化的。例如,一把刀具前刀面的螺旋角是30°,中间某点的角度是37.5°,而后刀面的螺旋角可达到45°。螺旋角也同样可以从37°开始变化到30°。在切削过程中,刀具会受到阻尼的影响,这是由于立铣刀在以不同角度沿同一螺旋线进行切削。立铣刀都有不相同的螺旋槽间距(或不同的齿距),因此能够产生一个不同相位(异相)的切削运动从而阻止谐振的产生。例如,一把4槽立铣刀(或可变位的立铣刀)的齿距,在第1、2凹槽间为89°,2、3凹槽间为91°,以此类推,最终加起来等于360°。 当用一把普通立铣刀加工时,会产生持续不断的谐波振动,这是以铣刀螺旋角相同、切削刃平均分配为前提的。对于一套给定几何尺寸的立铣刀,当你从各个方向观察时,其螺旋角的变化不能超过5°的范围,否则将会产生稳定性方面的问题。由此而来的结果是一把刀具的各个切削刃在与工件表面接触并沿工件表面移动时,都会产生清晰的声音模式。由于切削刃会产生不同的声音模式,因此发生谐振的潜在危险可能就被忽略了。尽管可变螺旋角立铣刀沿每一条切削刃都有相同的几何特征,但对每条切削刃而言,仍可能产生前角、退刀槽、螺旋线、甚至从前刀面到后刀面的完全改变。在用这种铣刀加工工件时,刀具将不断改变其声音模式。In the pineapple end mill for carbon fiber reinforced composite materials described in
立铣刀的螺旋角小于30°前,不管是顺铣侧还是逆铣侧,垂直度误差值都随螺旋角的增大而增大。螺旋角大于40°以后,又随螺旋角的增大而变小。立铣刀有较小的螺旋角或有较大的螺旋角时,其铣槽加工的形状精度高。Before the helix angle of the end mill is less than 30°, whether it is the down milling side or the up milling side, the squareness error value increases with the increase of the helix angle. After the helix angle is greater than 40°, it becomes smaller with the increase of the helix angle. When the end mill has a small helix angle or a large helix angle, the shape accuracy of the milling groove is high.
实施例5:Example 5:
实施例1或2或3或4所述的用于碳纤维增强复合材料的菠萝立铣刀,实践证明。在螺旋角为0°,即切削刃为直刃时精度最高。但从立铣刀螺旋角的基本特性可知,这时完全呈断续切削,切削冲击力大,对刀具本身的制作精度要求高,加工精度对刀具本身精度的依赖性很强,刀具的使用寿命短,螺旋角与4刃立铣刀铣侧面实验在立式加工中心上,用螺旋角分别为30°和55°度的4刃立铣刀铣侧面,比较两种立铣刀随切削宽度(径向吃刀量)的变化对加工精度的影响。立铣刀直径为25mm,被切削材料为硬度94HRB的45号钢。切削全部采用顺铣方式和干式切削。切削参数统一为:进给速度100mm/min,切削速度26m/min,切削深度38mm。加工后所测得的垂直度误差、在切削宽度不是特别大时,55°的大螺旋角立铣刀比30°螺旋角立铣刀的加工精度高。这是由于当切削宽度较小时,螺旋角较大的立铣刀实际前角大,刃口锋利,切入性好;切向切削阻力小,减小能量消耗和刀具变形,切削轻快;切削刃与被切削面的接触点多,使立铣刀切入和切出时比较平稳,切削阻力的波动小,减弱了加工中对立铣刀的振动激励等因素的综合效应所致。The pineapple end mill for carbon fiber reinforced composite materials described in
通过本实用新型的应用,可以认定螺旋角:(1)螺旋角与切削阻力:切向切削阻力随螺旋角的增大而减小,轴向切削阻力随螺旋角的增大而增大。(2)螺旋角与前角:螺旋角的增大使立铣刀实际前角增大,刃口更加锋利。(3)螺旋角与被加工面精度:一般被加工面的垂直度和平面度公差值随螺旋角的增大而增加,但螺旋角大于40°以后反而随螺旋角的增大而呈减小趋势。(4)螺旋角与刀具寿命:圆周刃刃带的磨损速度与螺旋角大小基本成正比;另一方面,当螺旋角很小时,轻微的刀具磨损也将明显降低刀具的切削性能,引起振动,使刀具无法继续使用。当螺旋角过大时,刀具刚性变差,寿命减低。(5)螺旋角与被切削材料:加工硬度低的软质材料时,用大螺旋角,以增大前角,提高刃口的锋利性;加工硬度高的硬质材料时,用小螺旋角,以减小前角,提高刃口的刚性。Through the application of the utility model, the helix angle can be determined: (1) Helix angle and cutting resistance: the tangential cutting resistance decreases with the increase of the helix angle, and the axial cutting resistance increases with the increase of the helix angle. (2) Helix angle and rake angle: The increase of the helix angle increases the actual rake angle of the end mill and makes the cutting edge sharper. (3) Helix angle and the accuracy of the machined surface: Generally, the tolerance value of verticality and flatness of the machined surface increases with the increase of the helix angle, but when the helix angle is greater than 40°, it decreases with the increase of the helix angle. small trend. (4) Helix angle and tool life: the wear rate of the peripheral edge zone is basically proportional to the size of the helix angle; on the other hand, when the helix angle is small, slight tool wear will also significantly reduce the cutting performance of the tool and cause vibration. Make the tool unusable. When the helix angle is too large, the rigidity of the tool is deteriorated and the life is shortened. (5) Helix angle and the material to be cut: when processing soft materials with low hardness, use a large helix angle to increase the rake angle and improve the sharpness of the cutting edge; when processing hard materials with high hardness, use a small helix angle , to reduce the rake angle and improve the rigidity of the cutting edge.
螺旋角是螺旋刃立铣刀的主要参数之一,螺旋角大小的改变对刀具的切削加工性能有很大影响。随着数控加工技术和柔性制造技术的发展,如果进一步深入研究螺旋角大小对螺旋刃立铣刀切削性能的各种影响,在制造和选用螺旋刃立铣刀时,结合机床和工装卡具的性能,根据被加工材料的性能及加工精度、加工效率以及刀具材料和刀具寿命等因素综合考虑,优化螺旋角的大小,无疑会对促进高效、高精铣削加工起重要作用。The helix angle is one of the main parameters of the helical edge end mill, and the change of the helix angle has a great influence on the cutting performance of the tool. With the development of CNC machining technology and flexible manufacturing technology, if we further study the various effects of the helix angle on the cutting performance of helical edge end mills, when manufacturing and selecting helical edge end mills, combined with machine tools and fixtures Performance, according to the performance of the processed material, processing accuracy, processing efficiency, tool material and tool life and other factors, optimizing the size of the helix angle will undoubtedly play an important role in promoting high-efficiency and high-precision milling.
本实用新型的菠萝状铣刀,用于加工碳纤维、玻璃纤维、金属基复合材料、玻璃等各种复合材料。当切削刃长度有一定要求时,也可用于加工板材,将铣刀切削刃分为几段使用。毋庸置疑,是一个性价比极高且适用于市场上几乎所有整体硬质合金铣刀,本实用新型采用DURA纳米复合镀层,与普通金刚石镀层相比,可以大幅度提高耐磨性和镀层与基体的结合力,从而提高刀具的寿命。The pineapple-shaped milling cutter of the utility model is used for processing various composite materials such as carbon fiber, glass fiber, metal matrix composite material and glass. When the length of the cutting edge has a certain requirement, it can also be used to process the plate, and the cutting edge of the milling cutter is divided into several sections for use. Undoubtedly, it is a cost-effective and suitable for almost all solid carbide milling cutters on the market. This utility model adopts DURA nano-composite coating, which can greatly improve the wear resistance and the relationship between the coating and the substrate compared with ordinary diamond coatings. Bonding force, thereby increasing the life of the tool.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201320054725 CN203245429U (en) | 2013-01-31 | 2013-01-31 | Helical end milling cutter used for carbon fiber reinforced composite material |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201320054725 CN203245429U (en) | 2013-01-31 | 2013-01-31 | Helical end milling cutter used for carbon fiber reinforced composite material |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN203245429U true CN203245429U (en) | 2013-10-23 |
Family
ID=49371890
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 201320054725 Expired - Fee Related CN203245429U (en) | 2013-01-31 | 2013-01-31 | Helical end milling cutter used for carbon fiber reinforced composite material |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN203245429U (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103071840A (en) * | 2013-01-31 | 2013-05-01 | 哈尔滨理工大学 | Pineapple end mill for carbon fiber reinforced composite |
| TWI577477B (en) * | 2016-09-29 | 2017-04-11 | Ming-Gong Wu | Positive and negative rotation milling cutter structure |
-
2013
- 2013-01-31 CN CN 201320054725 patent/CN203245429U/en not_active Expired - Fee Related
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103071840A (en) * | 2013-01-31 | 2013-05-01 | 哈尔滨理工大学 | Pineapple end mill for carbon fiber reinforced composite |
| TWI577477B (en) * | 2016-09-29 | 2017-04-11 | Ming-Gong Wu | Positive and negative rotation milling cutter structure |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Chen et al. | Study on the surface quality of CFRP machined by micro-textured milling tools | |
| CN104999118B (en) | High-efficiency special drilling head for drilling holes in carbon fiber composite material | |
| CN103071840A (en) | Pineapple end mill for carbon fiber reinforced composite | |
| WO2013099841A1 (en) | Drill | |
| US7575401B1 (en) | PCD drill for composite materials | |
| CN105563665B (en) | Diamond-coated tools and preparation method and its application in graphite High-speed machining | |
| CN105598509A (en) | Drill bit special for high-quality drilling of carbon fiber reinforced composite | |
| CN102756252B (en) | Method for machining slotted holes on carbon fiber laminated boards | |
| CN107363312A (en) | Band edge sword slotting cutter for carbon fibre composite high-speed milling | |
| CN106624080B (en) | A kind of micro- tooth Double-margin brill ream one drill bit of ladder | |
| WO2011049095A1 (en) | Drill for composite material as well as machining method using same and machining apparatus using same | |
| Liang et al. | Feasibility of ultrasonic vibration assisted grinding for carbon fiber reinforced polymer with monolayer brazed grinding tools | |
| CN106270700A (en) | Multiple-cutting-edge micro-tooth milling cutter for carbon fibre composite high speed milling | |
| CN102211218A (en) | Diamond coated cutter and application thereof to processing of fiber composite material | |
| WO2019213888A1 (en) | Vertical blade double-ladder micro-tooth tool for perforating composite material and laminated structure thereof with high quality | |
| CN205167262U (en) | Be applied to diamond coated cutting tool among graphite high -speed machining | |
| CN214392488U (en) | Annular cutter for drilling composite material | |
| CN105642972A (en) | Drilling-reaming-dimpling integrated cutting tool | |
| CN114918467A (en) | A special tool and helical milling method for making holes in laminated materials | |
| CN203245429U (en) | Helical end milling cutter used for carbon fiber reinforced composite material | |
| CN211709503U (en) | CFRP is reverse groove drill bit for system hole | |
| CN109128323A (en) | A kind of double helix side edge milling cutter towards composite material hole milling | |
| CN205496646U (en) | Ream that drills and reams integration cutter | |
| CN203197323U (en) | Brazed-structure diamond drill bit for carbon fiber reinforced composite material | |
| CN109551015A (en) | A kind of efficient hard combined drill for machining composite material |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C17 | Cessation of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131023 Termination date: 20140131 |