EP0736595A1 - Soaker compositions - Google Patents
Soaker compositions Download PDFInfo
- Publication number
- EP0736595A1 EP0736595A1 EP95870029A EP95870029A EP0736595A1 EP 0736595 A1 EP0736595 A1 EP 0736595A1 EP 95870029 A EP95870029 A EP 95870029A EP 95870029 A EP95870029 A EP 95870029A EP 0736595 A1 EP0736595 A1 EP 0736595A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- soaking
- peg
- fabrics
- mixtures
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 75
- 238000002791 soaking Methods 0.000 claims abstract description 61
- 239000004744 fabric Substances 0.000 claims abstract description 30
- 239000002202 Polyethylene glycol Substances 0.000 claims abstract description 21
- 229920001223 polyethylene glycol Polymers 0.000 claims abstract description 21
- 239000002689 soil Substances 0.000 claims abstract description 17
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 17
- 229920000642 polymer Polymers 0.000 claims description 17
- 150000001875 compounds Chemical class 0.000 claims description 16
- 239000007844 bleaching agent Substances 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 239000012190 activator Substances 0.000 claims description 10
- 229920005646 polycarboxylate Polymers 0.000 claims description 9
- 239000010457 zeolite Substances 0.000 claims description 8
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 7
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 7
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 6
- 229960004106 citric acid Drugs 0.000 claims description 6
- 150000004760 silicates Chemical class 0.000 claims description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 5
- 229910019142 PO4 Inorganic materials 0.000 claims description 4
- 229920000604 Polyethylene Glycol 200 Polymers 0.000 claims description 4
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 claims description 4
- 229920002582 Polyethylene Glycol 600 Polymers 0.000 claims description 4
- 229920002125 Sokalan® Polymers 0.000 claims description 4
- 235000021317 phosphate Nutrition 0.000 claims description 4
- 150000001860 citric acid derivatives Chemical class 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims description 3
- 229960004543 anhydrous citric acid Drugs 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 12
- 239000004927 clay Substances 0.000 abstract description 4
- -1 alkali metal salts Chemical class 0.000 description 20
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N Caprolactam Natural products O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 14
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 12
- 229910052783 alkali metal Inorganic materials 0.000 description 12
- 239000004615 ingredient Substances 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- 229910000323 aluminium silicate Inorganic materials 0.000 description 8
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 238000004900 laundering Methods 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- 229910052708 sodium Inorganic materials 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical class [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 239000003599 detergent Substances 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 5
- 239000004115 Sodium Silicate Substances 0.000 description 5
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 5
- 150000003863 ammonium salts Chemical class 0.000 description 5
- 239000002738 chelating agent Substances 0.000 description 5
- LTALJGSZILUUQA-UHFFFAOYSA-N 2-nonanoyloxybenzenesulfonic acid Chemical compound CCCCCCCCC(=O)OC1=CC=CC=C1S(O)(=O)=O LTALJGSZILUUQA-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- 229910052739 hydrogen Chemical group 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 4
- 229910052911 sodium silicate Inorganic materials 0.000 description 4
- WEAPVABOECTMGR-UHFFFAOYSA-N triethyl 2-acetyloxypropane-1,2,3-tricarboxylate Chemical compound CCOC(=O)CC(C(=O)OCC)(OC(C)=O)CC(=O)OCC WEAPVABOECTMGR-UHFFFAOYSA-N 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical group [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 3
- 239000001257 hydrogen Chemical group 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 229940045872 sodium percarbonate Drugs 0.000 description 3
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 2
- CIOXZGOUEYHNBF-UHFFFAOYSA-N (carboxymethoxy)succinic acid Chemical compound OC(=O)COC(C(O)=O)CC(O)=O CIOXZGOUEYHNBF-UHFFFAOYSA-N 0.000 description 2
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 2
- YLAXZGYLWOGCBF-UHFFFAOYSA-N 2-dodecylbutanedioic acid Chemical compound CCCCCCCCCCCCC(C(O)=O)CC(O)=O YLAXZGYLWOGCBF-UHFFFAOYSA-N 0.000 description 2
- FAGGUIDTQQXDSJ-UHFFFAOYSA-N 3-benzoylazepan-2-one Chemical class C=1C=CC=CC=1C(=O)C1CCCCNC1=O FAGGUIDTQQXDSJ-UHFFFAOYSA-N 0.000 description 2
- XSVSPKKXQGNHMD-UHFFFAOYSA-N 5-bromo-3-methyl-1,2-thiazole Chemical compound CC=1C=C(Br)SN=1 XSVSPKKXQGNHMD-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- QISSLHPKTCLLDL-UHFFFAOYSA-N N-Acetylcaprolactam Chemical compound CC(=O)N1CCCCCC1=O QISSLHPKTCLLDL-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical group [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000012933 diacyl peroxide Substances 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 150000002431 hydrogen Chemical group 0.000 description 2
- 159000000003 magnesium salts Chemical class 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- 229910021527 natrosilite Inorganic materials 0.000 description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 2
- 150000004965 peroxy acids Chemical class 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Chemical group 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 235000011044 succinic acid Nutrition 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910009112 xH2O Inorganic materials 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- ILAPVZVYHKSGFM-UHFFFAOYSA-N 1-(carboxymethoxy)ethane-1,1,2-tricarboxylic acid Chemical class OC(=O)COC(C(O)=O)(C(O)=O)CC(O)=O ILAPVZVYHKSGFM-UHFFFAOYSA-N 0.000 description 1
- VJSWLXWONORKLD-UHFFFAOYSA-N 2,4,6-trihydroxybenzene-1,3,5-trisulfonic acid Chemical compound OC1=C(S(O)(=O)=O)C(O)=C(S(O)(=O)=O)C(O)=C1S(O)(=O)=O VJSWLXWONORKLD-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- QDCPNGVVOWVKJG-VAWYXSNFSA-N 2-[(e)-dodec-1-enyl]butanedioic acid Chemical group CCCCCCCCCC\C=C\C(C(O)=O)CC(O)=O QDCPNGVVOWVKJG-VAWYXSNFSA-N 0.000 description 1
- QDCPNGVVOWVKJG-UHFFFAOYSA-N 2-dodec-1-enylbutanedioic acid Chemical compound CCCCCCCCCCC=CC(C(O)=O)CC(O)=O QDCPNGVVOWVKJG-UHFFFAOYSA-N 0.000 description 1
- GCVQVCAAUXFNGJ-UHFFFAOYSA-N 2-hexadecylbutanedioic acid Chemical compound CCCCCCCCCCCCCCCCC(C(O)=O)CC(O)=O GCVQVCAAUXFNGJ-UHFFFAOYSA-N 0.000 description 1
- DXPLEDYRQHTBDJ-UHFFFAOYSA-N 2-pentadec-1-enylbutanedioic acid Chemical compound CCCCCCCCCCCCCC=CC(C(O)=O)CC(O)=O DXPLEDYRQHTBDJ-UHFFFAOYSA-N 0.000 description 1
- MWTDCUHMQIAYDT-UHFFFAOYSA-N 2-tetradecylbutanedioic acid Chemical compound CCCCCCCCCCCCCCC(C(O)=O)CC(O)=O MWTDCUHMQIAYDT-UHFFFAOYSA-N 0.000 description 1
- KCAZSAYYICOMMG-UHFFFAOYSA-N 6-hydroperoxy-6-oxohexanoic acid Chemical compound OOC(=O)CCCCC(O)=O KCAZSAYYICOMMG-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical group [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910002567 K2S2O8 Inorganic materials 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical group [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910004882 Na2S2O8 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004159 Potassium persulphate Substances 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- YHGREDQDBYVEOS-UHFFFAOYSA-N [acetyloxy-[2-(diacetyloxyamino)ethyl]amino] acetate Chemical class CC(=O)ON(OC(C)=O)CCN(OC(C)=O)OC(C)=O YHGREDQDBYVEOS-UHFFFAOYSA-N 0.000 description 1
- JTPLPDIKCDKODU-UHFFFAOYSA-N acetic acid;2-(2-aminoethylamino)ethanol Chemical class CC(O)=O.CC(O)=O.CC(O)=O.NCCNCCO JTPLPDIKCDKODU-UHFFFAOYSA-N 0.000 description 1
- RUSUZAGBORAKPY-UHFFFAOYSA-N acetic acid;n'-[2-(2-aminoethylamino)ethyl]ethane-1,2-diamine Chemical class CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.NCCNCCNCCN RUSUZAGBORAKPY-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001334 alicyclic compounds Chemical class 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 1
- 235000013734 beta-carotene Nutrition 0.000 description 1
- 239000011648 beta-carotene Substances 0.000 description 1
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 1
- 229960002747 betacarotene Drugs 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- FJDUDHYHRVPMJZ-UHFFFAOYSA-N nonan-1-amine Chemical compound CCCCCCCCCN FJDUDHYHRVPMJZ-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000004967 organic peroxy acids Chemical class 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000005429 oxyalkyl group Chemical group 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 125000005342 perphosphate group Chemical group 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- RRCSSMRVSNZOFR-UHFFFAOYSA-N phenyl 3,5,5-trimethylhexanoate;sodium Chemical compound [Na].CC(C)(C)CC(C)CC(=O)OC1=CC=CC=C1 RRCSSMRVSNZOFR-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 235000019394 potassium persulphate Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 235000019351 sodium silicates Nutrition 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 1
- 125000003774 valeryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3703—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3707—Polyethers, e.g. polyalkyleneoxides
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2075—Carboxylic acids-salts thereof
- C11D3/2086—Hydroxy carboxylic acids-salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3746—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3757—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
- C11D3/3765—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in liquid compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3902—Organic or inorganic per-compounds combined with specific additives
- C11D3/3905—Bleach activators or bleach catalysts
- C11D3/3907—Organic compounds
Definitions
- the present invention relates to the cleaning of fabrics in soaking conditions, i.e. in conditions where the fabrics are left to soak in a soaking liquor comprising water and detergent ingredients, either as a first step before a typical washing operation, or as a single step.
- Fabric soaking operations have been described in the art. In such soaking operations, fabrics are left in contact with a soaking liquor for a prolonged period of time ranging from a few hours to overnight.
- This laundering process has the advantage that it maximizes the contact time between the fabrics and the key active ingredients of the soaking liquor. It also has the advantage that it reduces or eliminates the need for a typical laundering operation involving the need for mechanical agitation, or that it improves the efficiency of the subsequent typical laundering operation.
- Such soaking operations are typically efficient to remove tough outdoor dirt from fabrics, such as particulate soil, mud, silt and clays.
- Such dirt is particularly difficult to remove from fabrics. Indeed, it is believed that the very fine dirt grains like silt, typically in the range between 0.002 and 0.050 mm, and clay, typically below 0.002mm in size, can insert among fabric fibers and steadily stick to the surface of the fibers. This problem is particularly acute with socks which are most exposed to silt and clay pick-up.
- this object can be met by soaking fabrics in an aqueous soaking liquor comprising a soaking detergent composition, said composition comprising a low molecular weight polyethylene glycol as defined hereinafter, or mixtures thereof, in combination with high levels of a building and soil suspending system.
- a soaking detergent composition said composition comprising a low molecular weight polyethylene glycol as defined hereinafter, or mixtures thereof, in combination with high levels of a building and soil suspending system.
- the present invention encompasses the soaking detergent as well as a process of soaking fabrics in a soaking liquor formed with said soaking detergent.
- compositions comprising:
- the present invention encompasses a process of soaking fabrics, wherein said fabrics are immersed in a soaking liquor comprising water and an effective amount of the composition above.
- the present invention encompasses a composition and a process of soaking fabrics.
- the composition hereinafter referred to as the soaking composition is used in the soaking process.
- the present invention encompasses a composition which comprises a low molecular weight polyethylene glycol (PEG), and a high level of a building and soil suspending system.
- PEG polyethylene glycol
- compositions herein comprise a low molecular weight polyethylene glycol (PEG) according to the formula H(OCH 2 CH 2 ) n OH, wherein n is a number ranging from 4 to 36, or mixtures thereof.
- PEG polyethylene glycol
- n ranges from 4 to 22, and the most preferred compositions herein comprise PEG 200, i.e. H(OCH 2 CH 2 ) 4 OH or PEG 400, i.e. n ranges between 8.2 and 9.1, or PEG 600, i.e. n ranges between 12.5 and 13.9, or mixtures thereof.
- PEG should be present in amounts of from 0.01% to 5% by weight of the total composition, preferably from 0.1% to 5%, most preferably from 0.2% to 2%.
- the building and soil suspending system is the building and soil suspending system
- the second essential ingredient herein is a building and soil suspending system comprising a compound selected from citric acid or citrates, silicates, zeolites, polycarboxylates, phosphates, and mixtures thereof. It is also essential that said system be present at a high total amount, of from 5% to 50% by weight of the total composition, preferably from 10% to 40%, most preferably from 15% to 30%.
- Citric acid can be used in its acidic form or in the form of its salts (mono-, di-, tri- salts) and in all its anhydrous and hydrated forms, or mixtures thereof.
- Suitable silicates for use herein include alkali metal salts of silicate, or mixtures thereof.
- Preferred alkali metal salt of silicate to be used herein is sodium silicate.
- alkali metal salt of silicate can be used herein, including the crystalline forms as well as the amorphous forms of said alkali metal salt of silicate or mixtures thereof.
- Suitable crystalline forms of sodium silicate to be used are the crystalline layered silicates of the granular formula NaMSi x O 2x+1 .yH 2 O wherein M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20, or mixtures thereof. Crystalline layered sodium silicates of this type are disclosed in EP-A-164 514 and methods for their preparation are disclosed in DE-A-34 17 649 and DE-A-37 42 043.
- x in the general formula above has a value of 2, 3 or 4 and is preferably 2.
- M is sodium and y is 0 and preferred examples of this formula comprise the a , b , g and d forms of Na 2 Si 2 O 5.
- These materials are available from Hoechst AG FRG as respectively NaSKS-5, NaSKS-7, NaSKS-11 and NaSKS-6. The most preferred material is d - Na 2 Si 2 O 5, NaSKS-6.
- Crystalline layered silicates are incorporated in granular soaking compositions herein, either as dry mixed solids, or as solid components of agglomerates with other components.
- Suitable amorphous forms of sodium silicate to be used herein have the following general formula: NaMSi x O 2x+1 wherein M is sodium or hydrogen and x is a number from 1.9 to 4, or mixtures thereof.
- M is sodium or hydrogen and x is a number from 1.9 to 4, or mixtures thereof.
- Preferred to be used herein are the amorphous forms of Si 2 O 5 Na 2 O.
- Suitable Zeolites for use herein are aluminosilicates including those having the empirical formula: Mz(zAlO2.ySiO2) wherein M is sodium, potassium, ammonium or substituted ammonium, z is from about 0.5 to about 2; and y is 1; this material having a magnesium ion exchange capacity of at least about 50 milligram equivalents of CaCO3 hardness per gram of anhydrous aluminosilicate.
- Preferred zeolites which have the formula: Naz ⁇ (AlO2)z(SiO2)yù.xH2O wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.
- aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived.
- a method for producing aluminosilicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al, issued October 12, 1976.
- Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), and Zeolite X.
- the crystalline aluminosilicate ion exchange material has the formula: Na12 ⁇ (AlO2)12(SiO2)12ù.xH2O wherein x is from 20 to 30, especially about 27.
- This material is known as Zeolite A.
- the aluminosilicate has a particle size of about 0.1-10 microns in diameter.
- Suitable phosphate builders for use herein include sodium and potassium tripolyphosphate, pyrophosphate, polymeric metaphosphate having a degree of polymerization of from about 6 to 21, and orthophosphate.
- Other phosphorus builder compounds are disclosed in U.S. Pat. Nos. 3,159,581; 3,213,030; 3,422,021; 3,422,137; 3,400,176 and 3,400,148, incorporated herein by reference.
- Suitable polycarboxylate builders for use herein include ether polycarboxylates, including oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and Lamberti et al, U.S. Patent 3,635,830, issued January 18, 1972. See also "TMS/TDS" builders of U.S. Patent 4,663,071, issued to Bush et al, on May 5, 1987.
- Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,120,874 and 4,102,903.
- Other useful detergency builders include the ether hydroxypolycarboxylates, 1,3,5-trihydroxy benzene-2,4,6-trisulphonic acid, and carboxymethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
- polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid
- polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyl
- succinic acid builders include the C 5 -C 20 alkyl and alkenyl succinic acids and salts thereof.
- a particularly preferred compound of this type is dodecenylsuccinic acid.
- succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like. Laurylsuccinates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986.
- Suitable polycarboxylate buiders for use herein include builders according to formula I wherein Y is a comonomer or comonomer mixture; R 1 and R 2 are bleach- and alkali-stable polymer-end groups; R 3 is H, OH or C 1-4 alkyl; M is H, alkali metal, alkaline earth metal, ammonium or substituted ammonium; p is from 0 to 2; and n is at least 10, or mixtures thereof.
- the first category belongs to the class of copolymeric polymers which are formed from an unsaturated polycarboxylic acid such as maleic acid, citraconic acid, itaconic acid, mesaconic acid and salts thereof as first monomer, and an unsaturated monocarboxylic acid such as acrylic acid or an alpha -C 1-4 alkyl acrylic acid as second monomer.
- the polymers belonging to said first class are those where p is not 0 and Y is selected from the acids listed hereinabove.
- Preferred polymers of this class are those according to formula I hereinabove, where Y is maleic acid.
- R 3 and M are H
- n is such that the polymers have a molecular weight of from 1000 to 400 000 atomic mass units.
- the second category of preferred polymers for use herein belongs to the class of polymers in which, referring to formula I hereinabove, p is 0 and R 3 is H or C 1-4 alkyl.
- n is such that the polymers have a molecular weight of from 1000 to 400 000 atomic mass units.
- R 3 and M are H.
- alkali-stable polymer end groups R 1 and R 2 in formula I hereinabove suitably include alkyl groups, oxyalkyl groups and alkyl carboxylic acid groups and salts and esters thereof.
- n the degree of polymerization of the polymer can be determined from the weight average polymer molecular weight by dividing the latter by the average monomer molecular weight.
- n 182 (i.e. 15,500/(116 x 0.3 + 72 x 0.7)).
- highly preferred polymers for use herein are those of the first category in which n averages from 100 to 800, preferably from 120 to 400.
- Preferred builder and soil suspending system foruse herein is anhydrous citric acid, or polymers of maleic or acrylic acid, or copolymers of maleic and acrylic acid.
- the soaking composition of the present invention may further comprise a variety of other ingredients.
- the composition may further comprise an oxygen bleach.
- oxygen bleaches provide a multitude of benefits such as bleaching of stains, deodorization, as well as disinfectancy, and the sorbitan esters according to the present invention have a further particular advantage that they are resistant to oxydation by oxygen bleaches.
- the oxygen bleach in the composition may come from a variety of sources such as hydrogen peroxide or any of the addition compounds of hydrogen peroxide, or organic peroxyacid, or mixtures thereof.
- addition compounds of hydrogen peroxide it is meant compounds which are formed by the addition of hydrogen peroxide to a second chemical compound, which may be for example an inorganic salt, urea or organic carboxylate, to provide the addition compound.
- the addition compounds of hydrogen peroxide include inorganic perhydrate salts, the compounds hydrogen peroxide forms with organic carboxylates, urea, and compounds in which hydrogen peroxide is clathrated.
- oxygen bleaches include persulphates, particularly potassium persulphate K 2 S 2 O 8 and sodium persulphate Na 2 S 2 O 8 .
- inorganic perhydrate salts include perborate, percarbonate, perphosphate and persilicate salts.
- the inorganic perhydrate salts are normally the alkali metal salts.
- alkali metal salt of percarbonate, perborate or mixtures thereof are the preferred inorganic perhydrate salts for use herein.
- Preferred alkali metal salt of percarbonate is sodium percarbonate.
- Soaking compositions in the present invention may comprise from 0% to 60% by weight of composition of a hydrogen peroxyde source, preferably from 0% to 40% and more preferably from 10% to 40%.
- the soaking compositions herein comprise an oxygen bleach
- suitable compounds of this type are disclosed in British Patent GB 1 586 769 and GB 2 143 231.
- Preferred examples of such compounds are tetracetyl ethylene diamine, (TAED), sodium 3, 5, 5 trimethyl hexanoyloxybenzene sulphonate, diperoxy dodecanoic acid as described for instance in US 4 818 425 and nonylamide of peroxyadipic acid as described for instance in US 4 259 201 and n-nonanoyloxybenzenesulphonate (NOBS), and acetyl triethyl citrate (ATC) such as described in European patent application 91870207.7.
- N-acyl caprolactam selected from the group consisting of substituted or unsubstituted benzoyl caprolactam, octanyl caprolactam, nonanoyl caprolactam, hexanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, formyl caprolactam, acetyl caprolactam, propanoyl caprolactam, butanoyl caprolactam pentanoyl caprolactam.
- the soaking compositions herein may comprise mixtures of said bleach activators.
- Preferred mixtures of bleach activators herein comprise n-nonanoyloxybenzenesulphonate (NOBS) together with a second bleach activator having a low tendency to generate diacyl peroxide, but which delivers mainly peracid.
- Said second bleach activators may include tetracetyl ethylene diamine (TAED), acetyl triethyl citrate (ATC), acetyl caprolactam, benzoyl caprolactam and the like, or mixtures thereof.
- Said mixtures of bleach activators are preferably used in the embodiment of the present invention where the soaking liquors are controlled to a pH below 9.5.
- mixtures of bleach activators comprising n-nonanoyloxybenzenesulphonate and said second bleach activators, allow to boost particulate soil cleaning performance while exhibiting at the same time good performance on diacyl peroxide sensitive soil (e.g. beta-carotene) and on peracid sensitive soil (e.g. body soils).
- diacyl peroxide sensitive soil e.g. beta-carotene
- peracid sensitive soil e.g. body soils
- the soaking compositions herein may comprise from 0% to 15% by weight of the total composition of n-nonanoyloxybenzenesulphonate, preferably from 1% to 10% and more preferably from 3% to 7% and from 0% to 15% by weight of the total composition of said second bleach activator preferably from 1% to 10% and more preferably from 3% to 7%.
- Suitable amino carboxylate chelating agents which may be used herein include diethylene triamino pentacetic acid, ethylenediamine tetraacetates (EDTA), N-hydroxyethylethylenediamine triacetates, nitrilotriacetates, ethylenediamine tetraproprionates, triethylenetetraamine hexaacetates, and ethanoldiglycines, alkali metal ammonium and substituted ammonium salts thereof or mixtures thereof.
- EDDS ethylenediamine-N,N'-disuccinic acids
- alkali metal alkaline earth metal, ammonium, or substituted ammonium salts thereof.
- EDDS compounds are the free acid form and the sodium or magnesium salt or complex thereof.
- suitable chelating agents may be the organic phosphonates, including amino alkylene poly(alkylene phosphonate), alkali metal ethane 1-hydroxy diphosphonates, nitrilo trimethylene phosphonates, ethylene diamine tetra methylene phosphonates and diethylene triamine penta methylene phosphonates.
- the phosphonate compounds may be present either in their acid form or in the form of their metal alkali salt.
- the organic phosphonate compounds where present are in the form of their magnesium salt.
- the soaking compositions in the present invention may accordingly comprise from 0% to 5% by weight of the total compositions of said chelating agents, preferably from 0% to 3%, more preferably from 0.05% to 2%.
- Soaking compositions in the present invention may further comprise other optional ingredients such as surfactants, fillers, optical brighteners, enzymes, other chelants, dispersants, surfactants, soil release agents, photoactivated bleaches such as Zn phthalocyanine sulphonate, dyes, dye transfer inhibitors, pigments and perfumes.
- Said optional ingredients can be added in varying amounts as desired.
- compositions herein can be manufactured in solid, preferably granular, or liquid form.
- the present invention encompasses a process of soaking fabrics.
- process of soaking fabrics refers to the action of leaving fabrics to soak in a soaking liquor comprising water and a composition as described hereinabove, for a period of time sufficient to clean said fabrics.
- the soaking process can be performed independently from any other process, such as a typical laundering operation, or a first step before a second, typical laundering step.
- fabrics are left to soak for a period of time ranging from 10 minutes to 24 hours, preferably from 30 min to 24 hours, most preferably 4 hours to 24 hours
- After the fabrics have been immersed in said soaking liquor for a sufficient period of time they can be removed and rinsed with water.
- the fabrics can also be washed in a normal laundering operation after they have been soaked, with or without having been rinsed inbetween the soaking operation and the subsequent laundering operation.
- a soaking composition described hereinabove is diluted in an appropriate amount of water to produce a soaking liquor.
- Suitable doses may range from 45 to 50 grams of soaking compositoin in 3.5 to 5 liters of water, down to 90 to 100 grams of soaking composition in 20 to 45 liters of water.
- one dose is 45-50 grams in 3.5 to 5 Lt for a concentrated soak (bucket/sink).
- the dose is 90-100 grams in about 20 (Europe) to 45 (US) liter of water.
- the fabrics to be soaked are then immersed in the soaking liquor for an appropriate period of time.
- the process herein is suitable for cleaning a variety of fabrics, but finds a preferred application in the soaking of socks, which are particularly exposed to silt and clay pick-up.
- compositions are prepared by mixing the listed ingredients in the listed proportions. Soaking liquors are formed by diluting each time 45 g of said compositions in between 3.5 lit. to 5.0 lit. of water. 0.5 to 2 Kg of fabrics are then each time immersed in said soaking liquor for a time ranging from 10 minutes to 24 hours. Finally, the fabrics are removed from the soaking liquors, rinsed with water and washed with a regular washing process, handwash or washing machine wash, with a regular detergent, with or without re-using the soaking liquor, then said fabrics are left to dry.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Detergent Compositions (AREA)
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Fertilizers (AREA)
- Paper (AREA)
Abstract
Soaking compositions are disclosed which comprise a low molecular weight polyethylene glycol in combination with a high amount of a building and soil suspending system. Said compositions are diluted in water to form a soaking liquor. The invention is particularly effective in removing silt and clay from fabrics.
Description
- The present invention relates to the cleaning of fabrics in soaking conditions, i.e. in conditions where the fabrics are left to soak in a soaking liquor comprising water and detergent ingredients, either as a first step before a typical washing operation, or as a single step.
- Fabric soaking operations have been described in the art. In such soaking operations, fabrics are left in contact with a soaking liquor for a prolonged period of time ranging from a few hours to overnight. This laundering process has the advantage that it maximizes the contact time between the fabrics and the key active ingredients of the soaking liquor. It also has the advantage that it reduces or eliminates the need for a typical laundering operation involving the need for mechanical agitation, or that it improves the efficiency of the subsequent typical laundering operation.
- Such soaking operations are typically efficient to remove tough outdoor dirt from fabrics, such as particulate soil, mud, silt and clays. Such dirt is particularly difficult to remove from fabrics. Indeed, it is believed that the very fine dirt grains like silt, typically in the range between 0.002 and 0.050 mm, and clay, typically below 0.002mm in size, can insert among fabric fibers and steadily stick to the surface of the fibers. This problem is particularly acute with socks which are most exposed to silt and clay pick-up.
- It is thus an object of the present invention to improve the removal of dirt, particularly silt and day, from fabric in a soaking operation.
- It has been found that this object can be met by soaking fabrics in an aqueous soaking liquor comprising a soaking detergent composition, said composition comprising a low molecular weight polyethylene glycol as defined hereinafter, or mixtures thereof, in combination with high levels of a building and soil suspending system. The present invention encompasses the soaking detergent as well as a process of soaking fabrics in a soaking liquor formed with said soaking detergent.
- In one embodiment, the present invention encompasses compositions comprising:
- a low molecular weight polyethylene glycol (PEG) according to the formula [H(OCH2CH2)nOH], wherein n is a number ranging from 4 to 36; or mixtures thereof; and
- from 5% to 50% by weight of a building and soil suspending system comprising a compound selected from citric acid or citrates, silicates, zeolites, polycarboxylates, phosphates, and mixtures thereof.
- In another embodiment, the present invention encompasses a process of soaking fabrics, wherein said fabrics are immersed in a soaking liquor comprising water and an effective amount of the composition above.
- The present invention encompasses a composition and a process of soaking fabrics. The composition, hereinafter referred to as the soaking composition is used in the soaking process.
- In its first embodiment, the present invention encompasses a composition which comprises a low molecular weight polyethylene glycol (PEG), and a high level of a building and soil suspending system.
- As a first essential ingredient, the compositions herein comprise a low molecular weight polyethylene glycol (PEG) according to the formula H(OCH2CH2)nOH, wherein n is a number ranging from 4 to 36, or mixtures thereof.
- In the preferred compositions herein, n ranges from 4 to 22, and the most preferred compositions herein comprise PEG 200, i.e. H(OCH2CH2)4OH or PEG 400, i.e. n ranges between 8.2 and 9.1, or PEG 600, i.e. n ranges between 12.5 and 13.9, or mixtures thereof.
- In the compositions herein, PEG should be present in amounts of from 0.01% to 5% by weight of the total composition, preferably from 0.1% to 5%, most preferably from 0.2% to 2%.
- The second essential ingredient herein is a building and soil suspending system comprising a compound selected from citric acid or citrates, silicates, zeolites, polycarboxylates, phosphates, and mixtures thereof. It is also essential that said system be present at a high total amount, of from 5% to 50% by weight of the total composition, preferably from 10% to 40%, most preferably from 15% to 30%.
- Citric acid can be used in its acidic form or in the form of its salts (mono-, di-, tri- salts) and in all its anhydrous and hydrated forms, or mixtures thereof.
- Suitable silicates for use herein include alkali metal salts of silicate, or mixtures thereof. Preferred alkali metal salt of silicate to be used herein is sodium silicate. In addition to the performance benefit mentioned in the background part of this application, It has been found that the decomposition of available oxygen produced in the soaking liquors upon dissolution of soaking compositions is reduced by the presence of at least 40 parts per million of sodium silicate in said soaking liquors.
- Any type of alkali metal salt of silicate can be used herein, including the crystalline forms as well as the amorphous forms of said alkali metal salt of silicate or mixtures thereof.
- Suitable crystalline forms of sodium silicate to be used are the crystalline layered silicates of the granular formula
NaMSixO2x+1.yH2O
wherein M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20, or mixtures thereof. Crystalline layered sodium silicates of this type are disclosed in EP-A-164 514 and methods for their preparation are disclosed in DE-A-34 17 649 and DE-A-37 42 043. For the purposes of the present invention, x in the general formula above has a value of 2, 3 or 4 and is preferably 2. More preferably M is sodium and y is 0 and preferred examples of this formula comprise the a , b , g and d forms of Na2Si2O5. These materials are available from Hoechst AG FRG as respectively NaSKS-5, NaSKS-7, NaSKS-11 and NaSKS-6. The most preferred material is d - Na2Si2O5, NaSKS-6. Crystalline layered silicates are incorporated in granular soaking compositions herein, either as dry mixed solids, or as solid components of agglomerates with other components. - Suitable amorphous forms of sodium silicate to be used herein have the following general formula:
NaMSixO2x+1
wherein M is sodium or hydrogen and x is a number from 1.9 to 4, or mixtures thereof. Preferred to be used herein are the amorphous forms of Si2O5 Na2O. - Suitable Zeolites for use herein are aluminosilicates including those having the empirical formula:
Mz(zAlO2.ySiO2)
wherein M is sodium, potassium, ammonium or substituted ammonium, z is from about 0.5 to about 2; and y is 1; this material having a magnesium ion exchange capacity of at least about 50 milligram equivalents of CaCO3 hardness per gram of anhydrous aluminosilicate. Preferred zeolites which have the formula:
Nazí(AlO2)z(SiO2)yù.xH2O
wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264. - Useful materials are commercially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al, issued October 12, 1976. Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), and Zeolite X. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange material has the formula:
Na12í(AlO2)12(SiO2)12ù.xH2O
wherein x is from 20 to 30, especially about 27. This material is known as Zeolite A. Preferably, the aluminosilicate has a particle size of about 0.1-10 microns in diameter. - Suitable phosphate builders for use herein include sodium and potassium tripolyphosphate, pyrophosphate, polymeric metaphosphate having a degree of polymerization of from about 6 to 21, and orthophosphate. Other phosphorus builder compounds are disclosed in U.S. Pat. Nos. 3,159,581; 3,213,030; 3,422,021; 3,422,137; 3,400,176 and 3,400,148, incorporated herein by reference.
- Suitable polycarboxylate builders for use herein include ether polycarboxylates, including oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and Lamberti et al, U.S. Patent 3,635,830, issued January 18, 1972. See also "TMS/TDS" builders of U.S. Patent 4,663,071, issued to Bush et al, on May 5, 1987. Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,120,874 and 4,102,903.
- Other useful detergency builders include the ether hydroxypolycarboxylates, 1,3,5-trihydroxy benzene-2,4,6-trisulphonic acid, and carboxymethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
- Also suitable in the detergent compositions of the present invention are the 3,3-dicarboxy-4-oxa-1,6-hexanedioates and the related compounds disclosed in U.S. Patent 4,566,984, Bush, issued January 28, 1986. Useful succinic acid builders include the C5-C20 alkyl and alkenyl succinic acids and salts thereof. A particularly preferred compound of this type is dodecenylsuccinic acid. Specific examples of succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like. Laurylsuccinates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986.
- Other suitable polycarboxylates are disclosed in U.S. Patent 4,144,226, Crutchfield et al, issued March 13, 1979 and in U.S. Patent 3,308,067, Diehl, issued March 7, 1967. See also Diehl U.S. Patent 3,723,322.
- Other suitable polycarboxylate buiders for use herein include builders according to formula I
wherein Y is a comonomer or comonomer mixture; R1 and R2 are bleach- and alkali-stable polymer-end groups; R3 is H, OH or C1-4 alkyl; M is H, alkali metal, alkaline earth metal, ammonium or substituted ammonium; p is from 0 to 2; and n is at least 10, or mixtures thereof. - Preferred polymers for use herein fall into two categories. The first category belongs to the class of copolymeric polymers which are formed from an unsaturated polycarboxylic acid such as maleic acid, citraconic acid, itaconic acid, mesaconic acid and salts thereof as first monomer, and an unsaturated monocarboxylic acid such as acrylic acid or an alpha -C1-4 alkyl acrylic acid as second monomer. Referring to formula I hereinabove, the polymers belonging to said first class are those where p is not 0 and Y is selected from the acids listed hereinabove. Preferred polymers of this class are those according to formula I hereinabove, where Y is maleic acid. Also, in a preferred embodiment, R3 and M are H, and n is such that the polymers have a molecular weight of from 1000 to 400 000 atomic mass units.
- The second category of preferred polymers for use herein belongs to the class of polymers in which, referring to formula I hereinabove, p is 0 and R3 is H or C1-4 alkyl. In a preferred embodiment n is such that the polymers have a molecular weight of from 1000 to 400 000 atomic mass units. In a highly preferred embodiment, R3 and M are H.
- The alkali-stable polymer end groups R1 and R2 in formula I hereinabove suitably include alkyl groups, oxyalkyl groups and alkyl carboxylic acid groups and salts and esters thereof.
- In the above, n, the degree of polymerization of the polymer can be determined from the weight average polymer molecular weight by dividing the latter by the average monomer molecular weight. Thus, for a maleic-acrylic copolymer having a weight average molecular weight of 15,500 and comprising 30 mole % of maleic acid derived units, n is 182 (i.e. 15,500/(116 x 0.3 + 72 x 0.7)).
- Temperature-controlled columns at 40°C against sodium polystyrene sulphonate polymer standards, available from Polymer Laboratories Ltd., Shropshire, UK, the polymer standards being 0.15M sodium dihydrogen phosphate and 0.02M tetramethyl ammonium hydroxide at pH 7.0 in 80/20 water/acetonitrile.
- Of all the above, highly preferred polymers for use herein are those of the first category in which n averages from 100 to 800, preferably from 120 to 400.
- Preferred builder and soil suspending system foruse herein is anhydrous citric acid, or polymers of maleic or acrylic acid, or copolymers of maleic and acrylic acid.
- The soaking composition of the present invention may further comprise a variety of other ingredients.
- As an optimal but highly preferred ingredient, the composition may further comprise an oxygen bleach. Indeed, oxygen bleaches provide a multitude of benefits such as bleaching of stains, deodorization, as well as disinfectancy, and the sorbitan esters according to the present invention have a further particular advantage that they are resistant to oxydation by oxygen bleaches.
- The oxygen bleach in the composition may come from a variety of sources such as hydrogen peroxide or any of the addition compounds of hydrogen peroxide, or organic peroxyacid, or mixtures thereof. By addition compounds of hydrogen peroxide it is meant compounds which are formed by the addition of hydrogen peroxide to a second chemical compound, which may be for example an inorganic salt, urea or organic carboxylate, to provide the addition compound. Examples of the addition compounds of hydrogen peroxide include inorganic perhydrate salts, the compounds hydrogen peroxide forms with organic carboxylates, urea, and compounds in which hydrogen peroxide is clathrated.
- Other suitable oxygen bleaches include persulphates, particularly potassium persulphate K2S2O8 and sodium persulphate Na2S2O8. Examples of inorganic perhydrate salts include perborate, percarbonate, perphosphate and persilicate salts. The inorganic perhydrate salts are normally the alkali metal salts.
- The alkali metal salt of percarbonate, perborate or mixtures thereof, are the preferred inorganic perhydrate salts for use herein. Preferred alkali metal salt of percarbonate is sodium percarbonate.
- Soaking compositions in the present invention may comprise from 0% to 60% by weight of composition of a hydrogen peroxyde source, preferably from 0% to 40% and more preferably from 10% to 40%.
- When the soaking compositions herein comprise an oxygen bleach, it is preferred for them to further comprise bleach activators. Examples of suitable compounds of this type are disclosed in British Patent GB 1 586 769 and GB 2 143 231. Preferred examples of such compounds are tetracetyl ethylene diamine, (TAED), sodium 3, 5, 5 trimethyl hexanoyloxybenzene sulphonate, diperoxy dodecanoic acid as described for instance in US 4 818 425 and nonylamide of peroxyadipic acid as described for instance in US 4 259 201 and n-nonanoyloxybenzenesulphonate (NOBS), and acetyl triethyl citrate (ATC) such as described in European patent application 91870207.7. Also particularly preferred are N-acyl caprolactam selected from the group consisting of substituted or unsubstituted benzoyl caprolactam, octanyl caprolactam, nonanoyl caprolactam, hexanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, formyl caprolactam, acetyl caprolactam, propanoyl caprolactam, butanoyl caprolactam pentanoyl caprolactam. The soaking compositions herein may comprise mixtures of said bleach activators.
- Preferred mixtures of bleach activators herein comprise n-nonanoyloxybenzenesulphonate (NOBS) together with a second bleach activator having a low tendency to generate diacyl peroxide, but which delivers mainly peracid. Said second bleach activators may include tetracetyl ethylene diamine (TAED), acetyl triethyl citrate (ATC), acetyl caprolactam, benzoyl caprolactam and the like, or mixtures thereof. Said mixtures of bleach activators are preferably used in the embodiment of the present invention where the soaking liquors are controlled to a pH below 9.5. Indeed, it has been found that mixtures of bleach activators comprising n-nonanoyloxybenzenesulphonate and said second bleach activators, allow to boost particulate soil cleaning performance while exhibiting at the same time good performance on diacyl peroxide sensitive soil (e.g. beta-carotene) and on peracid sensitive soil (e.g. body soils).
- Accordingly, the soaking compositions herein may comprise from 0% to 15% by weight of the total composition of n-nonanoyloxybenzenesulphonate, preferably from 1% to 10% and more preferably from 3% to 7% and from 0% to 15% by weight of the total composition of said second bleach activator preferably from 1% to 10% and more preferably from 3% to 7%.
- When the soaking compositions herein comprise an oxygen bleach, it may be desirable for them to further comprise chelating agents which help to control the level of free heavy metal ions in the soaking liquors, thus avoiding rapid decomposition of the oxygen released by said source of available oxygen. Suitable amino carboxylate chelating agents which may be used herein include diethylene triamino pentacetic acid, ethylenediamine tetraacetates (EDTA), N-hydroxyethylethylenediamine triacetates, nitrilotriacetates, ethylenediamine tetraproprionates, triethylenetetraamine hexaacetates, and ethanoldiglycines, alkali metal ammonium and substituted ammonium salts thereof or mixtures thereof. Further suitable chelating agents include ethylenediamine-N,N'-disuccinic acids (EDDS) or alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof. Particularly suitable EDDS compounds are the free acid form and the sodium or magnesium salt or complex thereof.
- Also others suitable chelating agents may be the organic phosphonates, including amino alkylene poly(alkylene phosphonate), alkali metal ethane 1-hydroxy diphosphonates, nitrilo trimethylene phosphonates, ethylene diamine tetra methylene phosphonates and diethylene triamine penta methylene phosphonates. The phosphonate compounds may be present either in their acid form or in the form of their metal alkali salt. Preferably the organic phosphonate compounds where present are in the form of their magnesium salt.
- The soaking compositions in the present invention may accordingly comprise from 0% to 5% by weight of the total compositions of said chelating agents, preferably from 0% to 3%, more preferably from 0.05% to 2%.
- Soaking compositions in the present invention may further comprise other optional ingredients such as surfactants, fillers, optical brighteners, enzymes, other chelants, dispersants, surfactants, soil release agents, photoactivated bleaches such as Zn phthalocyanine sulphonate, dyes, dye transfer inhibitors, pigments and perfumes. Said optional ingredients can be added in varying amounts as desired.
- The compositions herein can be manufactured in solid, preferably granular, or liquid form.
- In a second embodiment, the present invention encompasses a process of soaking fabrics. As used herein, the expression "process of soaking fabrics" refers to the action of leaving fabrics to soak in a soaking liquor comprising water and a composition as described hereinabove, for a period of time sufficient to clean said fabrics. The soaking process can be performed independently from any other process, such as a typical laundering operation, or a first step before a second, typical laundering step. In the preferred soaking processes of the invention, fabrics are left to soak for a period of time ranging from 10 minutes to 24 hours, preferably from 30 min to 24 hours, most preferably 4 hours to 24 hours After the fabrics have been immersed in said soaking liquor for a sufficient period of time, they can be removed and rinsed with water. The fabrics can also be washed in a normal laundering operation after they have been soaked, with or without having been rinsed inbetween the soaking operation and the subsequent laundering operation.
- In the soaking process herein, a soaking composition described hereinabove is diluted in an appropriate amount of water to produce a soaking liquor. Suitable doses may range from 45 to 50 grams of soaking compositoin in 3.5 to 5 liters of water, down to 90 to 100 grams of soaking composition in 20 to 45 liters of water. Typically one dose is 45-50 grams in 3.5 to 5 Lt for a concentrated soak (bucket/sink). For washing machine soaked, the dose is 90-100 grams in about 20 (Europe) to 45 (US) liter of water. The fabrics to be soaked are then immersed in the soaking liquor for an appropriate period of time.
- There are factors which may influence overall performance of the process on particulate dirt/soils. Such factors include prolonged soaking time. Indeed, the longer fabrics are soaked, the better the end results. Ideally soaking time is overnight, i.e. 12 hours up to 24 hours. Another factor is the initial warm or warmluke temperature. Indeed higher initial temperatures of the soaking liquors ensure large benefits in performance.
- The process herein is suitable for cleaning a variety of fabrics, but finds a preferred application in the soaking of socks, which are particularly exposed to silt and clay pick-up.
- The following compositions are prepared by mixing the listed ingredients in the listed proportions. Soaking liquors are formed by diluting each time 45 g of said compositions in between 3.5 lit. to 5.0 lit. of water. 0.5 to 2 Kg of fabrics are then each time immersed in said soaking liquor for a time ranging from 10 minutes to 24 hours. Finally, the fabrics are removed from the soaking liquors, rinsed with water and washed with a regular washing process, handwash or washing machine wash, with a regular detergent, with or without re-using the soaking liquor, then said fabrics are left to dry.
Ingredient 1 (%w/w) 2 (%w/w) 3 (%w/w) PEG (PEG 200) 0.4 --- --- PEG (PEG 400) --- 0.4 --- PEG (PEG 600) --- --- 0.4 Citric acid 12 12 12 Zeolite A 9 9 9 Polyacrylate (Acusol 445ND) 15 15 15 Silicate (amorphous; 1.6 r) 0.2 0.2 0.2 Sodium perborate monohydrate 28 28 28 Sodium percarbonate 0 0 0 Sodium carbonate 4 4 4 Sodium sulphate 8 8 8 NOBS 10 10 10 Anionic (LAS/AS/AES) 6 6 6 Other, inerts and minors up to 100 up to 100 up to 100 Ingredient 4 (%w/w) 5 (%w/w) 6 (%w/w) PEG (PEG 200) 0.4 --- --- PEG (PEG 400) --- 0.4 --- PEG (PEG 600) --- --- 0.4 Citric acid 10 10 10 Zeolite A 0 0 0 Polyacrylate (Acusol 445ND) 11 11 11 Silicate (amorphous; 1.6 r) 0.4 0.4 0.4 Sodium perborate monohydrate 0 0 0 Sodium percarbonate 31 31 31 Sodium sulphate 6 6 6 NOBS 6 6 6 TAED 5 5 5 Anionic (LAS/AS/AES) 7 7 7 Other, inerts and minors up to 100 up to 100 up to 100
Claims (9)
- A soaking composition comprising:- a low molecular weight polyethylene glycol (PEG) according to the formula [H(OCH2CH2)nOH], wherein n is a number ranging from 4 to 36, or mixtures thereof; and- from 5% to 50% by weight of a building and soil suspending system comprising a compound selected from citric acid or citrates, silicates, zeolites, polycarboxylates, phosphates and mixtures thereof.
- A composition according to claim 1 which comprises from 0.01% to 5% by weight of the total composition of PEG, preferably from 0.1% to 5%, most preferably from 0.2% to 2%.
- A composition according to the preceding claims where said PEG is PEG 200, PEG 400, PEG 600, or mixtures thereof.
- A composition according to the preceding claims which comprises from 10% to 40%, most preferably from 15% to 30% by weight of the total composition, of said building and soil suspending system.
- A composition according to the preceding claims wherein said building and soil suspending system is comprised of anhydrous citric acid, or polymers of maleic or acrylic acid, or copolymers of maleic and acrylic acid.
- A composition according to the preceding claims which further comprises an oxygen bleach.
- A composition according to claim 6 which comprises an activator for said bleach.
- A process of soaking fabrics, wherein said fabrics are immersed in a soaking liquor comprising an effective amount of a composition according to any of the preceding claims, for an effective period of time, then removed from said soaking liquor.
- A process according to claim 8 wherein said time ranges from 10 minutes to 24 hours.
Priority Applications (11)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP95870029A EP0736595A1 (en) | 1995-04-03 | 1995-04-03 | Soaker compositions |
| TR97/01097T TR199701097T1 (en) | 1995-04-03 | 1996-03-12 | Wetting compositions containing low MA PEG and a special set-up/dirt suspension system for these compositions. |
| PCT/US1996/003324 WO1996031591A1 (en) | 1995-04-03 | 1996-03-12 | Soaking compositions comprising low mw peg and specific building/soil-suspending system |
| MX9707647A MX9707647A (en) | 1995-04-03 | 1996-03-12 | Soaking compositions comprising low mw peg and specific building/soil-suspending system. |
| CA002217484A CA2217484A1 (en) | 1995-04-03 | 1996-03-12 | Soaking compositions comprising low mw peg and specific building/soil-suspending system |
| CN96194254A CN1185805A (en) | 1995-04-03 | 1996-03-12 | Impregnation composition comprising low molecular weight polyethylene glycol and special builder/soil suspending system |
| AU53079/96A AU5307996A (en) | 1995-04-03 | 1996-03-12 | Soaking compositions comprising low mw peg and specific building/soil-suspending system |
| BR9604781A BR9604781A (en) | 1995-04-03 | 1996-03-12 | Soak compositions comprising low pm peg and specific dirt builder / suspension system |
| JP8530292A JPH11503188A (en) | 1995-04-03 | 1996-03-12 | Soaking composition comprising low molecular weight PEG and specific builder / soil suspension system |
| HU9900565A HUP9900565A3 (en) | 1995-04-03 | 1996-03-12 | Soaking compositions comprising low mw peg and specific building/soil-suspending system and method for soaking textiles |
| CZ973127A CZ312797A3 (en) | 1995-04-03 | 1996-03-12 | Wetting preparations containing peg of low relative molecular weight and a specific system, which collects and suspends impurities |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP95870029A EP0736595A1 (en) | 1995-04-03 | 1995-04-03 | Soaker compositions |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP0736595A1 true EP0736595A1 (en) | 1996-10-09 |
Family
ID=8222121
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP95870029A Withdrawn EP0736595A1 (en) | 1995-04-03 | 1995-04-03 | Soaker compositions |
Country Status (11)
| Country | Link |
|---|---|
| EP (1) | EP0736595A1 (en) |
| JP (1) | JPH11503188A (en) |
| CN (1) | CN1185805A (en) |
| AU (1) | AU5307996A (en) |
| BR (1) | BR9604781A (en) |
| CA (1) | CA2217484A1 (en) |
| CZ (1) | CZ312797A3 (en) |
| HU (1) | HUP9900565A3 (en) |
| MX (1) | MX9707647A (en) |
| TR (1) | TR199701097T1 (en) |
| WO (1) | WO1996031591A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1998021303A3 (en) * | 1996-11-13 | 1998-08-27 | Henkel Ecolab Gmbh & Co Ohg | Industrial washing process using a dirt dissolving polymer |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10358779B4 (en) | 2003-12-12 | 2007-09-06 | Biomet Deutschland Gmbh | Biodegradable adhesive composition and its use |
| ES2646333T3 (en) * | 2009-05-26 | 2017-12-13 | Ecolab Usa Inc. | Soaking composition for pan and pan |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA979314A (en) * | 1971-06-23 | 1975-12-09 | Theodore C. Lemoff | Reduced dust detergent compositions containing liquid polyethylene glycol and process for making them |
| GB2037804A (en) * | 1978-12-05 | 1980-07-16 | Lion Fat Oil Co Ltd | Enzyme-containing detergent composition |
| EP0130639A1 (en) * | 1983-06-30 | 1985-01-09 | THE PROCTER & GAMBLE COMPANY | Detergent compositions containing polyethylene glycol and polyacrylate |
| GB2235207A (en) * | 1989-08-16 | 1991-02-27 | Unilever Plc | Detergent composition |
| EP0628627A1 (en) * | 1993-06-07 | 1994-12-14 | JOH. A. BENCKISER GmbH | Water-soluble, water softening builder |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4637890A (en) * | 1986-01-23 | 1987-01-20 | The Procter & Gamble Company | Detergent composition providing rinse cycle suds and turbidity control containing a soap, quaternary ammonium salt and a silicone |
| US4686060A (en) * | 1986-01-23 | 1987-08-11 | The Procter & Gamble Company | Detergent composition providing rinse cycle suds control containing a soap, a quaternary ammonium salt and a silicone |
| US5415806A (en) * | 1993-03-10 | 1995-05-16 | Lever Brothers Company, Division Of Conopco, Inc. | Cold water solubility for high density detergent powders |
-
1995
- 1995-04-03 EP EP95870029A patent/EP0736595A1/en not_active Withdrawn
-
1996
- 1996-03-12 BR BR9604781A patent/BR9604781A/en not_active Application Discontinuation
- 1996-03-12 TR TR97/01097T patent/TR199701097T1/en unknown
- 1996-03-12 JP JP8530292A patent/JPH11503188A/en active Pending
- 1996-03-12 CN CN96194254A patent/CN1185805A/en active Pending
- 1996-03-12 CA CA002217484A patent/CA2217484A1/en not_active Abandoned
- 1996-03-12 AU AU53079/96A patent/AU5307996A/en not_active Abandoned
- 1996-03-12 CZ CZ973127A patent/CZ312797A3/en unknown
- 1996-03-12 MX MX9707647A patent/MX9707647A/en unknown
- 1996-03-12 WO PCT/US1996/003324 patent/WO1996031591A1/en not_active Application Discontinuation
- 1996-03-12 HU HU9900565A patent/HUP9900565A3/en unknown
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA979314A (en) * | 1971-06-23 | 1975-12-09 | Theodore C. Lemoff | Reduced dust detergent compositions containing liquid polyethylene glycol and process for making them |
| GB2037804A (en) * | 1978-12-05 | 1980-07-16 | Lion Fat Oil Co Ltd | Enzyme-containing detergent composition |
| EP0130639A1 (en) * | 1983-06-30 | 1985-01-09 | THE PROCTER & GAMBLE COMPANY | Detergent compositions containing polyethylene glycol and polyacrylate |
| GB2235207A (en) * | 1989-08-16 | 1991-02-27 | Unilever Plc | Detergent composition |
| EP0628627A1 (en) * | 1993-06-07 | 1994-12-14 | JOH. A. BENCKISER GmbH | Water-soluble, water softening builder |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1998021303A3 (en) * | 1996-11-13 | 1998-08-27 | Henkel Ecolab Gmbh & Co Ohg | Industrial washing process using a dirt dissolving polymer |
| US6200351B1 (en) | 1996-11-13 | 2001-03-13 | Henkel-Ecolab Gmbh & Co. Ohg | Institutional washing process using soil-release polymer |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2217484A1 (en) | 1996-10-10 |
| WO1996031591A1 (en) | 1996-10-10 |
| HUP9900565A2 (en) | 1999-07-28 |
| CZ312797A3 (en) | 1998-03-18 |
| MX9707647A (en) | 1997-12-31 |
| JPH11503188A (en) | 1999-03-23 |
| BR9604781A (en) | 1998-07-07 |
| CN1185805A (en) | 1998-06-24 |
| AU5307996A (en) | 1996-10-23 |
| TR199701097T1 (en) | 1998-02-21 |
| HUP9900565A3 (en) | 2000-09-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0791044B1 (en) | Hydrophobic peroxyacid bleach precursor compositions stabilised with a water soluble carboxylic acid | |
| EP0504091A1 (en) | A phosphate-free automatic dishwashing composition | |
| MXPA97003683A (en) | Compounds of peroxiacide whitening precursor hydrophobic stabilized with a soluble caboxylic acid in a | |
| EP0736594A1 (en) | Soaker compositions | |
| US5922083A (en) | Detergent composition comprising a mutant amylase enzyme and oxygen bleaching agent | |
| RU2169176C2 (en) | Detergent composition for wetting and method wetting fabrics using of detergent composition | |
| EP0861884B1 (en) | Soaker compositions | |
| EP0736595A1 (en) | Soaker compositions | |
| EP0736596A1 (en) | Soaker compositions | |
| EP0832968A1 (en) | Soaker compositions | |
| EP0861885B1 (en) | Soaker compositions | |
| US6087313A (en) | Soaker compositions | |
| US6180580B1 (en) | Soaker compositions | |
| EP0832965A1 (en) | Soaker compositions | |
| CZ161597A3 (en) | Preparation containing precursor of bleaching peroxy acid | |
| JP3827824B2 (en) | Detergent composition for clothing | |
| JP2635178B2 (en) | Bleach detergent composition | |
| MXPA99007990A (en) | Soaker compositions | |
| MXPA99007989A (en) | Soaker compositions |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE |
|
| 17P | Request for examination filed |
Effective date: 19970327 |
|
| 17Q | First examination report despatched |
Effective date: 19990621 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20000103 |