DE102008011856A1 - Hochfester niedriglegierter Stahl für nahtlose Rohre mit hervorragender Schweißbarkeit und Korrosionsbeständigkeit - Google Patents
Hochfester niedriglegierter Stahl für nahtlose Rohre mit hervorragender Schweißbarkeit und Korrosionsbeständigkeit Download PDFInfo
- Publication number
- DE102008011856A1 DE102008011856A1 DE102008011856A DE102008011856A DE102008011856A1 DE 102008011856 A1 DE102008011856 A1 DE 102008011856A1 DE 102008011856 A DE102008011856 A DE 102008011856A DE 102008011856 A DE102008011856 A DE 102008011856A DE 102008011856 A1 DE102008011856 A1 DE 102008011856A1
- Authority
- DE
- Germany
- Prior art keywords
- max
- steel
- mpa
- strength
- excellent weldability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 230000007797 corrosion Effects 0.000 title claims abstract description 9
- 238000005260 corrosion Methods 0.000 title claims abstract description 9
- 229910000922 High-strength low-alloy steel Inorganic materials 0.000 title claims abstract description 5
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 36
- 239000010959 steel Substances 0.000 claims abstract description 36
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 238000005336 cracking Methods 0.000 claims abstract description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 12
- 239000000956 alloy Substances 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 229910052720 vanadium Inorganic materials 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 238000005496 tempering Methods 0.000 claims description 4
- 238000005098 hot rolling Methods 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 18
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- 239000010949 copper Substances 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 238000005275 alloying Methods 0.000 description 7
- 239000010955 niobium Substances 0.000 description 6
- 229910000851 Alloy steel Inorganic materials 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000008186 active pharmaceutical agent Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- -1 chromium carbides Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Die Erfindung betrifft einen hochfesten Stahl und ein hochfestes schweißbares Stahlrohr. Der hochfeste niedriglegierte Stahl für nahtlose Stahlrohre mit hervorragender Schweißbarkeit und Beständigkeit gegen Spannungsrisskorrosion mit einer Mindeststreckgrenze von 620 MPa und einer Zugfestigkeit von mindestens 690 MPa ist durch die im Anspruch 1 angegebene Zusammensetzung charakterisiert.
Description
- Die Erfindung betrifft einen hochfesten niedriglegierten Stahl für nahtlose Stahlrohre mit hervorragender Schweißbarkeit und Beständigkeit gegen Spannungsrisskorrosion gemäß Patentanspruch 1.
- Nahtlose Rohre aus hochfesten Stählen werden z. B. für Leitungsrohre zum Transport von Öl oder Gas verwendet, die sowohl onshore wie auch offshore verlegt werden.
- In den vergangenen Jahren haben die Rohrhersteller starke Anstrengungen unternommen, um die gestiegenen Anforderungen einerseits bezüglich Materialeinsparung, z. B. durch Verringerung der Wanddicke bei gleichen Materialanforderungen und andererseits die Forderung zur Auslegung von Rohrleitungen auf höhere Betriebsdrücke beim Gastransport zu bewältigen.
- Legierungen, die üblicherweise für nahtlose Leitungsrohre verwendet werden, sind für Stahlguten bis 80 ksi (X80) in Standards, wie zum Beispiel der API 5L, der DNV-OS-F101 und der EN 10208 definiert. Für hochfeste Guten oberhalb von 80 ksi werden in diesen Standards keine Angaben hinsichtlich der Grenzwerte für die Legierungselemente gemacht. Bei der Entwicklung höherfester Guten ist zu berücksichtigen, dass die daraus hergestellten Stahlrohre schweißbar sind und über gute Festigkeits- und Zähigkeitseigenschaften verfügen müssen.
- Während bislang standardmäßig für Rohrleitungen Stahlguten bis X80 (Rp0,2: min 551 MPa, Rm: min 620 MPa gemäß API 5L verwandt wurden, besteht jetzt zunehmender Bedarf für hochfeste Stähle der Festigkeitsklasse bis 100 ksi (X100)(Rp0,2: min. 690 MPa, Rm: min. 760 MPa).
- Werden diese Stähle für Rohrleitungen für den Öl- und Gastransport verwendet, bestehen jedoch hohe Anforderungen bezüglich ihrer Schweißbarkeit (z. B. Rohrverbindungsschweißung), ihrer Zähigkeit bei tiefen Temperaturen bis –40°C und einer Beständigkeit gegen Spannungsrisskorrosion, insbesondere für Gasrohrleitungen, die H2S belastetes Gas (Sauergas) transportieren.
- Für geschweißte, nach dem UOE-Verfahren hergestellte Stahlrohre, sind Stahlguten bis 100 ksi (X100) oder sogar 120 ksi (X120) allgemein bekannt.
- Bei diesen Stählen werden die geforderten Eigenschaften nicht über verstärkten Legierungseinsatz, sondern durch Kombination eines möglichst niedrigen Legierungsgehaltes mit thermomechanischem Walzen des zu einem Rohr umzuformenden Bleches erreicht.
- Für die Herstellung warmgewalzter nahtloser Rohre ist dieses Konzept jedoch nur bedingt oder gar nicht anwendbar, da die spezifische Temperaturführung bei der Warmfertigung nahtloser Rohren nicht die erforderliche Absenkung der Umformtemperatur für die Anwendung bekannter Konzepte für thermomechanische Behandlungen erlaubt.
- Für warmgewalzte nahtlose Rohre ist es deshalb erforderlich, die geforderten Eigenschaften insbesondere über ein angepasstes Legierungskonzept und über eine gezielte Einstellung eines anforderungsgerechten feinkörnigen Gefüges durch eine nachträgliche Vergütungsbehandlung zu erreichen.
- Die geforderte Steigerung der Festigkeit bei ausreichender Zähigkeit von warmgefertigten nahtlosen Rohren für die beschriebenen Anwendungsbereiche erfordert die Entwicklung neuer Legierungskonzepte. Speziell im Streckgrenzenbereich ab 500 MPa ist es mit den bekannten Legierungskonzepten schwierig, ausreichende Zähigkeiten und eine ausreichende Sauergasbeständigkeit bei gleichzeitiger guter Schweißbarkeit zu erreichen.
- Der die Festigkeit steigernde Mechanismus, der gleichzeitig zu einer Steigerung der Zähigkeit führt, ist bekanntermaßen die Verringerung der Korngröße. Diese kann u. a. durch Zulegieren von Nickel und Molybdän und der damit verbundenen Verringerung der Umwandlungstemperatur erzielt werden.
- Molybdän verbessert zusätzlich die Anlassbeständigkeit bei höheren Anlasstemperaturen und die Durchhärtbarkeit. Die Zugabe von Nickel verschlechtert allerdings ab einem bestimmten Legierungsgehalt die Oberflächenqualität der warmgewalzten Rohre deutlich.
- Eine Festigkeitssteigerung durch eine deutliche Erhöhung des Kohlenstoffgehalts führt zu einer Verschlechterung der Zähigkeit und zu einer starken Erhöhung des Kohlenstoffäquivalents.
- Aus diesem Grund muss eine solche Legierungszugabe von zähigkeitssteigernden Maßnahmen flankiert werden. Das Kohlenstoffäquivalent erweist sich häufig als eine Herausforderung, welche die Analysenwahl zum Teil stark einschränkt.
- Zur Steigerung der Festigkeit werden zusätzlich Mikrolegierungselemente wie Titan, Niob und Vanadium eingesetzt. Titan scheidet sich bei hohen Temperaturen teilweise bereits in der flüssigen Phase als recht grobes Titannitrid aus. Niob bildet bei niedrigeren Temperaturen Niobkarbonitrid-Ausscheidungen. Mit weiter abnehmender Temperatur reichert sich zusätzlich Vanadin in Karbonitriden an, d. h. es ist mit der Ausscheidung von VC-Teilchen zu rechnen.
- Zu grobe Ausscheidungen dieser Mikrolegierungselemente wirken sich negativ auf die Zähigkeitseigenschaften und die Sauergasbeständigkeit aus. Daher darf der Gehalt dieser Legierungselemente nicht zu hoch sein. Des Weiteren müssen die Gehalte an Kohlenstoff und Stickstoff, die für die Bildung der Ausscheidungen erforderlich sind, berücksichtigt werden.
- Ein hochfester niedrig legierter Stahl für warmgewalzte nahtlose Stahlrohre, der die Anforderungen eines X100 nach API 5L für geschweißte Rohre erfüllt, ist aus der
bekannt. Diese bekannte Stahllegierung weist ein Legierungskonzept mit C: 0.03–0,13%, Mn: 0,90–1,80%, Si ≤ 0,40%, P ≤ 0,020%, S ≤ 0,005%, Ni: 0,10–1,00%, Cr: 0,20–1,20%, Mo: 0,15–0,80%, Ca ≤ 0,040%, V ≤ 0,10%, Nb ≤ 0,040%, Ti ≤ 0,020%, N ≤ 0,011% und ein aus Bainit und Martensit bestehendes Mischgefüge auf.WO 2007/017161 A1 - Dieser bekannte Stahl weist nach einer Vergütungsbehandlung zwar die für einen X100 (100 ksi) geforderten mechanischen Eigenschaften und Schweißbarkeit auf, über die Verwendung als Gasleitungsrohr für mit H2S belastetem Gas (Sauergas) im Hinblick auf eine mögliche Spannungsrisskorrosion, wird jedoch keine Aussage getroffen. Die sich bei dem bekannten Stahl möglicherweise bildenden Chromcarbide können jedoch die Sauergasbeständigkeit negativ beeinflussen.
- Weiterhin sind die Ni-Gehalte mit bis zu 1% bei dem bekannten Stahl sehr hoch, was sich in der Bildung von Klebzunder auf der Oberfläche beim Warmwalzen der Rohre, z. B. beim Warmpilgern, Rohrkontiverfahren, etc., auswirken kann und die Oberflächenqualität der Rohre stark beeinträchtigen und eine aufwändige zerspanende Nacharbeit der Oberfläche erforderlich machen würde.
- Die Anforderungen an Leitungsrohre für die vorgenannten Anwendungsbereiche lassen sich wie folgt zusammenfassen:
Streckgrenze Rp0,2 min.: 620 MPa (90 ksi) bzw. 690 MPa (100 ksi) - • Zugfestigkeit Rm min: 690 MPa (90 ksi) bzw. 760 MPa (100 ksi)
- • Kerbschlagarbeit Av (längs): 90 J bei –40°C
- • Gewährleistung der allgemeinen Schweißbarkeit
- • niedriger, bzw. eingeschränkter Ni-Gehalt
- • Korrosionsbeständigkeit auch beim Transport von H2S belastetem Gas (Sauergas)
- Aufgabe der Erfindung ist es, einen kostengünstigen niedrig legierten Stahl für die Herstellung hochfester schweißbarer nahtloser Stahlrohre anzugeben, der die genannten Anforderungen hinsichtlich Streckgrenze, Zugfestigkeit und Kerbschlagarbeit sicher erfüllt und darüber hinaus eine gute allgemeine Schweißbarkeit sowie eine ausreichende Korrosionsbeständigkeit bei Sauergaseinsatz gewährleistet und nach dem Warmwalzen eine einwandfreie Oberfläche aufweist.
- Diese Aufgabe wird mit den Merkmalen des Anspruches 1 gelöst. Vorteilhafte Weiterbildungen sind Gegenstand von Unteransprüchen.
- Nach der Lehre der Erfindung wird für einen niedrig legierten Stahl zur Herstellung hochfester schweißbarer warmgewalzter nahtloser Stahlrohre, eine Stahl mit folgender chemischer Zusammensetzung vorgeschlagen:
0,030–0,12% C
max. 0,40% Si
1,30–2,00% Mn
max. 0,015% P
max. 0,005% S
0,020–0,050% Al
0,20–0,60% Ni
0,10–0,40% Cu
0,20–0,60% Mo
0,02–0,10% V
0,02–0,06% Nb
max. 0,0100% N
Rest Eisen mit erschmelzungsbedingten Verunreinigungen, mit optionaler Zugabe von Ti und der Maßgabe, dass die Summe der Gehalte an Ti + Nb + V einen Wert von ≥ 0,04 bis ≤ 0,15% und das Verhältnis Cu/Ni einen Wert von < 1 aufweist. - Die erfindungsgemäße Stahllegierung setzt auf der Entwicklung der Leitungsrohrstähle nach API 5L, ISO 3183, DNV-OS-F101 und der EN 10208 auf.
- Die im Zuge der vorliegenden Erfindung durchgeführten Versuche haben überraschend gezeigt, dass im Vergleich zur bekannten Stahllegierung unter Verzicht auf die Zugabe von Cr, die Einhaltung eines bestimmten Cu/Ni Verhältnisses die Sauergasbeständigkeit für diese Festigkeitsstufe deutlich positiv beeinflusst ohne die mechanischen Eigenschaften (Festigkeit und Zähigkeit) sowie die Schweißbarkeit negativ zu beeinflussen.
- Neben Nickel besitzt auch Kupfer einen positiven Effekt auf die Sauergasbeständigkeit. Kupfer allein zulegiert beeinflusst die Warmumformbarkeit negativ und schädigt die Korngrenzen. Durch das Zulegieren von Ni mit einem zusätzlich hinsichtlich Sauergasbeständigkeit abgestimmten Cu/Ni-Verhältnis (Cu/Ni < 1) wird dies kompensiert.
- Die Kombination des erfindungsgemäßen Legierungskonzeptes als Basis und die nach dem Warmumformprozess erforderliche Vergütung begründen die Sauergasbeständigkeit des entwickelten nahtlosen Stahlrohres.
- Die Summe der Gehalte an Titan, Niob und Vanadin ist mit einem Wert von ≥ 0,04% einerseits ausreichend hoch, um die geforderte Festigkeitssteigerung zu erreichen aber mit ≤ 0,15% auch ausreichend niedrig, um die geforderten Zähigkeitseigenschaften und ausreichende Sauergasbeständigkeit zu gewährleisten.
- Je nach Kundenanforderung lässt sich mit dem erfindungsgemäßen Legierungskonzept vorteilhaft sowohl ein Stahl mit der Gütestufe 90 ksi (X90), als auch 100 ksi (X100) erreichen unter Einhaltung aller für die jeweilige Gütestufe bekannten Anforderungen.
- Der Ni-Gehalt ist mit max. 0,60% ausreichend niedrig, um bei den für diese Stahlgüte hauptsächlich angewandten Rohrherstellungsverfahren eine ausreichend gute Oberflächenqualität zu erzeugen.
- Die aus einer Betriebsschmelze mit der nachfolgend aufgeführten erfindungsgemäßen Stahllegierung erzeugten nahtlosen Stahlrohre weisen ausgezeichnete Werte hinsichtlich ihrer Festigkeits- und Zähigkeitseigenschaften auf.
0,10% C
0,30% Si
1,68% Mn
0,015% P
0,002% S
0,026% Al
0,19% Cu
0,48% Ni
0,37% Mo
0,047% V
0,042% Nb
0,003% Ti
0,006% N
mit Cu/Ni = 0,40 und Ti + Nb + V = 0,092 - Hieran wurden die in der nachfolgenden Tabelle aufgeführten Werte ermittelt. Die Werte sind die Mittelwerte aus jeweils drei Zugproben, bzw. drei Kerbschlagbiegeproben. Die Proben wurden als Längsproben aus betrieblich erzeugten wärmebehandelten Rohren entnommen.
Geometrie (AD × WD) Rt0,5 Rm Rt0,5/Rm Av (bei –40°C) 114,3 × 7,3 mm 809 MPa 842 MPa 0,96 198 J 168,3 × 12,5 mm 804 MPa 835 MPa 0,96 221 J 168,3 × 25,4 mm 697 MPa 768 MPa 0,91 215 J 193,7 × 12,0 mm 807 MPa 839 MPa 0,96 202 J 193,7 × 25,9 mm 696 MPa 774 MPa 0,90 191 J Anforderungen X90 > 620 MPa > 690 MPa > 90 J Anforderungen X100 > 690 MPa > 760 MPa > 90 J - AD: Außendurchmesser, WD: Wanddicke
- ZITATE ENTHALTEN IN DER BESCHREIBUNG
- Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
- Zitierte Patentliteratur
-
- - WO 2007/017161 A1 [0018]
- Zitierte Nicht-Patentliteratur
-
- - EN 10208 [0004]
- - ISO 3183 [0025]
- - EN 10208 [0025]
Claims (8)
- Hochfester niedriglegierter Stahl für nahtlose Stahlrohre mit hervorragender Schweißbarkeit und Beständigkeit gegen Spannungsrisskorrosion mit einer Mindeststreckgrenze von 620 MPa und einer Zugfestigkeit von mindestens 690 MPa, mit folgender chemischer Zusammensetzung (in Masse-%): 0,030–0,12% C 0,020–0,050% Al max. 0,40% Si 1,30–2,00% Mn max. 0,015% P max. 0,005% S 0,20–0,60% Ni 0,10–0,40% Cu 0,20–0,60% Mo 0,02–0,10% V 0,02–0,06% Nb max. 0,0100% N Rest Eisen mit erschmelzungsbedingten Verunreinigungen, mit optionaler Zugabe von Ti und der Maßgabe, dass die Summe der Gehalte an Ti + Nb + V einen Wert von ≥ 0,04 bis ≤ 0,15% und das Verhältnis Cu/Ni einen Wert von < 1 aufweist.
- Stahl nach Anspruch 1 dadurch gekennzeichnet, dass der Ti-Gehalt bis zu 0,020% beträgt.
- Stahl nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass mit folgender chemischer Zusammensetzung (in Masse-%): 0,080–0,11% C 0,020–0,050% Al 0,25–0,35% Si 1,65–1,90% Mn max. 0,015% P max. 0,005% S 0,45–0,55% Ni 0,15–0,20% Cu 0,35–0,55% Mo 0,04–0,06% V 0,04–0,05% Nb max. 0,006% N
- Stahl nach einem der Ansprüche 1–3 dadurch gekennzeichnet, dass der Stahl eine Mindeststreckgrenze von 690 MPa und eine Zugfestigkeit von mindestens 760 MPa aufweist.
- Hochfestes schweißbares nahtloses Stahlrohr, hergestellt durch Warmwalzen mit anschließender Vergütung, mit hervorragender Schweißbarkeit und Beständigkeit gegen Spannungsrisskorrosion mit einer Mindeststreckgrenze von 620 MPa und einer Zugfestigkeit von mindestens 690 MPa, bestehend aus einem Stahl mit folgender Legierungszusammensetzung: 0,030–0,12% C 0,020–0,050% Al max. 0,40% Si 1,30–2,00% Mn max. 0,015% P max. 0,005% S 0,20–0,60% Ni 0,10–0,40% Cu 0,20–0,60% Mo 0,02–0,10% V 0,02–0,06% Nb max. 0,0100% N Rest Eisen mit erschmelzungsbedingten Verunreinigungen, mit optionaler Zugabe von Ti und der Maßgabe, dass die Summe der Gehalte an Ti + Nb + V einen Wert von < 0,15 und das Verhältnis Ni/Cu einen Wert von ≥ 1 aufweist.
- Stahlrohr nach Anspruch 4 dadurch gekennzeichnet, dass der Stahl einen Ti-Gehalt von bis zu 0,020% aufweist.
- Stahlrohr nach Anspruch 4 oder 5 dadurch gekennzeichnet, dass der Stahl folgende Legierungszusammensetzung aufweist: 0,080–0,11% C 0,020–0,050% Al 0,25–0,35% Si 1,65–1,90% Mn max. 0,015% P max. 0,005% S 0,45–0,55% Ni 0,15–0,20% Cu 0,35–0,55% Mo 0,04–0,06% V 0,04–0,05% Nb max. 0,006% N
- Stahlrohr nach einem der Ansprüche 5–7 dadurch gekennzeichnet, dass es eine Mindeststreckgrenze von 690 MPa und eine Zugfestigkeit von mindestens 760 MPa aufweist.
Priority Applications (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102008011856A DE102008011856A1 (de) | 2008-02-28 | 2008-02-28 | Hochfester niedriglegierter Stahl für nahtlose Rohre mit hervorragender Schweißbarkeit und Korrosionsbeständigkeit |
| MX2010009446A MX2010009446A (es) | 2008-02-28 | 2009-02-02 | Acero de baja aleacion de resistencia elevada para tubos sin soldadura teniendo soldabilidad sobresaliente y resistencia a la corrosion. |
| EP09716073.3A EP2245201B1 (de) | 2008-02-28 | 2009-02-02 | Hochfester niedriglegierter stahl für nahtlose rohre mit hervorragender schweissbarkeit und korrosionsbeständigkeit |
| PCT/DE2009/000158 WO2009106033A1 (de) | 2008-02-28 | 2009-02-02 | Hochfester niedriglegierter stahl für nahtlose rohre mit hervorragender schweissbarkeit und korrosionsbeständigkeit |
| BRPI0908484A BRPI0908484A8 (pt) | 2008-02-28 | 2009-02-02 | Aço de baixa liga e alta resistência para tubos sem costura com destacada soldabilidade e resistência à corrosão |
| US12/920,218 US20110259478A1 (en) | 2008-02-28 | 2009-02-02 | High-strength, low-alloy steel for seamless pipes with outstanding weldability and corrosion resistance |
| JP2010547943A JP5715826B2 (ja) | 2008-02-28 | 2009-02-02 | 卓越した溶接性および耐食性を有するシームレス管用の高強度低合金鋼 |
| ARP090100622A AR070624A1 (es) | 2008-02-28 | 2009-02-23 | Acero de baja aleacion altamente resistente para tubos sin costura con excelente soldabilidad y resistencia a la corrosion interna por fisuras y tubo de acero de baja aleacion. |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102008011856A DE102008011856A1 (de) | 2008-02-28 | 2008-02-28 | Hochfester niedriglegierter Stahl für nahtlose Rohre mit hervorragender Schweißbarkeit und Korrosionsbeständigkeit |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| DE102008011856A1 true DE102008011856A1 (de) | 2009-09-10 |
Family
ID=40637863
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| DE102008011856A Ceased DE102008011856A1 (de) | 2008-02-28 | 2008-02-28 | Hochfester niedriglegierter Stahl für nahtlose Rohre mit hervorragender Schweißbarkeit und Korrosionsbeständigkeit |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US20110259478A1 (de) |
| EP (1) | EP2245201B1 (de) |
| JP (1) | JP5715826B2 (de) |
| AR (1) | AR070624A1 (de) |
| BR (1) | BRPI0908484A8 (de) |
| DE (1) | DE102008011856A1 (de) |
| MX (1) | MX2010009446A (de) |
| WO (1) | WO2009106033A1 (de) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3269837A1 (de) * | 2016-07-13 | 2018-01-17 | Vallourec Deutschland GmbH | Mikro-legierter stahl und verfahren zur herstellung dieses stahls |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2676940C (en) | 2007-02-27 | 2015-06-23 | Exxonmobil Upstream Research Company | Corrosion resistant alloy weldments in carbon steel structures and pipelines to accommodate high axial plastic strains |
| CN102154593B (zh) * | 2011-05-26 | 2013-01-16 | 天津钢管集团股份有限公司 | X80钢级抗腐蚀低温无缝管线管 |
| CN102900897A (zh) * | 2011-07-28 | 2013-01-30 | 锐迈管业有限公司 | 一种混凝土泵车弯管及其加工工艺 |
| CN104404368A (zh) * | 2014-10-22 | 2015-03-11 | 苏州莱特复合材料有限公司 | 耐腐蚀性不锈钢合金及其制备方法 |
| BR102016001063B1 (pt) * | 2016-01-18 | 2021-06-08 | Amsted Maxion Fundição E Equipamentos Ferroviários S/A | liga de aço para componentes ferroviários, e processo de obtenção de uma liga de aço para componentes ferroviários |
| CN105543690A (zh) * | 2016-01-19 | 2016-05-04 | 天津钢管集团股份有限公司 | 具有抗大应变的415spdf以上钢级海底无缝管线管 |
| CN105543705A (zh) * | 2016-01-19 | 2016-05-04 | 天津钢管集团股份有限公司 | 海洋环境R-Lay铺设用抗大应变抗腐蚀无缝管线管的制造方法 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5837120A (ja) * | 1981-08-28 | 1983-03-04 | Kawasaki Steel Corp | 脆性破壊の伝播停止特性にすぐれたパイプライン用厚肉鋼管の製造方法 |
| DE3832014A1 (de) * | 1988-09-16 | 1990-03-22 | Mannesmann Ag | Verfahren zur herstellung hochfester nahtloser stahlrohre |
| DE69730739T2 (de) * | 1996-06-28 | 2005-09-22 | Nippon Steel Corp. | Stahl für Rohrleitungen mit ausgezeichneter Beständigkeit gegen Spannungsrißkorrosion auf der Außenfläche |
| EP1681364A1 (de) * | 2003-10-20 | 2006-07-19 | JFE Steel Corporation | Expandierbares nahtloses stahlrohr zur verwendung in ölbohrlöchern und herstellungsverfahren dafür |
| WO2007017161A1 (en) | 2005-08-04 | 2007-02-15 | Tenaris Connections Ag | High-strength steel for seamless, weldable steel pipes |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS56166324A (en) * | 1980-05-23 | 1981-12-21 | Kawasaki Steel Corp | Production of high-strength seamless steel pipe of good weldability for middle temperature region |
| JPS62151545A (ja) * | 1985-12-25 | 1987-07-06 | Kawasaki Steel Corp | 厚肉高強度低PcM曲管とその製造方法 |
| JPH01139740A (ja) * | 1987-11-27 | 1989-06-01 | Kawasaki Steel Corp | 耐食二重管 |
| JPH06172855A (ja) * | 1992-12-10 | 1994-06-21 | Nippon Steel Corp | 低降伏比高靭性シームレス鋼管の製造法 |
| JPH09287027A (ja) * | 1996-04-19 | 1997-11-04 | Sumitomo Metal Ind Ltd | 高強度高靱性継目無鋼管の製造方法 |
| JP2004176172A (ja) * | 2002-10-01 | 2004-06-24 | Sumitomo Metal Ind Ltd | 耐水素誘起割れ性に優れた高強度継目無鋼管およびその製造方法 |
| JP4475023B2 (ja) * | 2004-06-10 | 2010-06-09 | 住友金属工業株式会社 | 低温靱性に優れた超高強度ベンド管 |
-
2008
- 2008-02-28 DE DE102008011856A patent/DE102008011856A1/de not_active Ceased
-
2009
- 2009-02-02 BR BRPI0908484A patent/BRPI0908484A8/pt not_active Application Discontinuation
- 2009-02-02 US US12/920,218 patent/US20110259478A1/en not_active Abandoned
- 2009-02-02 WO PCT/DE2009/000158 patent/WO2009106033A1/de active Application Filing
- 2009-02-02 EP EP09716073.3A patent/EP2245201B1/de not_active Not-in-force
- 2009-02-02 JP JP2010547943A patent/JP5715826B2/ja not_active Expired - Fee Related
- 2009-02-02 MX MX2010009446A patent/MX2010009446A/es active IP Right Grant
- 2009-02-23 AR ARP090100622A patent/AR070624A1/es unknown
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5837120A (ja) * | 1981-08-28 | 1983-03-04 | Kawasaki Steel Corp | 脆性破壊の伝播停止特性にすぐれたパイプライン用厚肉鋼管の製造方法 |
| DE3832014A1 (de) * | 1988-09-16 | 1990-03-22 | Mannesmann Ag | Verfahren zur herstellung hochfester nahtloser stahlrohre |
| DE69730739T2 (de) * | 1996-06-28 | 2005-09-22 | Nippon Steel Corp. | Stahl für Rohrleitungen mit ausgezeichneter Beständigkeit gegen Spannungsrißkorrosion auf der Außenfläche |
| EP1681364A1 (de) * | 2003-10-20 | 2006-07-19 | JFE Steel Corporation | Expandierbares nahtloses stahlrohr zur verwendung in ölbohrlöchern und herstellungsverfahren dafür |
| WO2007017161A1 (en) | 2005-08-04 | 2007-02-15 | Tenaris Connections Ag | High-strength steel for seamless, weldable steel pipes |
Non-Patent Citations (2)
| Title |
|---|
| EN 10208 |
| ISO 3183 |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3269837A1 (de) * | 2016-07-13 | 2018-01-17 | Vallourec Deutschland GmbH | Mikro-legierter stahl und verfahren zur herstellung dieses stahls |
| WO2018011299A1 (en) * | 2016-07-13 | 2018-01-18 | Vallourec Deutschland Gmbh | Micro alloyed steel and method for producing said steel |
| US11021769B2 (en) | 2016-07-13 | 2021-06-01 | Vallourec Deutschland Gmbh | Micro alloyed steel and method for producing said steel |
Also Published As
| Publication number | Publication date |
|---|---|
| JP5715826B2 (ja) | 2015-05-13 |
| BRPI0908484A8 (pt) | 2017-05-16 |
| MX2010009446A (es) | 2010-09-30 |
| AR070624A1 (es) | 2010-04-21 |
| WO2009106033A1 (de) | 2009-09-03 |
| US20110259478A1 (en) | 2011-10-27 |
| JP2011513584A (ja) | 2011-04-28 |
| EP2245201A1 (de) | 2010-11-03 |
| BRPI0908484A2 (pt) | 2015-08-18 |
| EP2245201B1 (de) | 2017-09-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE69529162T2 (de) | Verfahren zur herstellung einer stahlröhre mit hervorragenden korrosionseigenschaften und guter schweissbarkeit | |
| EP2245201B1 (de) | Hochfester niedriglegierter stahl für nahtlose rohre mit hervorragender schweissbarkeit und korrosionsbeständigkeit | |
| DE60224262T2 (de) | Elektrogeschweisstes stahlrohr für hohlstabilisator | |
| DE60216806T2 (de) | Martensitischer nichtrostender stahl | |
| DE69628190T2 (de) | Hochfeste, geschweisste stahlstrukturen mit hervorragendem korrosionswiderstand | |
| DE69124478T2 (de) | Verfahren zum Herstellen einer plattierten Stahlplatte mit guter Tieftemperaturzähigkeit | |
| DE60110539T2 (de) | Ferritisches rostfreies Stahlblech geeignet für einen Kraftstofftank und für eine Kraftstoffleitung sowie Verfahren zu dessen Herstellung | |
| EP3535431B1 (de) | Mittelmanganstahlprodukt zum tieftemperatureinsatz und verfahren zu seiner herstellung | |
| DE60124227T2 (de) | Duplex rostfreier stahl | |
| DE69520488T2 (de) | Martensitischer edelstahl mit hoher korrisionsbeständigkeit und hervorragender schweissbarkeit und herstellungsverfahren desselben | |
| DE60017059T2 (de) | Martensitischer rostfreier stahl für nahtloses stahlrohr | |
| DE60105929T2 (de) | Hochfeste, hochzähe, nahtlose stahlrohre für leitungsrohre | |
| DE102015117956A1 (de) | Verbundrohr bestehend aus einem Trägerrohr und mindestens einem Schutzrohr und Verfahren zur Herstellung hierfür | |
| DE102014102452A1 (de) | Verfahren zur Herstellung von warmgewalzten, nahtlosen Rohren aus umwandlungsfähigem Stahl, insbesondere für Rohrleitungen für Tiefwasseranwendungen und entsprechende Rohre | |
| DE69510060T2 (de) | Rostfreier martensit-stahl mit ausgezeichneter verarbeitbarkeit und schwefel induzierter spannungsrisskorrosionsbeständigkeit | |
| DE112013006498T5 (de) | Längsgeschweißtes Stahlrohr der 500 MPa-Güteklasse mit einem niedrigen Streckgrenzenverhältnis und Herstellungsverfahren dafür | |
| CN107208215A (zh) | 高强度电焊钢管、高强度电焊钢管用钢板的制造方法和高强度电焊钢管的制造方法 | |
| DE102004053620A1 (de) | Hochfester, lufthärtender Stahl mit ausgezeichneten Umformeigenschaften | |
| EP3551776A1 (de) | Verfahren zur herstellung eines warm- oder kaltbandes und/oder eines flexibel gewalzten stahlflachprodukts aus einem hochfesten manganhaltigen stahl und stahlflachprodukt hiernach | |
| DE102016117508A1 (de) | Verfahren zur Herstellung eines Stahlflachprodukts aus einem mittelmanganhaltigen Stahl und ein derartiges Stahlflachprodukt | |
| DE69609238T2 (de) | Rostfreie martensitische Stahl mit hohem Chromgehalt für Rohre, die eine gute Beständigkeit gegen Lochfrasskorrosion haben, und Verfahren zu deren Herstellung | |
| DE102015112215A1 (de) | Hochlegierter Stahl insbesondere zur Herstellung von mit Innenhochdruck umgeformten Rohren und Verfahren zur Herstellung derartiger Rohre aus diesem Stahl | |
| EP2255021B1 (de) | Stahllegierung für einen niedrig legierten stahl zur herstellung hochfester nahtloser stahlrohre | |
| EP3853389A1 (de) | Stahl zum oberflächenhärten mit hoher randhärte und mit einem feinen duktilen kerngefüge | |
| DE102016117494A1 (de) | Verfahren zur Herstellung eines umgeformten Bauteils aus einem mittelmanganhaltigen Stahlflachprodukt und ein derartiges Bauteil |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| OP8 | Request for examination as to paragraph 44 patent law | ||
| R002 | Refusal decision in examination/registration proceedings | ||
| R006 | Appeal filed | ||
| R008 | Case pending at federal patent court | ||
| R003 | Refusal decision now final | ||
| R010 | Appeal proceedings settled by withdrawal of appeal(s) or in some other way |