EP0546811A1 - Système optique adaptable simple - Google Patents
Système optique adaptable simple Download PDFInfo
- Publication number
- EP0546811A1 EP0546811A1 EP92311213A EP92311213A EP0546811A1 EP 0546811 A1 EP0546811 A1 EP 0546811A1 EP 92311213 A EP92311213 A EP 92311213A EP 92311213 A EP92311213 A EP 92311213A EP 0546811 A1 EP0546811 A1 EP 0546811A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wavefront
- deformable mirror
- optical system
- signals
- adaptive optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/06—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J9/00—Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
Definitions
- the present invention relates to apparatus for adaptive optics and, more particularly, to a simple adaptive optical system for correcting wavefront distortions.
- Wavefront distortion results from imperfect telescope optical quality and atomospheric turbulence.
- the current method of reducing such distortion is through adaptive optical sensing and correction.
- a system comprised of a nineteen channel deformable mirror, a thirty channel Hartmann-Shack wavefront sensor, a planar two-axis, tip/tilt mirror, and a high-speed computer is used for correcting wavefront nonuniformities.
- the computer in this system is used to provide real-time feedback from the sensor to the two adjustable mirrors.
- the present invention provides a simpler and thereby less expensive means of correcting incoming telescopic wavefront distortions than prior art systems.
- This invention contemplates an adaptive optical control system comprising a lightweight, actuator-deformable mirror which reflects an incoming telescopic wavefront to a modified Hartmann-Shack wavefront sensor.
- the wavefront sensor detects the slope of the incoming wavefront at several different locations across the incident beam and provides a set of analog signals, representing the slope of the wavefront at each of these locations, to a corresponding set of actuator drive circuits.
- These drive circuits perform both direct and difference amplification on the analog slope signals and subsequently provide excitation signals to a corresponding set of deformable mirror actuators.
- the excitation signals provided to these actuators serve to shape the surface of the mirror, thereby correcting distortions in the incoming telescopic wavefront as detected by the wavefront sensor.
- This simple adaptive optical system does not require a costly computer system to provide real-time feedback from the wavefront sensor to the deformable mirror.
- a system such as the present invention can become more complex as the number of detection sensing and correction channels increase, in its present form it should provide distortion correction through third order aberrations in the incoming telescopic wavefront.
- a primary objective of the present invention is to provide a means for economically correcting wavefront distortions in telescopic systems.
- Another objective of the present invention is to provide a means for correcting wavefront distortions through direct analog coupling of a wavefront sensor to an actuator-deformable mirror.
- Another objective of the present invention is to provide a means for correcting wavefront distortions without the need for costly computer control.
- Figure 1 is a schematic illustration of a simple, direct coupled, adaptive optical system.
- Figure 2A is a rear view of an eight channel, actuator deformable mirror.
- Figure 2B is a cross-sectional view of the mirror of Figure 2A.
- Figure 3 is a cross-sectional view of an eight channel, actuator-deformable mirror mounted to a voice-coil actuated, tip/tilt mount.
- Figure 4A is a top view of a modified Hartmann-Shack wavefront sensor.
- Figure 4B is a cross-sectional view of the sensor of Figure 4A.
- a distorted incoming telescopic wavefront 10 is incident upon an actuator-deformable mirror 11 which is mounted to a two-axis, tip/tilt mount 12 .
- the reflection of this wavefront 10 by the mirror 11 produces a beam 13 which is incident upon a beamsplitter 14 .
- the beamsplitter 14 divides this incident beam 13 into two separate beams 15, 20 of predetermined ratio.
- One portion 20 of the beam is reflected by the beamsplitter 14 and used for purposes such as experimentation and measurement.
- Another portion 15 of the beam is transmitted by the beamsplitter 14 and is incident upon a modified Hartmann-Shack wavefront sensor 16 .
- the modified Hartmann-Shack sensor 16 detects the slope of the wavefront at several different locations across this incident beam 15 .
- a set of analog slope signals 17 corresponding to the wavefront slope detected at these locations, is generated by the sensor 16 and provided to a series of operational amplifier actuator drive circuits 18 .
- These actuator drive circuits 18 perform both direct and difference amplification on the analog slope signals 17 and provide excitation signals 19 to the actuators in the deformable mirror 11 and the two-axis, tip/tilt mount 12 .
- the application of the excitation signals 19 to the mirror and mount actuators 11 , 12 results in the reformation and the repositioning of the mirror 11 , respectively, with respect to the incoming telescopic wavefront 10 , thereby compensating for distortions in the wavefront as detected by the wavefront sensor 16 .
- each channel includes either a piezo-electric or electrostrictive actuator 22 , which when excited modifies the curvature of the mirror in the area corresponding to the difference in detected slope.
- Tensioning rods 24 and springs 26 provide a preload mechanism for the piezo-electric or elecaostrictive actuators 22 due to the inherent unidirectional expansion characteristics of these types of actuators 22 when they are electrically excited.
- the number of channels, and hence the number of actuators 22 may be more or less than eight depending upon the degree of distortion correction that is required.
- the eight channel deformable mirror 11 is attached to the two-axis, tip/tilt mount 12 through two, orthogonally-positioned voice-coil actuator sets and a series of elastic flexures 32 .
- the cross-sectional view shown in Figure 3 reveals only one actuator set 30 .
- a voice-coil actuator set 30 includes two voice-coil drivers 31 , each of which is positioned along the outside edge of the mirror 11 at opposite ends of its diameter. These voice-coil drivers 31 are shown in cross-section in Figure 3 and are cylindrical in shape.
- a wire coil 33 is wound about the upper outer periphery of each voice-coil driver 31 .
- the two voice-coil drivers 31 in each voice-coil actuator set 30 act in unison to provide a one-dimensional tilt of the entire deformable mirror structure 11 about a central axis point 34 .
- the two voice-coil actuator set arrangement provides two-dimensional first order tilt correction of the reflecting surface 28 as detected by the Hartmann-Shack wavefront sensor 16 .
- FIG. 4A and 4B there is shown a modified Hartmann-Shack wavefront sensor 16 with a single two-dimensional sensor 40 positioned in the center and eight one-dimensional sensors 42 positioned along the periphery.
- a typical Hartmann-Shack sensor contains only the more complex two-dimensional sensors.
- the two-dimensional sensor 40 called the central sensor, includes a lens 44 which projects a beam 45 upon a quad detector 48 .
- the eight one-dimensional sensors 42 called peripheral limb sensors, each include a lens 46 which projects a beam 47 upon a corresponding dual detector 49 . Since the beams 45, 47 produced in each of these sensors 40, 42 are converging, the image produced from these beams 45, 47 upon the surface of the corresponding detectors 48, 49 is a spot. The position of each spot is detected through an electro-optical process which produces an analog signal 17 (see Figure 1) representing the slope of the wavefront 15 incident upon the corresponding sensor lens.
- the actuator drive circuits 18 which process the analog slope signals 17 are different for each type of mirror actuator 22, 30 .
- the excitation signals 19 for the two voice-coil actuator sets are derived directly from the slope detected by the central two-dimensional sensor 40 of the modified Hartmann-Shack sensor 16 .
- the slope detected by the central sensor 40 is amplified and applied to the corresponding voice-coil actuator set 30 , the position of the entire mirror structure 11 is adjusted to reduce any offsets in this detected slope.
- the excitation signals 19 for the piezo-electric or electrostrictive actuators 22 are derived from the difference in detected slope between the central sensor 40 and the limb sensors 42 . This difference in detected slope is referred to as the curvature error.
- the curvature error When the curvature error between the central sensor 40 and a particular limb sensor 42 is amplified and applied to the corresponding actuator 22 , the formation of the mirror surface is modified to reduce the curvature error of the deformable mirror 11 in that particular area.
- the distortions in the beam 13 reflected by the deformable mirror 11 are reduced. This reduction in distortions allows for experimentation and measurement performed on the portion of the beam 20 reflected by the beamsplitter 14 to be accomplished with greater overall accuracy.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Optical Elements Other Than Lenses (AREA)
- Telescopes (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US805401 | 1991-12-10 | ||
| US07/805,401 US5229889A (en) | 1991-12-10 | 1991-12-10 | Simple adaptive optical system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP0546811A1 true EP0546811A1 (fr) | 1993-06-16 |
Family
ID=25191477
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP92311213A Withdrawn EP0546811A1 (fr) | 1991-12-10 | 1992-12-09 | Système optique adaptable simple |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US5229889A (fr) |
| EP (1) | EP0546811A1 (fr) |
| JP (1) | JPH05323213A (fr) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1996035973A1 (fr) * | 1996-05-06 | 1996-11-14 | Yalestown Corporation N.V. | Module optique adaptatif |
| FR2757277A1 (fr) * | 1996-12-16 | 1998-06-19 | Sfim Ind | Dispositif pour la commande de la deformation d'un miroir d'un systeme optique |
| EP0921382A3 (fr) * | 1997-12-04 | 2000-04-05 | TRW Inc. | Senseur optique de front d'onde du type Hartmann |
| WO2003083409A1 (fr) * | 2002-03-28 | 2003-10-09 | Honeywell International, Inc. | Systeme de mesure pour structure de rayonnement magnetique (miroir, optiques adaptatives) |
| EP1444539A4 (fr) * | 2001-10-03 | 2005-08-17 | Continuum Photonics Inc | Appareil de commutation optique et d'orientation de faisceau |
| WO2006032878A1 (fr) * | 2004-09-21 | 2006-03-30 | Mbda Uk Limited | Procede et appareil a optique adaptative |
| EP2189769A1 (fr) * | 2008-11-19 | 2010-05-26 | BAE Systems PLC | Structure de miroir |
| WO2010058193A3 (fr) * | 2008-11-19 | 2010-09-16 | Bae Systems Plc | Structure de miroir |
| EP1907898A4 (fr) * | 2005-07-01 | 2010-11-24 | Flir Systems | Systeme de stabilisation d'image |
| CN105223688A (zh) * | 2015-11-05 | 2016-01-06 | 中国工程物理研究院激光聚变研究中心 | 一种激光光束波前校正系统及方法 |
| CN105301759A (zh) * | 2015-11-13 | 2016-02-03 | 中国人民解放军空军装备研究院雷达与电子对抗研究所 | 一种基于反射镜阵列的自适应光学补偿装置和补偿方法 |
| US9298014B2 (en) | 2005-07-01 | 2016-03-29 | Flir Systems, Inc. | Image stabilization system |
| CN112882224A (zh) * | 2021-01-19 | 2021-06-01 | 中国工程物理研究院激光聚变研究中心 | 一种波前控制方法 |
| WO2023048876A1 (fr) * | 2021-09-21 | 2023-03-30 | X Development Llc | Terminal de communication optique sans fil intégré sur puce |
| US11888530B2 (en) | 2021-09-21 | 2024-01-30 | X Development Llc | Optical tracking module chip for wireless optical communication terminal |
| US11996886B2 (en) | 2021-09-21 | 2024-05-28 | X Development Llc | Integrated on-chip wireless optical communication terminal |
Families Citing this family (58)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5557477A (en) * | 1993-10-08 | 1996-09-17 | The United States Of America As Represented By The United States Department Of Energy | Apparatus for and method of correcting for aberrations in a light beam |
| US5980513A (en) | 1994-04-25 | 1999-11-09 | Autonomous Technologies Corp. | Laser beam delivery and eye tracking system |
| US5610707A (en) * | 1995-07-07 | 1997-03-11 | Lockheed Missiles & Space Co., Inc. | Wavefront sensor for a staring imager |
| US5598261A (en) * | 1995-07-07 | 1997-01-28 | Lockheed Missiles & Space Company, Inc. | Wavefront sensor for a scanning imager |
| RU2092948C1 (ru) * | 1996-01-31 | 1997-10-10 | Виктор Викторович Аполлонов | Зеркало с пространственно неоднородным комплексным коэффициентом отражения |
| US20010041884A1 (en) * | 1996-11-25 | 2001-11-15 | Frey Rudolph W. | Method for determining and correcting vision |
| US6271914B1 (en) | 1996-11-25 | 2001-08-07 | Autonomous Technologies Corporation | Objective measurement and correction of optical systems using wavefront analysis |
| US5777719A (en) * | 1996-12-23 | 1998-07-07 | University Of Rochester | Method and apparatus for improving vision and the resolution of retinal images |
| US5905591A (en) * | 1997-02-18 | 1999-05-18 | Lockheed Martin Corporation | Multi-aperture imaging system |
| DE19733193B4 (de) * | 1997-08-01 | 2005-09-08 | Carl Zeiss Jena Gmbh | Mikroskop mit adaptiver Optik |
| US6007204A (en) * | 1998-06-03 | 1999-12-28 | Welch Allyn, Inc. | Compact ocular measuring system |
| DE69902549T2 (de) | 1998-08-19 | 2003-04-17 | Alcon, Inc. | Gerät und verfahren zur messung von fehlsichtigkeiten eines menschlichen auges |
| US6598975B2 (en) * | 1998-08-19 | 2003-07-29 | Alcon, Inc. | Apparatus and method for measuring vision defects of a human eye |
| US6199986B1 (en) | 1999-10-21 | 2001-03-13 | University Of Rochester | Rapid, automatic measurement of the eye's wave aberration |
| US6717661B1 (en) | 2000-01-26 | 2004-04-06 | Science & Technology Corporation @ University Of New Mexico | Fourier moire wavefront sensor |
| US6234631B1 (en) | 2000-03-09 | 2001-05-22 | Lasersight Technologies, Inc. | Combination advanced corneal topography/wave front aberration measurement |
| US6394999B1 (en) | 2000-03-13 | 2002-05-28 | Memphis Eye & Cataract Associates Ambulatory Surgery Center | Laser eye surgery system using wavefront sensor analysis to control digital micromirror device (DMD) mirror patterns |
| AU2001251172A1 (en) | 2000-03-30 | 2001-10-15 | Electro Scientific Industries, Inc. | Laser system and method for single pass micromachining of multilayer workpieces |
| CA2376756A1 (fr) | 2000-04-19 | 2001-10-25 | Alcon Universal Ltd. | Capteur de front d'onde permettant d'effectuer une mesure objective d'un systeme optique, et procedes associes |
| US6460997B1 (en) | 2000-05-08 | 2002-10-08 | Alcon Universal Ltd. | Apparatus and method for objective measurements of optical systems using wavefront analysis |
| US6437321B1 (en) | 2000-06-08 | 2002-08-20 | The Boeing Company | Method and apparatus to correct for thermally-induced wavefront distortion in crystal rods |
| US6763196B2 (en) * | 2001-02-02 | 2004-07-13 | Trex Enterprises Corporation | Laser communication system with source tracking |
| JP2002277736A (ja) * | 2001-03-21 | 2002-09-25 | Olympus Optical Co Ltd | 撮像装置 |
| US6561648B2 (en) | 2001-05-23 | 2003-05-13 | David E. Thomas | System and method for reconstruction of aberrated wavefronts |
| US6721510B2 (en) * | 2001-06-26 | 2004-04-13 | Aoptix Technologies, Inc. | Atmospheric optical data transmission system |
| US6827442B2 (en) * | 2001-09-12 | 2004-12-07 | Denwood F. Ross | Ophthalmic wavefront measuring devices |
| EP1429132A1 (fr) * | 2001-09-18 | 2004-06-16 | Mitsubishi Denki Kabushiki Kaisha | Dispositif et procede d'estimation, dispositif de reglage, et un procede de correction d'un mauvais alignement d'un systeme optique |
| JP4290553B2 (ja) * | 2001-11-27 | 2009-07-08 | エーエスエムエル ネザーランズ ビー.ブイ. | 画像化装置 |
| US8023117B2 (en) * | 2002-01-09 | 2011-09-20 | Venture Ad Astra, Llc | Establishing and maintaining focus in segmented-optic telescopes |
| US6726339B2 (en) * | 2002-01-09 | 2004-04-27 | Geoffrey B. Rhoads | Ring telescope system |
| US6837586B2 (en) * | 2002-01-09 | 2005-01-04 | Geoffrey B. Rhoads | Ring optical interferometer |
| KR100419192B1 (ko) * | 2002-04-10 | 2004-02-21 | 한국수력원자력 주식회사 | 다중 입사광의 파면왜곡 정밀측정 장치 및 그 방법 |
| US20030206350A1 (en) * | 2002-05-06 | 2003-11-06 | Byren Robert W. | Low-order aberration correction using articulated optical element |
| US6803994B2 (en) * | 2002-06-21 | 2004-10-12 | Nikon Corporation | Wavefront aberration correction system |
| US6897940B2 (en) * | 2002-06-21 | 2005-05-24 | Nikon Corporation | System for correcting aberrations and distortions in EUV lithography |
| US20040021826A1 (en) * | 2002-08-01 | 2004-02-05 | Sarver Edwin J. | Combination advanced corneal topography/wave front aberration measurement |
| US7289736B1 (en) | 2003-01-13 | 2007-10-30 | Aoptix Technologies | Adaptive optics imaging system with object acquisition capability |
| US7286766B2 (en) * | 2003-01-16 | 2007-10-23 | Aoptix Technologies, Inc. | Free space optical communication system with power level management |
| JP4565192B2 (ja) * | 2003-03-31 | 2010-10-20 | オムニビジョン テクノロジーズ, インコーポレイテッド | 画像システムにおける収差を生じる影響を最小化するための、システムおよび方法 |
| US7057806B2 (en) * | 2003-05-09 | 2006-06-06 | 3M Innovative Properties Company | Scanning laser microscope with wavefront sensor |
| US6880943B2 (en) * | 2003-06-04 | 2005-04-19 | Itt Manufacturing Enterprises, Inc. | High resolution image formation from a multiple aperture imaging system |
| DE10336097B3 (de) * | 2003-08-06 | 2005-03-10 | Testo Ag | Visiereinrichtung für ein Radiometer sowie Verfahren |
| US20060104596A1 (en) * | 2004-07-02 | 2006-05-18 | Charles Askins | Deformable mirror apparatus |
| US20060050419A1 (en) * | 2004-09-08 | 2006-03-09 | Ealey Mark A | Integrated wavefront correction module |
| US20060050421A1 (en) * | 2004-09-08 | 2006-03-09 | Ealey Mark A | Adaptive mirror system |
| CN100449349C (zh) * | 2005-04-20 | 2009-01-07 | 中国人民解放军国防科学技术大学 | 大口径线阵哈特曼波前传感器 |
| US7274442B2 (en) * | 2005-05-16 | 2007-09-25 | The Boeing Company | Closed-loop wavefront sensor using field programmable gate array |
| US20070229993A1 (en) * | 2006-03-30 | 2007-10-04 | Hamid Hemmati | Compensating for a telescope's optical aberrations using a deformable mirror |
| CN1831559B (zh) * | 2006-04-14 | 2011-01-12 | 中国科学院光电技术研究所 | 基于倾斜校正的卫星激光测距系统 |
| CN100573229C (zh) * | 2006-07-17 | 2009-12-23 | 中国科学院光电技术研究所 | 基于共轭成像的组合式波前校正器 |
| US7772531B2 (en) * | 2007-10-25 | 2010-08-10 | University Of Victoria Innovation And Development Corporation | Adaptive optics based system and method to generate and control multiple optical beams for trapping and manipulating small particles |
| US8792163B2 (en) * | 2008-03-26 | 2014-07-29 | Raytheon Company | Low order adaptive optics by translating secondary mirror of off-aperture telescope |
| JP5146937B2 (ja) * | 2008-04-07 | 2013-02-20 | 富士通株式会社 | 光波面制御システムおよび光波面制御方法 |
| JP2009271351A (ja) * | 2008-05-08 | 2009-11-19 | Canon Inc | 結像光学ユニット及びその検査方法 |
| US8322870B2 (en) * | 2010-09-21 | 2012-12-04 | Raytheon Company | Fast steering, deformable mirror system and method for manufacturing the same |
| US9544052B2 (en) * | 2013-03-02 | 2017-01-10 | Aoptix Technologies, Inc. | Simple low cost tip-tilt wavefront sensor having extended dynamic range |
| CN104914569B (zh) * | 2014-03-10 | 2018-08-28 | 清华大学 | 波前相位校正装置 |
| CN108287025B (zh) * | 2018-01-25 | 2020-01-03 | 中国科学院光电技术研究所 | 一种哈特曼波前传感器自动对准方法 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4141652A (en) * | 1977-11-25 | 1979-02-27 | Adaptive Optics Associates, Inc. | Sensor system for detecting wavefront distortion in a return beam of light |
| US4226507A (en) * | 1979-07-09 | 1980-10-07 | The Perkin-Elmer Corporation | Three actuator deformable specimen |
| US4405232A (en) * | 1981-09-02 | 1983-09-20 | United Technologies Corporation | Wave front sensing device |
| US4467186A (en) * | 1982-01-27 | 1984-08-21 | The United States Of America As Represented By The Secretary Of The Air Force | Mirror actuator control system |
| US4737621A (en) * | 1985-12-06 | 1988-04-12 | Adaptive Optics Assoc., Inc. | Integrated adaptive optical wavefront sensing and compensating system |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4492431A (en) * | 1982-05-04 | 1985-01-08 | United Technologies Corporation | Pressure actuated deformable mirror |
| US4825062A (en) * | 1987-10-29 | 1989-04-25 | Kaman Aerospace Corporation | Extendable large aperture phased array mirror system |
| US4865454A (en) * | 1987-11-24 | 1989-09-12 | Kaman Aerospace Corporation | Adaptive optical system with synchronous detection of wavefront phase |
| US4967063A (en) * | 1988-06-16 | 1990-10-30 | The Aerospace Corporation | Charge controlled adaptive-optics system |
| US5128530A (en) * | 1991-05-28 | 1992-07-07 | Hughes Aircraft Company | Piston error estimation method for segmented aperture optical systems while observing arbitrary unknown extended scenes |
-
1991
- 1991-12-10 US US07/805,401 patent/US5229889A/en not_active Expired - Lifetime
-
1992
- 1992-12-09 EP EP92311213A patent/EP0546811A1/fr not_active Withdrawn
- 1992-12-10 JP JP4330665A patent/JPH05323213A/ja active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4141652A (en) * | 1977-11-25 | 1979-02-27 | Adaptive Optics Associates, Inc. | Sensor system for detecting wavefront distortion in a return beam of light |
| US4226507A (en) * | 1979-07-09 | 1980-10-07 | The Perkin-Elmer Corporation | Three actuator deformable specimen |
| US4405232A (en) * | 1981-09-02 | 1983-09-20 | United Technologies Corporation | Wave front sensing device |
| US4467186A (en) * | 1982-01-27 | 1984-08-21 | The United States Of America As Represented By The Secretary Of The Air Force | Mirror actuator control system |
| US4737621A (en) * | 1985-12-06 | 1988-04-12 | Adaptive Optics Assoc., Inc. | Integrated adaptive optical wavefront sensing and compensating system |
Non-Patent Citations (2)
| Title |
|---|
| OPTICAL ENGINEERING. vol. 29, no. 10, October 1990, BELLINGHAM US pages 1213 - 1222 MEHTA * |
| OPTICAL ENGINEERING. vol. 29, no. 11, November 1990, BELLINGHAM US pages 1389 - 1391 GALVAGNI * |
Cited By (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1996035973A1 (fr) * | 1996-05-06 | 1996-11-14 | Yalestown Corporation N.V. | Module optique adaptatif |
| EP0779530A4 (fr) * | 1996-05-06 | 1997-06-17 | Yalestown Corp Nv | Module optique adaptatif |
| FR2757277A1 (fr) * | 1996-12-16 | 1998-06-19 | Sfim Ind | Dispositif pour la commande de la deformation d'un miroir d'un systeme optique |
| EP0921382A3 (fr) * | 1997-12-04 | 2000-04-05 | TRW Inc. | Senseur optique de front d'onde du type Hartmann |
| EP1444539A4 (fr) * | 2001-10-03 | 2005-08-17 | Continuum Photonics Inc | Appareil de commutation optique et d'orientation de faisceau |
| WO2003083410A1 (fr) * | 2002-03-28 | 2003-10-09 | Honeywell International, Inc. | Reseau de commande distribue pour forme de structure de rayonnement electromagnetique flexible (miroir, optique adaptive) |
| US7012271B2 (en) | 2002-03-28 | 2006-03-14 | Honeywell International Inc. | Electromagnetic radiation structure control system |
| US7038792B2 (en) | 2002-03-28 | 2006-05-02 | Honeywell International Inc. | Measurement system for electromagnetic radiation structure |
| WO2003083409A1 (fr) * | 2002-03-28 | 2003-10-09 | Honeywell International, Inc. | Systeme de mesure pour structure de rayonnement magnetique (miroir, optiques adaptatives) |
| WO2006032878A1 (fr) * | 2004-09-21 | 2006-03-30 | Mbda Uk Limited | Procede et appareil a optique adaptative |
| US7862188B2 (en) | 2005-07-01 | 2011-01-04 | Flir Systems, Inc. | Image detection improvement via compensatory high frequency motions of an undedicated mirror |
| US9298014B2 (en) | 2005-07-01 | 2016-03-29 | Flir Systems, Inc. | Image stabilization system |
| EP1907898A4 (fr) * | 2005-07-01 | 2010-11-24 | Flir Systems | Systeme de stabilisation d'image |
| EP2189769A1 (fr) * | 2008-11-19 | 2010-05-26 | BAE Systems PLC | Structure de miroir |
| US8519315B2 (en) | 2008-11-19 | 2013-08-27 | Bae Systems Plc | Mirror structure having a fourier lens disposed between a reflective surface and an integrated optical sensor |
| WO2010058193A3 (fr) * | 2008-11-19 | 2010-09-16 | Bae Systems Plc | Structure de miroir |
| CN105223688A (zh) * | 2015-11-05 | 2016-01-06 | 中国工程物理研究院激光聚变研究中心 | 一种激光光束波前校正系统及方法 |
| CN105301759A (zh) * | 2015-11-13 | 2016-02-03 | 中国人民解放军空军装备研究院雷达与电子对抗研究所 | 一种基于反射镜阵列的自适应光学补偿装置和补偿方法 |
| CN112882224A (zh) * | 2021-01-19 | 2021-06-01 | 中国工程物理研究院激光聚变研究中心 | 一种波前控制方法 |
| CN112882224B (zh) * | 2021-01-19 | 2021-12-14 | 中国工程物理研究院激光聚变研究中心 | 一种波前控制方法 |
| WO2023048876A1 (fr) * | 2021-09-21 | 2023-03-30 | X Development Llc | Terminal de communication optique sans fil intégré sur puce |
| US11888530B2 (en) | 2021-09-21 | 2024-01-30 | X Development Llc | Optical tracking module chip for wireless optical communication terminal |
| US11996886B2 (en) | 2021-09-21 | 2024-05-28 | X Development Llc | Integrated on-chip wireless optical communication terminal |
Also Published As
| Publication number | Publication date |
|---|---|
| US5229889A (en) | 1993-07-20 |
| JPH05323213A (ja) | 1993-12-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5229889A (en) | Simple adaptive optical system | |
| US4404592A (en) | Video imagery device, especially for a homing unit | |
| US5004328A (en) | Spherical lens and imaging device using the same | |
| JPH10503300A (ja) | 適応光学モジュール | |
| US4423437A (en) | Optoelectronic device for videofrequency scanning of images | |
| US6293027B1 (en) | Distortion measurement and adjustment system and related method for its use | |
| US4876453A (en) | Method and apparatus for calibrating an imaging sensor | |
| US4162825A (en) | Method for adjusting the radius of curvature of a spherical mirror | |
| US6043843A (en) | Computerized control of multi-size spot beam imaging | |
| US5615038A (en) | Scanning optical device with aberration compensation feature | |
| US4300160A (en) | Thermal imaging device for detecting and identifying a thermal object | |
| US4467186A (en) | Mirror actuator control system | |
| GB2249831A (en) | Sensor and control element for laser beam control | |
| US20080296477A1 (en) | Optical system for inducing focus diversity | |
| US6777658B2 (en) | Optical tracking system, feed-forward augmentation assembly and method for controlling an optical imaging system with reduced residual jitter | |
| US5999251A (en) | Lens testing apparatus and a lens adjusting apparatus | |
| US6122108A (en) | Micro-optical beam deflection system | |
| JPS642921B2 (fr) | ||
| US20060109552A1 (en) | Image blur compensation device | |
| US7151245B2 (en) | Systems and methods for compensating for dim targets in an optical tracking system | |
| US20050029430A1 (en) | Systems and methods for time slicing a focal plane to compensate for dim targets in an optical tracking system | |
| RU2077068C1 (ru) | Оптический адаптивный модуль | |
| US6700108B2 (en) | Means for protecting optical focal plane sensor arrays against excessive irradiation | |
| US6876483B1 (en) | Optical viewing apparatus | |
| WO2006032878A1 (fr) | Procede et appareil a optique adaptative |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
| 17P | Request for examination filed |
Effective date: 19931119 |
|
| 17Q | First examination report despatched |
Effective date: 19950508 |
|
| 18D | Application deemed to be withdrawn |
Effective date: 19950919 |