DE102008021083A1 - Process for the preparation of a hydrogen-containing gas mixture - Google Patents
Process for the preparation of a hydrogen-containing gas mixture Download PDFInfo
- Publication number
- DE102008021083A1 DE102008021083A1 DE102008021083A DE102008021083A DE102008021083A1 DE 102008021083 A1 DE102008021083 A1 DE 102008021083A1 DE 102008021083 A DE102008021083 A DE 102008021083A DE 102008021083 A DE102008021083 A DE 102008021083A DE 102008021083 A1 DE102008021083 A1 DE 102008021083A1
- Authority
- DE
- Germany
- Prior art keywords
- zone
- temperature
- catalyst
- reactor according
- reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000007789 gas Substances 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims abstract description 33
- 239000000203 mixture Substances 0.000 title claims abstract description 20
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 17
- 239000001257 hydrogen Substances 0.000 title claims abstract description 17
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 16
- 238000002360 preparation method Methods 0.000 title claims description 5
- 239000003054 catalyst Substances 0.000 claims abstract description 82
- 238000006243 chemical reaction Methods 0.000 claims abstract description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 238000006057 reforming reaction Methods 0.000 claims abstract description 17
- 239000000446 fuel Substances 0.000 claims description 46
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 20
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 16
- 230000003647 oxidation Effects 0.000 claims description 14
- 238000007254 oxidation reaction Methods 0.000 claims description 14
- 229930195733 hydrocarbon Natural products 0.000 claims description 13
- 150000002430 hydrocarbons Chemical class 0.000 claims description 13
- 238000000629 steam reforming Methods 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 10
- 238000000576 coating method Methods 0.000 claims description 10
- 238000005470 impregnation Methods 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 230000003197 catalytic effect Effects 0.000 claims description 7
- 239000006260 foam Substances 0.000 claims description 4
- 239000003915 liquefied petroleum gas Substances 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 150000001298 alcohols Chemical class 0.000 claims description 3
- 238000002453 autothermal reforming Methods 0.000 claims description 3
- 239000003502 gasoline Substances 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 239000003345 natural gas Substances 0.000 claims description 3
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052762 osmium Inorganic materials 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052702 rhenium Inorganic materials 0.000 claims description 2
- 229910052703 rhodium Inorganic materials 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000000376 reactant Substances 0.000 claims 1
- 241000264877 Hippospongia communis Species 0.000 description 19
- 238000001816 cooling Methods 0.000 description 11
- 239000002826 coolant Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000012876 carrier material Substances 0.000 description 5
- 238000006477 desulfuration reaction Methods 0.000 description 5
- 230000023556 desulfurization Effects 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 238000002407 reforming Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 229910052878 cordierite Inorganic materials 0.000 description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 229910000420 cerium oxide Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- -1 diesel Chemical class 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007210 heterogeneous catalysis Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000011490 mineral wool Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- 241000243142 Porifera Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- DRVWBEJJZZTIGJ-UHFFFAOYSA-N cerium(3+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[Ce+3].[Ce+3] DRVWBEJJZZTIGJ-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical class [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0618—Reforming processes, e.g. autothermal, partial oxidation or steam reforming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/248—Reactors comprising multiple separated flow channels
- B01J19/2485—Monolithic reactors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/323—Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
- C01B3/326—Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/40—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/48—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
- H01M8/0675—Removal of sulfur
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00074—Controlling the temperature by indirect heating or cooling employing heat exchange fluids
- B01J2219/00087—Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
- B01J2219/0009—Coils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00159—Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0244—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/025—Processes for making hydrogen or synthesis gas containing a partial oxidation step
- C01B2203/0261—Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0283—Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/066—Integration with other chemical processes with fuel cells
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0872—Methods of cooling
- C01B2203/0883—Methods of cooling by indirect heat exchange
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1005—Arrangement or shape of catalyst
- C01B2203/1011—Packed bed of catalytic structures, e.g. particles, packing elements
- C01B2203/1017—Packed bed of catalytic structures, e.g. particles, packing elements characterised by the form of the structure
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1005—Arrangement or shape of catalyst
- C01B2203/1023—Catalysts in the form of a monolith or honeycomb
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1005—Arrangement or shape of catalyst
- C01B2203/1029—Catalysts in the form of a foam
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1052—Nickel or cobalt catalysts
- C01B2203/1058—Nickel catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1064—Platinum group metal catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1064—Platinum group metal catalysts
- C01B2203/107—Platinum catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1076—Copper or zinc-based catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1082—Composition of support materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1217—Alcohols
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1241—Natural gas or methane
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1247—Higher hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1288—Evaporation of one or more of the different feed components
- C01B2203/1294—Evaporation by heat exchange with hot process stream
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/1614—Controlling the temperature
- C01B2203/1619—Measuring the temperature
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/1614—Controlling the temperature
- C01B2203/1623—Adjusting the temperature
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/1642—Controlling the product
- C01B2203/1671—Controlling the composition of the product
- C01B2203/168—Adjusting the composition of the product
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/169—Controlling the feed
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/80—Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
- C01B2203/82—Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Abstract
In einem Reaktor und einem Verfahren zur Herstellung eines wasserstoffhaltigen Gasgemisches wird ein Katalysatorträger in einem Reaktor verwendet, der einen oder mehrere Katalysatoren zur Katalyse einer Reformierreaktion und einer Wassergasshiftreaktion aufweist, wobei im Katalysatorträger ein zwei Zonen umfassendes axiales Temperaturprofil mit i) einer ersten Zone, in der überwiegend eine Reformierreaktion abläuft, mit einer Minimaltemperatur oberhalb der Temperatur der zweiten Zone ii), in der überwiegend eine Reformierreaktion abläuft, und ii) einer zweiten Zone, in der überwiegend eine Wassergasshiftreaktion abläuft, mit einer Maximaltemperatur unterhalb der Temperatur der ersten Zone i) vorliegt.In a reactor and a process for producing a hydrogen-containing gas mixture, a catalyst support is used in a reactor comprising one or more catalysts for catalyzing a reforming reaction and a water gas shift reaction, wherein in the catalyst support a two-zone axial temperature profile with i) a first zone, in which predominantly undergoes a reforming reaction, with a minimum temperature above the temperature of the second zone ii), in which predominantly a reforming reaction takes place, and ii) a second zone, in which predominantly a Wassergasshiftreaktion runs, with a maximum temperature below the temperature of the first zone i) is present.
Description
Die vorliegende Erfindung betrifft ein Verfahren und einen Reaktor zur Herstellung eines wasserstoffhaltigen Gasgemisches, insbesondere zur Anwendung in Brennstoffzellen.The The present invention relates to a process and a reactor for Production of a hydrogen-containing gas mixture, in particular for use in fuel cells.
Heutige Brennstoffzellen werden mit Wasserstoff betrieben, wobei an der Anode eine Reaktion von Wasserstoff zu Protonen und Elektronen und an der Kathode eine Reduktionsreaktion von Sauerstoff mittels Protonen und Elektronen zu Wasser stattfindet. Die Protonen passieren eine Polymer-Elektrolyt-Membran (PEM). Die Elektronen treiben den Stromkreislauf an und liefern die gewünschte elektrische Energie.today Fuel cells are operated with hydrogen, wherein at the Anode is a reaction of hydrogen to protons and electrons and at the cathode, a reduction reaction of oxygen by means of protons and electrons to water takes place. The protons pass one Polymer electrolyte membrane (PEM). The electrons drive the electric circuit and deliver the desired electrical energy.
PEM-Brennstoffzellen sind allerdings sehr empfindlich gegen Kohlenmonoxid. Ihre Empfindlichkeit beruht auf der Adsorption des CO an den aktiven Zentren des Anodenkatalysators (Platin). Diese Adsorption hat zur Folge, dass die Umsetzungsgeschwindigkeit des Wasserstoffs und folglich die Zellspannung und damit zusammenhängend der elektrische Wirkungsgrad der Brennstoffzellen sinkt.PEM fuel cells However, they are very sensitive to carbon monoxide. Your sensitivity is based on the adsorption of CO at the active sites of the anode catalyst (Platinum). This adsorption has the consequence that the reaction rate of hydrogen and consequently the cell voltage and related the electrical efficiency of the fuel cell decreases.
Der
wasserstoffhaltige Brennstoff für Brennstoffzellen kann
durch Reformierung von Erdgas oder anderen Kohlenwasserstoffen wie
Methan, LPG (Liquefied Petroleum Gas), Benzin, Diesel, Alkohole oder ähnliche
Kohlenwasserstoffe erhalten werden. Die beiden Reaktionen, die allgemein
(und auch im Rahmen der vorliegenden Erfindung) zur Konvertierung
von Kohlenwasserstoffen in Wasserstoff verwendet werden, können
beispielsweise anhand von Methan durch nachfolgende Reaktionsgleichungen beschrieben
werden:
Ferner findet die so genannte autotherme Reformierreaktion (ATR) Anwendung, die eine Kombination der CPO und STR darstellt.Further is using the so-called autothermal reforming reaction (ATR), which represents a combination of CPO and STR.
Um
den CO-Anteil im Synthesegas zu minimieren und gleichzeitig den
H2-Anteil zu erhöhen wird ausserdem die Wassergas-Shift-Reaktion
(kurz auch WGS) angewendet. Diese kann durch nachfolgende Reaktionsgleichung
beschrieben werden:
Unter Zugabe von Wasserdampf reagiert das CO leicht exotherm zu CO2 und H2. Grundsätzlich existieren Katalysatorsysteme zur Durchführung der WGS bei hohen und niedrigen Temperaturen, so dass zwischen Hochtemperatur-Shiftreaktionen (HTS; bei 300 bis 600°C) und Niedertemperatur-Shiftreaktionen (LTS; bei 200 bis 350°C) unterschieden wird. Zur Optimierung der CO-Entfernung bei gleichzeitiger zusätzlicher H2-Erzeugung aus Wasser in Reformergas werden häufig beide Reaktionen in Serie geschaltet.With the addition of water vapor, the CO reacts slightly exothermic to CO 2 and H 2 . In principle, catalyst systems exist for carrying out the WGS at high and low temperatures, so that a distinction is made between high-temperature shift reactions (HTS, at 300 to 600 ° C.) and low-temperature shift reactions (LTS, at 200 to 350 ° C.). In order to optimize the CO removal with simultaneous additional H 2 generation from water in reformer gas, both reactions are often connected in series.
Werden
PEM-Brennstoffzellen mit Reformergas betrieben, muss wegen der CO
Empfindlichkeit des Anodenkatalysators das CO je nach Ausgestaltung
der PEM Brennstoffzelle bis auf Restkonzentrationen von bis zu ≤ 10
ppm entfernt werden. Hierzu finden CO Feinreinigungsstufen wie die
so genannte CO Methanisierungsreaktion (Selmeth) oder CO Oxidation
(Selectox) Anwendung, die durch nachfolgende Reaktionsgleichung
beschrieben werden können:
Typischerweise bestehen daher Reformerkonzepte zur Erzeugung von Brennstoff für PEM-Brennstoffzellen aus folgenden Komponenten:
- – Entschwefelungsstufe,
- – Reformerstufe (STR, CPO, ATR),
- – HTS- und/oder LTS-Stufe und
- – CO-Feinreinigungsstufe
- - desulfurization stage,
- - reformer level (STR, CPO, ATR),
- - HTS and / or LTS level and
- - CO fine cleaning stage
Einige
solcher Konzepte werden in
Die
Bei
den PEM-Brennstoffzellen unterscheidet man zwischen Niedertemperatur-(NT-)
und Hochtemperatur-(HT-)PEM-Brennstoffzellen. Bei den NT-PEM-Brennstoffzellen
muss das im Reformat enthaltene CO weitgehend, wie oben beschrieben,
entfernt werden, wohingegen die HT-PEM-Brennstoffzellen aufgrund
des bei höheren Temperaturen zuungunsten der CO-Adsorption
verschobenen CO-Adsorptions-/Desorptionsgleichgewichts gegen CO
unempfindlicher sind. Hier können noch Synthesegase mit
einer Konzentration an CO von bis zu 3 Vol.-% verwendet werden (siehe
beispielsweise
Es besteht weiterhin Bedarf nach verbesserten Vorrichtungen mit geringerem apparativem Aufwand bei gleicher Qualität des erzeugten wasserstoffhaltigen Gases. Aufgabe der vorliegenden Erfindung ist daher die Bereitstellung eines Verfahrens und eines Apparats zur Herstellung eines wasserstoffhaltigen Gasgemisches mit möglichst geringer CO-Konzentration mit möglichst geringem apparativem Aufwand.It There is still a need for improved devices with less apparative effort with the same quality of the generated hydrogen-containing gas. Object of the present invention is Therefore, the provision of a method and an apparatus for Production of a hydrogen-containing gas mixture with as possible Low CO concentration with the least possible apparativem Effort.
Diese Aufgabe wird erfindungsgemäß gelöst durch das in den unabhängigen Ansprüchen beschriebene Verfahren und den in den unabhängigen Ansprüchen beschriebenen Reaktor. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens und des erfindungsgemäßen Reaktors sind in den abhängigen Unteransprüchen beschrieben.These The object is achieved by that described in the independent claims Method and in the independent claims described reactor. Advantageous embodiments of the invention Method and reactor of the invention are described in the dependent subclaims.
Erfindungsgemäß ist auf einem Katalysatorträger, der in einen Reaktor mit weiteren Komponenten eingebracht werden kann, ein Katalysator, der eine Reformierreaktion und eine Wassergasshiftreaktion katalysieren kann, aufgebracht. Die Steuerung, in welchen Bereichen des mit Katalysator beschickten Katalysatorträgers die eine oder die andere Reaktion vorherrscht, erfolgt mit einem zwei Stufen umfassenden axialen Temperaturprofil. Dieses weist i) eine erste Zone, in der überwiegend eine Reformierreaktion abläuft, mit einer Minimaltemperatur oberhalb der Temperatur der zweiten Zone ii), und ii) eine zweite Zone, in der überwiegend eine Wassergasshiftreaktion abläuft, mit einer Maximaltemperatur unterhalb der Temperatur der ersten Zone i).According to the invention on a catalyst support, in a reactor with further Components can be introduced, a catalyst that undergoes a reforming reaction and catalyze a water gas shift reaction. The control in which areas of the catalyst-fed Catalyst support which prevails one or the other reaction, takes place with a two-step axial temperature profile. This has i) a first zone in which predominantly one Reforming reaction proceeds, with a minimum temperature above the temperature of the second zone ii), and ii) a second zone, in which predominantly undergoes a water gas shift reaction, with a maximum temperature below the temperature of the first Zone i).
Gegenüber
der
In den beiden Zonen des erfindungsgemäßen Katalysatorträgers können derselbe Katalysator oder Mischungen aus mehreren (zwei, drei, vier) unterschiedlichen Katalysatoren verwendet werden. Gemäß einer bevorzugten Ausführungsform kann derselbe Katalysator, der sowohl die Reformierreaktion als auch die Shiftreaktion katalysiert, in beiden Zonen eingesetzt werden, wie beispielsweise ein Pt/Rh-haltiger Katalysator, ein Pt/Re-haltiger Katalysator, ein Ni-Katalysator oder ein Fe-Cr-Shift-Katalysator. Unter diese Ausführungsform fällt auch die Verwendung derselben Mischung aus zwei oder mehr Katalysatoren in beiden Zonen. Gemäß einer weiteren bevorzugten Ausführungsform wird in der ersten Zone ein Katalysator eingesetzt, der sowohl die Reformierreaktion als auch die Shiftreaktion katalysiert, und in der zweiten Zone ein anderer, vom ersten Katalysator verschiedener Katalysator, der ebenfalls sowohl die Reformierreaktion als auch die Shiftreaktion katalysiert. Vorzugsweise ist der zweite Katalysator in der untere Zone besser für die Shiftreaktion, und der erste Katalysator in der obere Zone besser für die Reformierung, beide Katalysatoren katalysieren jedoch beide Reaktionen. Beispielsweise kann bei der Beschichtung einer Wabe oben in Zone i) ein Pt/Rh-haltiger Katalysator zum Einsatz kommen, unten in Zone ii) ein Pt/Re-haltiger Katalysator. Bei Schüttgütern kann entsprechend ebenfalls eine obere Füllung aus einem anderen Katalysator sein als die untere, beide katalysieren jedoch beide Reaktionen – je nach Temperatur. Beispiele dafür sind u. a. oben ein Ni-Katalysator und unten ein Fe-Cr-Shift-Katalysator. Denkbar ist auch die Verwendung von unterschiedlichen Mischungen aus zwei oder mehr verschiedenen Katalysatoren in jeder der Zonen i) und ii).In the two zones of the catalyst support according to the invention may be the same catalyst or mixtures of several (two, three, four) different catalysts can be used. According to one preferred embodiment, the same catalyst, which catalyzes both the reforming reaction and the shift reaction, be used in both zones, such as a Pt / Rh-containing Catalyst, a Pt / Re-containing catalyst, a Ni catalyst or a Fe-Cr-shift catalyst. Under this embodiment also falls the use of the same mixture of two or more catalysts in both zones. According to one Another preferred embodiment is in the first zone a catalyst is used which contains both the reforming reaction and also catalyzes the shift reaction, and in the second zone other, different from the first catalyst catalyst, also catalyzes both the reforming reaction and the shift reaction. Preferably, the second catalyst is better in the lower zone for the shift reaction, and the first catalyst in the upper zone better for reforming, both catalysts however, catalyze both reactions. For example, in the coating a honeycomb in zone i) a Pt / Rh-containing catalyst is used come down in zone ii) a Pt / Re-containing catalyst. For bulk goods can also be an upper filling of a other catalyst than the lower, but both catalyze both reactions - depending on the temperature. Examples of this are u. a. above a Ni catalyst and below a Fe-Cr-shift catalyst. It is also conceivable to use different mixtures from two or more different catalysts in each of the zones i) and ii).
Im
Rahmen der vorliegenden Erfindung werden vorzugsweise Katalysatoren
verwendet, die fein dispergiertes Platin enthalten, insbesondere
sog. Shift-Katalysatoren, wie sie allgemein bekannt sind. Es können
auch Katalysatoren aus anderen Metallen, wie Co, Ni, Cu/Zn, Fe/Cr,
Ru, Rh, Pd, Ag, Re, Os, Ir, Au und/oder deren Mischungen (auch in
Kombination mit Pt) verwendet werden. Bevorzugt werden beispielsweise
Pt/Rh-haltige Katalysatoren, Pt/Re-haltige Katalysatoren, Ni-Katalysatoren
oder Fe-Cr-Shift-Katalysatoren eingesetzt. Geeignet sind beispielsweise
Katalysatoren, wie sie in der
Die Katalysatoren werden auf den Katalysatorträger aufgebracht, nach dem Fachmann bekannten Verfahren. Vorzugsweise wird der Katalysator auf den Katalysatorträger durch Beschichten oder durch Imprägnierung des Katalysatorträgers aufgebracht.The Catalysts are applied to the catalyst support, according to methods known in the art. Preferably, the catalyst becomes on the catalyst support by coating or by Impregnation of the catalyst support applied.
Die aktiven Katalysatorbestandteile können direkt auf Schüttgut aufgebracht werden, z. B. auf einfache α Al2O3-Träger oder γ-Al2O3 Träger oder ähnliche keramische Trägersysteme-Träger, die beispielsweise vorher zu Kugeln, Tabletten, Extrudaten, Triholes oder anderen Formen geformt wurden. Dabei sind sowohl Al2O3 als auch andere Oxide wie Ce-Oxide, Zr-Oxide, Ti-Oxide, La-Oxide sowie Mischungen aus den Oxiden und gegebenenfalls zusätzlichen Promotoren denkbar. Über die Konzentration und Temperatur der Imprägnierlösung, die Porosität des Trägers und den Imprägnierprozess selbst können die Eindringtiefe und die Konzentration der katalytisch aktiven Katalysatormaterialien auf dem Träger gesteuert werden. Der erfindungsgemäße Katalysator kann durch Imprägnierung eines Katalysatorträgers wie z. B. Tabletten, Kugeln, Extrudate oder Granulate mit einer wässrigen Lösung von Salzen des gewünschten Metalls hergestellt werden. Der imprägnierte Katalysator wird dann getrocknet und kalziniert, gegebenenfalls werden diese Schritte ein- oder mehrmals wiederholt.The active catalyst components can be applied directly to bulk material, for. Example, on simple α Al 2 O 3 support or γ-Al 2 O 3 support or similar ceramic support systems carrier, for example, previously formed into spheres, tablets, extrudates, Triholes or other forms. In this case, both Al 2 O 3 and other oxides such as Ce oxides, Zr oxides, Ti oxides, La oxides and mixtures of the oxides and optionally additional promoters are conceivable. The concentration and temperature of the impregnation solution, the porosity of the support and the impregnation process itself can be used to control the penetration depth and the concentration of the catalytically active catalyst materials on the support. The catalyst of the invention can be prepared by impregnation of a catalyst support such. As tablets, spheres, extrudates or granules are prepared with an aqueous solution of salts of the desired metal. The impregnated catalyst is then dried and calcined, optionally these steps are repeated one or more times.
Außerdem können sogenannte Trägerkatalysatoren hergestellt werden, bei denen die katalytisch aktiven Komponenten in hochdisperser Form auf Trägermaterialien aufgebracht werden. Zu diesem Zweck werden Trägermaterialien verwendet, die eine große spezifische Oberfläche zur Aufnahme der katalytisch aktiven Komponenten besitzen. Es handelt sich um feinteilige, das heißt pulverförmige, temperaturstabile Metalloxide – im Folgenden bezeichnet als Washcoat. Typische Washcoat-Hauptbestandteile sind Aluminiumoxide, Ceroxide, Zirkonoxide und andere Metalloxide. Zusätzliche Promotoren zur Stabilisierung der hohen Oberflächen oder zur Unterdrückung bzw. Promotion von Nebenreaktionen können ebenfalls vorhanden sein. Typischerweise werden Mischoxide mit BET-Oberflächen von etwa 50 bis etwa 250 m2/g verwendet.In addition, so-called supported catalysts can be prepared in which the catalytically active components are applied in highly dispersed form on support materials. For this purpose, support materials are used which have a large specific surface area for receiving the catalytically active components. It is finely divided, that is powdery, temperature-stable metal oxides - hereinafter referred to as washcoat. Typical washcoat main constituents are aluminum oxides, cerium oxides, zirconium oxides and other metal oxides. Additional promoters to stabilize the high surface areas or to suppress or promote side reactions may also be present. Typically, mixed oxides with BET surface areas of about 50 to about 250 m 2 / g are used.
Die
Trägermaterialien werden in Form einer Beschichtung auf
inerte Tragkörper – sogenannte Wabenkörper – aus
Keramik (z. B. Cordierite) oder Metall aufgebracht. Diese Wabenkörper
werden im Folgenden auch Monolithe genannt. Der Begriff Monolith,
wie er im Sinne der vorliegenden Erfindung verwendet wird, wird
z. B. in
In einer bevorzugten Ausführungsform werden die Aktivkomponenten auf Trägermaterialien, umfassend ein Mischoxid, umfassend Ceroxid (CeOx), Lanthanoxid (La2O3), Aluminiumoxid (Al2O3), Yttriumoxid (Y2O3), Titanoxid (TiO2), Zirkonoxid (ZrO2), Siliciumoxid (SiO2) oder Mischungen davon, aufgetragen. Das Trägermaterial-Mischoxid kann z. B. durch Imprägnierung von Aluminiumoxid mit den Nitratsalzen der jeweiligen anderen Metallen und anschließender Kalzinierung hergestellt werden.In a preferred embodiment, the active components are supported on support materials comprising a mixed oxide comprising cerium oxide (CeO x ), lanthanum oxide (La 2 O 3 ), aluminum oxide (Al 2 O 3 ), yttrium oxide (Y 2 O 3 ), titanium oxide (TiO 2 ) , Zirconia (ZrO 2 ), silica (SiO 2 ) or mixtures thereof. The carrier material mixed oxide can, for. Example, be prepared by impregnation of alumina with the nitrate salts of the other metals and subsequent calcination.
Das
Trägermaterial wird zuvor wie beschrieben z. B. auf monolithische
Cordierit-Waben beschichtet, getrocknet und kalziniert; in einem
oder mehreren weiteren Imprägnier-, Trocken- und Kalzinierschritten
werden die Aktivkomponenten darauf abgeschieden. Die monolithischen
Träger mit Wabenstruktur sind dem Fachmann bekannt und
werden z. B. in der Automobilindustrie eingesetzt. Beispiele zu
verschiedenen monolithischen Trägern sind in
Besonders bevorzugt liegen die erfindungsgemäßen Katalysatorträger als Ringwaben oder Vollwaben vor. Möglich sind aber auch andere Wabengeometrien. Die Katalysatorträger können auch in anderen Formen vorliegen, beispielsweise als Schaum, Vlies oder Gitter. Selbstverständlich können auch Kombinationen einzelner Formen oder Gestaltungen verwendet werden. Die Ringwabenform ist deswegen vorteilhaft, weil die relativ durchströmte geometrische Oberfläche zur Außenwand erhöht und damit ein besserer Wärmeeintrag von der Reaktorwand zur Wabe (und umgekehrt) realisiert werden kann.The catalyst supports according to the invention are particularly preferably in the form of honeycombs or honeycombs. However, other honeycomb geometries are also possible. The catalyst supports can also be in other forms, for example as foam, fleece or mesh. Of course you can too Combinations of individual shapes or designs can be used. The annular honeycomb shape is advantageous because the relatively through-flowing geometric surface to the outer wall increases and thus a better heat input from the reactor wall to the honeycomb (and vice versa) can be realized.
Es kann vorteilhaft sein, den Katalysatorträger mit Wärmeübergang fördernden Elementen ganz oder teilweise zu versehen, ihn beispielsweise teilweise mit einem Metallvlies zu umwickeln, bevor er in die Gesamtreaktorapparatur eingebracht wird. Ferner kann es vorteilhaft sein, den Katalysatorträger ganz oder teilweise mit Positionierhilfsmittel zu versehen, ihn beispielsweise mit Mineralwolle zu umwickeln, bevor er in die Gesamtreaktorapparatur eingebracht wird. Insbesondere ist es vorteilhaft, den Außenbereich der beiden Zonen mit Wärmeübergang fördernden Elementen und/oder Positionierhilfsmittel zu versehen.It may be advantageous, the catalyst support with heat transfer to fully or partially provide promotional elements to him For example, partially with a metal fleece to wrap before it is introduced into the overall reactor apparatus. Furthermore it can be advantageous, the catalyst support in whole or in part To provide with positioning aid, for example, mineral wool before wrapping it in the overall reactor apparatus becomes. In particular, it is beneficial to the outdoor area promoting the two zones with heat transfer To provide elements and / or positioning aids.
Die im Rahmen des erfindungsgemäßen Verfahrens durchgeführte Reformierreaktion in der ersten Zone ist bevorzugt ausgewählt aus der Gruppe, bestehend aus Dampfreformierung (STR), katalytische Partialoxidation (CPO) und autotherme Reformierreaktion (ATR). Es können aber auch andere Reaktionen in der ersten Zone des Katalysators durchgeführt werden, die Kohlenwasserstoffe zu Wasserstoff und CO umwandeln. Für die STR wird der ersten Zone ein Gemisch aus Kohlenwasserstoff und Wasserdampf zugeführt; für die CPO ein Gemisch aus Kohlenwasserstoff und Sauerstoff; für die ATR ein Gemisch aus Kohlenwasserstoff, Wasserdampf und Sauerstoff. Grundsätzlich enthält das Eduktgas gasförmige oder verdampfbare Kohlenwasserstoffe. Beispielhafte kohlenwasserstoffhaltige Energieträger sind Erdgas, LPG, Benzin, Diesel, Biogas, Alkohole, synthetische Kraftstoffe oder ähnliches.The carried out in the context of the method according to the invention Reforming reaction in the first zone is preferably selected from the group consisting of steam reforming (STR), catalytic Partial oxidation (CPO) and autothermal reforming reaction (ATR). It but also other reactions in the first zone of the Catalyst can be carried out, the hydrocarbons convert to hydrogen and CO. For the STR, the first zone becomes a mixture of hydrocarbon and water vapor supplied; for the CPO a mixture of hydrocarbon and oxygen; for the ATR a mixture of hydrocarbon, water vapor and oxygen. Basically, the educt gas contains gaseous or vaporizable hydrocarbons. exemplary Hydrocarbon fuels are natural gas, LPG, Gasoline, diesel, biogas, alcohols, synthetic fuels or similar.
Bevorzugt enthält das Eduktgas Methan. Es kann vorteilhaft sein, ein bestimmtes Verhältnis von Sauerstoffmolekülen zu Methanmolekülen für die Reformierreaktion einzustellen. Geeignet ist beispielsweise ein molares Verhältnis von Sauerstoff zu Kohlenstoff von 0,1 bis 0,9, bevorzugt von 0,4 bis 0,7. Es kann auch vorteilhaft sein, ein bestimmtes Verhältnis von Wasserdampfmolekülen zu Methanmolekülen für die Reformierreaktion einzustellen. Geeignet ist beispielsweise ein molares Verhältnis von Wasser zu Kohlenstoff von 1,0 bis 5,0, bevorzugt von 1,5 bis 3,5. Diese Verhältnisse können beispielsweise durch Modulierung der Strömungsraten dieser Stoffe eingestellt werden, wodurch dann die gewünschte molare Strömungsrate erhalten wird. In der zweiten Zone wird eine Wassergasshiftreaktion (WGS) katalysiert, die, wie oben gezeigt, CO zu CO2 umwandelt und damit den CO-Anteil des aus der ersten Zone austretenden Gases erniedrigt.The educt gas preferably contains methane. It may be advantageous to adjust a certain ratio of oxygen molecules to methane molecules for the reforming reaction. For example, a molar ratio of oxygen to carbon of from 0.1 to 0.9, preferably from 0.4 to 0.7, is suitable. It may also be advantageous to adjust a certain ratio of water vapor molecules to methane molecules for the reforming reaction. For example, a molar ratio of water to carbon of from 1.0 to 5.0, preferably from 1.5 to 3.5, is suitable. These ratios can be adjusted, for example, by modulating the flow rates of these substances, which then gives the desired molar flow rate. In the second zone, a water gas shift reaction (WGS) is catalyzed, which, as shown above, converts CO to CO 2 , thereby lowering the CO content of the gas leaving the first zone.
Das erfindungsgemäße Temperaturprofil kann beispielsweise mittels eines aktiven oder passiven Wärmeaustauscherprinzips erzeugt werden. Aktive Wärmeaustauscher, kurz Wärmetauscher oder auch Wärmeüberträger genannt, sind Apparate, die dazu dienen Wärme von einem flüssigen oder gasförmigen Stoff auf ein anderes Fluid zu übertragen. Die Wärme wird dabei durch eine Trennwand hindurch von Fluid zu Fluid übertragen. Während bei einem aktiven Wärmetauscher die anfallende Wärme mittels eines geeigneten Kühlmediums aktiv abgeführt wird, wird bei passiven Wärmetauschsystemen die anfallende Wärme an Wärmespeicher und/oder an die Umgebung abgegeben werden. Hierbei können Kühlrippen, Flossen, etc., und/oder Füllmittel, wie metallische Kugeln, Scheiben, etc., zur Anwendung kommen.The inventive temperature profile can, for example by means of an active or passive heat exchanger principle be generated. Active heat exchangers, short heat exchangers or heat exchangers called, are Apparatuses that provide heat from a liquid or to transfer gaseous substance to another fluid. The heat is thereby passed through a partition wall of Transfer fluid to fluid. While at an active Heat exchanger the accumulating heat by means of a suitable cooling medium is actively discharged is in passive heat exchange systems, the heat generated be given to heat storage and / or to the environment. Here, cooling fins, fins, etc., and / or Fillers, such as metallic balls, discs, etc., for Application come.
Bevorzugt kommen im erfindungsgemäßen Verfahren aktive Wärmetauscher zur Anwendung.Prefers come in the process according to the invention active heat exchanger for use.
Bevorzugt liegt die Gaseintrittstemperatur an der ersten Zone i) zwischen 600 und 900°C, besonders bevorzugt zwischen 700 und 800°C, und die Gasaustrittstemperatur am Ende der zweiten Zone ii) zwischen 150 und 350°C, besonders bevorzugt zwischen 150 und 250°C. Die Minimaltemperatur in der Zone i) ist insbesondere ≥ 500°C, bevorzugt ≥ 600°C, besonders bevorzugt ≥ 625°C. Die Maximaltemperatur in der Zone ii) ist insbesondere ≤ 400°C, bevorzugt ≤ 350°C, besonders bevorzugt ≤ 325°C.Prefers is the gas inlet temperature at the first zone i) between 600 and 900 ° C, more preferably between 700 and 800 ° C, and the gas outlet temperature at the end of the second zone ii) between 150 and 350 ° C, more preferably between 150 and 250 ° C. The minimum temperature in the zone i) is in particular ≥ 500 ° C, preferably ≥ 600 ° C, more preferably ≥ 625 ° C. The maximum temperature in zone ii) is in particular ≤ 400 ° C, preferably ≦ 350 ° C., more preferably ≦ 325 ° C.
Die Kühlung zur Einstellung der niedrigeren Temperatur in der zweiten Zone erfolgt beispielsweise mittels einer Kühlschlaufe, die um den Reaktor bzw. den Katalysatorträger gewickelt wird. Die Kühlschlaufe kann dabei beispielsweise mit Wasser als Kühlmedium betrieben werden. Die abgeführte Wärme wird dabei vom Kühlmedium aufgenommen. Dieser Effekt kann gesamtenergetisch vorteilhaft genutzt werden, indem das für die SR oder ATR Reaktionen benötigte Reaktionswasser als Kühlmedium verwendet wird und deshalb bereits vor der Reaktion vorerhitzt bzw. ganz oder teilweise verdampft wird. Idealerweise wird das Kühlmedium im Gegenstromprinzip zum Gasstrom geführt.The Cooling for setting the lower temperature in the second zone takes place for example by means of a cooling loop, wrapped around the reactor or catalyst support becomes. The cooling loop can, for example, with water be operated as a cooling medium. The dissipated Heat is absorbed by the cooling medium. This Effect can be used to full advantage of energy by the reaction water needed for the SR or ATR reactions is used as a cooling medium and therefore already before Reaction is preheated or completely or partially evaporated. Ideally the cooling medium is guided in countercurrent to the gas flow.
Die erfindungsgemäßen Reaktoren können eine der Zone i) vorgelagerte Zone i') mit einer Minimaltemperatur oberhalb der Temperatur der zweiten Zone umfassen. Damit werden drei Zonen innerhalb des Reaktor gebildet, wobei die Zone i') der Vorheizung des Eduktgases, die Zone i) dem Aufprägen der gewünschten hohen Temperatur in der ersten Zone des Katalysatorträgers und die Zone ii) dem Aufprägen der gewünschten niederen Temperatur in der zweiten Zone des Katalysatorträgers dienen. Bevorzugt weisen die Zonen i') und i) dieselbe Solltemperatur auf und sind auch im Übrigen bezüglich der Wärmeerzeugung apparativ gleich gestaltet.The Reactors of the invention can be a the zone i) upstream zone i ') with a minimum temperature above the temperature of the second zone. This will become three zones formed within the reactor, wherein the zone i ') of the preheating the educt gas, the zone i) imprinting the desired high temperature in the first zone of the catalyst support and zone ii) imparting the desired low temperature in the second zone of the catalyst support serve. The zones i ') and i) preferably have the same setpoint temperature on and are also incidentally in terms of heat generation Equivalent to apparatus.
Gegenstand der vorliegenden Erfindung ist ferner ein integriertes Brennstoffzellen-System, umfassend einen erfindungsgemäßen Reaktor, eine Brennstoffzelle und gegebenenfalls eine Oxidationseinheit. Bei der Brennstoffzelle kann es sich um eine Hochtemperatur-PEM Brennstoffzelle, die auf einem höheren Temperaturniveau abläuft, z. B. ab 120°C, oder um eine Niedertemperatur PEM Brennstoffzelle, die auf einem Temperaturniveau von ca. 80°C abläuft, handeln. Bevorzugt wird erfindungsgemäß eine Hochtemperatur-PEM Brennstoffzelle mit einer Arbeitstemperatur von mindestens 120°C eingesetzt. Bevorzugt enthält ein derartiges Brennstoffzellen-System eine dem Reaktor vorgeschaltete Entschwefelungseinheit. Im Betrieb wird das kohlenwasserstoffhaltige Eduktgas zunächst durch die Entschwefelungseinheit geleitet, anschließend durch den erfindungsgemäßen Reaktor und schließlich durch eine PEM-Brennstoffzelle zur Energiegewinnung. Das aus der Brennstoffzelle austretende Gas, das noch Reste von Wasserstoff und Kohlenmonoxid enthält, kann abschließend zur Reinigung durch eine Oxidationseinheit geführt werden.object the present invention is further an integrated fuel cell system, comprising a reactor according to the invention, a fuel cell and optionally an oxidation unit. At the fuel cell It can be a high-temperature PEM fuel cell that is on a higher temperature level runs, z. B. from 120 ° C, or to a low-temperature PEM fuel cell, the at a temperature level of approx. 80 ° C, act. According to the invention, a high-temperature PEM is preferred Fuel cell with a working temperature of at least 120 ° C used. Such a fuel cell system preferably contains a desulfurization unit upstream of the reactor. Operational The hydrocarbon-containing educt gas is first through passed the desulfurization unit, then through the inventive reactor and finally by a PEM fuel cell for energy. That from the fuel cell escaping gas, which still contains residues of hydrogen and carbon monoxide, can finally be cleaned by an oxidation unit be guided.
Die
Erfindung wird durch die nachfolgenden Beispiele und Figuren verdeutlicht,
ohne dass sie durch diese beschränkt werden soll. Es zeigen
Im
Rahmen der in
Das
in
Wie bereits ausgeführt, können durch das erfindungsgemäße Verfahren und den erfindungsgemäßen Reaktor wesentlich vereinfachte Brennstoffzellen hergestellt werden. Insbesondere HT-PEM-Brennstoffzellen können direkt mit den nach der vorliegenden Erfindung erhaltenen wasserstoffreichen und kohlenmonoxidarmen Gasgemischen betrieben werden. Aber auch bei NT-PEM-Brennstoffzellen oder anderen Applikationen mit der Notwendigkeit einer Reduktion des CO-Gehalts im Brennstoff können Shift-Stufen oder Stufen zur Feinreinigung kleiner dimensioniert und dadurch Vorteile bezüglich der Reaktionsführung und/oder Anlagengröße erreicht werden.As already stated, can by the inventive Process and the reactor of the invention essential simplified fuel cells are produced. In particular HT-PEM fuel cells can be directly obtained with those obtained by the present invention operated hydrogen-rich and low carbon monoxide gas mixtures become. But also with NT-PEM fuel cells or other applications with the need to reduce the CO content in the fuel can shift stages or stages for fine cleaning smaller dimensioned and thereby advantages in terms of reaction and / or plant size can be achieved.
- 11
- RingwabeRingwabe
- 22
- Metallvliesmetal fleece
- 33
- Batterieschaumbattery foam
- 44
- Reaktorrohrreactor tube
- 1010
- Kühlschlaufecooling loop
- 1111
- Thermoelementthermocouple
- 1212
- Thermoelementthermocouple
- 2020
- unterer Flanschlower flange
- 2121
- oberer Flanschupper flange
- 3030
- Reaktor Zone 1reactor Zone 1
- 3131
- Reaktor Zone 2reactor Zone 2
- 3232
- Reaktor Zone 3reactor Zone 3
- 5050
- Wasserzulauf Kühlschlaufe, kaltwater supply Cooling loop, cold
- 5151
- Wasserablauf aus Kühlschlaufe, heißwater drain out of cooling loop, hot
- 9999
- Reaktorreactor
- 100100
- Zuführung für Eduktgasfeed for educt gas
- 102102
- Brennstoffzellen-SystemFuel Cell System
- 104104
- Brennstoff-Aufbereitungs-SystemFuel-treatment system
- 106106
- Abgas-Oxidations-SystemExhaust gas oxidation system
- 110110
- Entschwefelungseinheitdesulfurization unit
- 120120
- erfindungsgemäßer Reaktorinvention reactor
- 130130
- Zuführung für Luft und/oder Wasserfeed for air and / or water
- 150150
- Zuführung für Brennstofffeed for fuel
- 160160
- Brennstoffzellen-StapelFuel cell stack
- 170170
- Zuführung für Luftfeed for air
- 180180
- Zuführung für Abgasfeed for exhaust
- 190190
- Oxidationseinheitoxidation unit
- 195195
- Auslass in Umgebungoutlet in environment
ZITATE ENTHALTEN IN DER BESCHREIBUNGQUOTES INCLUDE IN THE DESCRIPTION
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list The documents listed by the applicant have been automated generated and is solely for better information recorded by the reader. The list is not part of the German Patent or utility model application. The DPMA takes over no liability for any errors or omissions.
Zitierte PatentliteraturCited patent literature
- - WO 2003/080505 A1 [0010, 0010] WO 2003/080505 A1 [0010, 0010]
- - DE 10057537 A1 [0010, 0011] - DE 10057537 A1 [0010, 0011]
- - EP 1523053 A2 [0012] - EP 1523053 A2 [0012]
- - US 6753107 B2 [0012, 0016] US Pat. No. 6,753,107 B2 [0012, 0016]
- - EP 1161991 A1 [0018, 0018, 0036] - EP 1161991 A1 [0018, 0018, 0036]
Zitierte Nicht-PatentliteraturCited non-patent literature
- - ”Monoliths in multiphase catalytic processes – aspects and prospects” von F. Kapteijn, J. J. Heiszwolf, T. A. Nijhuis und J. A. Moulijn, Cattech 3, 1999, S. 24 [0022] "Monoliths in multiphase catalytic processes - aspects and prospects" by F. Kapteijn, JJ Heiszwolf, TA Nijhuis and JA Moulijn, Cattech 3, 1999, p. 24 [0022]
- - Handbook of Heterogeneous Catalysis 4 – Environmental Catalysis, Seiten 1575–1583 [0024] - Handbook of Heterogeneous Catalysis 4 - Environmental Catalysis, pages 1575-1583 [0024]
- - ”Preparation of monolithic catalysts” von T. A. Nijhuis, A. E. W. Beers, T. Vergunst, I. Hoek, F. Kapteijn und J. A. Moulijn in Catalysis Reviews, Band 43, 2001, Seite 345–380 [0024] "Preparation of monolithic catalysts" by TA Nijhuis, AEW Beers, T. Vergunst, I. Hoek, F. Kapteijn and JA Moulijn in Catalysis Reviews, Vol. 43, 2001, pages 345-380 [0024]
Claims (15)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102008021083A DE102008021083A1 (en) | 2008-04-28 | 2008-04-28 | Process for the preparation of a hydrogen-containing gas mixture |
| EP09765659A EP2285738A1 (en) | 2008-04-28 | 2009-04-16 | Method for the production of a gas mixture containing hydrogen |
| PCT/EP2009/054520 WO2009153079A1 (en) | 2008-04-28 | 2009-04-16 | Method for the production of a gas mixture containing hydrogen |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102008021083A DE102008021083A1 (en) | 2008-04-28 | 2008-04-28 | Process for the preparation of a hydrogen-containing gas mixture |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| DE102008021083A1 true DE102008021083A1 (en) | 2009-10-29 |
Family
ID=40904791
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| DE102008021083A Withdrawn DE102008021083A1 (en) | 2008-04-28 | 2008-04-28 | Process for the preparation of a hydrogen-containing gas mixture |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP2285738A1 (en) |
| DE (1) | DE102008021083A1 (en) |
| WO (1) | WO2009153079A1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9470917B2 (en) | 2012-05-30 | 2016-10-18 | E Ink California, Llc | Display device with watermark area and non-watermark area |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1161991A1 (en) | 1999-03-18 | 2001-12-12 | Matsushita Electric Works, Ltd. | Catalyst for water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell |
| US20020000066A1 (en) * | 1998-01-14 | 2002-01-03 | Bentley Jeffrey M. | Reactor for producing hydrogen from hydrocarbon fuels |
| DE10057537A1 (en) | 2000-11-20 | 2002-06-06 | Viessmann Werke Kg | Device for producing hydrogen used for operating fuel cells comprises a reformer for converting hydrocarbon gas and water into hydrogen and further reformer products connected to a heat |
| DE10059674A1 (en) * | 2000-12-01 | 2002-06-20 | Xcellsis Gmbh | The fuel cell system |
| JP2002308604A (en) * | 2001-04-10 | 2002-10-23 | Toyota Motor Corp | Fuel reformer |
| WO2003080505A1 (en) | 2002-03-25 | 2003-10-02 | Viessmann Werke Gmbh & Co. Kg | Device for the generation of hydrogen |
| DE10253930A1 (en) * | 2002-11-19 | 2004-06-09 | Umicore Ag & Co.Kg | Process for producing a hydrogen-containing fuel gas for fuel cells and device therefor |
| US6753107B2 (en) | 2001-04-27 | 2004-06-22 | Plug Power Inc. | Integrated fuel cell system |
| DE10340173A1 (en) * | 2003-08-12 | 2005-03-10 | Daimler Chrysler Ag | Device for producing virtually pure hydrogen for fuel cells |
| EP1523053A2 (en) | 1999-09-09 | 2005-04-13 | Danish Power Systems APS | Polymer electrolyte membrane fuel cells |
| US20070000176A1 (en) * | 2005-06-30 | 2007-01-04 | General Electric Company | System and method for hydrogen production |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1294477A4 (en) * | 2000-06-29 | 2006-06-07 | H2Gen Innovations Inc | Improved system and integrated chemical reactor for hydrogen production through steam reforming of hydrocarbons |
| US7179313B2 (en) * | 2002-08-02 | 2007-02-20 | Catacel Corp. | Regenerative autothermal catalytic steam reformer |
| US8133622B2 (en) * | 2004-09-08 | 2012-03-13 | Samsung Sdi Co., Ltd. | Heated reformer and fuel cell system having the same |
-
2008
- 2008-04-28 DE DE102008021083A patent/DE102008021083A1/en not_active Withdrawn
-
2009
- 2009-04-16 EP EP09765659A patent/EP2285738A1/en not_active Withdrawn
- 2009-04-16 WO PCT/EP2009/054520 patent/WO2009153079A1/en active Application Filing
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020000066A1 (en) * | 1998-01-14 | 2002-01-03 | Bentley Jeffrey M. | Reactor for producing hydrogen from hydrocarbon fuels |
| EP1161991A1 (en) | 1999-03-18 | 2001-12-12 | Matsushita Electric Works, Ltd. | Catalyst for water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell |
| EP1523053A2 (en) | 1999-09-09 | 2005-04-13 | Danish Power Systems APS | Polymer electrolyte membrane fuel cells |
| DE10057537A1 (en) | 2000-11-20 | 2002-06-06 | Viessmann Werke Kg | Device for producing hydrogen used for operating fuel cells comprises a reformer for converting hydrocarbon gas and water into hydrogen and further reformer products connected to a heat |
| DE10059674A1 (en) * | 2000-12-01 | 2002-06-20 | Xcellsis Gmbh | The fuel cell system |
| JP2002308604A (en) * | 2001-04-10 | 2002-10-23 | Toyota Motor Corp | Fuel reformer |
| US6753107B2 (en) | 2001-04-27 | 2004-06-22 | Plug Power Inc. | Integrated fuel cell system |
| WO2003080505A1 (en) | 2002-03-25 | 2003-10-02 | Viessmann Werke Gmbh & Co. Kg | Device for the generation of hydrogen |
| DE10253930A1 (en) * | 2002-11-19 | 2004-06-09 | Umicore Ag & Co.Kg | Process for producing a hydrogen-containing fuel gas for fuel cells and device therefor |
| DE10340173A1 (en) * | 2003-08-12 | 2005-03-10 | Daimler Chrysler Ag | Device for producing virtually pure hydrogen for fuel cells |
| US20070000176A1 (en) * | 2005-06-30 | 2007-01-04 | General Electric Company | System and method for hydrogen production |
Non-Patent Citations (3)
| Title |
|---|
| "Monoliths in multiphase catalytic processes - aspects and prospects" von F. Kapteijn, J. J. Heiszwolf, T. A. Nijhuis und J. A. Moulijn, Cattech 3, 1999, S. 24 |
| "Preparation of monolithic catalysts" von T. A. Nijhuis, A. E. W. Beers, T. Vergunst, I. Hoek, F. Kapteijn und J. A. Moulijn in Catalysis Reviews, Band 43, 2001, Seite 345-380 |
| Handbook of Heterogeneous Catalysis 4 - Environmental Catalysis, Seiten 1575-1583 |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2285738A1 (en) | 2011-02-23 |
| WO2009153079A9 (en) | 2010-12-23 |
| WO2009153079A1 (en) | 2009-12-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0787679B1 (en) | Process and apparatus for the recovery of a gas rich in hydrogen and poor in carbon monoxide | |
| DE69908242T2 (en) | reformer | |
| DE69816636T2 (en) | CLEAN HYDROGEN | |
| DE60214879T2 (en) | Micro-combustor, micro-reformer, and process to burn and reform fluids | |
| DE69913037T2 (en) | reforming reactor | |
| WO2004024324A1 (en) | Multi-layer catalyst for the autothermal steam reforming of hydrocarbons and a method for using said catalyst | |
| EP0934772B1 (en) | Reactor for carrying out catalytic chemical reactions, in particular a reactor for methanol reforming | |
| DE10013894A1 (en) | Process for the catalytic conversion of carbon monoxide in a hydrogen-containing gas mixture with improved cold start behavior and catalyst therefor | |
| DE60225404T2 (en) | Process for the catalytic autothermal steam reforming of mixtures of higher alcohols, in particular ethanol with hydrocarbons | |
| DE10013895A1 (en) | Process for the catalytic conversion of carbon monoxide in a gas mixture containing hydrogen | |
| WO2013135707A1 (en) | Method for producing a carbon monoxide-containing gas mixture at high temperatures on mixed metal oxide catalysts comprising noble metals | |
| DE10296796T5 (en) | Quick start of a fuel processor using water absorption | |
| EP0650923A1 (en) | Reactor for the catalytic removal of CO from a H2 rich gas | |
| DE10025032A1 (en) | Process for the autothermal, catalytic steam reforming of hydrocarbons | |
| WO2002040619A2 (en) | Method and device for reducing the carbon monoxide content in a gas stream containing hydrogen and reformer system | |
| EP1249275B1 (en) | Catalyst and method for the removal of carbon monoxide from a reformate gas and method for the preparation of the catalyst | |
| EP1306351B1 (en) | Method for the preparation of a low-sulfur reformate gas for use in a fuel cell system | |
| DE10136768B4 (en) | Fuel cell system with two transformation units for catalytic decomposition and method for catalytic decomposition | |
| WO2006066545A1 (en) | Reformer for a fuel cell | |
| DE112004000518T5 (en) | High performance fuel conditioning system Fuel cell power plant | |
| WO2013135673A1 (en) | Method for reducing carbon dioxide at high temperatures on catalysts especially carbide supported catalysts | |
| Zhou et al. | An anodic alumina supported Ni–Pt bimetallic plate-type catalysts for multi-reforming of methane, kerosene and ethanol | |
| EP3556460A1 (en) | Reactor for the conversion of reactions with reduced equilibrium | |
| DE102011014824A1 (en) | Multi-fuel pyrolysis system for generating electrical power for e.g. mobile device, has pyrolysis reactor which pyrolyzes liquid, gaseous hydrocarbon mixtures or gas mixtures, and diesel fuel by anaerobic catalytic reaction | |
| WO2003080505A1 (en) | Device for the generation of hydrogen |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| OM8 | Search report available as to paragraph 43 lit. 1 sentence 1 patent law | ||
| R081 | Change of applicant/patentee |
Owner name: VIESSMANN WERKE GMBH & CO KG, DE Free format text: FORMER OWNERS: VIESSMANN WERKE GMBH & CO KG, 35108 ALLENDORF, DE; SUED-CHEMIE AG, 80333 MUENCHEN, DE Effective date: 20121129 Owner name: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH, DE Free format text: FORMER OWNERS: VIESSMANN WERKE GMBH & CO KG, 35108 ALLENDORF, DE; SUED-CHEMIE AG, 80333 MUENCHEN, DE Effective date: 20121129 Owner name: VIESSMANN WERKE GMBH & CO KG, DE Free format text: FORMER OWNER: VIESSMANN WERKE GMBH & CO KG, SUED-CHEMIE AG, , DE Effective date: 20121129 Owner name: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH, DE Free format text: FORMER OWNER: VIESSMANN WERKE GMBH & CO KG, SUED-CHEMIE AG, , DE Effective date: 20121129 |
|
| R082 | Change of representative |
Representative=s name: ABITZ & PARTNER, DE Effective date: 20121129 |
|
| R082 | Change of representative | ||
| R005 | Application deemed withdrawn due to failure to request examination |