DE102008024740A1 - Aircraft controller, has indoor flow system such as pipe line system that is opened forward in flight direction and subjected with impact pressure and generating yaw moment by deviation of flow - Google Patents
Aircraft controller, has indoor flow system such as pipe line system that is opened forward in flight direction and subjected with impact pressure and generating yaw moment by deviation of flow Download PDFInfo
- Publication number
- DE102008024740A1 DE102008024740A1 DE102008024740A DE102008024740A DE102008024740A1 DE 102008024740 A1 DE102008024740 A1 DE 102008024740A1 DE 102008024740 A DE102008024740 A DE 102008024740A DE 102008024740 A DE102008024740 A DE 102008024740A DE 102008024740 A1 DE102008024740 A1 DE 102008024740A1
- Authority
- DE
- Germany
- Prior art keywords
- flow
- moment
- deviation
- subjected
- pipe line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000005096 rolling process Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 241000792859 Enema Species 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940095399 enema Drugs 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000002023 somite Anatomy 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C15/00—Attitude, flight direction, or altitude control by jet reaction
- B64C15/14—Attitude, flight direction, or altitude control by jet reaction the jets being other than main propulsion jets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D15/00—Transmission of mechanical power
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D1/00—Non-positive-displacement machines or engines, e.g. steam turbines
- F01D1/32—Non-positive-displacement machines or engines, e.g. steam turbines with pressure velocity transformation exclusively in rotor, e.g. the rotor rotating under the influence of jets issuing from the rotor, e.g. Heron turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/0608—Rotors characterised by their aerodynamic shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/065—Rotors characterised by their construction elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Air-Flow Control Members (AREA)
Abstract
Description
Aufgabenstellung für die Erfindung:Task for the invention:
Durch die Fortschritte und Entwicklungen auf dem Gebiet der Faserverbundwerkstoffe ist es heutzutage möglich, extreme Spannweiten und somit Tragflügel hoher Streckung zu realisieren. Die dadurch gewonnenen aerodynamischen Vorteile führen jedoch zu Einbußen in der Steuerbarkeit. Insbesondere ist die Steuerbarkeit um die Hochachse (Gieren) eingeschränkt. Flugzeuge großer Streckung (z. B. Segelflugzeuge) weisen somit sehr geringe Gierraten und das meist unerwünschte negative Wendemoment auf. Bisherige Konzepte, eine Drehbewegung um die Flugzeughochachse zu erzeugen und damit die Gierraten zu erhöhen und das negative Wendemoment zu verringern oder zu kompensieren, basieren auf dem Prinzip, lokal Widerstand zu erzeugen und über einen Hebelarm ein Moment um den Schwerpunkt zu generieren. Neben der Störung der Strömung auch im eingefahrenen Zustand der o. g. Systeme im Geradeausflug stellen vor allem die massiven Einbussen in der aerodynamischen Leistung während der Momentenerzeugung einen unerwünschten Effekt dar. Eine Generierung von Momenten über eine reine Impulsumlenkung verspricht hier, die Leistungsfähigkeit von Segelflugzeugen verbessern zu können.By the progress and developments in the field of fiber composites is it possible these days to realize extreme spans and thus high-aspect wings. However, the resulting aerodynamic benefits lead to loss in controllability. In particular, the controllability is around the Vertical axis (yaw) restricted. Big planes Stretching (eg gliders) thus have very low yaw rates and the most undesirable negative turning moment on. Previous concepts, a rotation around to create the aircraft's vertical axis and thus increase the yaw rates and to reduce or compensate for the negative turning moment on the principle of generating resistance locally and over one Lever arm a moment to generate the center of gravity. In addition to the disorder the flow also in the retracted state of o. g. Systems in straight flight especially the massive losses in the aerodynamic Performance during the moment generation an undesirable effect. A generation from moments over a pure impulse deflection promises here, the efficiency to improve gliders.
Einen Vorschlag zur Realisierung von Systemen zur Erzeugung von Momenten zur Flugzeugsteuerung durch Impulsumlenkung wird im Folgenden beschrieben.a Proposal for the realization of systems for generating moments for aircraft control by pulse redirection will be described below.
Stand der TechnikState of the art
In der Aeronautik wird größtenteils das Seitenleitwerk dazu verwendet, das negative Wendemoment zu kompensieren. Reicht das dazu nicht aus, findet meist das Prinzip einer zusätzlichen lokalen Widerstandserzeugung zur Verringerung oder vollständigen Kompensation des negativen Wendemoments Anwendung.In the aeronautics is mostly the rudder used to compensate for the negative turning moment. If this is not enough, you will usually find the principle of an additional one local resistance generation for reduction or complete compensation negative turning moment application.
Beispiele hierfür sind
- • Das Ausfahren von Klappen (s. g. Spoilern oder Luftbremsen) auf der Oberseite des Flügels
- • Differenzielles Ausschlagen der Querruder derart, dass das kurveninnere Querruder stärker ausgeschlagen wird und so auch mehr Widerstand erzeugt.
- • Gezielte Strömungsablösung mit daraus resultierender Widerstandserhöhung (z. B. durch Ausblasung von kleinen Luftströmen auf der Ober- oder Unterseite des Flügelprofils, die eine große Wirkung auf die dortige Profilumströmung und somit auf den Widerstand des jeweiligen Flügelabschnitts haben)
- • The extension of flaps (so-called spoilers or air brakes) on the top of the wing
- • Differential deflection of the ailerons in such a way that the inside of the curve aileron is knocked out more and thus also generates more resistance.
- • Targeted flow separation with resultant increase in resistance (eg by blowing small air streams on the top or bottom of the airfoil, which have a major effect on the profile flow around them and thus on the resistance of the respective wing section)
Darüber hinaus werden oft Kompromisse zwischen Rollraten und negativem Wendemoment eingegangen.Furthermore Often compromises are made between roll rates and negative turnaround.
Beschreibung der Flugzeugsteuerung durch umgelenkte InnenströmungDescription of the aircraft controller by deflected internal flow
Die Erfindung umfasst eine Flugzeugsteuerung, welche gekennzeichnet ist durch ein bzw. mehrere Innenströmungssysteme (z. B. Rohrleitungssysteme), in denen das anströmende Medium derart umgelenkt wird, dass über dessen Impuls eine Kraft bzw. Moment erzeugt wird.The The invention includes an aircraft controller which is characterized is through one or more internal flow systems (eg piping systems), in which the oncoming Medium is deflected in such a way that on the pulse of a force or Moment is generated.
Um
ein Moment um die Hochachse zu erzeugen, besitzt das Innenströmungssystem,
wie es in
In
Das
Innenströmungssystem
kann beispielsweise aus zylindrischen Rohren bestehen, wobei auch
mehrere Rohre nebeneinander angeordnet werden können, um bei gegebenem Rohrdurchmesser
den Gesamtquerschnitt des Leitungssystems und damit das resultierende
Steuermoment zu erhöhen. Eine
spannweitige Zuschnürung
(wie in
Wird die Innenströmung beim zweiten Umlenken nicht in Strömungsrichtung sondern in Richtung der Hochachse umgelenkt, so wird ein Moment um die Längsachse des Flugzeugs erzeugt. Somit kann auch eine Rollteuerung des Flugzeuges realisiert werden. Dieses Prinzip der Erzeugung eines Rollmomentes kann auf alle hochgestreckten Körper, in denen eine Innenrohrströmung untergebracht werden kann, übertragen werden (z. B. Rotorblätter einer Windkraftanlage) Becomes the internal flow at the second deflection not in the flow direction but in the direction the vertical axis deflected, so is a moment about the longitudinal axis generated by the aircraft. Thus, also a Rollteuerung of the aircraft will be realized. This principle of generating a rolling moment can be applied to any uptrodden body, in those an inner tube flow can be accommodated, transferred (eg rotor blades a wind turbine)
Einsatzbereich der Innenströmungssteuerung:Application of internal flow control:
Das Innenströmungssystem wird vorteilhaft so ausgelegt, dass bei gegebener Bauhöhe des Flügels und der damit verbundenen Restriktion des Leitungsquerschnitts der Hebelarm so gewählt wird, dass das Resultierende Moment maximal wird, Dabei stehen die Hebelarmvergrößerung im Konflikt mit der Kräfteverringerung aufgrund der erhöhten Reibung.The Internal flow system is advantageously designed so that at a given height of the wing and the associated restriction of the line cross section of the lever arm so chosen becomes that the resultant moment becomes maximally Lever arm magnification in the Conflict with the reduction of forces due to the increased Friction.
Mögliche praktische Umsetzungen:Possible practical implementations:
Ein
Rohrleitungssystem kann, wie in
Vorteile gegenüber dem Stand der TechnikAdvantages over the prior art
- • Durch die Impulsumlenkung wird direkt ein Moment erzeugt ohne eine große zusätzliche Widerstandskomponente aufzubauen. Bei guter Gestaltung von Einlauf und Auslass ist hauptsächlich der Rohrreibungskraft in der Widerstandsbilanz zu berücksichtigen. Somit kann die aerodynamische Leistung während der Einleitung einer Rollbewegung verbessert werden.• By the momentum diverting is instantaneously instantiated without a large extra Build resistance component. With good design of enema and outlet is mainly the pipe frictional force in the resistance balance to take into account. Thus, the aerodynamic performance during the initiation of a Rolling motion can be improved.
- • Das negative Wendemoment kann verringert oder sogar völlig kompensiert werden, womit auch die Größe des Seitenleitwerks verringert werden kann. Das führt während allen Flugphasen zu einer verbesserten Aerodynamik und zu einer Gewichtsreduktion.• The negative turning moment can be reduced or even completely compensated with which also the size of the vertical stabilizer can be reduced. Leading while all phases of flight to improved aerodynamics and to a Weight reduction.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102008024740A DE102008024740A1 (en) | 2008-05-21 | 2008-05-21 | Aircraft controller, has indoor flow system such as pipe line system that is opened forward in flight direction and subjected with impact pressure and generating yaw moment by deviation of flow |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102008024740A DE102008024740A1 (en) | 2008-05-21 | 2008-05-21 | Aircraft controller, has indoor flow system such as pipe line system that is opened forward in flight direction and subjected with impact pressure and generating yaw moment by deviation of flow |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| DE102008024740A1 true DE102008024740A1 (en) | 2009-11-26 |
Family
ID=41212602
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| DE102008024740A Withdrawn DE102008024740A1 (en) | 2008-05-21 | 2008-05-21 | Aircraft controller, has indoor flow system such as pipe line system that is opened forward in flight direction and subjected with impact pressure and generating yaw moment by deviation of flow |
Country Status (1)
| Country | Link |
|---|---|
| DE (1) | DE102008024740A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2959281A1 (en) * | 2010-04-23 | 2011-10-28 | Philippe Echevarria | Device for increasing rotational speed of intra-animated rotation propeller or turbine of windmill to generate electricity for e.g. aircraft, has air outlet formed at end of blade to discharge air for exerting natural pressure on propeller |
| EP3040270A1 (en) * | 2014-12-31 | 2016-07-06 | Rolls-Royce North American Technologies, Inc. | Fluid-vectoring system |
-
2008
- 2008-05-21 DE DE102008024740A patent/DE102008024740A1/en not_active Withdrawn
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2959281A1 (en) * | 2010-04-23 | 2011-10-28 | Philippe Echevarria | Device for increasing rotational speed of intra-animated rotation propeller or turbine of windmill to generate electricity for e.g. aircraft, has air outlet formed at end of blade to discharge air for exerting natural pressure on propeller |
| EP3040270A1 (en) * | 2014-12-31 | 2016-07-06 | Rolls-Royce North American Technologies, Inc. | Fluid-vectoring system |
| US9896191B2 (en) | 2014-12-31 | 2018-02-20 | Rolls-Royce North American Technologies Inc. | Fluid-vectoring system |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2389313B1 (en) | Aircraft wing with a main wing and a control flap installed on said wing | |
| EP2403758B1 (en) | Wing of an aircraft and assembly of a wing comprising a device for influencing a flow | |
| DE202015000665U1 (en) | Device for a safety system and / or resource / energy efficiency improvement system for influencing the flow of an aerodynamic or hydrodynamic body (3), according to the principle of a return flow flap (4) | |
| DE60208898T2 (en) | PLANE ASSEMBLY WITH IMPROVED AERODYNAMICS | |
| DE102009025857A1 (en) | Wind turbine rotor blade floor plans with twisted and tapered tips | |
| DE602004002786T2 (en) | Wing with inflatable, fiber-reinforced device for altering the wing element | |
| EP2895740B1 (en) | Tethered wing kite for wind energy collection | |
| DE102009050747A1 (en) | Aircraft with at least two vertical stabilizers in a non-central arrangement | |
| DE102009013758A1 (en) | Aircraft with a device for influencing the directional stability of the aircraft and methods for influencing the directional stability of the aircraft | |
| DE102014108917A1 (en) | Movable surface devices for rotor blades of a wind turbine | |
| DE102015113404A1 (en) | Multifunctional flap system to improve energy efficiency | |
| Hattalli et al. | Wing morphing to improve control performance of an aircraft-an overview and a case study | |
| DE102008024740A1 (en) | Aircraft controller, has indoor flow system such as pipe line system that is opened forward in flight direction and subjected with impact pressure and generating yaw moment by deviation of flow | |
| DE102007028143B4 (en) | Method and device for adjusting a functional element as a function of the flow velocity of a flowing medium | |
| DE102015113347A1 (en) | Multifunctional flaps for improving energy efficiency and safety | |
| DE102008032789A1 (en) | Aircraft having at least two spanwise spaced apart drive motors | |
| DE102013104695B4 (en) | Aerodynamic profile body | |
| DE10011319C2 (en) | Airship and method for pitch angle trimming of airships | |
| DE102006025752A1 (en) | Method and apparatus for generating aerodynamic drag on an aircraft | |
| EP1725449A1 (en) | Transport means comprising improved streamlined characteristics | |
| DE102009060804A1 (en) | Device, particularly flight controller, for controlling or stabilizing aircraft, particularly rotor aircraft or fuselage or chassis frame, by utilizing gyro effect, has rotors, where outer torque is applied vertically to rotor rotating axis | |
| DE202007002737U1 (en) | Improved design flexible kite has stabilizing ribs filled with air via non return valves | |
| DE102019110614B4 (en) | Device and method for changing the shape of aerodynamic control surfaces | |
| DE102015012945A1 (en) | Force formation device for flow media | |
| Hirschel et al. | Selected Flow Problems of Small Aspect-Ratio Delta-Type Wings |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 8122 | Nonbinding interest in granting licences declared | ||
| R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |
Effective date: 20121201 |