CN2710107Y - Magnetoresistive random access memory circuit - Google Patents
Magnetoresistive random access memory circuit Download PDFInfo
- Publication number
- CN2710107Y CN2710107Y CN 200420049602 CN200420049602U CN2710107Y CN 2710107 Y CN2710107 Y CN 2710107Y CN 200420049602 CN200420049602 CN 200420049602 CN 200420049602 U CN200420049602 U CN 200420049602U CN 2710107 Y CN2710107 Y CN 2710107Y
- Authority
- CN
- China
- Prior art keywords
- magnetic axis
- coupled
- axis layer
- programming
- switching device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010586 diagram Methods 0.000 description 17
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Images
Landscapes
- Hall/Mr Elements (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
技术领域technical field
本实用新型是有关于一种存储阵列,特别是有关于一种磁阻式随机存取存储器的存储阵列。The utility model relates to a storage array, in particular to a storage array of a magnetoresistive random access memory.
背景技术Background technique
磁阻式随机存取存储器(Magnetic Random Access Memory,以下简称为MRAM)是一种金属磁性材料,其抗辐射性比半导体材料要高出许多,属于非挥发性存储器(Non-volatile Random Access Memory),当计算机断电、关机的时候,仍然可以保持存储性。Magneto-resistive random access memory (Magnetic Random Access Memory, hereinafter referred to as MRAM) is a metal magnetic material, its radiation resistance is much higher than that of semiconductor materials, and it belongs to non-volatile random access memory (Non-volatile Random Access Memory) , when the computer is powered off or shut down, it can still maintain storage.
MRAM是利用磁电阻特性储存记录信息,具有低耗能、非挥发、以及无读写次数限制的特性。其运作的基本原理与在硬盘上存储数据一样,数据以磁性的方向为依据,储存为0或1,所储存的资料具有永久性,直到被外界的磁场影响之后,才会改变这个磁性数据。MRAM uses magnetoresistance characteristics to store and record information, and has the characteristics of low energy consumption, non-volatility, and no limit on the number of reads and writes. The basic principle of its operation is the same as storing data on a hard disk. The data is stored as 0 or 1 based on the magnetic direction. The stored data is permanent and will not change the magnetic data until it is affected by an external magnetic field.
图1是显示传统MRAM阵列的架构图。MRAM单元10A及10B的顶部是耦接于位元线Bn,而其底部是耦接于电极12。晶体管14的栅极是耦接于字符线(Wm,Wm+1),源极是接地,而其汲极是分别耦接于对应的电极12。用以写入资料的资料线(16A、16B)与电极12之间具有一绝缘层13,用以隔离资料线16A、16B与电极12。Figure 1 is an architectural diagram showing a conventional MRAM array. The tops of
图2A及图2B是显示MRAM单元10的详细结构图。电流可垂直由一自由磁轴层102透过绝缘层(tunnel junction)104流过(或穿过)固定磁轴层106。自由磁轴层102的磁轴方向可受其它磁场的影响而变化,而固定磁轴层106的磁轴方向固定,其磁轴方向分别如图2A及图2B的标号108A及108B所示。当自由磁轴层102与固定磁轴层106的磁轴方向为同一方向时(如图2A所示),MRAM单元会有低电阻的情况,而当自由磁轴层102与固定磁轴层106为不同方向时,则MRAM单元便会有具有高电阻的特质。参阅图1,自由磁轴层102的磁轴方向是藉由资料线16A、16B所产生的磁场、并结合位元线产生的磁场而改变。2A and 2B are detailed structural diagrams showing the MRAM cell 10 . Current can flow vertically from a free
各MRAM单元的自旋反转磁场是由流经位元线Bn与资料线的电流磁场所共同合成的。经由此动作则只有被选择的MRAM单元的磁轴会进行反转,而得以顺利进行记录的动作。至于未被选择的存储元部分,则只有位元线或是资料线的其中之一者会被施加电流磁场,因此无法形成足够的反转磁场,所以无法进行信息写入动作。The spin reversal magnetic field of each MRAM cell is jointly synthesized by the current magnetic field flowing through the bit line Bn and the data line. Through this operation, only the magnetic axes of the selected MRAM cells will be reversed, and the recording operation can be performed smoothly. As for the unselected memory cells, only one of the bit line or the data line will be applied with a current magnetic field, so a sufficient inversion magnetic field cannot be formed, so the information writing operation cannot be performed.
上述位元线与资料线的电流所产生的磁场,必须经过精确的设计才能够使得MRAM阵列正常执行编程动作。参阅图3,图3是显示位元线与资料线所提供的磁场与MRAM切换条件的关系图。横向磁场Ht是由位元线的电流所提供,而纵向磁场H1是由资料线的电流所提供,而在没有横向磁场Ht的情况下,纵向磁场H1为H0时,将导致MRAM单元切换其导通程度。若有横向磁场Ht的存在,此时使MRAM单元切换的临界值将降低,因此,施加较H0小的纵向磁场H1即可使MRAM单元切换其导通状态。The magnetic fields generated by the currents of the above-mentioned bit lines and data lines must be precisely designed to enable the MRAM array to perform programming operations normally. Referring to FIG. 3 , FIG. 3 is a graph showing the relationship between the magnetic field provided by the bit line and the data line and the switching condition of the MRAM. The transverse magnetic field H t is provided by the current of the bit line, and the longitudinal magnetic field H 1 is provided by the current of the data line, and in the absence of the transverse magnetic field H t , when the longitudinal magnetic field H 1 is H 0 , it will cause The MRAM cell switches its conduction level. If there is a transverse magnetic field H t , the critical value for switching the MRAM cell will be reduced. Therefore, applying a longitudinal magnetic field H 1 smaller than H 0 can make the MRAM cell switch its conduction state.
在虚线所形成的区域A中,MRAM单元呈第一导通状态(以高阻抗为例),而在区域A以外的部分,MRAM单元将受到磁场的影响而切换为另一导通状态(以低阻抗为例)。In the region A formed by the dotted line, the MRAM cell is in the first conduction state (take high impedance as an example), and in the part outside the region A, the MRAM cell will be switched to another conduction state (taken as high impedance) under the influence of the magnetic field low impedance as an example).
在读取MRAM资料时,以MRAM单元10A为例,此时字符线Wm导通晶体管14,而根据MRAM单元10A的导通状态,即可决定位元线Bn所提供的电流是否能够经由MRAM单元10A、晶体管14而流至接地点,藉以读取MRAM单元10A所储存的资料。When reading MRAM data, take the
在写入步骤中,由于磁场的大小与电流的截面中心距离成反比,在传统MRAM阵列的架构下,若资料线16A上具有编程电流,资料线16A所产生的磁场除了可改变MRAM单元10A的导通状态,位于MRAM阵列中,与资料线16A平行以及MRAM单元10A所在的整行的MRAM单元,其磁轴方向同样会受到资料线16A所产生的磁场影响,甚至位于另一行的MRAM单元10B同样会受到影响,因此,资料线16A所供应的磁场不可过大。In the writing step, since the magnitude of the magnetic field is inversely proportional to the center distance of the cross-section of the current, under the structure of the traditional MRAM array, if there is a programming current on the
另外,当资料线16A所供应的磁场过小时,会造成MRAM单元10A的导通状态无法切换。因此,传统MRAM阵列的位元线与资料线的电流量,必须经过精确的设计才能够使得MRAM阵列正常执行编程动作。In addition, when the magnetic field supplied by the
亦即,若资料线16A所供应的磁场过大时,此时固然MRAM单元10A可写入资料,然其它MRAM单元也有可能因此被写入资料,造成编程错误(programming disturb)。而当资料线16A所供应的磁场过小时,又无法达到写入资料至特定MRAM单元的效果。That is, if the magnetic field supplied by the
然而,若位元线与资料线的电流量必须控制地如此精确,当有外界磁场干扰,或者是外部环境出现变化时(如温度、湿度等),势必会造成编程错误,显示传统需要精确控制编程电流的MRAM架构具有可靠度不佳的缺点。However, if the currents of the bit lines and data lines must be controlled so accurately, when there is external magnetic field interference, or the external environment changes (such as temperature, humidity, etc.), it will inevitably cause programming errors, which shows that the traditional method requires precise control. The MRAM architecture of programming current has the disadvantage of poor reliability.
因此,台湾积体电路制造公司提出一种磁阻式随机存取存储器电路以克服上述缺点。图4是显示台湾积体电路制造公司所提出的磁阻式随机存取存储单元(MRAM cell)的架构示意图。Therefore, Taiwan Semiconductor Manufacturing Company proposes a magnetoresistive random access memory circuit to overcome the above disadvantages. FIG. 4 is a schematic diagram showing the architecture of a magnetoresistive random access memory cell (MRAM cell) proposed by Taiwan Semiconductor Manufacturing Company.
MRAM单元40A及40B的自由磁轴层是电性连接于以一既定方向配置的位元线Bn,而MRAM单元40A及40B的固定磁轴层是分别电性连接于资料线42A及42B。由于自由磁轴层与资料线之距离仅为几个埃(angstrom)(范围约为8-15埃),因此能够接收到很大的磁场。故,相较于习知技术,仅需少量的编程电流IW即可改变自由磁轴层102的磁轴方向,因此达到省电的效果。另外,参阅图4,资料线42A与MRAM单元40A的距离甚小于其与MRAM单元40B的距离,因此资料线42A对MRAM单元40A的影响远大于对MRAM单元40B的影响,因此不会改变相邻MRAM单元40B的阻抗而发生编程错误的情形。The free magnetic axis layers of the
图5是显示如图4所述的磁阻式随机存取存储阵列(MRAM)电路的架构图。在图5中,为了简化图标,并未显示资料线,事实上,可将资料线与MRAM单元的固定磁轴层视为一体。FIG. 5 is a structural diagram showing a magnetoresistive random access memory array (MRAM) circuit as shown in FIG. 4 . In FIG. 5 , in order to simplify the diagram, the data lines are not shown. In fact, the data lines and the fixed magnetic axis layer of the MRAM unit can be regarded as one.
当要于MRAM单元50写入资料时,此时存储阵列的周边电路选取字符线Wm,并浮接位元线Bn,且由编程线PL供应编程电流IW。由于此时字符线Wm是高位准,因此晶体管52A以及52B导通,故编程电流IW流经MRAM单元50而改变MRAM单元50的导通状态以达到写入资料的目的。When data is to be written into the
当要读取MRAM单元50所储存的资料时,周边电路选取该MRAM单元50所属的字符线Wm,且编程线PL,PL接地,此时于位元线Bn提供读取电流Ir使其经由MRAM单元50以及导通的晶体管52A、52B而流至接地的编程线PL、PL,再根据于位元线Bn所侦测的电压值而得知MRAM单元50此时所储存的资料。When the data stored in the
然而,当于上述电路执行编程动作时,编程电流必须流经晶体管52A以及52B,由于编程电流相当大,因此必须加大晶体管52A以及52B的面积以承受大量的编程电流。但是,如此却会造成整个存储阵列的尺寸变大,使得MRAM存储阵列尺寸的缩小发展遭遇技术瓶颈。However, when the programming operation is performed in the above circuit, the programming current must flow through the
发明内容Contents of the invention
有鉴于此,为了解决上述问题,本实用新型主要目的在于提供一种磁阻式随机存取存储阵列电路,能够有效减小目前MRAM存储阵列的尺寸。In view of this, in order to solve the above problems, the main purpose of the present invention is to provide a magnetoresistive random access memory array circuit, which can effectively reduce the size of the current MRAM memory array.
为获致上述的目的,本实用新型提出一种磁阻式随机存取存储器电路,包括下列组件。磁阻式存储单元,具有固定磁轴层、自由磁轴层,以及设置于固定磁轴层以及自由磁轴层之间的绝缘层。第一开关装置是耦接于固定磁轴层的一端,并具有第一控制闸。第二开关装置是耦接于自由磁轴层,并具有第二控制闸。位元线是耦接于第二开关装置,用以于读取动作时提供读取电流。第一编程线是耦接于固定磁轴层的另一端,用以于执行编程动作时提供编程电流。第二编程线是耦接于第一开关装置。字符线是耦接于第一控制闸以及第二控制闸,用以提供致能信号以导通第一开关装置以及第二开关装置。In order to achieve the above purpose, the utility model proposes a magnetoresistive random access memory circuit, which includes the following components. The magnetoresistive memory unit has a fixed magnetic axis layer, a free magnetic axis layer, and an insulating layer arranged between the fixed magnetic axis layer and the free magnetic axis layer. The first switch device is coupled to one end of the fixed magnetic axis layer and has a first control gate. The second switch device is coupled to the free magnetic axis layer and has a second control gate. The bit line is coupled to the second switch device for providing a read current during a read operation. The first programming line is coupled to the other end of the fixed magnetic axis layer, and is used for providing a programming current when performing a programming operation. The second programming line is coupled to the first switch device. The word line is coupled to the first control gate and the second control gate for providing an enable signal to turn on the first switch device and the second switch device.
另外,本实用新型提出一种磁阻式随机存取存储器电路,包括下列组件。磁阻式存储单元,具有固定磁轴层、自由磁轴层,以及设置于固定磁轴层以及自由磁轴层之间的绝缘层。第一操作线是耦接于固定磁轴层的一端,用以于读取动作时提供读取电流以及于编程时提供编程电流。第一开关装置是耦接于自由磁轴层,并具有第一控制闸。第二开关装置是耦接于固定磁轴层的另一端,并具有第二控制闸。第一选取线是耦接于第一控制闸,用以提供第一选取信号。第二选取线是耦接于第二控制闸,用以提供第二选取信号。第二操作线是耦接于第一开关装置以及第二开关装置。In addition, the utility model proposes a magnetoresistive random access memory circuit, which includes the following components. The magnetoresistive memory unit has a fixed magnetic axis layer, a free magnetic axis layer, and an insulating layer arranged between the fixed magnetic axis layer and the free magnetic axis layer. The first operation line is coupled to one end of the fixed magnetic axis layer, and is used for providing a read current during a read operation and a programming current during a program. The first switch device is coupled to the free magnetic axis layer and has a first control gate. The second switch device is coupled to the other end of the fixed magnetic axis layer and has a second control gate. The first selection line is coupled to the first control gate for providing a first selection signal. The second selection line is coupled to the second control gate for providing a second selection signal. The second operating line is coupled to the first switch device and the second switch device.
另外,本实用新型提出一种磁阻式随机存取存储器电路,包括下列组件。多个磁阻式存储单元,具有固定磁轴层、自由磁轴层,以及设置于固定磁轴层以及自由磁轴层之间的绝缘层。第一操作线是耦接于固定磁轴层的一端,用以于读取动作时提供读取电流以及于编程时提供编程电流。多个字符线,耦接于自由磁轴层,用以于读取动作时提供读取电流。多个第一开关装置是耦接于一磁阻式存储单元的固定磁轴层的两端。多个第二开关装置是耦接于另一磁阻式存储单元的固定磁轴层的两端。多个编程线是耦接于第一开关装置与第二开关装置之间。第一字符线是耦接于上述第一开关装置。而第二字符线是耦接于上述第二开关装置。In addition, the utility model proposes a magnetoresistive random access memory circuit, which includes the following components. A plurality of magnetoresistive memory units have a fixed magnetic axis layer, a free magnetic axis layer, and an insulating layer arranged between the fixed magnetic axis layer and the free magnetic axis layer. The first operation line is coupled to one end of the fixed magnetic axis layer, and is used for providing a read current during a read operation and a programming current during a program. A plurality of word lines, coupled to the free magnetic axis layer, are used for providing a read current during a read operation. A plurality of first switching devices are coupled to two ends of a fixed magnetic axis layer of a magnetoresistive memory unit. The plurality of second switch devices are coupled to two ends of the fixed magnetic axis layer of another magnetoresistive memory unit. A plurality of programming lines are coupled between the first switch device and the second switch device. The first word line is coupled to the first switch device. And the second word line is coupled to the above-mentioned second switch device.
附图说明Description of drawings
图1是显示传统MRAM阵列的架构图。Figure 1 is a diagram showing the architecture of a conventional MRAM array.
图2A及图2B是显示MRAM单元10的详细结构图。2A and 2B are detailed structural diagrams showing the MRAM cell 10 .
图3是显示位元线与资料线所提供的磁场与MRAM切换条件的关系图。FIG. 3 is a graph showing the relationship between the magnetic field provided by the bit line and the data line and the switching condition of the MRAM.
图4是显示另一传统磁阻式随机存取存储单元(MRAM cell)的架构示意图。FIG. 4 is a schematic diagram showing the architecture of another conventional magnetoresistive random access memory cell (MRAM cell).
图5是显示如图4所述的磁阻式随机存取存储阵列(MRAM)电路的架构图。FIG. 5 is a structural diagram showing a magnetoresistive random access memory array (MRAM) circuit as shown in FIG. 4 .
图6是显示根据本实用新型实施例所述的磁阻式随机存取存储(MRAM)单元的结构图。FIG. 6 is a structural diagram showing a magnetoresistive random access memory (MRAM) unit according to an embodiment of the present invention.
图7是显示根据本实用新型第一实施例所述的磁阻式随机存取存储阵列(MRAM)电路的架构图。FIG. 7 is a structural diagram showing a magnetoresistive random access memory array (MRAM) circuit according to the first embodiment of the present invention.
图8是显示根据本实用新型第二实施例所述的磁阻式随机存取存储阵列(MRAM)电路的架构图。FIG. 8 is a structural diagram showing a magnetoresistive random access memory array (MRAM) circuit according to a second embodiment of the present invention.
图9是显示根据本实用新型第三实施例所述的磁阻式随机存取存储阵列(MRAM)电路的架构图。FIG. 9 is a structural diagram showing a magnetoresistive random access memory array (MRAM) circuit according to a third embodiment of the present invention.
符号说明:Symbol Description:
10A、10B、40A、40B、50、60、70A、70B、80A、80B、90A、90B:MRAM单元;10A, 10B, 40A, 40B, 50, 60, 70A, 70B, 80A, 80B, 90A, 90B: MRAM cells;
12:电极; 13、104:绝缘层;12: electrode; 13, 104: insulating layer;
14、52A、52B、62、64、72A、72B、74A、74B、82A、82B、84A、84B、92A、92B、94A、94B:晶体管;14, 52A, 52B, 62, 64, 72A, 72B, 74A, 74B, 82A, 82B, 84A, 84B, 92A, 92B, 94A, 94B: transistors;
16A、16B、42A、42B:资料线;16A, 16B, 42A, 42B: data line;
102、106:电磁层;102, 106: electromagnetic layer;
108A、108B:标号;108A, 108B: labels;
A:区域;A: area;
Bn、B1~B4:位元线、操作线;B n , B1~B4: bit lines, operation lines;
Ht:横向磁场;H t : transverse magnetic field;
H1、H0:纵向磁场;H 1 , H 0 : longitudinal magnetic field;
IW:编程电流; Ir:读取电流;I W : programming current; I r : reading current;
PL、PL、P1~P4:编程线;PL, PL, P1~P4: programming line;
Wm、W1~W3、W1~W3:字符线、选取线。W m , W1~W3, W1~W3: character line, selection line.
具体实施方式Detailed ways
参阅图6,图6是显示根据本实用新型实施例所述的磁阻式随机存取存储(MRAM)单元的结构图。MRAM单元60包括固定磁轴层106、自由磁轴层102,以及设置于固定磁轴层106以及自由磁轴层102之间的绝缘层(magnetictunneling junction)104,MRAM单元60的磁阻(magneto-resistance)是由固定磁轴层106以及自由磁轴层102的磁轴方向所决定。当自由磁轴层102与固定磁轴层106的磁轴方向为同一方向时,MRAM单元会有低电阻的情况,而当自由磁轴层102与固定磁轴层106为不同方向时,则MRAM单元便会有具有高电阻的特质。Referring to FIG. 6 , FIG. 6 is a structural diagram showing a magnetoresistive random access memory (MRAM) unit according to an embodiment of the present invention. The
NMOS晶体管62是耦接于自由磁轴层102,用以于读取动作时控制读取电流Ir流经MRAM单元60。NMOS晶体管64是耦接于固定磁轴层106,用以于编程动作时控制由编程线PL所提供的编程电流Iw流经MRAM单元60。在此,由于编程电流Iw的电流量远大于读取电流Ir的电流量,约为两倍至两百倍之间,因此相对于NMOS晶体管64,NMOS晶体管62的尺寸较小。相较于传统技术,参阅图4与图5,晶体管52A以及52B皆设置于编程电流Iw的电流路径上,因此传统技术所需的尺寸较大。故根据本实用新型实施例所述的MRAM单元设计能够有效减小MRAM阵列的尺寸。The
以下将介绍根据本实用新型实施例所述的磁阻式随机存取存储阵列与周边电路的设计。The design of the magnetoresistive random access memory array and peripheral circuits according to the embodiment of the present invention will be introduced below.
第一实施例first embodiment
图7是显示根据本实用新型第一实施例所述的磁阻式随机存取存储阵列(MRAM)电路的架构图。其中,W1~W3以及W1~W3为字符线,P1~P4为编程线,而B1~B4为位元线。FIG. 7 is a structural diagram showing a magnetoresistive random access memory array (MRAM) circuit according to the first embodiment of the present invention. Wherein, W1-W3 and W1-W3 are word lines, P1-P4 are programming lines, and B1-B4 are bit lines.
NMOS晶体管72A与72B的源极是分别耦接于磁阻式存储单元70A与70B的自由磁轴层102,其栅极分别耦接至字符线W2与W2,而汲极分别耦接至位元线B3与B2。另外,NMOS晶体管74A与74B的汲极是分别耦接于磁阻式存储单元70A与70B的固定磁轴层106,其栅极同样分别耦接至字符线W2与W2,而源极是分别耦接至编程线P3与P4。而编程线P2与P3分别耦接至磁阻式存储单元70A与70B的固定磁轴层106。The sources of the
当要于MRAM单元70A写入资料时,此时选取字符线W2以导通NMOS晶体管74A,并由编程线P3提供编程电流Iw且将编程线P4接地。因此编程电流Iw流经MRAM单元70A的固定磁轴层106,并经由NMOS晶体管74A与编程线P4而流至接地点。在编程电流Iw流经MRAM单元70A之时,其产生的磁场将改变MRAM单元70A的导通状态,达到写入资料的目的。特别注意的是,由于此时编程电流Iw流经MRAM单元时所遇到的阻抗远高于直接经由固定磁轴层106以及NMOS晶体管74A而流入接地点,因此绝大部分的编程电流Iw皆由固定磁轴层106以及NMOS晶体管74A而流入接地点。When data is to be written into the
当要读取MRAM单元70A所储存的资料时,此时选取字符线W2以导通NMOS晶体管72A与NMOS晶体管74A,而位元线B3所提供的读取电流Ir经由MRAM单元70A流至接地点,且其它线路皆接地,并根据所侦测位元线B3的电压可得知MRAM单元70A目前所储存的资料。When the data stored in the
第二实施例second embodiment
图8是显示根据本实用新型第二实施例所述的磁阻式随机存取存储阵列(MRAM)电路的架构图。其中,W1~W2以及W1~W2为选取线,而B1~B2以及B1~B2为操作线。FIG. 8 is a structural diagram showing a magnetoresistive random access memory array (MRAM) circuit according to a second embodiment of the present invention. Wherein, W1-W2 and W1-W2 are selection lines, and B1-B2 and B1-B2 are operation lines.
NMOS晶体管82A与82B的汲极是分别耦接于磁阻式存储单元80A与80B的自由磁轴层102,其栅极皆耦接至选取线W2,而源极分别耦接至操作线B2与B1。另外,NMOS晶体管84A与84B的汲极是分别耦接于磁阻式存储单元80A与80B的固定磁轴层106,其栅极皆耦接至选取线W2,而源极同样分别耦接至操作线B2与B1。而操作线B1与B2分别耦接至磁阻式存储单元80A与80B的固定磁轴层106。The drains of the
当要于MRAM单元80A写入资料时,此时选取选取线W2以导通NMOS晶体管84A,并由操作线B2提供编程电流Iw且将操作线B2接地。因此编程电流Iw流经MRAM单元80A的固定磁轴层106,并经由NMOS晶体管84A与操作线B2而流至接地点。在编程电流Iw流经MRAM单元80A之时,其产生的磁场将改变MRAM单元80A的导通状态,达到写入资料的目的。When data is to be written into the
当要读取MRAM单元80A所储存的资料时,此时选取选取线W2以导通NMOS晶体管82A,而操作线B2所提供的读取电流Ir经由MRAM单元80A以及NMOS晶体管82A而流至接地点,并根据所侦测操作线B2的电压可得知MRAM单元80A目前所储存的资料。When the data stored in the
第三实施例third embodiment
图9是显示根据本实用新型第三实施例所述的磁阻式随机存取存储阵列(MRAM)电路的架构图。其中,W1~W2以及W1~W2为字符线,P1~P3为编程线,而B1~B2为位元线。FIG. 9 is a structural diagram showing a magnetoresistive random access memory array (MRAM) circuit according to a third embodiment of the present invention. Wherein, W1-W2 and W1-W2 are word lines, P1-P3 are programming lines, and B1-B2 are bit lines.
NMOS晶体管92A与94A的源极是分别耦接于磁阻式存储单元90A与90B的固定磁轴层,其栅极分别耦接至字符线W1与W1,而汲极分别耦接至编程线P1与P2。另外,NMOS晶体管92B与94B的汲极是分别耦接于磁阻式存储单元90A与90B的固定磁轴层,其栅极同样分别耦接至字符线W1与W1,而源极是分别耦接至编程线P2与P3。在此,位元线B1与B2是分别耦接至磁阻式存储单元90A与90B的自由磁轴层,而编程线P2是耦接至NMOS晶体管92B与94A的连接点。The sources of the
字符线W1与W1是分别用以控制NMOS晶体管92A与92B以及NMOS晶体管94A与94B的导通与关闭。相较于如图4所示的传统技术,根据本实用新型第三实施例所述的磁阻式随机存取存储阵列电路使用较少数量的编程线,而增加了字符线。由于各编程线与NMOS晶体管之间需藉由接触窗才得以接触,然而,因为接触窗需要较大的面积,故导致整个存储阵列因为大量的接触窗而增加面积。在本实施例中,藉由不同的字符线来控制同一行(列)的存储单元,由于字符线并不需要接触窗的设计,因此相较于编程线对整个存储阵列体积的影响较小,故有效减小存储阵列的面积。The word lines W1 and W1 are respectively used to control the on and off of the
当要于MRAM单元90B写入资料时,此时存储阵列的周边电路选取字符线W1,并浮接位元线B2,且由编程线P2供应编程电流IW。由于此时字符线W1是高位准,因此晶体管94A以及94B导通,故编程电流IW流经MRAM单元90B而改变MRAM单元90B的导通状态以达到写入资料的目的。When data is to be written into the
当要读取MRAM单元90B所储存的资料时,周边电路选取该MRAM单元90B所属的字符线W1,且编程线P1与P3接地,此时于位元线B2提供读取电流Ir使其经由MRAM单元90B以及导通的晶体管94A、94B而流至接地的编程线P2、P3,再根据于位元线B2所侦测的电压值而得知MRAM单元90B此时所储存的资料。When the data stored in the
另外,根据本实用新型第一实施例、第二实施例与第三实施例所述的磁阻式随机存取存储阵列电路,其中所使用的开关并不限定于NMOS晶体管,若改变电路用以导通开关信号的位准,则同样可采用PMOS晶体管做为开关,不可用以限定本实用新型的范围。In addition, according to the magnetoresistive random access memory array circuits described in the first embodiment, the second embodiment and the third embodiment of the present invention, the switches used are not limited to NMOS transistors, if the circuit is changed to The level of the turn-on switch signal can also use a PMOS transistor as a switch, which cannot be used to limit the scope of the present invention.
综上所述,根据本实用新型所述的磁阻式随机存取存储阵列电路,在第一实施例与第二实施例中,能够根据线路的实际需要而采用较小尺寸的开关组件,而在第三实施例中,藉由增加需要较少面积的字符线以取代需要占用相当大面积的编程线。上述各实施例所揭露的电路皆能有效减小目前MRAM存储阵列的尺寸。To sum up, according to the magnetoresistive random access memory array circuit described in the present invention, in the first embodiment and the second embodiment, it is possible to use smaller-sized switch components according to the actual needs of the circuit, and In the third embodiment, the programming lines which occupy a relatively large area are replaced by adding word lines which require a relatively small area. The circuits disclosed in the above embodiments can effectively reduce the size of the current MRAM storage array.
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 200420049602 CN2710107Y (en) | 2004-04-22 | 2004-04-22 | Magnetoresistive random access memory circuit |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 200420049602 CN2710107Y (en) | 2004-04-22 | 2004-04-22 | Magnetoresistive random access memory circuit |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN2710107Y true CN2710107Y (en) | 2005-07-13 |
Family
ID=34851499
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 200420049602 Expired - Lifetime CN2710107Y (en) | 2004-04-22 | 2004-04-22 | Magnetoresistive random access memory circuit |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN2710107Y (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102568579A (en) * | 2010-12-09 | 2012-07-11 | 英飞凌科技股份有限公司 | Non-volatile memory with enhanced efficiency for address asymmetric NVM cells |
-
2004
- 2004-04-22 CN CN 200420049602 patent/CN2710107Y/en not_active Expired - Lifetime
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102568579A (en) * | 2010-12-09 | 2012-07-11 | 英飞凌科技股份有限公司 | Non-volatile memory with enhanced efficiency for address asymmetric NVM cells |
| CN102568579B (en) * | 2010-12-09 | 2016-04-20 | 英飞凌科技股份有限公司 | Non-volatile memory with enhanced efficiency for address asymmetric NVM cells |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN100378864C (en) | magnetoresistive random access memory circuit | |
| US8125819B2 (en) | Asymmetric write current compensation using gate overdrive for resistive sense memory cells | |
| US7668000B2 (en) | Method and apparatus providing a cross-point memory array using a variable resistance memory cell and capacitance | |
| CN100419904C (en) | magnetoresistive random access memory circuit | |
| US8040713B2 (en) | Bit set modes for a resistive sense memory cell array | |
| CN101036195A (en) | Spin-transfer based MRAM using angular-dependent selectivity | |
| US8098507B2 (en) | Hierarchical cross-point array of non-volatile memory | |
| CN1365117A (en) | Heat auxiliary switching of magnetic random access storage device | |
| CN1777956A (en) | Simultaneous read/write from/to different memory cells | |
| CN101635166A (en) | Information storage devices using magnetic domain wall movement and methods of operating the same | |
| CN1534679A (en) | Magnetic Random Access Memory Using Magnetoresistance Effect to Store Information | |
| CN1757076A (en) | MRAM structure with electrically isolated read and write circuits | |
| JP2005526351A (en) | MRAM cell and array structure with maximum read signal and reduced electromagnetic interference | |
| CN1534680A (en) | Magnetic resistance type random access memory circuit | |
| US20100157663A1 (en) | Information storage device and method of operating the same | |
| CN1666292A (en) | Circuit and method of writing a toggle memory | |
| US8203870B2 (en) | Flux programmed multi-bit magnetic memory | |
| CN118969036A (en) | Storage arrays, memory and electronic devices | |
| US8363450B2 (en) | Hierarchical cross-point array of non-volatile memory | |
| CN1229807C (en) | Memory devices with short readout times | |
| CN2710107Y (en) | Magnetoresistive random access memory circuit | |
| CN1957423A (en) | Inverted Magnetic Tunnel Junction for Power Efficient Byte Writing in MRAM | |
| CN2710106Y (en) | Magnetoresistive random access memory circuit | |
| US7102917B2 (en) | Memory array method and system | |
| CN2757293Y (en) | Magnetoresistive memory unit and magnetoresistive random access memory circuit |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C17 | Cessation of patent right | ||
| CX01 | Expiry of patent term |
Expiration termination date: 20140422 Granted publication date: 20050713 |