CS214553B1 - The method of galvanic application of a functional layer resistant to abrasion - Google Patents
The method of galvanic application of a functional layer resistant to abrasion Download PDFInfo
- Publication number
- CS214553B1 CS214553B1 CS827479A CS827479A CS214553B1 CS 214553 B1 CS214553 B1 CS 214553B1 CS 827479 A CS827479 A CS 827479A CS 827479 A CS827479 A CS 827479A CS 214553 B1 CS214553 B1 CS 214553B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- abrasion
- functional layer
- salt
- chromium
- layer
- Prior art date
Links
Landscapes
- Electroplating Methods And Accessories (AREA)
Abstract
Vynález spadá do odboru galvanickej techniky.Rieši spfrsob galvanického naná - šania funkčněj vrstvy odolnéj hlavně proti otěru, vyznačujúci sa tým, že sa nanáša vrstva hrůbky 0,02 až 0,04 mm, s výhodou zo zliatiny chróm-molybdén, vylučovaná z kúpeía obsahujúceho 150 až 250 kg, rn-^ kysličníka chromového, 30 až 75 kg., m molybdenanu amonného, 1,0 az 2,5 kg. -3 m kyseliny fluorokremičitej alebo jej o soli a 0,6 až 1,0 kg.m kyseliny sírovej alebo jej soli pri teplote 45 až 60 °0 a , ' 3 „ 3 —2 prudovej hustotě 3,10 az 5»10 A m ·The invention falls into the field of galvanic technology. It solves the problem of galvanic application - application of a functional layer resistant mainly to abrasion, characterized by the fact that a layer of thickness 0.02 to 0.04 mm is applied, preferably from a chromium-molybdenum alloy, secreted from a bath containing 150 to 250 kg, rn-^ chromium oxide, 30 to 75 kg., m of ammonium molybdate, 1.0 to 2.5 kg. -3 m of fluorosilicic acid or its salt and 0.6 to 1.0 kg.m of sulfuric acid or its salt at a temperature of 45 to 60 °0 and , ' 3 „ 3 —2 current density of 3.10 to 5»10 A m ·
Description
Vynález spadá do odboru galvanickej techniky.Rieši spfrsob galvanického naná šania funkčněj vrstvy odolnéj hlavně proti otěru, vyznačujúci sa tým, že sa nanáša vrstva hrůbky 0,02 až 0,04 mm, s výhodou zo zliatiny chróm-molybdén, vylučovaná z kúpeía obsahujúceho 150 až 250 kg, rn-^ kysličníka chromového, 30 až 75 kg., m molybdenanu amonného, 1,0 az 2,5 kg.The present invention is in the field of electroplating. It relates to a method of galvanic deposition of a wear-resistant functional layer, characterized in that a thickness of 0.02 to 0.04 mm, preferably of chromium-molybdenum alloy, deposited from a bath containing 150 up to 250 kg, rn - 2 of chromium oxide, 30 to 75 kg, m of ammonium molybdate, 1.0 to 2.5 kg.
m kyseliny fluorokremičitej alebo jej o soli a 0,6 až 1,0 kg.m kyseliny sírovej alebo jej soli pri teplote 45 až 60 °0 a , ' 3 „ 3 —2 prudovej hustotě 3,10 az 5»10 A m ·m of fluorosilicic acid or a salt thereof and 0.6 to 1.0 kg.m of sulfuric acid or a salt thereof at a temperature of 45 to 60 ° 0 and a.
214 553214 553
Vynález sa týká sposobu galvanického nanášania funkčnej vrstvy odolnéj hlavně proti otěru na navzájom sa pohybujúce styčné plochy súčastí zaradení.The present invention relates to a method for the galvanic deposition of a wear-resistant functional layer on mutually moving contact surfaces of the components of the devices.
Povrch funkčných plóbh súčiastok, ktoré sú v prevádzke vystavené treniu a dynamickému namáhaniu, pričom súčasne moža pracoval v extrémnych podmienkach z híadiska teploty alebo agresivity prostredia, ako sú například piestne krúžky, piesty, ventily, čapy, funkčně časti vačkových a lomených hriadeíov u spaíovacích motorov a kompresorov, časti prevódoviek ako sú hriadele, ozubené kolesá a synohronizačné krúžky atá, sa doteraz vyrábal tromi sposobmi· Pri prvom sposobe sa súčiastky vyrábali z kusá zušíachteného materiálu, čo bolo náročné na spotřebu vysokolegovaných materiálov. Pri obrábaní boli spravidla potřebné veíké odběry zle obrobiteíného materiálu, čo bolo nevýhodné Z híadiska pracnosti, spotřeby energie, nástrojov a návaznosti na strojové vybavenie. Pri druhom spÓsobe sa na funkčné plochy navárala vrstva materiálu požadovaných vlastností a potom sa povrch obrábal ha konečný tvar a rozměry. Aj pri tomto sposobe bolo zhotovovanie funkčných ploch obrábaním prácne a nákladné najma z dovodov nerovnoměrného přídavku na obrábanie a vlastností návaru, najma jeho povrchových vrstiev. Nevýhodou tohoto sp<5sobu bolo tiež to, že sa nedá dodržaí přesná a rovnoměrná hrubka návaru ani po obrobení, ako aj vysoké zostatkové napatia medzi návarom a základným materiálom. Pri trefom sposoba sa galvanicky vylučovala na funkčné plochy súčiastok vrstva tvrdého kovu, najčastejšie chróm, a to zvyčajne vo vačších hrubkách, pričom sa povrch dodatočne opracúval na požadované tolerancie. Nevýhodou tohto spŮsobu bola nutnosí najprv vylučovaí málo produktívnou technológiou hrubú vrstvu povlaku, ktorá sa v áalšom musela tiež prácne obrábaí, čo vytváralo značné předpoklady poškodzovania povrchu už pri samotnéj výrobě. Aj v případe možnosti vylučovania vrstvy s přesnou toleranciou sa prejavoval základný nedostatok oteruvzdomých chrómových vrstiev vyrábaných doterajšími spósobmi, ktorý spočíval v ich neschopnosti udrža£ na funkčnom povrchu súčiastky film mazadla,ktorý je potřebný na zmensenie trenia.The surface of functional parts of components that are subject to friction and dynamic stress in operation, while operating under extreme conditions in terms of temperature or environmental aggressiveness, such as piston rings, pistons, valves, pins, functionally camshaft and crankshaft parts in internal combustion engines and compressors, parts of gearboxes such as shafts, gears and synchronous rings etc. have so far been produced in three ways. · In the first mode, the components were manufactured from pieces of refined material, which required the consumption of high-alloy materials. As a rule, large quantities of poorly machined material were required during machining, which was disadvantageous in terms of labor, power consumption, tools and machine equipment. In a second method, a layer of material of desired properties was welded onto the functional surfaces, and then the surface was machined to its final shape and dimensions. Even in this manner, the machining of the functional surfaces was laborious and expensive, in particular due to the uneven machining allowance and the properties of the weld deposit, in particular its surface layers. A disadvantage of this method was also the fact that an accurate and uniform deposition thickness cannot be maintained even after machining, as well as high residual stresses between the deposition and the base material. In the correct manner, a hard metal layer, most commonly chromium, was usually galvanically deposited on the functional surfaces of the components, usually in larger thicknesses, and the surface was subsequently machined to the required tolerances. The disadvantage of this method was the necessity to first deposit a thin layer of coating by a low-productivity technology, which in the following had to be laboriously worked, which created considerable conditions for surface damage during production. Even in the case of the possibility of deposition of a layer with an exact tolerance, there was a fundamental lack of abrasion-resistant chrome layers produced by the prior art, which consisted in their inability to maintain a lubricant film on the functional surface of the component required to reduce friction.
Uvedené nedostatky v podstatnej miere odstraňuje sposob galvanického nanášania funkčně j vrstvy odolnéj hlavně proti otěru, ktorého podstata spočívá vtom, že sa na funkčné plochy súčiastok galvanicky nanáša vrstva do hrubky 0,02 áž 0,04 mm, zo zliatiny chrómmolybdén, vylučovaná z kúpeía obsahujúceho 150 až 250 kgm-'1 kysličníka chrómového, 30 až 75 kg nT^ molybdežanu amonného, 1,0 až 2,5 kg m”^kyseliny fluorokromičitej alebo jej soli a 0,6 až 1,0 kg kyseliny sírovéj alebo jej soli pri teplote 45 až 60°C a prúdovej hustotě 3,10^ až 5,10^ A m“2 .The above-mentioned deficiencies are substantially eliminated by the method of galvanic deposition of a wear-resistant functional layer, which consists in the fact that a layer of 0.02 to 0.04 mm, of chromium molybdenum, precipitated from a bath containing 150 to 250 kgm - 'one oxide of chromium, 30-75 kg ^ nT molybdežanu solution, 1.0 to 2.5 kg m "^ fluorokromičitej acid or a salt thereof and 0.6 to 1.0 kg of sulfuric acid or a salt thereof in 45 ° to 60 ° C; and a current density of 3.10 to 5.10 µm m 2 .
Galvanickým nanášaním funkčněj vrstvy podía vynálezu na dielec, ktorý má vopred upravené rozměry častí s funkonými plochami tak, aby po pokovaní mali přesné rozměry, sa vy lúči potřeba následného obrábania íažkoobrobiteíného materiálu.Vrstva hrůbky 0,02 až 0,04 mm rastie pri galvanickom nanášaní dostatočně rovnoměrně a zabezpečuje dlhodobú ochranu prpti opotrebeniu. Punkčná vrstva zliatiny chróm-molybdén, nanesená z kúpeía uvedeného zloženia a za uvedených podmienok má přitom kopčekovitú štruktúru s oblými výstupkami.Takáto štruktúra sa doteraz pužívanými spí?sobmi nedosahovala. Kopčekovitá struktura umožňuje udržanie vrstvy mazadla na funkčnom povrchu súčiastky. Jej áalšou výhodou je aj to, že pri pohybe súčiastok dochádza ku vzájomnému kontaktu len na oblých výstupkoch povrchu, čo podstatné obmedzuje možnosf zadrenia súčastí.The galvanic deposition of the functional layer according to the invention on a part having pre-adjusted dimensions of the parts with functional surfaces so as to have precise dimensions after metering eliminates the need for subsequent machining of the difficult-to-machine material. A thickness of 0.02 to 0.04 mm increases sufficiently uniform and ensures long-term protection prpti opotrebeniu. The puncture layer of the chromium-molybdenum alloy deposited from the bath of the above-mentioned composition and under the mentioned conditions has a hilly structure with rounded protrusions. This structure has not been achieved by the methods used hitherto. The hilly structure allows the lubricant layer to be maintained on the functional surface of the component. Another advantage is that when moving the parts, only the rounded projections of the surface interact with each other, which considerably limits the possibility of seizing the parts.
Příklad <1.Example <1.
Ná krúžky synehronizačných kúželov pre prevodovú skrinu osobného automobilu sa naniesla vrstva zliatiny ohróm-molybdén hrubky 0,03 mm z kúpeía o zložení 200 gA kysličník vhromitý, 40 gA AH^/gMoyOg^. 41^0, 10 g A Na2SiPg a 0,8 gA H2S°4. Praeovné podmienky pri pokovovaní boli nasledovné s teplota 48°C, prúdová hustota 35 A/dm2. Výsledky skúšky životnosti na skúšobnom stave ukázali, že po 200 000 zaradení funkčné plochy nevykazovali žiadne známky opotrebovania.A 0.03 mm thick chrome-molybdenum alloy layer from a 200 gA bromine dioxide bath, 40 gA AH4 / gMoyOg4 was applied to the rings of the synhronizing cones for the gearbox of a passenger car. 41 ^ 0, and 10 g of Na 2 Si PG as used and 0.8 gA of H2S ° 4th The plating conditions were as follows with a temperature of 48 ° C, a current density of 35 A / dm 2 . The durability test results showed that after 200,000 function areas, there were no signs of wear.
Příklad 2Example 2
Na zuby ozubených kolies prevodovéj skrine sa naniesla vrstva zliatiny chrom-molybdén hrůbky 0,04 mm z kúpefa o uložení, popísanom v příklade 1. Pracovné podmienky pri pokovaní bolí následovně i teplota 55°C, prúdová hustota 50 A/dm2.A 0.04 mm chrome-molybdenum alloy layer from the bearing bath described in Example 1 was applied to the gear-box teeth of the gearbox. The working conditions for the coating were subsequently temperature 55 ° C, current density 50 A / dm 2 .
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS827479A CS214553B1 (en) | 1979-11-30 | 1979-11-30 | The method of galvanic application of a functional layer resistant to abrasion |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS827479A CS214553B1 (en) | 1979-11-30 | 1979-11-30 | The method of galvanic application of a functional layer resistant to abrasion |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS214553B1 true CS214553B1 (en) | 1984-02-28 |
Family
ID=5433113
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS827479A CS214553B1 (en) | 1979-11-30 | 1979-11-30 | The method of galvanic application of a functional layer resistant to abrasion |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS214553B1 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002038835A1 (en) * | 2000-11-11 | 2002-05-16 | Enthone, Inc. | Method for the deposition of a chromium alloy |
| WO2004050960A1 (en) * | 2002-11-29 | 2004-06-17 | Federal-Mogul Burscheid Gmbh | Production of structured hard chrome layers |
| US8110087B2 (en) | 2004-04-21 | 2012-02-07 | Federal-Mogul Burscheid Gmbh | Production of a structured hard chromium layer and production of a coating |
| US8337687B2 (en) | 2008-04-04 | 2012-12-25 | Federal-Mogul Burscheid Gmbh | Structured chrome solid particle layer and method for the production thereof |
-
1979
- 1979-11-30 CS CS827479A patent/CS214553B1/en unknown
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002038835A1 (en) * | 2000-11-11 | 2002-05-16 | Enthone, Inc. | Method for the deposition of a chromium alloy |
| WO2004050960A1 (en) * | 2002-11-29 | 2004-06-17 | Federal-Mogul Burscheid Gmbh | Production of structured hard chrome layers |
| US7699970B2 (en) | 2002-11-29 | 2010-04-20 | Federal-Mogul Burscheid Gmbh | Production of structured hard chrome layers |
| US8277953B2 (en) | 2002-11-29 | 2012-10-02 | Federal-Mogul Burscheid Gmbh | Production of structured hard chrome layers |
| US8110087B2 (en) | 2004-04-21 | 2012-02-07 | Federal-Mogul Burscheid Gmbh | Production of a structured hard chromium layer and production of a coating |
| US8337687B2 (en) | 2008-04-04 | 2012-12-25 | Federal-Mogul Burscheid Gmbh | Structured chrome solid particle layer and method for the production thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6869690B1 (en) | Zinc-diffused alloy coating for corrosion/heat protection | |
| CN101461030B (en) | Abrasion resistant and etching-resistant coating | |
| JP5788968B2 (en) | Anti-fretting layer | |
| CA1131522A (en) | Aluminium alloy cylinder and manufacturing method thereof | |
| US8020529B2 (en) | Piston pin with slide layer for connecting rod eye for internal combustion engines | |
| JPS63518B2 (en) | ||
| EP0777058B1 (en) | Sliding material and methods of producing same | |
| DE102012203432A1 (en) | Engine without cylinder liner | |
| JPH01307512A (en) | Multilayer aluminum alloy plain bearing and its manufacture | |
| JPH01316514A (en) | Multilayer sliding material | |
| JP2011231408A (en) | Phosphate coated stainless steel wire for cold heading, and self-drilling screw using the stainless steel wire | |
| AU2017346799B2 (en) | Threaded connection for pipe and method for producing threaded connection for pipe | |
| CS214553B1 (en) | The method of galvanic application of a functional layer resistant to abrasion | |
| EP1586679A1 (en) | Metal plating coating film having sliding function and article coated therewith | |
| EP0892088B1 (en) | Method of making iron electroplated aluminium materials | |
| US3445909A (en) | Method of making bearing material | |
| US5073213A (en) | Process for applying a phosphate sliding layer to a bearing metal layer | |
| JP4332319B2 (en) | Method of coating a workpiece with bearing metal and workpiece processed by this method | |
| WO2003048427A2 (en) | Pretreatment process for coating of aluminium materials | |
| DE2415327A1 (en) | SLIDING BEARINGS AND METHOD FOR MANUFACTURING THEM | |
| none | Composite electroless Nickel/PTFE coatings | |
| Sheleg et al. | Evaluating the applicability of electrodeformation placing technology by a flexible tool for chromeing hydrocilindes | |
| Strafford et al. | Electroless nickel coatings: their application, evaluation & production techniques | |
| JP3249059B2 (en) | Surface treatment liquid for metal sliding member and surface treatment method | |
| JP3285180B2 (en) | Screws with excellent corrosion resistance, wear resistance, and seizure resistance |