[go: up one dir, main page]

DE102019126044A1 - Spektrometervorrichtung und Verfahren zur Kalibrierung einer Spektrometervorrichtung - Google Patents

Spektrometervorrichtung und Verfahren zur Kalibrierung einer Spektrometervorrichtung Download PDF

Info

Publication number
DE102019126044A1
DE102019126044A1 DE102019126044.2A DE102019126044A DE102019126044A1 DE 102019126044 A1 DE102019126044 A1 DE 102019126044A1 DE 102019126044 A DE102019126044 A DE 102019126044A DE 102019126044 A1 DE102019126044 A1 DE 102019126044A1
Authority
DE
Germany
Prior art keywords
spectrometer device
calibration
spectral
extinction
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102019126044.2A
Other languages
English (en)
Inventor
Martin Husnik
Christoph Schelling
Reinhold Roedel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102019126044.2A priority Critical patent/DE102019126044A1/de
Priority to PCT/EP2020/074717 priority patent/WO2021058260A1/de
Publication of DE102019126044A1 publication Critical patent/DE102019126044A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/027Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0297Constructional arrangements for removing other types of optical noise or for performing calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Die vorliegende Erfindung schafft eine Spektrometervorrichtung und ein Kalibrierverfahren für eine Spektrometervorrichtung. Im Strahlengang zwischen Lichtemitter und Fotodetektor der Spektrometervorrichtung ist ein Kalibrierelement mit einer oder mehreren bekannten Extinktionslinien angeordnet. Durch die Ermittlung der Einstellung eines spektralen Elements, die zu einer Extinktionslinie des Kalibrierelements korrespondiert, kann eine genaue Zuordnung zwischen Ansteuerung des spektralen Elements und korrespondierender Wellenlänge getroffen werden.

Description

  • Die vorliegende Erfindung betrifft eine Spektrometervorrichtung und ein Verfahren zur Kalibrierung einer Spektrometervorrichtung.
  • Stand der Technik
  • Spektrale Sensoren gewinnen aktuell stetig an Bedeutung. Beispielsweise können spektrale Sensoren dazu genutzt werden, um Substanzen oder Objekte auf ihre stoffliche Zusammensetzung zu untersuchen. Insbesondere durch die zunehmende Miniaturisierung der Sensoren ergeben sich zunehmend interessante Einsatzgebiete. Für die Implementierung eines spektralen Filterelements in einem Spektrometer stellt beispielsweise ein durchstimmbares mikroelektromechanisches System mit einem Fabry-Perot Interferometer einen vielversprechenden Ansatz zur Miniaturisierung des Gesamtsystems.
  • Die Druckschrift DE 10 2018 200 378 A1 beschreibt ein Interferometer, beispielsweise ein MEMS-Fabry-Perot Interferometer mit zwei Spiegeln, die auf zwei Substraten aufgebracht sind, welche miteinander verbunden sind.
  • Offenbarung der Erfindung
  • Die vorliegende Erfindung schafft eine Spektrometervorrichtung und ein Verfahren zur Kalibrierung einer Spektrometervorrichtung mit den Merkmalen der unabhängigen Patentansprüche. Weitere vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Patentansprüche.
  • Demgemäß ist vorgesehen:
    • Eine Spektrometervorrichtung mit einem Lichtemitter, einem spektralen Element, einem Fotodetektor und einem Kalibrierelement. Der Lichtemitter ist dazu ausgelegt, Licht in einem vorbestimmten Spektrum zu emittieren. Insbesondere kann der Lichtemitter das Licht in Richtung einer Probe emittieren. Der Fotodetektor ist dazu ausgelegt, Licht zu erfassen. Ferner kann der Fotodetektor ein zu dem erfassten Licht korrespondierendes Ausgangssignal bereitstellen.
    • Das spektrale Element ist in einem optischen Pfad zwischen der Probe und dem Fotodetektor angeordnet. Das Kalibrierelement ist in einem Strahlengang von dem Lichtemitter und dem Fotodetektor angeordnet. Das Kalibrierelement kann dabei eine oder mehrere Extinktionslinien aufweisen. Mit anderen Worten, Lichtanteile mit einer oder mehreren Wellenlängen oder Wellenlängenbereiche, die zu den entsprechenden Extinktionslinien korrespondieren, werden von dem Kalibrierelement zumindest teilweise absorbiert. Die übrigen Lichtanteile, die nicht zu der Wellenlänge oder den Wellenlängenbereichen der Extinktionslinien korrespondieren, können durch das Kalibrierelement dagegen weitestgehend ungehindert transmittieren.
  • Weiterhin ist vorgesehen:
    • Ein Verfahren zum Kalibrieren einer Spektrometervorrichtung. Die Spektrometervorrichtung umfasst einen Lichtemitter und einen Fotodetektor. Ferner umfasst die Spektrometervorrichtung ein Kalibrierelement, das in einem Strahlengang zwischen dem Lichtemitter und dem Fotodetektor angeordnet ist, und das eine oder mehrere Extinktionslinien aufweist. Das Verfahren umfasst einen Schritt zum Ansteuern eines spektralen Elements, welches sich im Strahlengang zwischen dem Lichtemitter und dem Fotodetektor befindet. Durch das Ansteuern des spektralen Elements können die Filtereigenschaften des spektralen Elements angepasst werden. Insbesondere können die Wellenlänge bzw. der Wellenlängenbereich, der das spektrale Element passieren kann, entsprechend der Ansteuerung angepasst werden. Weiterhin umfasst das Verfahren einen Schritt zum Identifizieren einer Einstellung des spektralen Elements, die zu einer Extinktionslinie des Kalibrierelements korrespondiert. Mit anderen Worten, es wird festgestellt, bei welcher Ansteuerung des spektralen Elements das spektrale Element auf eine Wellenlänge bzw. ein Wellenlängenbereich eingestellt ist, der einer Extinktionslinie des Kalibrierelements entspricht.
  • Vorteile der Erfindung
  • Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, dass Spektrometervorrichtungen sehr präzise kalibriert sein müssen, um die Wellenlänge bzw. Wellenlängenbereiche des zu analysierenden Lichts genau identifizieren zu können. Darüber hinaus liegt der vorliegenden Erfindung die Erkenntnis zugrunde, dass durch zahlreiche Effekte, wie beispielsweise Temperatureinwirkung, Alterung etc. sich die Einstellungen der Spektrometervorrichtung über die Betriebsdauer bzw. die Lebenszeit einer Spektrometervorrichtung verändern können. Daher müssen solche Spektrometervorrichtungen gegebenenfalls neu kalibriert werden.
  • Es ist daher eine Idee der vorliegenden Erfindung, dieser Erkenntnis Rechnung zu tragen und eine Möglichkeit für eine möglichst einfache, kostengünstige und effiziente Kalibrierung einer Spektrometervorrichtung zu schaffen.
  • Hierzu ist es erfindungsgemäß vorgesehen, in dem Lichtpfad zwischen Emitter und Detektor eines Spektrometers ein zusätzliches Element vorzusehen, welches bekannte und möglichst stabile Absorptionseigenschaften für Licht einer bekannten Wellenlänge oder eines bekannten Wellenlängebereiches aufweist. Somit kann durch geeignetes Ansteuern des spektralen Elements in der Spektrometervorrichtung eine Einstellung identifiziert werden, bei der das spektrale Element möglichst genau auf eine Extinktionslinie, das heißt einen Absorptionsbereich des Kalibrierelements im Strahlengang zwischen Lichtquelle und Fotodetektor eingestellt ist. Hierdurch ergeben sich ein oder mehrere genau bekannten Kalibrierpunkte. Unter Verwendung dieser Kalibrierpunkte kann daraufhin auf einfache Weise die Einstellung oder die Auswertung des Messvorgangs der Spektrometervorrichtung angepasst werden. Da das Kalibrierelement bereits bei der Herstellung der Spektrometervorrichtung mit in die Spektrometervorrichtung eingebaut werden kann, kann auf diese Weise zu jedem beliebigen späteren Zeitpunkt eine einfache und rasche Kalibrierung erfolgen. Da keine zusätzlichen externen Komponenten für die Kalibrierung erforderlich sind, kann die Kalibrierung auch vor Ort erfolgen.
  • Gemäß einer Ausführungsform weist das Kalibrierelement im spektralen Filterbereich des spektralen Elements mindestens eine Extinktionslinie auf. Entsprechend kann die Spektrometervorrichtung eine Einstellung für das spektrale Element identifizieren, bei der das spektrale Element auf die Extinktionslinie des Kalibrierelements eingestellt ist.
  • Gemäß einer Ausführungsform weist das Kalibrierelement mindestens eine Extinktionslinie im unteren und/oder oberen spektralen Randbereich des Filterbereichs des spektralen Elements auf. Durch die Wahl von Extinktionslinien im Randbereich des spektralen Filterelements können Kalibrierpunkte ermittelt werden, welche sich sehr gut als Stützstellen für eine Kalibrierkennlinie eignen. Darüber hinaus sind Kalibrierpunkte im Randbereich des Filterbereichs des spektralen Elements in der Regel für den operativen Betrieb der Spektrometervorrichtung nur wenig störend. Neben einer oder auch mehreren einzelnen Extinktionslinien kann das Kalibrierelement auch beliebige bekannte Extinktionslinienformen, insbesondere auch komplexe Spektren o.ä. umfassen.
  • Gemäß einer Ausführungsform ist das Kalibrierelement im Strahlengang zwischen der Probe und dem spektralen Element angeordnet. Beispielsweise kann das Kalibrierelement auf einem Deckglas oder ähnlichem angebracht sein, welches das spektrale Element überdeckt. Ein solches Deckglas kann beispielsweise als Schutz vor Verunreinigungen oder Beschädigungen über dem spektralen Element vorgesehen sein.
  • Gemäß einer Ausführungsform ist das Kalibrierelement im Strahlengang zwischen dem Lichtemitter und der Probe angeordnet. Beispielsweise kann das Kalibrierelement auf einem Deckglas angeordnet sein, welches den Lichtemitter überdeckt. Alternativ kann das Kalibrierelement auch an einem beliebigen optischen Element angeordnet sein, welcher das Licht von dem Lichtemitter ablenkt oder fokussiert.
  • Gemäß einer Ausführungsform kann das Kalibrierelement in einer Leuchtschicht des Lichtemitters angeordnet sein. Auf diese Weise kann beispielsweise von dem Lichtemitter bereits Licht emittiert werden, bei welchem eine oder mehrere vorbestimmten Wellenlänge oder Wellenlängenbereiche nicht umfasst sind.
  • Gemäß einer Ausführungsform kann das Kalibrierelement auf dem Fotodetektor angeordnet sein. Beispielsweise kann eine Oberfläche des Fotodetektors mit einer geeigneten Substanz beschichtet sein, welche eine oder mehrere Extinktionslinien aufweist.
  • Gemäß einer Ausführungsform umfasst die Spektrometervorrichtung einen weiteren Fotodetektor. In diesem Fall kann das Kalibrierelement in einem Strahlengang zwischen dem Lichtemitter und dem weiteren Fotodetektor angeordnet sein. Auf diese Weise ist der Strahlengang zur Analyse einer Probe nicht durch die Absorption einer oder mehrerer Wellenlängen durch das Kalibrierelement beeinflusst.
  • Gemäß einer Ausführungsform umfasst die Spektrometervorrichtung eine Steuereinrichtung. Die Steuereinrichtung kann dazu ausgelegt sein, eine zu der Extinktionslinie korrespondierende Einstellung des spektralen Elements zu ermitteln. Die Einstellung kann beispielsweise eine Steuerspannung oder ähnliches umfassen. Durch das Ermitteln der zu der Extinktionslinie korrespondierenden Einstellung kann ein Kalibrierwert ermittelt werden, der als Basis für die Auswertung der Messdaten während der Analyse einer Probe herangezogen werden kann. Insbesondere wenn das Kalibrierelement mehrere Extinktionslinien aufweist, kann eine geeignete Funktion ermitteln werden, welche als Basis für die Kalibrierung herangezogen werden kann. Die Funktion kann eine lineare Funktion, aber auch eine Funktion höheren Grades umfassen.
  • Gemäß einer Ausführungsform ist die Steuereinrichtung dazu ausgelegt, einen Messvorgang zur Analyse einer Probe unter Verwendung der zu den Extinktionslinien des Kalibrierelements korrespondierenden Einstellungen auszuführen. Auf diese Weise kann eine Messung einer Probe mit gleichbleibender Güte und Qualität ausgeführt werden. Insbesondere können durch regelmäßige Kalibrierung Alterungseffekte und Schwankungen durch Temperatureffekte oder ähnliches ausgeglichen werden.
  • Gemäß einer Ausführungsform umfasst das spektralen Element ein Fabry-Perot Interferometer, ein Gitterspektrometer, ein statisches oder bewegliches Fourier-Transformationsspektrometer und/oder einen wellenlängenselektiven Filter. Grundsätzlich sind als spektrales Element beliebige Elemente oder Baugruppen möglich, die dazu in der Lage sind, dass von dem zu untersuchenden Objekt kommende Licht in einer Weise spektralen zu filtern oder zu trennen.
  • Gemäß einer Ausführungsform verschiebt sich mindestens eine der Extinktionslinien des Kalibrierelements mit der Temperatur um weniger als 0,5 nm/K (Nanometer pro Kelvin). Vorzugsweise verschiebt sich mindestens eine der Extinktionslinien des Kalibrierelements um weniger als 0,05 nm/K. Insbesondere kann das Kalibrierelement mindestens eine Extinktionslinie aufweisen, die sich mit der Temperatur um weniger als 0,01 nm/K verschiebt. Durch die Verwendung der temperaturstabilen Extinktionslinien kann eine zuverlässige Kalibrierung erreicht werden, die nicht oder zumindest nur in sehr geringem Maße von der Temperatur abhängt.
  • Die obigen Ausgestaltungen und Weiterbildungen lassen sich, soweit sinnvoll, beliebig miteinander kombinieren. Weitere Ausgestaltungen, Weiterbildungen und Implementierungen der Erfindung umfassen auch nicht explizit genannte Kombinationen von zuvor oder im Folgenden bezüglich den Ausführungsbeispielen beschriebenen Merkmalen der Erfindung. Insbesondere wird der Fachmann dabei auch Einzelaspekte als Verbesserungen oder Ergänzungen zu den jeweiligen Grundformen der Erfindung hinzufügen.
  • Figurenliste
  • Weitere Merkmale und Vorteile der Erfindung werden nachfolgend anhand der Figuren erläutert. Dabei zeigen:
    • 1: eine schematische Darstellung eines Querschnitts durch eine Spektrometervorrichtung gemäß einer Ausführungsform;
    • 2 eine schematische Darstellung eines Verlaufs der detektiert die Intensität in Abhängigkeit eines ansteuern Signals für das spektrale Element einer Spektrometervorrichtung gemäß einer Ausführungsform; und
    • 3: ein Ablaufdiagramm, wie es einem Verfahren zur Kalibrierung einer Spektrometervorrichtung gemäß einer Ausführungsform zugrunde liegt.
  • Beschreibung von Ausführungsformen
  • 1 zeigt eine schematische Darstellung eines Querschnitts durch eine Spektrometervorrichtung 1 gemäß einer Ausführungsform. Die Spektrometervorrichtung 1 umfasst einen Lichtemitter 10, ein spektrales Element 20 sowie einen Fotodetektor 30. Der Lichtemitter 10 kann Licht in einem vorbestimmten Spektrum emittieren. Bei dem vorbestimmten Spektrum kann es sich um Licht im sichtbaren oder nicht sichtbaren Wellenlängenbereich handeln. Insbesondere kann der Lichtemitter 10 neben sichtbarem Licht auch infrarotes oder ultraviolettes Licht emittieren. Weiterhin kann der Lichtemitter 10 eine Optik umfassen, um das emittierte Licht in Richtung einer Probe 100 abzustrahlen oder zu fokussieren.
  • Das Licht von dem Lichtemitter 10 kann mit der Probe wechselwirken. Beispielsweise kann das Licht an der Probe reflektiert oder gestreut werden. Ein Teil des von der Probe 100 gestreuten Lichtes wird in Richtung des spektralen Elements 20 reflektiert/gestreut. Bei dem spektralen Element 20 kann es sich beispielsweise um ein Fabry-Perot Interferometer handeln. Insbesondere kann es sich um ein durchstimmbares Fabry-Perot Interferometer mit einem mikroelektromechanischen System (MEMS) handeln. Darüber hinaus sind jedoch auch grundsätzlich beliebige andere spektrale Elemente möglich. Beispielsweise kann das spektrale Element 20 ein Gitterspektrometer, ein statisches oder bewegliches Fourier-Transformationsspektrometer und/oder ein anderer wellenlängenselektiver Filter umfassen.
  • Das spektrale Element 20 kann das einfallende Licht so filtern, dass nur Licht eines schmalbandigen Spektrums das spektrale Element 20 passieren kann. Das gefilterte Licht trifft auf den Fotodetektor 30. Der Fotodetektor 30 kann ein zu der Lichtintensität korrespondierendes Ausgangssignal bereitstellen. Analog kann dem passierendem Licht durch das spektrale Element 20 auch solch eine Signatur aufgeprägt werden, die es, beispielsweise mittels einer geeigneter Recheneinheit und eines Auswertealogrithmus erlaubt, das Spektrum des von der Probe 100 reflektierten oder gestreuten Lichts zu bestimmen.
  • Zur Anpassung der Filtercharakteristik des spektralen Elements 20 kann das spektrale Element 20 mit einem entsprechenden Steuersignal angesteuert werden. Beispielsweise kann es sich hierbei um eine elektrische Spannung handeln, deren Wert zu der Filterfrequenz des spektralen Elementes korrespondiert. In der Regel kann ein fester Zusammenhang zwischen Steuersignal und Filterfrequenz des spektralen Elements 20 bestehen. Jedoch kann sich durch Alterungseffekte oder Umwelteinflüsse, wie zum Beispiel Temperatur oder ähnliches, dieser Zusammenhang ändern. Daher ist es erforderlich, eine Kalibrierung durchzuführen, um eine möglichst genaue Kenntnis über den Zusammenhang zwischen Steuersignal und spektralen Eigenschaften, wie z.B. Filterfrequenz, des spektralen Elementes 20 zu erhalten.
  • Hierzu kann in dem Strahlengang zwischen Lichtemitter 10 und Fotodetektor 30 ein Kalibrierelement 40a-d vorgesehen sein. Das Kalibrierelement 40a-d kann dabei fest in der Spektrometervorrichtung 10 verbaut sein. Insbesondere verbleibt das Kalibrierelement 40a-d auch während des normalen Messvorgangs in der Spektrometervorrichtung 1.
  • Beispielsweise kann das Kalibrierelement 40c im Strahlengang zwischen der Probe 100 und dem spektralen Element 20 angeordnet sein. Zum Beispiel kann das Kalibrierelement 40c auf einem Deckglas oder ähnlichem aufgebracht sein, welches die Spektrometervorrichtung 1, insbesondere den Bereich mit dem spektralen Element 20 überdeckt.
  • Alternativ kann das Kalibrierelement 40b auch im Strahlengang zwischen dem Lichtemitter 10 und der Probe 100 angeordnet sein. In diesem Fall kann beispielsweise das Kalibrierelement 40b auf einem Deckglas angeordnet sein, welches den Lichtaustritt, insbesondere den Bereich über dem Lichtemitter 10 überdeckt.
  • Ferner ist es auch möglich, dass das Kalibrierelement 40d sich zwischen spektralem Element 20 und Fotodetektor 30 befindet, insbesondere kann es sich unmittelbar oberhalb des Fotodetektors 30 befinden. Beispielsweise kann das Kalibrierelement 40d auf einer Oberfläche des Fotodetektors 30 aufgebracht sein.
  • Darüber hinaus ist es auch möglich, dass das Kalibrierelement 40a direkt in den Lichtemitter 10 eingebracht wird. Beispielsweise kann das Kalibrierelement 40a in den Phosphor bzw. eine Leuchtschicht des Lichtemitters 10 eingebracht werden.
  • Alternativ ist es auch möglich, in der Spektrometervorrichtung 1 einen zusätzlichen weiteren Fotodetektor nach dem spektralen Element 20 vorzusehen. In diesem Fall kann das Kalibrierelement 40a-d im Strahlengang zwischen dem Lichtemitter 10 und dem weiteren Fotodetektor angeordnet sein. Auf diese Weise beeinflusst das Kalibrierelement 40a-d nicht den Messvorgang mittels des eigentlichen Fotodetektors 30.
  • Für die Steuerung des Kalibriervorgangs und die Auswertung eines Messvorgangs kann die Spektrometervorrichtung 1 eine Steuereinrichtung aufweisen. Die Steuereinrichtung kann beispielsweise die erforderlichen Steuersignale für die Ansteuerung des spektralen Elementes 20 bereitstellen. Ferner kann die Steuereinrichtung die von dem Fotodetektor 30 bereitgestellten Signale empfangen und auswerten. Auf diese Weise kann die Steuereinrichtung einen Zusammenhang zwischen Ansteuerung des spektralen Elements 20 und korrespondierender Wellenlänge bestimmen.
  • Bei dem Kalibrierelement 40a-d handelt es sich um eine Substanz, welche eine oder mehrere Extinktionslinien bzw. ein komplexeres Extinktionsspektrum aufweist. Das Kalibrierelement 40a-d absorbiert/streut somit das Licht der zu den Extinktionslinien korrespondierenden Wellenlänge. Daher kann für einen Kalibriervorgang der Spektrometervorrichtung 1 diese Eigenschaft ausgenutzt werden. Beispielsweise kann das spektrale Element 20 über den Filterbereich durchgestimmt werden, und dabei kann die von dem Fotodetektor 30 detektierte Lichtintensität im Zusammenhang mit der korrespondierenden Ansteuerung des spektralen Elements 20 gebracht werden. Hierbei ergibt sich dann genau bei den Extinktionslinien des Kalibrierelements 40a-d ein signifikanter Einbruch in der detektierten Lichtintensität.
  • Zusätzlich oder alternativ kann das Kalibrierelements 40a-d auf eine oder mehrere Fluoreszenz-Linien aufweisen, bei welchen das Kalibrierelement 40a-d nach einer entsprechenden Anregung Licht mit einer oder mehreren, den Fluoreszenz-Linien entsprechende, Wellenlänge emittiert. In diesem Fall ergibt sich eine signifikante Erhöhung der detektierten Lichtintensität an den Wellenlängen der Fluoreszenz-Linien.
  • 2 zeigt eine schematische Darstellung des Verlaufs der detektierten Lichtintensität I über einem Ansteuersignal V für das spektrale Element 20. Wie hierbei zu erkennen ist, ist sowohl am unteren als auch im oberen Randbereich ein schmalbandiger signifikanter Einbruch der detektierten Intensität I zu erkennen. Ist die genaue Wellenlänge der Extinktionslinien des Kalibrierelements 40a-d bekannt, so können diese Einbrüche in der detektierten Intensität I den entsprechenden Wellenlängen zugeordnet werden. Auf diese Weise ist auch der Zusammenhang zwischen den Wellenlängen der Extinktionslinien und dem korrespondierenden Ansteuersignal für das spektrale Element 20 bekannt. Diese Informationen können für eine Kalibrierung, beispielsweise eine lineare Interpolation des Zusammenhangs zwischen Wellenlänge und Steuersignal herangezogen werden. Aber auch beliebige andere Kalibrierverfahren, beispielsweise die Bestimmung von komplexen Funktionen höheren Grades oder ähnlichem sind ebenso möglich.
  • Die hier dargestellte Ausführungsform mit zwei Extinktionslinien dient dabei lediglich dem besseren Verständnis. Darüber hinaus kann die Kalibrierung grundsätzlich auch mit nur einer Extinktionslinie oder mehr als zwei Extinktionslinien in dem Kalibrierelement 40a-d ausgeführt werden.
  • Vorzugsweise befinden sich die Extinktionslinien des Kalibrierelements 40a-d im Randbereich des Filterbereichs des spektralen Elements 20. Auf diese Weise beeinflussen die Extinktionslinien den eigentlichen Messvorgang der Spektrometervorrichtung 1 nur in geringem Maße.
  • Als Substanzen für das Kalibrierelement 40a-d können beispielsweise plasmonische Filterelemente verwendet werden. Insbesondere können solche Filterelemente beispielsweise auf sogenannten Fano-Resonanzen beruhen. Ferner sind auch Nanostrukturen oder Strukturen mit Nanopartikeln möglich, welche spezielle Materialien, insbesondere dielektrische Partikel oder spezielle Moleküle aufweisen, welche zu den gewünschten Extinktionslinien führen. Darüber hinaus können auch spezielle Materialien mit einem scharfen Extinktionsspektrum, wie zum Beispiel Erbium oder ähnliches verwendet werden. Selbstverständlich sind auch beliebige andere Materialien, Strukturen, Partikel oder ähnliches möglich, welche die gewünschten Eigenschaften mit charakteristischen Extinktionslinien aufweisen. Die Halbwertsbreite der Extinktionslinien sollte vorzugsweise deutlich schmäler sein als die Auflösung des spektralen Elements.
  • Für die Auswahl der Materialien für das Kalibrierelement 40a-d sind bevorzugt Substanzen mit einer möglichst guten Temperaturstabilität geeignet. Auf diese Weise können Schwankungen aufgrund einer Variation der Temperatur vermieden oder zumindest stark eingeschränkt werden. Beispielsweise sind Kalibrierelemente 40a-d möglich, bei denen die Extinktionslinien um weniger als 0,5 nm/K (Nanometer pro Kelvin) schwanken. Vorzugsweise schwanken die Extinktionslinien weniger um als 0.05 nm/K. Besonders geeignet Kalibrierelemente 40a-d, bei denen die Extinktionslinien weniger um als 0.01 nm/K variieren.
  • 3 zeigt eine schematische Darstellung eines Ablaufdiagramms, wie es einem Verfahren zur Kalibrierung einer Spektrometervorrichtung 1 gemäß einer Ausführungsform zugrunde liegt. Hierbei kann das Verfahren insbesondere auch beliebige Schritte umfassen, wie sie zuvor bereits im Zusammenhang mit 1 und 2 beschrieben worden sind. Analog kann auch die zuvor beschriebene Spektrometervorrichtung 1 beliebige Komponenten aufweisen, wie sie nachfolgend im Zusammenhang mit dem Kalibriervorgang beschrieben werden.
  • Das Kalibrierverfahren kann mit einer beliebigen Spektrometervorrichtung 1 ausgeführt werden, bei welcher zwischen dem Lichtemitter 10 und dem Fotodetektor 30 ein Kalibrierelement 40a-d mit mindestens einer Extinktionslinie angeordnet ist. In einem Schritt S1 wird Licht von dem Lichtemitter 10 emittiert und dabei ein spektrales Element 20 angesteuert, das sich im Strahlengang zwischen Lichtemitter 10 und Fotodetektor 20 befindet. Dabei wird in Schritt S2 eine Einstellung des spektralen Elements 20 identifiziert, die zu einer Extinktionslinie des Kalibrierelements 40a-d korrespondiert.
  • Basierend auf der identifizierten Einstellung des spektralen Elements 20, die zu der Extinktionslinie des Kalibrierelements 40a-d korrespondiert, kann ein nachfolgender Messvorgang der Spektrometervorrichtung 1 auf Grundlage dieser Einstellung ausgewertet werden.
  • Zusammenfassend betrifft die vorliegende Erfindung eine Spektrometervorrichtung und ein Kalibrierverfahren für eine Spektrometervorrichtung. Im Strahlengang zwischen Lichtemitter und Fotodetektor der Spektrometervorrichtung ist ein Kalibrierelement mit einer oder mehreren bekannten Extinktionslinien angeordnet. Durch die Ermittlung der Einstellung eines spektralen Elements, die zu einer Extinktionslinie des Kalibrierelements korrespondiert, kann eine genaue Zuordnung zwischen Ansteuerung des spektralen Elements und korrespondierender Wellenlänge getroffen werden.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102018200378 A1 [0003]

Claims (14)

  1. Spektrometervorrichtung (1), mit einem Lichtemitter (10), der dazu ausgelegt ist, Licht in einem vorbestimmten Spektrum in Richtung einer Probe (100) zu emittieren; einem Fotodetektor (30), der dazu ausgelegt ist, Licht zu erfassen und ein zu dem erfassten Licht korrespondierendes Ausgangssignal bereitzustellen; einem spektralen Element (20), das in einem optischen Pfad zwischen der Probe (100) und dem Fotodetektor (30) angeordnet ist; und einem Kalibrierelement (40a-40d), das in einem Strahlengang zwischen dem Lichtemitter (10) und dem Fotodetektor (30) angeordnet ist, und das eine oder mehrere Extinktionslinien aufweist.
  2. Spektrometervorrichtung (1) nach Anspruch 1, wobei das Kalibrierelement (40a-40d) mindestens eine Extinktionslinie im spektralen Filterbereich des spektralen Elements (20) aufweist.
  3. Spektrometervorrichtung (1) nach Anspruch 1 oder 2, wobei das Kalibrierelement (40a-40d) mindestens eine Extinktionslinie im spektralen Randbereich des Filterbereichs des spektralen Elements (20) aufweist.
  4. Spektrometervorrichtung (1) nach einem der Ansprüche 1 bis 3, wobei das Kalibrierelement (40a-40d) eine plasmonische Filterstrukur, eine Nanopartikelstruktur und/oder ein Element mit einem scharfen Extinktionsspektrum umfasst.
  5. Spektrometervorrichtung (1) nach einem der Ansprüche 1 bis 4, wobei das Kalibrierelement (40c) im Strahlengang zwischen der Probe (100) und dem spektralen Element (20) angeordnet ist.
  6. Spektrometervorrichtung (1) nach einem der Ansprüche 1 bis 4, wobei das Kalibrierelement (40b) im Strahlengang zwischen dem Lichtemitter (10) und der Probe (100) angeordnet ist.
  7. Spektrometervorrichtung (1) nach einem der Ansprüche 1 bis 4, wobei das Kalibrierelement (40d) im Strahlengang zwischen spektralem Element (20) und Fotodetektor oder auf dem Fotodetektor (30) angeordnet ist.
  8. Spektrometervorrichtung (1) nach einem der Ansprüche 1 bis 4, wobei das Kalibrierelement (40a) in einer Leuchtschicht des Lichtemitters (10) angeordnet ist.
  9. Spektrometervorrichtung (1) nach einem der Ansprüche 1 bis 8, mit einem weiteren Fotodetektor, wobei das Kalibrierelement (40a-40d) in einem Strahlengang zwischen dem Lichtemitter (10) und dem weiteren Fotodetektor angeordnet ist
  10. Spektrometervorrichtung (1) nach einem der Ansprüche 1 bis 9, mit einer Steuereinrichtung, die dazu ausgelegt ist, eine zu der Extinktionslinie korrespondierende Einstellung des spektralen Elements (20) zu ermitteln.
  11. Spektrometervorrichtung (1) nach Anspruch 10, wobei die Steuereinrichtung dazu ausgelegt ist, einen Messvorgang unter Verwendung der zu der Extinktionslinie des Kalibrierelements (40a-40d) korrespondierenden Einstellung auszuführen.
  12. Spektrometervorrichtung (1) nach einem der Ansprüche 1 bis 11, wobei das spektralen Element (20) ein Fabry-Perot Interferometer, ein Gitterspektrometer, ein statisches oder bewegliches Fourier-Transformationsspektrometer und/oder einen wellenlängenselektiven Filter umfasst.
  13. Spektrometervorrichtung (1) nach einem der Ansprüche 1 bis 12, wobei sich eine oder mehrere Extinktionslinien des Kalibrierelements (40a-40d) mit der Temperatur um weniger als 0.5 nm/K verschieben.
  14. Verfahren zum Kalibrieren einer Spektrometervorrichtung (1), wobei die Spektrometervorrichtung (1) zwischen einem Lichtemitter (10) und einem Fotodetektor (30) ein Kalibrierelement (40a-40d) mit mindestens einer Extinktionslinie umfasst, und wobei das Verfahren die folgenden Schritte umfasst: Ansteuern (S1) eines spektralen Elements (20), das sich in einem optischen Pfad zwischen dem Lichtemitter (10) und dem Fotodetektor (30) befindet; und Identifizieren (S2) einer Einstellung des spektralen Elements (20), die zu einer Extinktionslinie des Kalibrierelements (40a-40d) korrespondiert.
DE102019126044.2A 2019-09-26 2019-09-26 Spektrometervorrichtung und Verfahren zur Kalibrierung einer Spektrometervorrichtung Withdrawn DE102019126044A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102019126044.2A DE102019126044A1 (de) 2019-09-26 2019-09-26 Spektrometervorrichtung und Verfahren zur Kalibrierung einer Spektrometervorrichtung
PCT/EP2020/074717 WO2021058260A1 (de) 2019-09-26 2020-09-04 Spektrometervorrichtung und verfahren zur kalibrierung einer spektrometervorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019126044.2A DE102019126044A1 (de) 2019-09-26 2019-09-26 Spektrometervorrichtung und Verfahren zur Kalibrierung einer Spektrometervorrichtung

Publications (1)

Publication Number Publication Date
DE102019126044A1 true DE102019126044A1 (de) 2021-04-01

Family

ID=72428265

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102019126044.2A Withdrawn DE102019126044A1 (de) 2019-09-26 2019-09-26 Spektrometervorrichtung und Verfahren zur Kalibrierung einer Spektrometervorrichtung

Country Status (2)

Country Link
DE (1) DE102019126044A1 (de)
WO (1) WO2021058260A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024175714A1 (en) * 2023-02-23 2024-08-29 Trinamix Gmbh Spectrometer system using wavelength without drift
WO2024175712A1 (en) * 2023-02-23 2024-08-29 Trinamix Gmbh In field wavelength calibration of a wavelength scale of a spectrometer device
WO2024218198A1 (en) 2023-04-19 2024-10-24 Trinamix Gmbh Spectrometer employing pump light source and fluorescent radiation
WO2024218200A1 (en) * 2023-04-19 2024-10-24 Trinamix Gmbh Spectrometer employing pump light source and fluorescent radiation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4224299A1 (de) * 1992-07-23 1994-02-10 Ohle Klaus Michael Spektrometer
US20190301939A1 (en) * 2018-03-30 2019-10-03 Si-Ware Systems Self-referenced spectrometer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118268A1 (en) * 2001-12-21 2003-06-26 Christopher Wimperis System and method for producing optical circuits
US20100292581A1 (en) * 2009-05-13 2010-11-18 Peter Guy Howard Dynamic Calibration of an Optical Spectrometer
WO2015197914A1 (en) * 2014-06-27 2015-12-30 Spectral Engines Oy Stabilized spectrometer and a method for stabilizing a spectrometer
DE102017207186A1 (de) * 2017-04-28 2018-10-31 Robert Bosch Gmbh Verfahren und Vorrichtung zum Kalibrieren eines Mikrospektrometermoduls
DE102018200378A1 (de) 2018-01-11 2019-07-11 Robert Bosch Gmbh Interferometer und Verfahren zum Herstellen eines Interferometers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4224299A1 (de) * 1992-07-23 1994-02-10 Ohle Klaus Michael Spektrometer
US20190301939A1 (en) * 2018-03-30 2019-10-03 Si-Ware Systems Self-referenced spectrometer

Also Published As

Publication number Publication date
WO2021058260A1 (de) 2021-04-01

Similar Documents

Publication Publication Date Title
WO2021058260A1 (de) Spektrometervorrichtung und verfahren zur kalibrierung einer spektrometervorrichtung
EP0472668B1 (de) Verfahren zur ermittlung des fahrbahnoberflächenzustandes
DE19608428C2 (de) Chemischer Sensor
DE102007039884B4 (de) Infrarot-Gasmessvorrichtung und Verfahren
DE69628974T2 (de) Methode zur Kontrolle eines Fabry-Perot-Interferometers mit einem kurzen Etalon zur Verwendung in einer NDIR Messvorrichtung
DE102012223874B3 (de) Verfahren zur Messung der Konzentration einer Gaskomponente in einem Messgas
EP3465165B1 (de) Verfahren und vorrichtung zur raman-spektroskopie
DE102021108745A1 (de) Anordnung zur multispektralen Lichtemission sowie damit ausgestatteter Multispektralsensor
DE69201917T2 (de) Hochauflösendes Spektroskopsystem.
DE102014226827A1 (de) Verfahren, Vorrichtung und Sensor zum Bestimmen eines Absorptionsverhaltens eines Mediums
DE102011116367A1 (de) Vorrichtung zur hoch aufgelösten Bestimmung der Konzentration von Substanzen in fluiden Medien
DE69503352T2 (de) Verfahren zum Messen und Kompensieren von Streulicht in einem Spektrometer
EP0443702A2 (de) Messverfahren zur Bestimmung kleiner Lichtabsorptionen
WO2009040055A1 (de) Messanordnung für ein optisches spektrometer
AT410033B (de) Verfahren und messeinrichtung zur bestimmung zumindest eines lumineszenz-, floureszenz- oder absorptionsparameters einer probe
DE102016221383A1 (de) Verfahren und Steuergerät zum Betreiben eines Mikrospektrometers und Mikrospektrometersystem
DE102014111093A1 (de) Sensorvorrichtung zum Bestimmen einer Konzentration eines Fluids, Fahrerassistenzsystem, Kraftfahrzeug sowie Verfahren
EP3870943B1 (de) Interferometerelement, spektrometer und verfahren zum betreiben eines interferometers
DE102015007206A1 (de) Optischer Sensor
DE102016207995A1 (de) Optischer Resonator für eine Sensorvorrichtung zum Detektieren eines Fluids, Sensorvorrichtung zum Detektieren eines Fluids und Verfahren zum Detektieren eines Fluids
EP4302074B1 (de) Anordnung zur multispektralen lichtemission sowie damit ausgestatteter multispektralsensor
DE102011001695B4 (de) Messvorrichtung und Verfahren zur Spektral auflösenden Messung elektromagnetischer Strahlung
EP3575759B1 (de) Spektrometer und verfahren zum betrieb
DE102019217262A1 (de) Sensorvorrichtung und Verfahren zum Sensieren von Proben
EP4300079A2 (de) Vorrichtung und verfahren zur bestimmung einer stoffkonzentration in einem fluid

Legal Events

Date Code Title Description
R163 Identified publications notified
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee