DE102007043828B3 - Composite material, useful for a membrane for a direct alcohol fuel cell, comprises a polymer and an inorganic component, where polymer contains a polyaryl-ether/-ketone/-sulfone and inorganic component carries a layer against set charge - Google Patents
Composite material, useful for a membrane for a direct alcohol fuel cell, comprises a polymer and an inorganic component, where polymer contains a polyaryl-ether/-ketone/-sulfone and inorganic component carries a layer against set charge Download PDFInfo
- Publication number
- DE102007043828B3 DE102007043828B3 DE102007043828A DE102007043828A DE102007043828B3 DE 102007043828 B3 DE102007043828 B3 DE 102007043828B3 DE 102007043828 A DE102007043828 A DE 102007043828A DE 102007043828 A DE102007043828 A DE 102007043828A DE 102007043828 B3 DE102007043828 B3 DE 102007043828B3
- Authority
- DE
- Germany
- Prior art keywords
- inorganic component
- composite material
- polymer
- membrane
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1009—Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
- H01M8/1011—Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1009—Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
- H01M8/1011—Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
- H01M8/1013—Other direct alcohol fuel cells [DAFC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1025—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1027—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1032—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
- H01M8/1046—Mixtures of at least one polymer and at least one additive
- H01M8/1048—Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
- H01M2300/0091—Composites in the form of mixtures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
Abstract
Description
Die Erfindung betrifft ein Kompositmaterial für eine Membran einer Direkt Alkohol Brennstoffzelle, das aus einem Polymer und einer anorganischen Komponente besteht.The The invention relates to a composite material for a membrane of a direct Alcohol fuel cell, which consists of a polymer and an inorganic Component exists.
Brennstoffzellen setzen einen chemischen Energieträger, den Brennstoff (Wasserstoff oder Alkohol), in elektrische Energie um. Sie bestehen aus von einander getrennten Anoden- und Kathoden-Räumen, in denen die chemischen Reaktionen ablaufen. Bei Niedertemperaturbrennstoffzellen werden die Räume durch eine Polymer-Elektrolyt-Membran getrennt. Sie transportiert die anodenseitig entstehenden Protonen zur Kathode.fuel cells put a chemical energy source, the fuel (hydrogen or alcohol), into electrical energy. They consist of each other separate anode and cathode spaces in which the chemical Reactions take place. Be at low temperature fuel cells the rooms through a polymer electrolyte membrane separated. It transports the protons arising on the anode side to the cathode.
Als Material für die Polymer-Elektrolyt-Membranen werden meist sulfonierte Polymere verwendet. Diese Polymere bestehen aus Sulfonsäuren tragenden perfluorierten Kohlenwasserstoffen wie Nafion® (DuPont), Fumion® (FumaTech), Flemion® (Dow) und die Asahi-Membran (Asahi Glass Co. Ltd.) oder gemischten sulfonierten Polyaryl-Ethern/-Ketonen/-Sulfonen (z. B. sPEEK, sPES, sPSU). Der Sulfonierungsgrad dieser Polymere wird so gewählt, dass die aus ihnen hergestellten Membranen eine hohe Protonische Leitfähigkeit aufweisen. Der Nachteil von Membranen aus diesen Polymeren ist, dass sie eine nicht ausreichende Sperre für flüssige Alkohol/Wasser-Gemische darstellen, so dass es zum Brennstoffdurchtritt durch die Membran kommt, wodurch die Leistung der Brennstoffzelle herabgesetzt wird.The material used for the polymer electrolyte membranes usually sulfonated polymers are used. These polymers consist of sulfonic acids bearing perfluorinated hydrocarbons such as Nafion ® (DuPont), fumion ® (fumatech), Flemion ® (Dow) and the Asahi membrane (Asahi Glass Co. Ltd.) or mixed sulfonated polyaryl ethers / ketones / - Sulfones (eg sPEEK, sPES, sPSU). The degree of sulfonation of these polymers is chosen so that the membranes prepared from them have a high protonic conductivity. The disadvantage of membranes made from these polymers is that they provide an insufficient barrier to liquid alcohol / water mixtures so that fuel passes through the membrane, thereby lowering the performance of the fuel cell.
Um diese Membraneigenschaften zu verbessern, werden Kompositmembranen hergestellt. Sie bestehen aus den oben beschriebenen Polymeren, denen zusätzlich anorganische Komponenten hinzugemischt wurden. Diese anorganischen Komponenten können Oxide, Schichtphosphate oder Heteropolysäuren sein. Es wird im Allgemeinen darauf geachtet, dass die Teilchen selber (Heteropolysäuren) bzw. dass die Oberfläche der verwendeten anorganischen Komponente (Schichtphosphate, Titan-, Zirkon- und Siliziumoxid) saure Eigenschaften besitzen, um mit ihrer Hilfe in der Membran den Protonentransport zu unterstützen. Um die Azidität dieser Teilchen noch weiter zu erhöhen, können diese Oberflächen noch mit sauren funktionellen Gruppen versehen werden. So kann zum Teil die Sperrwirkung für flüssige Alkohol/Wasser-Gemische erhöht werden. Der Nachteil dieser Membranen ist eine geringe Lebensdauer, da es auf Grund der starken Quellung in Wasser und Wasser/Alkohol-Gemischen zu einer Schädigung durch im Betrieb auftretende mechanische Spannung in Abhängigkeit von der Befeuchtung der Membran kommt. Diese mechanischen Spannungen treten insbesondere zwischen dem Quellbereich und dem Einspannbereich der Membran auf und führen zu einer frühzeitigen Zerstörung. Die Lebensdauer der Membran ist daher sehr gering. Der Grund dafür ist, dass die anorganischen Teilchen nicht ausreichend zum Protonentransport beitragen, so dass die Polymerkomponente einen derart hohen Sulfonierungsgrad aufweisen muss, dass die Membran in Wasser und Wasser/Alkohol-Gemischen stark quillt.Around To improve these membrane properties become composite membranes produced. They consist of the polymers described above, those additionally inorganic components were admixed. These inorganic Components can Be oxides, layered phosphates or heteropolyacids. It is generally ensured that the particles themselves (heteropolyacids) or that the surface of the used inorganic component (layer phosphates, titanium, Zirconium and silica) have acidic properties with their Help in the membrane to assist the proton transport. Around the acidity These particles can still increase these particles be provided with acidic functional groups. So can in part the blocking effect for liquid Alcohol / water mixtures increased become. The disadvantage of these membranes is a short lifetime, as it is due to the strong swelling in water and water / alcohol mixtures to injury by occurring during operation mechanical stress in dependence comes from the humidification of the membrane. These mechanical stresses occur in particular between the source area and the clamping area of the membrane and lead to an early age Destruction. The lifetime of the membrane is therefore very low. the reason for that is the inorganic particles are not sufficient for proton transport contribute so that the polymer component such a high degree of sulfonation Must have the membrane in water and water / alcohol mixtures strong swells.
Es besteht daher die Aufgabe, ein gattungsgemäßes Kompositmaterial für eine Brennstoffzellenmembran aus einem niedrig sulfonierten Polymer und einer anorganischen Komponente so weiter zu entwickeln, dass die anorganischen Teilchen in Wasser/Alkohol-Gemischen zu einem besseren Ladungstransport beitragen. Diese Aufgabe wird dadurch gelöst, dass das Polymer aus einem sulfonierten Polyaryl-Ether/-Keton/-Sulfon besteht und einen IEC ≤ 1.1 mmol/g aufweist und die anorganische Komponente auf ihrer Oberfläche eine Schicht entgegen gesetzter Ladung trägt, welche die spezifische Ladung neutralisiert.It There is therefore the task of a generic composite material for a fuel cell membrane of a low sulfonated polymer and an inorganic component to develop so that the inorganic particles in water / alcohol mixtures contribute to a better charge transport. This task will solved by that the polymer consists of a sulfonated polyaryl ether / ketone / sulfone and a IEC ≤ 1.1 mmol / g and the inorganic component on its surface a layer carries opposite load, which neutralizes the specific charge.
Zweckdienliche Ausgestaltungen der Erfindung ergeben sich aus den Merkmalen der Ansprüche 2 bis 6.Appropriate Embodiments of the invention will become apparent from the features of claims 2 to 6.
Das neue Kompositmaterial beseitigt die Nachteile des genannten Standes der Technik. Dabei bestehen die besonderen Vorteile des neuen Kompositmaterials darin, dass das Material eine geringere Quellung aufweist und damit weniger mechanisch belastet wird, der Ladungstransport zur Katode hoch bleibt und die Sperrwirkung gegen den AlkoholΣdurchtritt zur Katode verbessert wird. Das führt zu einer höheren Leistung der Brennstoffzelle und zu einer längeren Lebensdauer der Membran.The new composite material eliminates the disadvantages of the said state of the technique. There are the special advantages of the new composite material in that the material has less swelling and thus less mechanically loaded, the charge transport to the cathode remains high and the barrier effect against the alcohol passes to the cathode is improved. This leads to a higher performance of the Fuel cell and to a longer Life of the membrane.
Die Erfindung soll nachstehend an einem Ausführungsbeispiel näher erläutert werden. Als Polymerkomponente wird PEEK (Victrex) mit einem IEC = 1.1 mmol/g (Sulfonierungsgrad DS = 31%) verwendet.The invention will be explained in more detail below using an exemplary embodiment. The polymer component used is PEEK (Victrex) with an IEC = 1.1 mmol / g (degree of sulfonation D S = 31%).
Zur Herstellung der anorganische Komponente wird die spezifische Ladung Σ0 und der Ladungsnullpunkt (point of zero charge, pzc [pH]) von Aerosil A300 (Degussa) durch Strömungspotentialmessungen mit Hilfe eines Partikelladungsdetektors PCD-T03 bestimmt (Σ0 = 860 μC/g, pzc = 2.2). Die Oberfläche des Aerosils wird dann mit einem Polyelektrolyten so weit beladen, bis die spezifische Ladung neutralisiert ist (Σ0 = 0 μC/g). Dazu wird eine 1%-ige Dispersion von Aerosil A300 mit einer 0.1%-igen Lösung eines kationischen Polyelektrolyten (poly-Diallydimethylammoniumchlorid) titriert.For the preparation of the inorganic component, the specific charge Σ 0 and the point of zero charge (pzc [pH]) of Aerosil A300 (Degussa) by flow potential measurements using a particle charge detector PCD-T03 determined (Σ 0 = 860 μC / g, pzc = 2.2). The surface of the aerosol is then loaded with a polyelectrolyte until the specific charge is neutralized (Σ 0 = 0 .mu.C / g). For this purpose, a 1% dispersion of Aerosil A300 is titrated with a 0.1% solution of a cationic polyelectrolyte (poly-diallyldimethylammonium chloride).
Beide Membrankomponenten werden als Lösung bzw. Dispersion gemischt, so dass ein Mischungsverhältnis Polymer/anorganische Komponente von 92.5/7.5 entsteht.Both Membrane components are considered a solution or dispersion mixed, so that a mixing ratio of polymer / inorganic Component of 92.5 / 7.5 is created.
Die
Eigenschaften der aus diesem Gemisch entstehenden Membran sind in
Tab. 1 zusammen gefasst. Tab. 1: Kompositmembranen auf der Basis
sPEEK (Anteil anorganische Komponente: 7.5 Gew.%). MeOH-Durchtritt,
Quellung und protonische Leitfähigkeit,
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102007043828A DE102007043828B3 (en) | 2007-09-13 | 2007-09-13 | Composite material, useful for a membrane for a direct alcohol fuel cell, comprises a polymer and an inorganic component, where polymer contains a polyaryl-ether/-ketone/-sulfone and inorganic component carries a layer against set charge |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102007043828A DE102007043828B3 (en) | 2007-09-13 | 2007-09-13 | Composite material, useful for a membrane for a direct alcohol fuel cell, comprises a polymer and an inorganic component, where polymer contains a polyaryl-ether/-ketone/-sulfone and inorganic component carries a layer against set charge |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| DE102007043828B3 true DE102007043828B3 (en) | 2009-01-02 |
Family
ID=40076276
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| DE102007043828A Active DE102007043828B3 (en) | 2007-09-13 | 2007-09-13 | Composite material, useful for a membrane for a direct alcohol fuel cell, comprises a polymer and an inorganic component, where polymer contains a polyaryl-ether/-ketone/-sulfone and inorganic component carries a layer against set charge |
Country Status (1)
| Country | Link |
|---|---|
| DE (1) | DE102007043828B3 (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10157139A1 (en) * | 2001-11-21 | 2003-05-28 | Forschungszentrum Juelich Gmbh | Device for purifying waste gas in a direct-alcohol fuel cell or direct-alcohol fuel cell stack comprises a region containing a feed line and a removal line separated by a porous layer, and a catalyst on the surface of the porous layer |
| DE69636219T2 (en) * | 1995-03-15 | 2007-04-12 | W.L. Gore & Associates, Inc., Newark | COMPOSITE MEMBRANE |
-
2007
- 2007-09-13 DE DE102007043828A patent/DE102007043828B3/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE69636219T2 (en) * | 1995-03-15 | 2007-04-12 | W.L. Gore & Associates, Inc., Newark | COMPOSITE MEMBRANE |
| DE10157139A1 (en) * | 2001-11-21 | 2003-05-28 | Forschungszentrum Juelich Gmbh | Device for purifying waste gas in a direct-alcohol fuel cell or direct-alcohol fuel cell stack comprises a region containing a feed line and a removal line separated by a porous layer, and a catalyst on the surface of the porous layer |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1337319B1 (en) | Novel membranes having improved mechanical properties, for use in fuel cells | |
| EP1268045B1 (en) | Novel blend polymer membranes for use in fuel cells | |
| EP1639153B1 (en) | Composites and composite membranes | |
| DE60214166T2 (en) | POLYMER ELECTROLYTE FOR A FUEL POLYMER TYPE FUEL CELL AND FUEL CELL | |
| DE112008001766B4 (en) | Electrolyte membrane and fuel cell using the same | |
| DE102009020176B4 (en) | Composite membrane and a method for its formation | |
| DE102008041421B4 (en) | Polymer mixture electrolyte membrane for use at high temperature and manufacturing method and use thereof | |
| DE102006001770A1 (en) | Proton-conducting polymer membrane | |
| DE10296922T5 (en) | Electrode structure for polymer electrolyte fuel cells, method of manufacturing the same and polymer electrolyte fuel cell | |
| DE102020213533A1 (en) | ELECTRODE FOR FUEL CELLS, MEMBRANE ELECTRODE ARRANGEMENT FOR FUEL CELLS, INCLUDING THESE FUEL CELLS, AND METHOD FOR THEIR PRODUCTION | |
| DE102012212420A1 (en) | Laminated structure membrane and orientation controlled nanofiber reinforcing additives for fuel cells | |
| DE102008043463A1 (en) | Electrolyte membrane for a fuel cell | |
| DE102008009114A1 (en) | Fluorine treatment of polyelectrolyte membranes | |
| DE102012220628A1 (en) | Nanofiber supported catalysts as membrane additives for improved fuel cell life | |
| DE10296598T5 (en) | Fuel cell with polymer electrolyte | |
| DE102016120798A1 (en) | Membrane electrode assembly and a membrane electrode assembly having a fuel cell | |
| DE602004009603T2 (en) | MONOMER COMPOUND, GRAFT COPOLYMER COMPOUND, PROCESS FOR THE PRODUCTION THEREOF, POLYMER ELECTROLYTE MEMBRANE AND FUEL CELL | |
| DE102010035234B4 (en) | fuel cell | |
| DE102012217434A1 (en) | Polymethyl methacrylate additive for a polyelectrolyte membrane | |
| DE112018003878T5 (en) | ACCUMULATORS WITH POLYMER ELECTROLYTE COMPOSITES BASED ON TETRAEDRIC ARYLBORATE NODES | |
| DE102007043828B3 (en) | Composite material, useful for a membrane for a direct alcohol fuel cell, comprises a polymer and an inorganic component, where polymer contains a polyaryl-ether/-ketone/-sulfone and inorganic component carries a layer against set charge | |
| DE102010035236A1 (en) | Perfluorocyclobutane-based water vapor transfer membranes with side chain perfluorosulfonic acid moieties | |
| DE102020213449A1 (en) | Membrane electrode assembly with improved resistance and proton conductivity and process for their production | |
| EP1292634B1 (en) | Perfluorosulfonic acid membranes, method for the production and use thereof for fuel cells | |
| DE102016014692A1 (en) | Improved structures and manufacturing processes for catalyst coated membranes for fuel cells |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 8364 | No opposition during term of opposition |