EP0918875A1 - Novel internal ribosome entry site and vector containing same - Google Patents
Novel internal ribosome entry site and vector containing sameInfo
- Publication number
- EP0918875A1 EP0918875A1 EP98922883A EP98922883A EP0918875A1 EP 0918875 A1 EP0918875 A1 EP 0918875A1 EP 98922883 A EP98922883 A EP 98922883A EP 98922883 A EP98922883 A EP 98922883A EP 0918875 A1 EP0918875 A1 EP 0918875A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nucleotide
- vector
- gene
- sequence
- interest
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000013598 vector Substances 0.000 title claims abstract description 129
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 title claims abstract description 55
- 239000002773 nucleotide Substances 0.000 claims abstract description 91
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 91
- 230000003612 virological effect Effects 0.000 claims abstract description 44
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims abstract description 43
- 241000700605 Viruses Species 0.000 claims abstract description 40
- 238000004806 packaging method and process Methods 0.000 claims abstract description 37
- 239000002245 particle Substances 0.000 claims abstract description 29
- 241001430294 unidentified retrovirus Species 0.000 claims abstract description 28
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 11
- 230000001225 therapeutic effect Effects 0.000 claims abstract description 10
- 241001529936 Murinae Species 0.000 claims abstract description 7
- 108090000623 proteins and genes Proteins 0.000 claims description 86
- 230000014509 gene expression Effects 0.000 claims description 56
- 230000001177 retroviral effect Effects 0.000 claims description 53
- 241000713869 Moloney murine leukemia virus Species 0.000 claims description 21
- 238000001415 gene therapy Methods 0.000 claims description 15
- 208000015181 infectious disease Diseases 0.000 claims description 15
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 229920001184 polypeptide Polymers 0.000 claims description 10
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 10
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 10
- 241000714177 Murine leukemia virus Species 0.000 claims description 9
- 238000001890 transfection Methods 0.000 claims description 8
- 241000701161 unidentified adenovirus Species 0.000 claims description 8
- 241001465754 Metazoa Species 0.000 claims description 7
- 210000003169 central nervous system Anatomy 0.000 claims description 6
- 230000002441 reversible effect Effects 0.000 claims description 5
- 239000013603 viral vector Substances 0.000 claims description 5
- 102100022641 Coagulation factor IX Human genes 0.000 claims description 4
- 108700039691 Genetic Promoter Regions Proteins 0.000 claims description 4
- 241000713813 Gibbon ape leukemia virus Species 0.000 claims description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims description 4
- 241001529453 unidentified herpesvirus Species 0.000 claims description 4
- 102000012605 Cystic Fibrosis Transmembrane Conductance Regulator Human genes 0.000 claims description 3
- 108010079245 Cystic Fibrosis Transmembrane Conductance Regulator Proteins 0.000 claims description 3
- 108010076282 Factor IX Proteins 0.000 claims description 3
- 108010063738 Interleukins Proteins 0.000 claims description 3
- 102000015696 Interleukins Human genes 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 201000010099 disease Diseases 0.000 claims description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 3
- 229960004222 factor ix Drugs 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 230000002265 prevention Effects 0.000 claims description 3
- 230000009261 transgenic effect Effects 0.000 claims description 3
- 108010069091 Dystrophin Proteins 0.000 claims description 2
- 102000001039 Dystrophin Human genes 0.000 claims description 2
- 108010054218 Factor VIII Proteins 0.000 claims description 2
- 102000001690 Factor VIII Human genes 0.000 claims description 2
- 108090001061 Insulin Proteins 0.000 claims description 2
- 229960000301 factor viii Drugs 0.000 claims description 2
- 229940125396 insulin Drugs 0.000 claims description 2
- 239000003550 marker Substances 0.000 claims description 2
- 239000013600 plasmid vector Substances 0.000 claims description 2
- 230000000069 prophylactic effect Effects 0.000 claims description 2
- 241000701447 unidentified baculovirus Species 0.000 claims description 2
- 241000271566 Aves Species 0.000 claims 1
- 102000004877 Insulin Human genes 0.000 claims 1
- 102000006992 Interferon-alpha Human genes 0.000 claims 1
- 108010047761 Interferon-alpha Proteins 0.000 claims 1
- 241000713880 Spleen focus-forming virus Species 0.000 claims 1
- 210000004027 cell Anatomy 0.000 abstract description 73
- 210000001778 pluripotent stem cell Anatomy 0.000 abstract description 2
- 208000032839 leukemia Diseases 0.000 abstract 2
- 102000004169 proteins and genes Human genes 0.000 description 22
- 230000014616 translation Effects 0.000 description 22
- 238000013519 translation Methods 0.000 description 20
- 239000013612 plasmid Substances 0.000 description 19
- 101100189354 Mus musculus Papola gene Proteins 0.000 description 17
- 101150047344 Plaa gene Proteins 0.000 description 17
- 239000012634 fragment Substances 0.000 description 17
- 241000712909 Reticuloendotheliosis virus Species 0.000 description 16
- BLFWHYXWBKKRHI-JYBILGDPSA-N plap Chemical compound N([C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(=O)[C@@H]1CCCN1C(=O)[C@H](CO)NC(=O)[C@@H](N)CCC(O)=O BLFWHYXWBKKRHI-JYBILGDPSA-N 0.000 description 16
- 210000002966 serum Anatomy 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 102100026189 Beta-galactosidase Human genes 0.000 description 12
- 108010005774 beta-Galactosidase Proteins 0.000 description 12
- 238000003752 polymerase chain reaction Methods 0.000 description 12
- 206010028980 Neoplasm Diseases 0.000 description 11
- 230000000977 initiatory effect Effects 0.000 description 11
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 10
- 108091005804 Peptidases Proteins 0.000 description 10
- 239000004365 Protease Substances 0.000 description 10
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 10
- 239000006228 supernatant Substances 0.000 description 10
- 108020004414 DNA Proteins 0.000 description 9
- 241000710188 Encephalomyocarditis virus Species 0.000 description 9
- 230000001419 dependent effect Effects 0.000 description 9
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 9
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 9
- 229960002930 sirolimus Drugs 0.000 description 9
- 102000004190 Enzymes Human genes 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 8
- 241001045988 Neogene Species 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 229940088598 enzyme Drugs 0.000 description 8
- 108020004999 messenger RNA Proteins 0.000 description 8
- 241000713862 Moloney murine sarcoma virus Species 0.000 description 7
- 241000713896 Spleen necrosis virus Species 0.000 description 7
- 230000001413 cellular effect Effects 0.000 description 7
- 238000010276 construction Methods 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 230000002458 infectious effect Effects 0.000 description 7
- 230000029087 digestion Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 238000013518 transcription Methods 0.000 description 6
- 230000035897 transcription Effects 0.000 description 6
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 5
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 5
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 5
- 108020004705 Codon Proteins 0.000 description 5
- 208000026350 Inborn Genetic disease Diseases 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 201000011510 cancer Diseases 0.000 description 5
- 208000016361 genetic disease Diseases 0.000 description 5
- 239000003102 growth factor Substances 0.000 description 5
- 101150091879 neo gene Proteins 0.000 description 5
- 210000003705 ribosome Anatomy 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000010361 transduction Methods 0.000 description 5
- 230000026683 transduction Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 208000035473 Communicable disease Diseases 0.000 description 4
- 241000701022 Cytomegalovirus Species 0.000 description 4
- 241000714165 Feline leukemia virus Species 0.000 description 4
- 241000714174 Feline sarcoma virus Species 0.000 description 4
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 4
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 210000005260 human cell Anatomy 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 230000001566 pro-viral effect Effects 0.000 description 4
- 239000012679 serum free medium Substances 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 241001485018 Baboon endogenous virus Species 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 3
- 241000710198 Foot-and-mouth disease virus Species 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 108700008625 Reporter Genes Proteins 0.000 description 3
- 241000714474 Rous sarcoma virus Species 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 3
- 101710137500 T7 RNA polymerase Proteins 0.000 description 3
- 102000006601 Thymidine Kinase Human genes 0.000 description 3
- 108020004440 Thymidine kinase Proteins 0.000 description 3
- 108010067390 Viral Proteins Proteins 0.000 description 3
- 108020000999 Viral RNA Proteins 0.000 description 3
- 230000000692 anti-sense effect Effects 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 238000006471 dimerization reaction Methods 0.000 description 3
- 238000000684 flow cytometry Methods 0.000 description 3
- 108700004026 gag Genes Proteins 0.000 description 3
- 101150098622 gag gene Proteins 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 230000014621 translational initiation Effects 0.000 description 3
- CABVTRNMFUVUDM-VRHQGPGLSA-N (3S)-3-hydroxy-3-methylglutaryl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C[C@@](O)(CC(O)=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 CABVTRNMFUVUDM-VRHQGPGLSA-N 0.000 description 2
- QRXMUCSWCMTJGU-UHFFFAOYSA-L (5-bromo-4-chloro-1h-indol-3-yl) phosphate Chemical compound C1=C(Br)C(Cl)=C2C(OP([O-])(=O)[O-])=CNC2=C1 QRXMUCSWCMTJGU-UHFFFAOYSA-L 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 2
- 241000714186 AKR (endogenous) murine leukemia virus Species 0.000 description 2
- 241000713840 Avian erythroblastosis virus Species 0.000 description 2
- 241000714230 Avian leukemia virus Species 0.000 description 2
- 241000713842 Avian sarcoma virus Species 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 241001064132 Chick syncytial virus Species 0.000 description 2
- 201000003883 Cystic fibrosis Diseases 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 241000701867 Enterobacteria phage T7 Species 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 101710091919 Eukaryotic translation initiation factor 4G Proteins 0.000 description 2
- 241000713859 FBR murine osteosarcoma virus Species 0.000 description 2
- 241000713889 Friend spleen focus-forming virus Species 0.000 description 2
- 241000714182 HoMuLV murine leukemia virus Species 0.000 description 2
- 238000012404 In vitro experiment Methods 0.000 description 2
- 102100034343 Integrase Human genes 0.000 description 2
- 108010025815 Kanamycin Kinase Proteins 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 208000021642 Muscular disease Diseases 0.000 description 2
- 201000009623 Myopathy Diseases 0.000 description 2
- 229930193140 Neomycin Natural products 0.000 description 2
- 102000008299 Nitric Oxide Synthase Human genes 0.000 description 2
- 108010021487 Nitric Oxide Synthase Proteins 0.000 description 2
- 108091092724 Noncoding DNA Proteins 0.000 description 2
- 102000005877 Peptide Initiation Factors Human genes 0.000 description 2
- 108010044843 Peptide Initiation Factors Proteins 0.000 description 2
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 2
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 2
- 241000709664 Picornaviridae Species 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 241000700618 Vaccinia virus Species 0.000 description 2
- 208000036142 Viral infection Diseases 0.000 description 2
- 241000714205 Woolly monkey sarcoma virus Species 0.000 description 2
- 208000037919 acquired disease Diseases 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 244000309466 calf Species 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000003394 haemopoietic effect Effects 0.000 description 2
- 210000002443 helper t lymphocyte Anatomy 0.000 description 2
- 230000001744 histochemical effect Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 230000002601 intratumoral effect Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 238000000329 molecular dynamics simulation Methods 0.000 description 2
- 210000000663 muscle cell Anatomy 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 229960004927 neomycin Drugs 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 210000004498 neuroglial cell Anatomy 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000001243 protein synthesis Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 210000001995 reticulocyte Anatomy 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 230000010473 stable expression Effects 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000002753 trypsin inhibitor Substances 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- BRZYSWJRSDMWLG-DJWUNRQOSA-N (2r,3r,4r,5r)-2-[(1s,2s,3r,4s,6r)-4,6-diamino-3-[(2s,3r,4r,5s,6r)-3-amino-4,5-dihydroxy-6-[(1r)-1-hydroxyethyl]oxan-2-yl]oxy-2-hydroxycyclohexyl]oxy-5-methyl-4-(methylamino)oxane-3,5-diol Chemical compound O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H]([C@@H](C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-DJWUNRQOSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- 101150037123 APOE gene Proteins 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 102100027211 Albumin Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102100024321 Alkaline phosphatase, placental type Human genes 0.000 description 1
- 102000004411 Antithrombin III Human genes 0.000 description 1
- 108090000935 Antithrombin III Proteins 0.000 description 1
- 102000007592 Apolipoproteins Human genes 0.000 description 1
- 108010071619 Apolipoproteins Proteins 0.000 description 1
- 229940088872 Apoptosis inhibitor Drugs 0.000 description 1
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 1
- 101100036901 Arabidopsis thaliana RPL40B gene Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 241001213911 Avian retroviruses Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 101150017888 Bcl2 gene Proteins 0.000 description 1
- 101150008012 Bcl2l1 gene Proteins 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 241000178270 Canarypox virus Species 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 241000710190 Cardiovirus Species 0.000 description 1
- 102100035882 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 1
- 102100026735 Coagulation factor VIII Human genes 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 102000004594 DNA Polymerase I Human genes 0.000 description 1
- 108010017826 DNA Polymerase I Proteins 0.000 description 1
- 101100216294 Danio rerio apoeb gene Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 241000336325 Duck infectious anemia virus Species 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 241000406206 Ecotropic murine leukemia virus Species 0.000 description 1
- 108700041152 Endoplasmic Reticulum Chaperone BiP Proteins 0.000 description 1
- 102100021451 Endoplasmic reticulum chaperone BiP Human genes 0.000 description 1
- 201000003542 Factor VIII deficiency Diseases 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 1
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 1
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 description 1
- 102100031706 Fibroblast growth factor 1 Human genes 0.000 description 1
- 241000714188 Friend murine leukemia virus Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 102000004547 Glucosylceramidase Human genes 0.000 description 1
- 108010017544 Glucosylceramidase Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Natural products NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 208000009292 Hemophilia A Diseases 0.000 description 1
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 108010007267 Hirudins Proteins 0.000 description 1
- 102000007625 Hirudins Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 1
- 101100321817 Human parvovirus B19 (strain HV) 7.5K gene Proteins 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 102100023915 Insulin Human genes 0.000 description 1
- 108010061833 Integrases Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 108090000174 Interleukin-10 Proteins 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- HLFSDGLLUJUHTE-SNVBAGLBSA-N Levamisole Chemical compound C1([C@H]2CN3CCSC3=N2)=CC=CC=C1 HLFSDGLLUJUHTE-SNVBAGLBSA-N 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 1
- 101100346932 Mus musculus Muc1 gene Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 102000007399 Nuclear hormone receptor Human genes 0.000 description 1
- 108020005497 Nuclear hormone receptor Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 108010077971 Plasminogen Inactivators Proteins 0.000 description 1
- 102000010752 Plasminogen Inactivators Human genes 0.000 description 1
- 208000000474 Poliomyelitis Diseases 0.000 description 1
- 108091000054 Prion Proteins 0.000 description 1
- 102000029797 Prion Human genes 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 101800004937 Protein C Proteins 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 241000713810 Rat sarcoma virus Species 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 1
- 108700025701 Retinoblastoma Genes Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 101100123443 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) HAP4 gene Proteins 0.000 description 1
- 101100379247 Salmo trutta apoa1 gene Proteins 0.000 description 1
- 101800001700 Saposin-D Proteins 0.000 description 1
- 102400000827 Saposin-D Human genes 0.000 description 1
- 108091027544 Subgenomic mRNA Proteins 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 102000006290 Transcription Factor TFIID Human genes 0.000 description 1
- 108010083268 Transcription Factor TFIID Proteins 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 239000007984 Tris EDTA buffer Substances 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 102000003425 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 108700022715 Viral Proteases Proteins 0.000 description 1
- LRFVTYWOQMYALW-UHFFFAOYSA-N Xanthine Natural products O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 238000012387 aerosolization Methods 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 102000013529 alpha-Fetoproteins Human genes 0.000 description 1
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 229960005348 antithrombin iii Drugs 0.000 description 1
- 239000000158 apoptosis inhibitor Substances 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 210000000234 capsid Anatomy 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 101150055766 cat gene Proteins 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 108091092328 cellular RNA Proteins 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 239000000824 cytostatic agent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000003831 deregulation Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 238000003113 dilution method Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 229940125532 enzyme inhibitor Drugs 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 210000004265 eukaryotic small ribosome subunit Anatomy 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 229940126864 fibroblast growth factor Drugs 0.000 description 1
- 230000003328 fibroblastic effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000002518 glial effect Effects 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- 101150106093 gpt gene Proteins 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 208000009429 hemophilia B Diseases 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 229940006607 hirudin Drugs 0.000 description 1
- WQPDUTSPKFMPDP-OUMQNGNKSA-N hirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(OS(O)(=O)=O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]1NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]2CSSC[C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@H](C(NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N2)=O)CSSC1)C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)CSSC1)C(C)C)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 WQPDUTSPKFMPDP-OUMQNGNKSA-N 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 229960001614 levamisole Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 210000003098 myoblast Anatomy 0.000 description 1
- 210000000107 myocyte Anatomy 0.000 description 1
- 108020004017 nuclear receptors Proteins 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 108010031345 placental alkaline phosphatase Proteins 0.000 description 1
- 239000002797 plasminogen activator inhibitor Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 229960000856 protein c Drugs 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 101150079601 recA gene Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 210000001057 smooth muscle myoblast Anatomy 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 210000003014 totipotent stem cell Anatomy 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 108010047303 von Willebrand Factor Proteins 0.000 description 1
- 102100036537 von Willebrand factor Human genes 0.000 description 1
- 229960001134 von willebrand factor Drugs 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/04—Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/08—Vasodilators for multiple indications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/13011—Gammaretrovirus, e.g. murine leukeamia virus
- C12N2740/13051—Methods of production or purification of viral material
- C12N2740/13052—Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2840/00—Vectors comprising a special translation-regulating system
- C12N2840/20—Vectors comprising a special translation-regulating system translation of more than one cistron
- C12N2840/203—Vectors comprising a special translation-regulating system translation of more than one cistron having an IRES
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2840/00—Vectors comprising a special translation-regulating system
- C12N2840/20—Vectors comprising a special translation-regulating system translation of more than one cistron
- C12N2840/203—Vectors comprising a special translation-regulating system translation of more than one cistron having an IRES
- C12N2840/206—Vectors comprising a special translation-regulating system translation of more than one cistron having an IRES having multiple IRES
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2840/00—Vectors comprising a special translation-regulating system
- C12N2840/55—Vectors comprising a special translation-regulating system from bacteria
Definitions
- the present invention relates to the use of a nucleotide sequence derived from the 5 ′ end of genomic RNA or the proviral DNA of a reticuloendotheliosis virus as internal ribosome entry site (IRES) and / or to improve retroviral packaging. More particularly, it relates to expression vectors comprising this sequence and in particular polycistronic vectors allowing the efficient and stable expression of several genes of interest under the dependence of the same promoter.
- the present invention finds an interesting application in the field of gene therapy vectors.
- the vectors are obtained by deletion of at least part of the viral genes which are replaced by the genes of therapeutic interest.
- Such vectors can be propagated in a complementation line which provides in trans the deleted viral functions to generate a viral particle defective for replication but capable of infecting a host cell.
- retroviral vectors are among the most used, but mention may also be made of vectors derived from adenoviruses, viruses associated with adenoviruses, poxviruses and herpes viruses. This type of vectors, their organization and their mode of infection are widely described in the literature accessible to those skilled in the art.
- the retroviral genome consists of a linear, single-stranded RNA with positive polarity.
- the regulation sequences R and TJ5 and U3 and R present at the 5 'and 3' ends respectively, it carries three genes: gag coding for the proteins of the capsid, pol coding for the reverse transcriptase and the integrase and env coding for the proteins of the envelope.
- the packaging signals located downstream of the U5 sequences up to the start of the coding region of the gag gene, participate in the dimerization and packaging of the viral RNA in the viral particles.
- the 5 'end of the genome includes a cap (cap) and the 3' end is polyadenylated.
- Retroviruses can be classified into 4 subfamilies A to D, based on their morphology. Type C includes the majority of retroviruses including the MLV (Murine Leukemia Virus) and MSV (Murine Sarcoma Virus) viruses used in most gene therapy vectors and the REV (Reticuloendotheliosis Virus) viruses from which the nucleotide sequence of the present invention.
- ribosomes enter the messenger RNA (mRNA) through the cap located at the 5 'end of all eukaryotic mRNAs.
- the 40S ribosomal subunits move along the RNA until they meet an appropriate AUG codon to start protein synthesis. Generally, initiation takes place at the first AUG codon. But, if this is in an unfavorable context, the 40S subunits continue until a later AUG codon situated in a better translational context (Kozak, 1984, Nucleic Acid Res. 12, 3873-3893; Kozak, 1991, J. Biol. Chem. 266, 19867-19870; Pain, 1996, Eur. J. Biochem. 236, 747-771).
- Cellular mRNAs having IRES elements have also described have been those coding for the protein BIP (for Immunoglobulin heavy chain binding protein; Macejak and Sarnow, 1991, Nature 353, 90-94), certain growth factors (Teerink et al., 1995, Biochem. Biophy Acts 1264, 403-408; Vagner et al., 1995, Mol. Cell. Biol. 15, 35-44), the translation initiation factor eIF4G (Gan and Rhoads, 1996, J. Biol. Chem. 271, 623-626) and two yeast transcription factors TFIID and HAP4 (lizuka et al., 1994, Mol. Cell. Biol., 14, 7322-7330).
- protein BIP for Immunoglobulin heavy chain binding protein
- certain growth factors Teerink et al., 1995, Biochem. Biophy Acts 1264, 403-408; Vagner et al., 1995, Mol. Cell. Biol. 15, 35-44
- IRES sites have also highlighted in murine retrotransposons of the VL30 type (Berlioz et al., 1995, J. Virol. 69, 6400-6407) and, more recently in the mRNAs coding for the gag precursor of the Friend (FMLV) and Moloney murine leukemia viruses (MoMLV) (Berlioz and Darlix, 1995, J. Virol. 69, 2214-2222; Vagner et al., 1995, J. Biol. Chem. 270, 20376-20383).
- FMLV gag precursor of the Friend
- MoMLV Moloney murine leukemia viruses
- a new internal ribosome entry site has now been found in the 5 'non-coding region of avian reticuloendotheliosis virus (REV) RNA type A (REV-A) and shown to be effective in initiating the translation of coding sequences placed after it in a monocistronic or dicistonic manner.
- REV avian reticuloendotheliosis virus
- the IRES site of the present invention is particularly advantageous compared to those already described in the literature. First, it allows a high level of expression of the cistron it controls. In addition and, unexpectedly, it can also, in the context of a retroviral vector, contribute or improve, in association with an appropriate packaging region, the dimerization or packaging functions, allowing an increase in the viral titer . And finally, because of its weak homology with the murine retroviral sequences used in most gene therapy vectors intended for human use, its use considerably reduces the risk of production of viruses competent for replication.
- the present invention relates to the use of a nucleotide sequence derived from all or part of the 5 'end of the genomic RNA of a type C retrovirus with the exception of the murine leukemia viruses of Friend (FMLV) and Moloney (MoMLV), as internal ribosome entry site (IRES) in a vector and / or to allow or improve the packaging of a retroviral vector.
- FMLV murine leukemia viruses of Friend
- MoMLV Moloney
- IRS internal ribosome entry site
- nucleotide sequence is meant a sequence composed of ribo (RNA) or deoxyribonucleotides (DNA).
- RNA ribo
- DNA deoxyribonucleotides
- the 5 ′ end of the genomic RNA of a retrovirus corresponds to the 5 ′ quarter of said RNA which extends from the site of initiation of transcription (nucleotide +1) to approximately 2 kb in direction 3 '.
- retrovirus is widely defined in basic virology works accessible to those skilled in the art and the essential characteristics have been summarized by way of indication above.
- derivative refers to a sequence having a type C retroviral origin, but which may have undergone at least one modification with respect to the native sequence.
- the possible modification (s) include the deletion, addition, substitution and / or mutation of one or more nucleotides (nt). Such modifications may have the aim, for example, of increasing the IRES functions, of packaging, or of introducing adequate restriction sites to facilitate the subsequent cloning steps.
- the term "derivative" also includes the DNA equivalent of genomic RNA in a modified or unmodified form.
- the term IRES denotes a site capable of promoting the entry of ribosomes into an RNA molecule in a manner independent of the cap.
- the IRES function can be exercised in any vector or expression cassette.
- a sequence used in the context of the present invention can also act as an activating element for the packaging of retroviruses or retroviral vectors by promoting the dimerization of two copies of the retroviral genome and / or the packaging of the dimer in the particles. viral.
- said sequence is capable of exercising an IRES function and of improving the function encapsidation when introduced into an appropriate retroviral vector.
- a nucleotide sequence as used in the context of the present invention can be isolated from the 5 ′ end of the genomic RNA or of the proviral DNA of a type C retrovirus or of any plasmid of the state of the technique carrying the retroviral fragment of interest. It goes without saying that it can be generated by any technique in use in the field of art, for example by cloning using appropriate probes, by PCR (Polymerase Chain reaction) or by chemical synthesis.
- said sequence comprises all or part of the region which follows the U3 domain of the 5 'LTR, up to the codon AUG initiator of the gag gene.
- nucleotides for the purposes of the present invention, it comprises at least 50 nucleotides, advantageously at least 100 nucleotides, preferably at least 200 nucleotides and preferably at least 300 nucleotides included in said 5 ′ end. But, of course, it can extend beyond in the 5 ′ or 3 ′ direction or include additional sequences.
- said sequence comprises from 100 to 1500 nucleotides and, in particular, from 300 to 800 nucleotides.
- a type C retrovirus which is more particularly suitable is selected from the REV viruses (Reticuloendotheliosis virus), MSV (Murine sarcoma virus) and in particular that of Moloney (MMSV), MHV (Mus hortulanus virus), MEV (Mouse endogenous retrovirus) , FMOV (FBR murine osteosarcoma virus), AMLV (AKV murine leukemia virus), MEELV (Mouse endogenous ecotropic murine leukemia virus), SFFV (Friend spleen focus-forming virus), RAS V (rat sarcoma virus), FLV (Feline leukemia virus ), FSV (feline sarcoma virus), EFLV (Cat endogenous proviral feline leukemia virus), SSV (Simian sarcoma virus), GALV (Gibbon ape leukemia virus) and
- a nucleotide sequence in use in the present invention derives from all or part of the 5 'end of the genomic RNA of a reticuloendotheliosis virus (REV).
- the REV viruses include in particular different subtypes A, B and T as well as the DIAV viruses (Duck infectious anemia virus), SNV (spleen necrosis virus) and CSV (Chick syncytial virus) (see for example Encyclopedia of Virology, 1994, Enrietto , Reticuloendotheliosis viruses, p 1227-1232 Ed. R. Webster and A. Granoff, Académie Press, Hartourt Brace ⁇ Company Publishers).
- a REV virus which is very particularly suitable is the avian reticuloendotheliosis virus, in particular that of type A (REV-A).
- nucleotide sequence comprising at least 100 nucleotides and at most 800 nucleotides (nt) of the 5 ′ non-coding end of the REV-A virus and more particularly a substantially homologous or identical nucleotide sequence to all or part of the sequence presented in the sequence identifier SEQ ID NO: 1.
- substantially homologous refers to a degree of homology greater than 70%, advantageously greater than 80%, preferably greater than 90% and, most preferably, greater than 95%.
- said nucleotide sequence may have a sequence slightly different from that described in SEQ ID NO: 1 or 2, provided, however, that the modification or modifications does not affect its IRES functions and / or packaging.
- the nucleotide sequence used in the context of the present invention is identical to the sequence presented in the sequence identifier SEQ ID NO: 2: (i) starting at nucleotide 1 and ending at nucleotide 578, (ii) starting at nucleotide 265 and ending at nucleotide 578, or
- the IRES function of said nucleotide sequence is particularly advantageous in a context poor in magnesium ion, for example in a cellular context.
- a high concentration of Mg 2+ ions can decrease the efficiency of sequence-mediated translation initiation.
- a nucleotide sequence in use in the present invention is more particularly intended to be integrated into a vector for the transfer and expression of one or more gene (s) of interest.
- the choice of such a vector is wide and the techniques of cloning into the selected vector are within the reach of those skilled in the art.
- adenovirus adenovirus
- baculovirus herpes virus
- virus associated with an adenovirus or retrovirus Such vectors are widely described in the literature.
- adenoviral vector it can be derived from a human (preferably type 2 or 5), animal (preferably canine or bovine) adenovirus or a hybrid between various species.
- the general technology for adenoviruses is disclosed in Graham and Prevec (1991,
- said nucleotide sequence is preferably positioned upstream of a gene of interest to improve the translation of the expression product for which it codes.
- It can be implemented in an expression cassette of the monocistronic type (for the expression of a gene of interest placed under the control of a promoter) or polycistronic (for the expression of at least two genes d 'interest placed under the control of the same promoter).
- the latter can contain several elements in tandem "IRES site-gene of interest" of which at least one of the IRES sites consists of a nucleotide sequence as defined above.
- Particularly preferred is the use in a dicistronic cassette either upstream of the first gene of interest or upstream of the second, the latter variant being the preferred.
- a vector according to the invention comprises several expression cassettes, these can be inserted in any orientation relative to each other, either in the same orientation (promoter acting in the same direction) or in reverse orientation ( promoter acting in an opposite orientation).
- a vector according to the invention can comprise several nucleotide sequences in use according to the invention. In this case, it is preferable that they are derived from different type C retroviruses.
- a vector according to the invention derives from a retrovirus.
- retroviruses such as avian erythroblastosis virus (AEV), avian leukemia virus (AVL), avian sarcoma virus (ASV), necrosis virus of spleen (SNV) and Rous sarcoma virus (RSV), bovine retroviruses, feline retroviruses (FLV, FSV ....), murine retroviruses such as murine leukemia virus (MuLV), the virus Friend's (FMLV) and murine sarcoma virus (MSV) and primate retroviruses (GALV, FSV, BAEV ).
- AEV avian erythroblastosis virus
- AEV avian leukemia virus
- ASV avian sarcoma virus
- SNV necrosis virus of spleen
- RSV Rous sarcoma virus
- bovine retroviruses bovine retroviruses
- retroviral vectors which can be envisaged for the purposes of the present invention comprise at least the following elements which are operatively associated: a 5 'LTR and a 3' LTR retroviral, one or more gene (s) of interest, and the nucleotide sequence use in the context of the present invention to allow or improve the packaging of said vector in a viral particle and / or as an IRES site to allow or promote the expression of a gene of interest positioned downstream of said nucleotide sequence.
- the retroviral 5 'LTR can be used as a promoter, but an internal promoter can also be used.
- the 5 ′ and possibly 3 ′ LTR may have the same retroviral origin (for example REV) as the nucleotide sequence or a different origin.
- a monocistronic vector will comprise from 5 'to 3' a 5 'LTR, the nucleotide sequence, a gene of interest and a 3' LTR.
- a retroviral vector according to the invention can also comprise a conventional (E +) packaging region.
- E + conventional packaging region
- the presence of the latter is not required when the nucleotide sequence in use in the present invention can alone exercise the packaging function.
- the retroviral LTR 5 ′ derives from a REV virus and, preferably from SNV, and the nucleotide sequence is substantially homologous or identical to the sequence presented in SEQ ID NO: 2, starting at nt 1 and ending at nt 578 or starting at nt 265 and ending at nt 578.
- a retroviral vector according to the invention comprises at least: (a) a 5 'retroviral LTR,
- the retroviral vector according to the invention comprises an expression cassette directed by an internal promoter region
- Other elements can also be included, for example another IRES site and another gene of interest or another expression cassette.
- a preferred retroviral vector according to the invention comprises an encapsidation region deriving from a murine retrovirus, in particular from a MoMLV, or from a VL30 type retrotransposon and an IRES site comprising a nucleotide sequence substantially homologous or identical to the sequence presented in the sequence identifier SEQ ID NO: 2:
- the packaging region derives from a MoMLV and the IRES site consists of a nucleotide sequence identical to the sequence presented in SEQ ID NO: 2 starting at nucleotide 265 and ending at nucleotide 578 or starting at nucleotide 452 and ending at nucleotide 578.
- the packaging region derives from a MoMLV
- the IRES site consists of a nucleotide sequence identical to the sequence presented in SEQ ID NO: 2 starting at nucleotide 265 and ending at nucleotide
- a gene of interest in use in the invention can be obtained from a eukaryotic or prokaryotic organism or from a virus by any conventional molecular biology technique. It can code for a polypeptide corresponding to a native protein as found in nature homologous to the host cell or not, a protein fragment, a chimeric protein originating from the fusion of polypeptides of various origins or a mutant with improved and / or modified biological properties. Such a mutant can be generated by substitution, deletion and / or addition of one or more amino acid residues.
- polypeptide can be (i) intracellular (ii) membrane present on the surface of the host cell or else (iii) secreted outside the host cell and therefore comprise appropriate additional elements, such as a sequence coding for a signal of secretion or a transmembrane anchoring region.
- a vector according to the invention is particularly intended for the prevention or treatment of cystic fibrosis, hemophilia A or B, Duchenne or Becker's myopathy, cancer, AIDS, cardiovascular diseases (restenosis, arteriosclerosis, ischemia %) and other infectious diseases due to a pathogenic organism: virus, bacteria, parasite or prion.
- genes of interest which can be used in the present invention are those which code for the following proteins: a cytokine and in particular an interleukin (IL-2, IL-7, IL-10, IL-12 ...), an interferon, a tissue necrosis factor and a growth factor and in particular hematopoietic (G-CSF, GM-CSF), a factor or cofactor involved in coagulation and in particular factor VIII, factor IX, von Willebrand factor, antithrombin III , protein C, thrombin and hirudin, an enzyme and in particular trypsin, a ribonuclease, alkaline phosphatase (plap) and ⁇ -galactosidase, an enzyme inhibitor such as ⁇ l-antitrypsin and inhibitors of viral proteases an expression product of a suicide gene such as thymidine kinase of the HSV virus (herpes virus) type 1, that of the fiirl gene and / or fcy
- adenosine diaminose glucocerebrosidase and phenylhydroxylase
- a protein capable of inhibiting the initiation or progression of cancers such as the expression products of tumor suppressor genes, for example the p53, p73 and Rb genes, a protein capable of stimulating an immune response, an antibody, the antigens of the major histocompatibility complex or an immunotoxin
- a protein capable of inhibiting a viral infection or its development for example the antigenic epitopes of the virus in question or altered variants of viral proteins likely to compete with native viral proteins, a cellular or nuclear receptor or one of their ligands, a growth factor (FGF for Fibroblast Growth Factor, VEGF for Vascular Endothelial cell Growth Factor ...), and a apoptosis inducer (Bax %), an apoptosis inhibitor (Bcl2, BclX %), a cytostatic agent (p21, pl6, Rb %), a n
- a use in gene of interest in the present invention may also encode a selectable marker to select or identify the transfected host cell with a vector according to the invention.
- neo gene neomycin
- dhjr gene dihydrofolate reductase
- CAT gene Chloramphenicol Acetyl Transferase
- gpt gene xanthine phosphoribosyl
- a functional promoter in the host cell considered and, preferably, a human cell.
- the choice of promoter is very wide and within the reach of those skilled in the art. It may be a promoter naturally governing the expression of a gene of interest in use in the present invention or any other promoter of any origin. Furthermore, it can be constitutive or regulable in nature, in particular in response to certain tissue-specific or event-specific cellular signals. For example, it may be advantageous to target the expression of the gene of interest at the level of lymphocyte cells in the context of AIDS, of lung cells in the context of cystic fibrosis or of muscle cells in the context of myopathies.
- the promoters suitable for the present invention can be chosen from promoters SV40 (Simian 40 virus), CMV (Cytomegalovirus), HMG (Hydroxymethyl-Glutaryl Coenzyme A), TK (Thymidine kinase), Retroviral LTRs such as that of MoMLV, RSV or MSV when a retroviral vector, the adenoviral El A and late MLP (Major Late Promotor) promoters are used, in particular in the context of an adenoviral vector, the 7.5K promoters, H5R, pKlL, p28 and pi 1 intended for poxviral vectors like the vaccinia virus, the promoter PGK (Phosphoglycero kinase), the liver-specific promoters of the genes coding for the alpha-antitrypsin, factor IX, albumin and transferrin, the promoters of the immunoglobulin genes which allow expression in lymphocytes,
- Muc-1 gene promoters overexpressed in breast and prostate cancers can be mentioned in particular (Chen et al., 1995, J. Clin. Invest. 96, 2775-2782), CEA (for carcinoma embryonic antigen) overexpressed in colon cancer (Schrewe et al., 1990, Mol. Cell. Biol. 10, 2738-2748), tyrosinase overexpressed in melanomas (Vile et al ., 1993, Cancer Res.
- ERB-2 overexpressed in breast and pancreatic cancers (Harris et al., 1994, Gene Therapy 1, 170-175), ⁇ -fetoprotein overexpressed in cancers liver (Kanai et al., 1997, Cancer Res. 57, 461-465), APC overexpressed in colorectal cancers, BRCA-1 and 2 (Wooster et al., 1995, Nature 378, 789-792) overexpressed in ovarian cancer and PSA (for prostate specifies antigen) overexpressed in prostate cancer.
- the gene of interest in use in the present invention may comprise other sequences improving its expression, both at the level of transcription and of translation; for example an enhancer-type transcription activating sequence, an intronic sequence, a transcription termination signal (polyA) and, as indicated above, a secretion signal or a transmembrane region.
- an enhancer-type transcription activating sequence for example an enhancingr-type transcription activating sequence, an intronic sequence, a transcription termination signal (polyA) and, as indicated above, a secretion signal or a transmembrane region.
- polyA transcription termination signal
- the invention also covers the viral particles generated from a viral vector according to the invention. This is generally done by transfection of the latter into a suitable cell line. If the viral vector used is defective for replication, a complementation line will be used. In general, a person skilled in the art knows the lines that can be used to generate infectious viral particles as well as the process to be implemented according to the vector used.
- adenoviral vector use may be made of line 293 (Graham et al., 1977, J. Gen. Virol., 36, 59-72). Being a retroviral vector, one can consider using ecotropic cell lines, such as the CRE line (Danos and Mulligan, 1988, Proc. Natl. Acad. Sci. USA, 85, 6460-6464) or GP + E-86 (Markowitz et al., 1988, J. Virol., 62, 1120-1124). However, it is particularly preferred to use an amphotropic complementation line such as the PG13 line (Miller et al., 1991, J.
- infectious viral particles are recovered in the culture supernatant of the transfected complementation cells.
- the invention also extends to cells comprising a vector according to the invention or infected with infectious viral particles according to the invention.
- the transfection methods are well known to those skilled in the art. Mention may be made of the calcium phosphate precipitation technique, that of DEAE dextran, microinjection or encapsulation in lipid vehicles.
- the vectors according to the invention can be present in the host cell in a form integrated into the cell genome or in the form of episomes both in the nucleus and in the cytoplasm.
- the cell according to the invention is advantageously a eukaryotic cell, in particular a mammalian cell and, preferably, a human cell.
- It can be a primary or tumor cell of hematopoietic origin (totipotent stem cell, leukocyte, lymphocyte, monocyte, macrophage ...), hepatic, epithelial, fibroblast, of the central nervous system and, in particular, d '' a muscle cell (myoblast, myocyte, satellite cell, smooth muscle ...), cardiac, vascular, tracheal, pulmonary or central nervous system.
- totipotent stem cell leukocyte, lymphocyte, monocyte, macrophage
- hepatic epithelial
- fibroblast of the central nervous system
- d '' a muscle cell myoblast, myocyte, satellite cell, smooth muscle
- cardiac vascular, tracheal, pulmonary or central nervous system.
- the present invention also relates to the therapeutic use of a vector, a viral particle or a cell according to the invention, for the preparation of a pharmaceutical composition intended for the treatment and / or prevention of a disease.
- treatable by gene therapy including a genetic disease, an acquired disease such as cancer or an infectious disease.
- a vector according to the invention can be used for other purposes such as the recombinant production in prokaryotic or eukaryotic cells of expression product (s) encoded by at least one of the genes of interest.
- expression product s
- the coexpression of an antibiotic resistance gene as a second cistron can make it possible to increase the expression of a first cistron.
- mice can be mice, rats, rabbits, fish, primates or farm animals (cattle, sheep, pigs ”).
- the techniques for generating these transgenic animals are known.
- the polypeptide of interest can be recovered in a conventional manner, for example in the biological fluids (blood, milk, etc.) of the animal.
- the invention also relates to a pharmaceutical composition
- a pharmaceutical composition comprising, as therapeutic or prophylactic agent, a vector, a viral particle or a cell according to the invention or a polypeptide of interest obtained in accordance with the use according to the invention, in combination with a pharmaceutically acceptable vehicle.
- a pharmaceutical composition according to the invention can be manufactured in a conventional manner.
- a therapeutically effective amount of such an agent is combined with an acceptable carrier, diluent or adjuvant. It can be administered according to any route of administration and this in a single or repeated dose after a certain time interval.
- intravenous, intramuscular, intrapulmonary (possibly aerosolized) or intratumoral administration is preferred.
- the amount to be administered will be chosen according to different criteria, in particular the use as treatment or vaccine, the route of administration, the patient, the type of disease to be treated and its state of evolution, the duration of treatment, the vector retained ... etc.
- a pharmaceutical composition according to the invention comprises between 10 4 and 10 14 pfu (unit forming plaques), advantageously between 10 5 and 10 13 pfu and, preferably, between 10 6 and 10 "pfu of viral particles.
- a vector-based composition can be formulated as doses comprising from 0.01 to 100 mg of DNA, preferably from 0.05 to 10 mg and, most preferably, from 0.1 to 5
- the formulation can also include, alone or in combination, a pharmaceutically acceptable diluent, adjuvant or excipient, as well as a solubilizing, stabilizing or preserving agent. single or in multiple doses in liquid or dry form (lyophilisate ...) capable of being reconstituted extamporanally with an appropriate diluent.
- the invention relates to a method of treatment of genetic diseases, cancers and infectious diseases according to which a therapeutically effective amount of a vector, a viral particle or a cell according to the invention is administered to a patient having need such treatment.
- a therapeutically effective amount of a vector, a viral particle or a cell according to the invention is administered to a patient having need such treatment.
- they can be administered directly in vivo, for example by intravenous, intramuscular, intratumoral injection or by aerosolization in the lungs.
- an ex vivo gene therapy protocol which consists in removing the cells from a patient (stem cells from the bone marrow, peripheral blood lymphocytes, etc.), transfecting them with a vector according to the invention and cultivating them in vitro before re-implanting them in the patient.
- the invention relates to the use of a vector, a viral particle or a pharmaceutical composition according to the invention for the transfection or infection of pluripotent cells, in particular pluripotent cells of the central nervous system.
- Figure 1 is a schematic representation of the monocistronic plasmids used as templates for the in vitro synthesis of capped and non-capped RNAs. They contain the early cytomegalovirus (Po CMV) promoter usable for expression in vivo, the promoter of the gene coding for phage T7 RNA polymerase (Po T7) usable for in vitro experiments, different portions of the 5 end '' untranslated (leader) of the REV-A virus (1 to 578 for pREV CB-95, 578 to 1 for pREV CG-53, 1 to 578 deleted from nt 268 to 452 for pREV CG-54, 265 to 578 for pREV CG-55 and 452 to 578 for pREV CG-56) and the LacZ gene ( ⁇ LacZ) coding for a truncated ⁇ -galactosidase at the C-terminal end with a
- FIG. 2 is a schematic representation of the dicistronic plasmids used as templates for the in vitro synthesis of capped and uncapped RNA. They contain the early cytomegalovirus promoter (Po CMV) usable for expression in vivo, the promoter of the gene coding for phage T7 RNA polymerase (Po T7) usable for in vitro experiments, the neo gene, different portions of the 5 'untranslated end (leader) of the REV-A virus (1 to 578 for pREV CB-54, 578 to 1 for pREV CG-50, 1 to 578 deleted from nt 268 to 452 for pREV CG-52, 265 to 578 for pREV CB-55 and 452 to 578 for pREV CG-58) and the LacZ gene ( ⁇ LacZ) coding for a truncated ⁇ -galactosidase at the C-terminal end with a molecular mass of approximately
- Figure 3A is a schematic representation of the dicistronic retroviral vectors having two elements of different retroviral origin, as IRES and packaging region (E) and two genes of interest such as the reporter genes coding for phosphatase alkaline placenta and neo coding for neomycin phosphotransferase.
- VL30E + corresponds to the 5 'untranslated region of HaMSV and MoMLV E + corresponds to the packaging region of MoMLV.
- FIG. 4 illustrates the effect of rapamycin on the activities A) alkaline phosphatase and B) neomycin phosphotransferase produced in GP + E-86 cells not transfected or stably transfected by the different vectors pREV HW or pEMCV-CBTV (pCBlOO ) and treated with rapamycin (full boxes) or not treated (control, dotted boxes).
- Figure 5 illustrates the optimization of the transduction protocol applied to Dev neuroectodermal cells. The percentage of Dev cells transduced by the pEMCV-CBTV (IRES EMCV) and pREV HW-3 viruses (IRES REV-A) is determined by flow cytometry.
- EXAMPLE 1 Identification of an IRES site at the 5 ′ end of the REV-A RNA.
- the DNA fragments corresponding to sequences 1 to 578, 265 to 578 and 452 to 578 of the REV-A RNA are isolated by PCR from the pREVSC-1 template (Darlix et al., 1992, J. Virol. 66, 7245-7252). Appropriate primers are used that a person skilled in the art can design, provided at their ends with a Mzel site. After digestion with this enzyme, the PCR fragments are inserted upstream of the LacZ gene in the vector pEMCV-M260-837 (Berlioz et al., 1995, J. Virol. 69, 6400-6407) previously cleaved by Nhel.
- the LacZ gene used codes for a truncated ⁇ -galactosidase product at the C-terminal end.
- the monocistronic plasmids pREV CB-95 (1-578), pREV CG-55 (265-578) and pREV CG-56 (452-578) are obtained, illustrated in Figure 1.
- the dicistronic plasmids pREV CB-54 (1- 578), pREV CB-55 (265-578) and pREV CG-58 (452-578) are shown in Figure 2 and result from the insertion of the previous PCR fragments between the neo and LacZ genes of pEMCV-D260-837 (pCBlOl) (Berlioz et al., 1995, J. Virol. 69, 6400-6407) also subjected to digestion with Nhel.
- Amplification of nt 1 to 578 deleted from sequences 268 to 452 is carried out using the vector pREVSC-1 previously digested with Kpnl and S ⁇ , treated with the Klenow fragment of AD de polymerase from E. coli and religious.
- the amplified fragment digested by Mzel is cloned in pEMCV-M260-837 upstream of the LacZ gene or between the neo and LacZ genes of pEMCV-D260-837, the two vectors having been digested with Mzel, to give respectively pREV CG-54 (Fig 1) and pREV CG-52 (Fig 2).
- monistristrum control plasmids pREV CG-53 (Fig 1) and dicistronic pREV CG-50 (Fig 2) were constructed by introduction of the PCR fragment carrying the sequences REV-A l to 578 in the previous vectors in reverse orientation (578- 1).
- the initiation of the translation of ⁇ -galactosidase is under the control of the AUG codon of the gag gene of REV-A located at position 574-576, while in the control plasmids, the synthesis of ⁇ -galactosidase depends on an AUG placed in a favorable Kozak context introduced by PCR.
- RNAs are synthesized from 1 ⁇ g of plasmid DNA linearized by Sspl (position 1240 in the LacZ gene) using T7 RNA polymerase (mMessage mMachine or MAXIscript, Ambion) in a reaction volume 20 ⁇ l according to the protocol indicated by the supplier. Transcription is stopped by treatment of the DNA matrix with the enzyme DNasel followed by precipitation of the RNAs in the presence of lithium chloride. The RNAs are taken up in 50 ⁇ l of TE buffer (10 mM Tris-HCl pH7.5, EDTA ImM) before being purified and desalted by passage through an S-300 MicroSpin TM column (Pharmacia BioTech) according to the supplier's instructions.
- TE buffer 10 mM Tris-HCl pH7.5, EDTA ImM
- RNA luciferase is tested in same reaction conditions (positive control).
- the samples are heat denatured in 62.5 mM Tris-HCl pH 6.8, 2% sodium dodecyl sulphate (SDS), 10% glycerol, 5% ⁇ -mercaptoethanol and 0.02% bromophenol blue and the labeled proteins analyzed by electrophoresis on polyacrylamide gel 12% (weight / vol), 0.2% SDS.
- SDS sodium dodecyl sulphate
- the neo gene product and ⁇ -galactosidase migrate at a molecular mass of approximately 28 and 46 kDa respectively.
- the efficiency of the cap-dependent and independent translation is quantified by CT scan (Phospho-Image ⁇ r Storm 840, version 4.00, Molecular Dynamics; Image Quant TM version 1.1, Molecular Dynamics).
- the intensity of the labeling of the expression product of the second cistron ( ⁇ -galactosidase) whose translation is mediated by PIRES is evaluated after standardization of the level of expression of the neo product.
- RNAs obtained from the monocistronic plasmids pREV CB-95, pREV CG-53, pREV CG-54, pREV CG-55 and pREV CG-56 is as efficient as that of the capped RNAs.
- the amount of ⁇ -galactosidase generated from the plasmid pREV CG-53 in which the REV-A sequences (1 to 578) are in antisense orientation is much lower than that obtained with the constructions using a REV sequence -A in sense orientation.
- Table 1 Report of gene expression in the presence and absence of FMDV protease L.
- FIG. 3 illustrates the vectors of the pREV HW series having LTRs of MoMLV type and the control vectors used in the experiments described below. Although these are not represented, vectors designated pMC have also been constructed which differ from pREV HW only in that their LTRs are of SNV origin and negative controls in which the REV-A sequences are positioned in orientation reverse (3 '-> 5') compared to LTRs. For all the molecular biology stages, these vectors are introduced into the plasmid pBR322.
- the control vector pEMCV-CBTV (pBC100) is a dicistronic vector comprising, in addition to the LTRs and the packaging region derived from MoMLV, the gene coding for placental alkaline phosphatase (plap), the translation of which is cap-dependent and the gene neo. whose translation is site dependent
- pREV HW-1 the REV-A fragment extending from nt 265 to 578 generated by PCR and digested with zel is cloned between the plap and neo genes of pMLV-CB71 (Berlioz and Darlix, 1995, J. Virol. 69, 2214-2222).
- pREV HW-2 the EcoRI fragment of pVL CBT5 (Torrent et al., 1996, Human Gene Therapy 7, 603-611) carrying the LTR 5 ′ MoMLV and the packaging sequences of VL30 is introduced into the vector pR ⁇ V HW- 1 linearized by EcoRI.
- pR ⁇ V HW-3 the EcoRI fragment from p ⁇ MCV-CBTV containing the 5 'LTR and the packaging sequences of MoMLV is inserted into the vector pR ⁇ V HW-1 linearized by EcoRI.
- pR ⁇ V HW-4 the R ⁇ V-A fragment extending from nt 452 to 578 generated by PCR and digested with Nftel is cloned between the plap and neo genes of pMLV-CB71.
- pR ⁇ V HW-5 the EcoRI fragment of pVL CBT5 carrying the LTR 5 ′ MoMLV and the packaging sequences of VL30 is introduced into the vector pR ⁇ V HW-4 linearized by EcoRI.
- pR ⁇ V HW-6 the EcoRI fragment from p ⁇ MCV-CBTV containing the 5 'LTR and the MoMLV packaging sequences is inserted into the vector pR ⁇ V HW-4 linearized by EcoRI.
- the pMC series vectors are obtained according to the following construction scheme:
- the S ⁇ V LTRs are generated by PCR from the plasmid R ⁇ V-A 2-20-6 (O'Rear and Temin, 1982, Proc. ⁇ atl. Acad. Sci USA 79, 1230-1234; Darlix et al., 1992, J. Virol. 66, 7245-7252).
- the neo gene is isolated from pMLV-CB71 by digestion with Sali and BamHI then introduced between the same sites of the vector pUC19 (Gibco BRL).
- the 5 'LTR of S ⁇ V (nt 1 to 861) is digested with H di ⁇ and Sali, and inserted into pUC19-neo previously cleaved by these same enzymes.
- the LTR 3 'S ⁇ V (nt 7230-8300) digested with Sm ⁇ l and EcoRI is cloned in the preceding vector to give pCG-61 containing LTR 5' S ⁇ V-neo-LTR 3 'S ⁇ V.
- a vector designated pCG-62 is generated which differs from the previous one by deleting the env sequences (nt 7230-7691) obtained by BglR-AvrTl, Klenow treatment and religation.
- the plap gene isolated from the clone Cla-12AP (DGoff) is introduced between the EcoRI and Xbal sites of a bluescript plasmid previously deleted from the Sali site (EcoRI-.X7zoI digestion) before being re-isolated in the form of a Kpnl-SaR fragment and cloned between the same pCG-61 sites and pCG-62, to give pCG-63 and pCG-64 respectively.
- the LacZ gene is obtained by partial digestion of pR ⁇ V CB-95 with the enzymes Sali and Bam ⁇ l. Its insertion between the SalI and BamUl sites of pCG-61 and pCG-62 gives rise to pCG-65 and pCG-66 respectively.
- LTR-Gene-LTR block is isolated from each plasmid pCG-62, pCG-64 and pCG-66 by H dlII-EcoRI digestion to be inserted into the vector pBR322 cleaved by these same enzymes. PMCl, pMC2 and pMC3 are generated.
- the GP + ⁇ -86 ecotropic complementation line (Markowitz et al., 1988, J. Virol., 62, 1120-1124) and the NI ⁇ 3T3 target cells (mouse fibroblastic cells) available at TATCC, are cultured at 37 ° C. in the presence of 5% CO 2 in DM ⁇ M medium (Dulbecco's Modified Eagle's Medium, Gibco BRL) supplemented with 10% newborn calf serum.
- DM ⁇ M medium Dulbecco's Modified Eagle's Medium, Gibco BRL
- GP + ⁇ -86 helper cells and NIH3T3 target cells are cultured the day before transfection and infection. Viral infections are carried out according to the conventional protocol described in the literature.
- the viral supernatants were filtered (on 0.45 ⁇ m filters) and placed in the presence of polybrene to a final concentration of 8 ⁇ g / ml.
- the infection is continued overnight at 37 ° C. and the following day, the cells are washed and cultured in fresh medium. After 48 h, the cells are placed in a selective medium (1 mg / ml of G418) or stained to determine the number of cells expressing the alkaline phosphatase plap.
- fixing is carried out in PBSxl buffer containing 2% formaldehyde and 0.2% glutaraldehyde.
- the cells are washed twice in AP buffer (0.1 M Tris-HCl pH 9.5, 0.1 M NaCl, 50 mM MgCl 2 in PBSxl) and placed for 5 h in the staining solution (0.1 mg / ml of 5-bromo-4-chloro-3-indolyl phosphate (BCIP), 1 mg / ml of a terazolium salt of Nitroblue (NBT) and 1 mM Levamisol in buffer AP).
- AP buffer 0.1 M Tris-HCl pH 9.5, 0.1 M NaCl, 50 mM MgCl 2 in PBSxl
- the staining solution 0.1 mg / ml of 5-bromo-4-chloro-3-indolyl phosphate (BCIP), 1 mg / ml of a terazolium salt of Nitroblue (NBT) and 1 mM Levamisol in buffer AP.
- the titer of the recombinant viruses is determined after transfection of the GP + E-86 ecotropic cells. After two days of incubation, the viral supernatant is harvested and used to determine the viral titer (transient expression). Then, the transfected cells are selected with G418 for one month. After this selection, the viral titer is determined on the harvested supernatant (stable expression). This corresponds to the number of infectious particles per ml of supernatant.
- the pREV HW-1 and pREV HW-4 vectors lacking a conventional packaging region are incapable of producing infectious viral particles after transfection into the MLV helper line (GP + E-86).
- the vector pMC1 can be packaged in SNV viral particles after transfection of the helper line SNV D17-C3A2 (for example ATCC CRL8468), indicating that the REV-A sequences extending from nt 265 to 578 can be used in this context as an encapsidation region.
- Retroviral vectors comprising both a REV-A sequence (265-578 or 452-578) and a conventional packaging region produce high titer viral particles (pREV HW-2, 3, 5 and 6).
- the association with the packaging region of MLV proves to be particularly advantageous since it gives viral titers 2 (pREV HW-6) to 5 times (pREV HW-3) higher than the reference vector pEMCV-CBTV combining this same encapsidation region and TIRES EMCV.
- the comparison of the data obtained with the identical vectors varying only at the level of the REV-A segment used suggests that the sequence ranging from nt 265 to 578 is capable of cooperating with the packaging region and thus improving the packaging of viral RNAs and consequently the viral titers.
- An element interacting positively with packaging could be present between nt 452 and 265 in the REV-A genome.
- the morphology of the recombinant pREV HW virions produced after transfection of the GP + E-86 line with the corresponding vectors is analyzed by electron microcopying.
- the viruses obtained from pEMCV-CBTV under the same conditions are used as controls and the wild retroviruses obtained after infection of the NIH3T3 cells with the FMLV-29 strain (Friend murine leukemia virus strain 29). Microscopy results indicate that the RNA content does not affect the morphology of the recombinant viruses.
- GP + E-86 cells are stably transfected with 20 ⁇ g of vectors of the pREV HW or pEMCV-CBTV series and cultured under selective conditions (G418) for 15 days. At 70 to 80% confluence, they are brought into the presence of rapamycin at a final concentration of 20 ng / ml. The latter has an inhibitory effect on cap-dependent translation varying from 15 to 40% depending on the cell line (Beretta et al., 1996, EMBO J. 15, 658-664) but does not affect cap-independent translation. Cell extracts are conventionally prepared after 20 h of incubation.
- the cells are washed twice in PBSxl, placed in 1 ml of TEN (40 mM Tris-HCl pH7.5, 1 mM EDTA, 50 mM NaCl) for a 10 cm dish then recovered by scraping and centrifuged on low speed.
- the pellet is taken up in 100 ⁇ l of 0.25 M Tris-HCl, pH8 and subjected to cell lysis by 3 freeze-thaw cycles. After centrifugation for 10 min at 14,000 g, the supernatant is recovered and can be stored at -70 ° C while waiting for the enzymatic tests.
- the final protein concentration is determined by the Micro BCA test (Pierce).
- the plap enzymatic activity of the cell extracts is evaluated spectrophotometrically (alkaline phosphatase kit, BIORAD).
- the plap units are determined in relation to a standard consisting of alkaline phosphatase from calf intestine (Boehringer Mannheim).
- the neo activities are measured by the transfer of phosphate labeled with [ ⁇ - 32 P] on neomycin (Ramesh and Osborne, 1991, Anal. Biochem. 193, 316-318).
- the results of the expression of the plap and neo genes measured in the absence and in the presence of rapamycin are illustrated in FIG. 4 and presented in Table 3.
- Table 3 effect of rapamycin on the expression of plap and neo cistrons expressed in% relative to untreated cells.
- rapamycin reduces the cap-dependent translation and increases that dependent on TIRES. This stimulation can be explained by less competition for the translational machinery in the presence of rapamycin.
- the addition of rapamycin is accompanied by an increase in the expression of the two genes.
- quantitative expression data indicate that the relative activity of IRES is different, suggesting a competition between them for ribosomes.
- Dev cell line which constitutes a cellular model of the central nervous system, a potential target for human gene therapy.
- Dev cells are derived from a human primary tumor of neuroectodermal origin (PNET) and behave like pluripotent stem cells (Derrington et al., 1997, Oncogene, in press). Moreover, it is possible to induce their differentiation either into neurons or into glial cells (Derrington et al., 1997, supra; Dufay et al., 1994, Eur. J. Neurosci. 6, 1633-1640; Giraudon et al ., 1993, Neurosci. 52, 1069-1079).
- the dicistronic vector pREV HW-3 (IRES REV-A 265-578) is compared with the control vector pEMCV CBTV (IRES EMCV).
- the Dev cells are infected with a 1/100 dilution of viral supernatant for 2 days then fixed, histochemically stained according to the above protocol and counted.
- the viral titer is similar for the two vectors and of the order of 3 ⁇ 10 3 TU / ml.
- the transduction units (TU / ml) correspond to the ratio of the number of colonies x dilution of the infecting retrovirus by the total volume (ml) of the diluted vector placed on the cells.
- the target cells are as previously transduced with a 1/100 dilution of viral supernatant and selected in the presence of G418 for 3 weeks.
- the intensity of the fluorescence is determined by flow cytometry with an antibody specific for the plap (DAKO). It is indicated that a polyclonal antibody is suitable.
- the results show the production of the enzyme plap by cells transduced and selected with G418. In parallel, the synthesis of the enzyme plap is confirmed by histochemical staining of the resistant clones.
- Variants are the cell culture conditions in the presence or absence of serum and the presence or absence of growth factors (FGF-2) and the production of viruses in the presence or absence of serum.
- FGF-2 growth factors
- Protocol 1 cells cultured in medium with serum (10%), virus produced in the presence of serum (10%).
- Protocol 2 cells cultured in medium with serum (10%), virus produced in the absence of serum.
- Protocol 3 cells cultured in serum-free medium, virus produced in the presence of serum (10%).
- Protocol 4 cells cultured in serum-free medium, virus produced in the absence of serum.
- Protocol 5 cells cultured in serum-free medium, virus produced in the presence of serum (10%), presence of FGF-2.
- Protocol 6 cells cultured in serum-free medium, virus produced in the absence of serum, presence of FGF-2.
- the percentage of Dev cells transduced is determined by flow cytometry ( Figure 5). The percentage of cells transduced by pREV HW-3 exceeds 30% when the culture of Dev cells is carried out in the absence of serum. Such a% is not reached with the conventional virus pEMCV CBTV. The addition of growth factors is also advantageous. Among all the protocols used, protocol 5 allows more than 50% of Dev cells to be transduced.
- the expression of plap and neo cistrons is evaluated after neuronal and glial differentiation (Derrington et al., 1997, supra). Briefly, the Dev cells adopt a differentiated phenotype in the presence of serum and FGF-2 whereas when the culture is carried out in the absence of serum, the phenotype is pluripotent. Immunofluorescence results with a specific anti-plap antibody on transduced Dev cells, selected with G418 and differentiated show expression of the plap in neuronal and glial cells. These data suggest that the state of differentiation does not inhibit TIRES REV-A mediated translation.
- TYPE OF MOLECULE RNA (genomics)
- HYPOTHETIC NO
- ANTI-SENSE NO
- ORGANISM Reticuloendotheliosis virus
- TYPE OF MOLECULE RNA (genomics)
- HYPOTHETIC NO
- ANTI-SENSE NO
- ORGANISM Reticuloendotheliosis virus
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Communicable Diseases (AREA)
- Heart & Thoracic Surgery (AREA)
- Oncology (AREA)
- Cardiology (AREA)
- Virology (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Vascular Medicine (AREA)
- Tropical Medicine & Parasitology (AREA)
- Immunology (AREA)
- Diabetes (AREA)
- Neurology (AREA)
- Orthopedic Medicine & Surgery (AREA)
Abstract
The invention concerns the use of a nucleotide sequence derived from all or part of the genomic RNA 5' end of a type C retrovirus except for Friend murine leukaemia virus (FMLV) and Moloney murine leukaemia virus (MoMLV) as internal ribosome entry site or as element enabling or improving retrovirus vector packaging. The invention also concerns a vector comprising said nucleotide sequence, a viral particle generated from this vector, a cell comprising this vector or infected by the viral particle, their therapeutic use and a pharmaceutical composition containing them. The invention further concerns the use of a vector, a viral particle or a pharmaceutical composition for transfecting or infecting pluripotent stem cells.
Description
Nouveau site interne d'entrée des ribosomes et vecteur le contenant New internal ribosome entry site and vector containing it
La présente invention concerne l'utilisation d'une séquence nucléotidique dérivée de l'extrémité 5' de TARN génomique ou de l'ADN proviral d'un virus de la réticuloendothéliose à titre de site interne d'entrée des ribosomes (IRES) et/ou pour améliorer l'encapsidation rétrovirale. Plus particulièrement, elle concerne des vecteurs d'expression comportant cette séquence et notamment des vecteurs polycistroniques permettant l'expression efficace et stable de plusieurs gènes d'intérêt sous la dépendance d'un même promoteur. La présente invention trouve une application intéressante dans le domaine des vecteurs de thérapie génique.The present invention relates to the use of a nucleotide sequence derived from the 5 ′ end of genomic RNA or the proviral DNA of a reticuloendotheliosis virus as internal ribosome entry site (IRES) and / or to improve retroviral packaging. More particularly, it relates to expression vectors comprising this sequence and in particular polycistronic vectors allowing the efficient and stable expression of several genes of interest under the dependence of the same promoter. The present invention finds an interesting application in the field of gene therapy vectors.
La faisabilité de la thérapie génique appliquée à l'homme n'est plus à démontrer et ceci concerne de nombreuses applications thérapeutiques comme les maladies génétiques, les maladies infectieuses et les cancers. De nombreux documents de l'art antérieur décrivent les moyens de mettre en oeuvre une thérapie génique, notamment par l'intermédiaire de vecteurs viraux. D'une manière générale, les vecteurs sont obtenus par délétion d'au moins une partie des gènes viraux qui sont remplacés par les gènes d'intérêt thérapeutique. De tels vecteurs peuvent être propagés dans une lignée de complémentation qui fournit en trans les fonctions virales délétées pour générer une particule virale défective pour la réplication mais capable d'infecter une cellule hôte. A ce jour, les vecteurs rétroviraux sont parmi les plus utilisés mais on peut citer également des vecteurs issus des adénovirus, virus associés aux adénovirus, poxvirus et virus de l'herpès. Ce type de vecteurs, leur organisation et leur mode d'infection sont largement décrits dans la littérature accessible à l'homme de l'art.The feasibility of gene therapy applied to humans is no longer to be demonstrated and this concerns many therapeutic applications such as genetic diseases, infectious diseases and cancers. Many documents of the prior art describe the means of implementing gene therapy, in particular by means of viral vectors. In general, the vectors are obtained by deletion of at least part of the viral genes which are replaced by the genes of therapeutic interest. Such vectors can be propagated in a complementation line which provides in trans the deleted viral functions to generate a viral particle defective for replication but capable of infecting a host cell. To date, retroviral vectors are among the most used, but mention may also be made of vectors derived from adenoviruses, viruses associated with adenoviruses, poxviruses and herpes viruses. This type of vectors, their organization and their mode of infection are widely described in the literature accessible to those skilled in the art.
A titre indicatif, le génome rétroviral est constitué par un ARN linéaire, simple brin et de polarité positive. Outre les séquences de régulation R et TJ5 et
U3 et R présentes aux extrémité 5' et 3' respectivement, il porte trois gènes : gag codant pour les protéines de la capside, pol codant pour la transcriptase inverse et l'intégrase et env codant pour les protéines de l'enveloppe. Les signaux d'encapsidation, situés en aval des séquences U5 jusqu'au début de la région codante du gène gag, participent à la dimérisation et l'encapsidation de l'ARN viral dans les particules virales. L'extrémité 5' du génome comprend une coiffe (cap) et l'extrémité 3' est polyadénylée. Lors du cycle infectieux, l'ARN viral est converti en un ADN pro viral linéaire, double brin muni à chaque extrémité de séquences répétées inversées LTRs (pour Long Terminal Repeat en anglais) nécessaires à l'initiation de la transcription. Celle-ci, réalisée par la machinerie cellulaire, permet la production des ARN génomiques et subgénomiques à partir desquels sont synthétisées les protéines virales. Les retrovirus peuvent être classés en 4 sous-familles A à D, sur la base de leur morphologie. Le type C regroupe la majorité des retrovirus dont les virus MLV (Murine Leukemia Virus) et MSV (Murine Sarcoma Virus) utilisés dans la plupart des vecteurs de thérapie génique et les virus REV (Reticuloendotheliosis Virus) d'où dérive la séquence nucléotidique de la présente invention.As an indication, the retroviral genome consists of a linear, single-stranded RNA with positive polarity. In addition to the regulation sequences R and TJ5 and U3 and R present at the 5 'and 3' ends respectively, it carries three genes: gag coding for the proteins of the capsid, pol coding for the reverse transcriptase and the integrase and env coding for the proteins of the envelope. The packaging signals, located downstream of the U5 sequences up to the start of the coding region of the gag gene, participate in the dimerization and packaging of the viral RNA in the viral particles. The 5 'end of the genome includes a cap (cap) and the 3' end is polyadenylated. During the infectious cycle, the viral RNA is converted into a linear, double-stranded pro viral DNA provided at each end with reverse repeated sequences LTRs (for Long Terminal Repeat in English) necessary for the initiation of transcription. This, carried out by cellular machinery, allows the production of genomic and subgenomic RNAs from which viral proteins are synthesized. Retroviruses can be classified into 4 subfamilies A to D, based on their morphology. Type C includes the majority of retroviruses including the MLV (Murine Leukemia Virus) and MSV (Murine Sarcoma Virus) viruses used in most gene therapy vectors and the REV (Reticuloendotheliosis Virus) viruses from which the nucleotide sequence of the present invention.
Il peut être avantageux de disposer de vecteurs de thérapie génique plus performants et capables notamment de produire efficacement plusieurs protéines d'intérêt. Cependant, la présence de plusieurs promoteurs au sein du même vecteur se traduit très souvent par une réduction voire même une perte de l'expression au cours du temps. Ceci est dû à un phénomène bien connu d'interférence entre les séquences promotrices. Dans ce contexte, la publication de la demande internationale WO93/03143 propose une solution à ce problème qui consiste à mettre en oeuvre un site interne d'entrée des ribosomes (IRES). Elle décrit un vecteur rétroviral dicistonique pour l'expression de deux gènes d'intérêt placés sous le contrôle du même promoteur. La présence d'un site IRES de picornavirus entre ceux-ci permet la production du produit d'expression issu du second gène d'intérêt par initiation interne de la traduction de l'ARNm
dicistronique.It may be advantageous to have more efficient gene therapy vectors capable in particular of efficiently producing several proteins of interest. However, the presence of several promoters within the same vector very often results in a reduction or even a loss of expression over time. This is due to a well-known phenomenon of interference between the promoter sequences. In this context, the publication of international application WO93 / 03143 proposes a solution to this problem which consists in implementing an internal ribosome entry site (IRES). It describes a dicistonic retroviral vector for the expression of two genes of interest placed under the control of the same promoter. The presence of an IRES site of picornavirus between them allows the production of the expression product derived from the second gene of interest by internal initiation of the translation of the mRNA dicistronic.
Normalement, l'entrée des ribosomes au niveau de l'ARN messager (ARNm) se fait par la coiffe située à l'extrémité 5' de l'ensemble des ARNm eucaryotes. Les sous unités ribosomales 40S se déplacent le long de l'ARN jusqu'à rencontrer un codon AUG approprié pour débuter la synthèse protéique. Généralement, l'initiation a lieu au niveau du premier codon AUG. Mais, si celui-ci est dans un contexte peu favorable, les sous unités 40S poursuivent jusqu'à un codon AUG ultérieur situé dans un meilleur contexte traductionnel (Kozak, 1984, Nucleic Acid Res. 12, 3873-3893 ; Kozak, 1991, J. Biol. Chem. 266, 19867-19870 ; Pain, 1996, Eur. J. Biochem. 236, 747-771).Normally, ribosomes enter the messenger RNA (mRNA) through the cap located at the 5 'end of all eukaryotic mRNAs. The 40S ribosomal subunits move along the RNA until they meet an appropriate AUG codon to start protein synthesis. Generally, initiation takes place at the first AUG codon. But, if this is in an unfavorable context, the 40S subunits continue until a later AUG codon situated in a better translational context (Kozak, 1984, Nucleic Acid Res. 12, 3873-3893; Kozak, 1991, J. Biol. Chem. 266, 19867-19870; Pain, 1996, Eur. J. Biochem. 236, 747-771).
Cependant, cette règle universelle connaît des exceptions. L'absence de coiffe chez certains ARNm viraux laissait supposer l'existence de structures alternatives permettant l'entrée des ribosomes à un site interne de ces ARN. A ce jour, un certain nombre de ces structures, nommées IRES du fait de leur fonction, ont été identifiées dans la région 5' non codante des ARNm viraux non coiffés comme celle notamment des picornavirus tel que le virus de la poliomyélite (Pelletier et al., 1988, Mol. Cell. Biol. 8, 1103-1112) et l'EMCV (Encephalomyocarditis virus (Jang et al., 1988, J. Virol. 62, 2636-2643). Des ARNm cellulaires possédant des éléments IRES ont également été décrits. On peut citer ceux codant pour la protéine BIP (pour Immunoglobulin heavy chain binding protein ; Macejak et Sarnow, 1991, Nature 353, 90-94), certains facteurs de croissance (Teerink et al., 1995, Biochem. Biophy. Acts 1264, 403- 408 ; Vagner et al., 1995, Mol. Cell. Biol. 15, 35-44), le facteur d'initiation de la traduction eIF4G (Gan et Rhoads, 1996, J. Biol. Chem. 271, 623-626) et deux facteurs de transcription de levure TFIID et HAP4 (lizuka et al. , 1994, Mol. Cell. Biol., 14, 7322-7330). Des sites IRES ont également mis en évidence dans les retrotransposons murins de type VL30 (Berlioz et al., 1995, J. Virol. 69, 6400-6407) et, plus récemment dans les ARNm codant pour le précurseur gag des virus de la leucémie murine de Friend (FMLV) et de Moloney (MoMLV)
(Berlioz et Darlix, 1995, J. Virol. 69, 2214-2222 ; Vagner et al., 1995, J. Biol. Chem. 270, 20376-20383).However, there are exceptions to this universal rule. The absence of a cap in certain viral mRNAs suggested the existence of alternative structures allowing entry of ribosomes to an internal site of these RNAs. To date, a certain number of these structures, called IRES because of their function, have been identified in the 5 ′ non-coding region of non-capped viral mRNAs such as that in particular of picornaviruses such as the poliomyelitis virus (Pelletier et al. ., 1988, Mol. Cell. Biol. 8, 1103-1112) and EMCV (Encephalomyocarditis virus (Jang et al., 1988, J. Virol. 62, 2636-2643). Cellular mRNAs having IRES elements have Also described have been those coding for the protein BIP (for Immunoglobulin heavy chain binding protein; Macejak and Sarnow, 1991, Nature 353, 90-94), certain growth factors (Teerink et al., 1995, Biochem. Biophy Acts 1264, 403-408; Vagner et al., 1995, Mol. Cell. Biol. 15, 35-44), the translation initiation factor eIF4G (Gan and Rhoads, 1996, J. Biol. Chem. 271, 623-626) and two yeast transcription factors TFIID and HAP4 (lizuka et al., 1994, Mol. Cell. Biol., 14, 7322-7330). IRES sites have also highlighted in murine retrotransposons of the VL30 type (Berlioz et al., 1995, J. Virol. 69, 6400-6407) and, more recently in the mRNAs coding for the gag precursor of the Friend (FMLV) and Moloney murine leukemia viruses (MoMLV) (Berlioz and Darlix, 1995, J. Virol. 69, 2214-2222; Vagner et al., 1995, J. Biol. Chem. 270, 20376-20383).
On a maintenant trouvé un nouveau site interne d'entrée des ribosomes dans la région 5' non codante de l'ARN du virus aviaire de la réticuloendothéliose (REV) de type A (REV-A) et montré son efficacité pour initier la traduction de séquences codantes placées à sa suite d'une manière monocistronique ou dicistonique.A new internal ribosome entry site has now been found in the 5 'non-coding region of avian reticuloendotheliosis virus (REV) RNA type A (REV-A) and shown to be effective in initiating the translation of coding sequences placed after it in a monocistronic or dicistonic manner.
Le site IRES de la présente invention est particulièrement avantageux par rapport à ceux déjà décrits dans la littérature. En premier lieu, il permet un taux d'expression important du cistron qu'il contrôle. En outre et, de manière inattendue, il peut également, dans le cadre d'un vecteur rétroviral, contribuer ou améliorer, en association avec une région d'encapsidation appropriée, les fonctions de dimérisation ou d'encapsidation, permettant une augmentation du titre viral. Et enfin, du fait de sa faible homologie avec les séquences rétrovirales murines utilisées dans la plupart des vecteurs de thérapie génique destinés à un usage humain, son emploi réduit considérablement le risque de production de virus compétents pour la réplication.The IRES site of the present invention is particularly advantageous compared to those already described in the literature. First, it allows a high level of expression of the cistron it controls. In addition and, unexpectedly, it can also, in the context of a retroviral vector, contribute or improve, in association with an appropriate packaging region, the dimerization or packaging functions, allowing an increase in the viral titer . And finally, because of its weak homology with the murine retroviral sequences used in most gene therapy vectors intended for human use, its use considerably reduces the risk of production of viruses competent for replication.
La plupart des protocoles de thérapie génique approuvés par le RAC (Recombinant DNA Advisory Committee) aux Etats Unis utilisent des vecteurs dérivés du virus MoMLV. A l'heure actuelle, le choix d'un vecteur rétroviral spécifique pour une application thérapeutique donnée reste empirique et les facteurs influençant le titre viral et l'expression des gènes n'ont pas encore été clairement élucidés. L'étude des séquences agissant en cis qui contrôlent l'encapsidation et l'établissement des forces relatives de divers éléments IRES peuvent permettre d'optimiser les vecteurs de thérapie génique en termes de titre et d'expression génique. Un des buts de la présente invention est de proposer de nouveaux vecteurs rétroviraux susceptibles d'être propagés à haut titre et de permettre une expression optimale d'un ou plusieurs gènes d'intérêt.Most gene therapy protocols approved by the RAC (Recombinant DNA Advisory Committee) in the United States use vectors derived from the MoMLV virus. At the present time, the choice of a specific retroviral vector for a given therapeutic application remains empirical and the factors influencing the viral titer and the expression of the genes have not yet been clearly elucidated. Studying the cis-acting sequences that control packaging and establishing the relative forces of various IRES elements can help optimize gene therapy vectors in terms of titer and gene expression. One of the aims of the present invention is to propose new retroviral vectors capable of being propagated at high titer and of allowing optimal expression of one or more genes of interest.
C'est pourquoi la présente invention a pour objet l'utilisation d'une
séquence nucléotidique dérivée de tout ou partie de l'extrémité 5' de l'ARN génomique d'un retrovirus de type C à l'exception des virus de la leucémie murine de Friend (FMLV) et de Moloney (MoMLV), à titre de site interne d'entrée des ribosomes (IRES) dans un vecteur et/ou pour permettre ou améliorer l'encapsidation d'un vecteur rétroviral.This is why the present invention relates to the use of a nucleotide sequence derived from all or part of the 5 'end of the genomic RNA of a type C retrovirus with the exception of the murine leukemia viruses of Friend (FMLV) and Moloney (MoMLV), as internal ribosome entry site (IRES) in a vector and / or to allow or improve the packaging of a retroviral vector.
Par séquence nucléotidique, on entend une séquence composée de ribo (ARN) ou de désoxyribonucléotides (ADN). Dans le cadre de la présente invention, l'extrémité 5' de l'ARN génomique d'un retrovirus correspond au quart 5' dudit ARN qui s'étend du site d'initiation de la transcription (nucleotide +1) jusqu'à environ 2 kb dans la direction 3'. Le terme retrovirus est largement défini dans les ouvrages de base de virologie accessibles à l'homme de l'art et les caractéristiques essentielles ont été résumées à titre indicatif ci-dessus. Le terme "dérivée" fait référence à une séquence ayant une origine rétrovirale de type C, mais qui peut avoir subi au moins une modification par rapport à la séquence native. La ou les modifications envisageables incluent la délétion, l'addition, la substitution et/ou la mutation d'un ou plusieurs nucléotides (nt). De telles modifications peuvent avoir pour but par exemple d'accroître les fonctions IRES, d'encapsidation ou d'introduire des sites de restriction adéquates pour faciliter les étapes de clonage ultérieures. Le terme "dérivée" comprend également l'équivalent ADN de l'ARN génomique sous une forme modifiée ou non.By nucleotide sequence is meant a sequence composed of ribo (RNA) or deoxyribonucleotides (DNA). In the context of the present invention, the 5 ′ end of the genomic RNA of a retrovirus corresponds to the 5 ′ quarter of said RNA which extends from the site of initiation of transcription (nucleotide +1) to approximately 2 kb in direction 3 '. The term retrovirus is widely defined in basic virology works accessible to those skilled in the art and the essential characteristics have been summarized by way of indication above. The term "derivative" refers to a sequence having a type C retroviral origin, but which may have undergone at least one modification with respect to the native sequence. The possible modification (s) include the deletion, addition, substitution and / or mutation of one or more nucleotides (nt). Such modifications may have the aim, for example, of increasing the IRES functions, of packaging, or of introducing adequate restriction sites to facilitate the subsequent cloning steps. The term "derivative" also includes the DNA equivalent of genomic RNA in a modified or unmodified form.
Par IRES, on désigne un site capable de promouvoir l'entrée des ribosomes dans une molécule d'ARN d'une manière indépendante de la coiffe. Conformément aux buts poursuivis par la présente invention, la fonction IRES peut s'exercer dans tout vecteur ou cassette d'expression. Une séquence en usage dans le cadre de la présente invention peut également agir en tant qu'élément activatèur de l'encapsidation des retrovirus ou vecteurs rétroviraux en favorisant la dimérisation de deux copies du génome rétroviral et/ou l'encapsidation du dimère dans les particules virales. Selon un mode de réalisation préféré, ladite séquence est capable d'exercer une fonction IRES et d'améliorer la fonction
d'encapsidation lorsqu'elle est introduite dans un vecteur rétroviral approprié.The term IRES denotes a site capable of promoting the entry of ribosomes into an RNA molecule in a manner independent of the cap. In accordance with the aims of the present invention, the IRES function can be exercised in any vector or expression cassette. A sequence used in the context of the present invention can also act as an activating element for the packaging of retroviruses or retroviral vectors by promoting the dimerization of two copies of the retroviral genome and / or the packaging of the dimer in the particles. viral. According to a preferred embodiment, said sequence is capable of exercising an IRES function and of improving the function encapsidation when introduced into an appropriate retroviral vector.
Une séquence nucléotidique telle qu'utilisée dans le cadre de la présente invention, peut être isolée de l'extrémité 5' de l'ARN génomique ou de l'ADN proviral d'un retrovirus de type C ou de tout plasmide de l'état de la technique portant le fragment rétroviral d'intérêt. Il va sans dire qu'elle peut être générée par toute technique en usage dans le domaine de l'art, par exemple par clonage à l'aide de sondes appropriées, par PCR (Polymerase Chain reaction) ou encore par synthèse chimique. Avantageusement, ladite séquence comprend tout ou partie de la région qui suit le domaine U3 du LTR 5', jusqu'au codon AUG initiateur du gène gag. Aux fins de la présente invention, elle comprend au moins 50 nucléotides, avantageusement au moins 100 nucléotides, de préférence au moins 200 nucléotides et de manière préférée au moins 300 nucléotides compris dans ladite extrémité 5'. Mais, bien entendu, elle peut s'étendre au delà dans la direction 5' ou 3' ou comporter des séquences supplémentaires. Avantageusement, ladite séquence comprend de 100 à 1500 nucléotides et, en particulier, de 300 à 800 nucléotides.A nucleotide sequence as used in the context of the present invention can be isolated from the 5 ′ end of the genomic RNA or of the proviral DNA of a type C retrovirus or of any plasmid of the state of the technique carrying the retroviral fragment of interest. It goes without saying that it can be generated by any technique in use in the field of art, for example by cloning using appropriate probes, by PCR (Polymerase Chain reaction) or by chemical synthesis. Advantageously, said sequence comprises all or part of the region which follows the U3 domain of the 5 'LTR, up to the codon AUG initiator of the gag gene. For the purposes of the present invention, it comprises at least 50 nucleotides, advantageously at least 100 nucleotides, preferably at least 200 nucleotides and preferably at least 300 nucleotides included in said 5 ′ end. But, of course, it can extend beyond in the 5 ′ or 3 ′ direction or include additional sequences. Advantageously, said sequence comprises from 100 to 1500 nucleotides and, in particular, from 300 to 800 nucleotides.
On préfère mettre en oeuvre dans le cadre de la présente invention un retrovirus de type C à l'exception des virus FMLV et MoMLV. Un retrovirus de type C convenant plus particulièrement, est sélectionné parmi les virus REV (Virus de la réticuloendothéliose), MSV (Murine sarcoma virus) et notamment celui de Moloney (MMSV), MHV (Mus hortulanus virus), MEV (Mouse endogenous retrovirus), FMOV (FBR murine osteosarcoma virus), AMLV (AKV murine leukemia virus), MEELV (Mouse endogenous ecotropic murine leukemia virus), SFFV (Friend spleen focus-forming virus), RAS V (rat sarcoma virus), FLV (Féline leukemia virus), FSV (féline sarcoma virus), EFLV (Cat endogenous proviral féline leukemia virus), SSV (Simian sarcoma virus), GALV (Gibbon ape leukemia virus) et BAEV (Baboon endogenous virus).It is preferred to use in the context of the present invention a type C retrovirus with the exception of the FMLV and MoMLV viruses. A type C retrovirus which is more particularly suitable is selected from the REV viruses (Reticuloendotheliosis virus), MSV (Murine sarcoma virus) and in particular that of Moloney (MMSV), MHV (Mus hortulanus virus), MEV (Mouse endogenous retrovirus) , FMOV (FBR murine osteosarcoma virus), AMLV (AKV murine leukemia virus), MEELV (Mouse endogenous ecotropic murine leukemia virus), SFFV (Friend spleen focus-forming virus), RAS V (rat sarcoma virus), FLV (Feline leukemia virus ), FSV (feline sarcoma virus), EFLV (Cat endogenous proviral feline leukemia virus), SSV (Simian sarcoma virus), GALV (Gibbon ape leukemia virus) and BAEV (Baboon endogenous virus).
Selon un mode de réalisation tout à fait préféré, une séquence nucléotidique en usage dans la présente invention dérive de tout ou partie de
l'extrémité 5' de l'ARN génomique d'un virus de la réticuloendothéliose (REV). Les virus REV comprennent notamment différents sous-types A, B et T ainsi que les virus DIAV (Duck infectious anémia virus), SNV (spleen necrosis virus) et CSV (Chick syncytial virus) (voir par exemple Encyclopedia of Virology, 1994, Enrietto, Reticuloendotheliosis viruses, p 1227- 1232 Ed. R. Webster et A. Granoff, Académie Press, Hartourt Brace § Company Publishers). Un virus REV convenant tout particulièrement est le virus de la réticuloendothéliose aviaire, notamment celui de type A (REV- A).According to an entirely preferred embodiment, a nucleotide sequence in use in the present invention derives from all or part of the 5 'end of the genomic RNA of a reticuloendotheliosis virus (REV). The REV viruses include in particular different subtypes A, B and T as well as the DIAV viruses (Duck infectious anemia virus), SNV (spleen necrosis virus) and CSV (Chick syncytial virus) (see for example Encyclopedia of Virology, 1994, Enrietto , Reticuloendotheliosis viruses, p 1227-1232 Ed. R. Webster and A. Granoff, Académie Press, Hartourt Brace § Company Publishers). A REV virus which is very particularly suitable is the avian reticuloendotheliosis virus, in particular that of type A (REV-A).
Selon cette dernière variante, on aura de préférence recours à une séquence nucléotidique comprenant au moins 100 nucléotides et au plus 800 nucléotides (nt) de l'extrémité 5' non codante du virus REV-A et plus particulièrement une séquence nucléotidique substantiellement homologue ou identique à tout ou partie de la séquence présentée dans l'identificateur de séquence SEQ ID NO: 1. A titre d'exemples préférés, on peut citer une séquence nucléotidique substantiellement homologue ou identique à la séquence présentée dans l'identificateur de séquence SEQ ID NO: 2 :According to this last variant, use will preferably be made of a nucleotide sequence comprising at least 100 nucleotides and at most 800 nucleotides (nt) of the 5 ′ non-coding end of the REV-A virus and more particularly a substantially homologous or identical nucleotide sequence to all or part of the sequence presented in the sequence identifier SEQ ID NO: 1. Mention may be made, as preferred examples, of a nucleotide sequence substantially homologous or identical to the sequence presented in the sequence identifier SEQ ID NO : 2:
(i) commençant au nucleotide 1 et se terminant au nucleotide 578, (ii) commençant au nucleotide 265 et se terminant au nucleotide 578, ou (iii) commençant au nucleotide 452 et se terminant au nucleotide 578.(i) starting at nucleotide 1 and ending at nucleotide 578, (ii) starting at nucleotide 265 and ending at nucleotide 578, or (iii) starting at nucleotide 452 and ending at nucleotide 578.
Le terme substantiellement homologue fait référence à un degré d'homologie supérieur à 70%, avantageusement supérieur à 80%, de préférence supérieur à 90% et, de manière tout à fait préférée, supérieur à 95%. Comme déjà indiqué, ladite séquence nucléotidique peut avoir une séquence légèrement différente de celle décrite dans la SEQ ID NO: 1 ou 2, à la condition toutefois que la ou lès modifications n'affecte(nt) pas ses fonctions IRES et/ou d'encapsidation. Selon un mode avantageux, la séquence nucléotidique utilisée dans le cadre de la présente invention est identique à la séquence présentée dans l'identificateur de séquence SEQ ID NO: 2 :
(i) commençant au nucleotide 1 et se terminant au nucleotide 578, (ii) commençant au nucleotide 265 et se terminant au nucleotide 578, ouThe term substantially homologous refers to a degree of homology greater than 70%, advantageously greater than 80%, preferably greater than 90% and, most preferably, greater than 95%. As already indicated, said nucleotide sequence may have a sequence slightly different from that described in SEQ ID NO: 1 or 2, provided, however, that the modification or modifications does not affect its IRES functions and / or packaging. According to an advantageous mode, the nucleotide sequence used in the context of the present invention is identical to the sequence presented in the sequence identifier SEQ ID NO: 2: (i) starting at nucleotide 1 and ending at nucleotide 578, (ii) starting at nucleotide 265 and ending at nucleotide 578, or
(iii) commençant au nucleotide 452 et se terminant au nucleotide 578. La fonction IRES de ladite séquence nucléotidique est particulièrement avantageuse dans un contexte pauvre en ion magnésium, par exemple dans un contexte cellulaire. Un concentration élevée en ions Mg2+ peut diminuer l'efficacité de l'initiation de la traduction médiée par la séquence.(iii) starting at nucleotide 452 and ending at nucleotide 578. The IRES function of said nucleotide sequence is particularly advantageous in a context poor in magnesium ion, for example in a cellular context. A high concentration of Mg 2+ ions can decrease the efficiency of sequence-mediated translation initiation.
Une séquence nucléotidique en usage dans la présente invention, est plus particulièrement destinée à être intégrée dans un vecteur de transfert et d'expression d'un ou plusieurs gène(s) d'intérêt. Le choix d'un tel vecteur est large et les techniques de clonage dans le vecteur retenu sont à la portée de l'homme de l'art. Conformément aux buts poursuivis par la présente invention, on peut envisager un vecteur plasmidique ou un vecteur dérivé d'un virus animal et, en particulier, d'un poxvirus (canari pox ou virus de la vaccine, notammentA nucleotide sequence in use in the present invention is more particularly intended to be integrated into a vector for the transfer and expression of one or more gene (s) of interest. The choice of such a vector is wide and the techniques of cloning into the selected vector are within the reach of those skilled in the art. In accordance with the aims pursued by the present invention, it is possible to envisage a plasmid vector or a vector derived from an animal virus and, in particular, from a poxvirus (canary pox or vaccinia virus, in particular
Copenhage ou MVA), adénovirus, baculovirus, virus de l'herpès, virus associé à un adénovirus ou retrovirus. De tels vecteurs sont largement décrits dans la littérature. En particulier, lorsqu'il s'agit d'un vecteur adénoviral, celui-ci peut être issu d'un adénovirus humain (de préférence de type 2 ou 5), animal (de préférence canin ou bovin) ou encore d'un hybride entre des espèces variées. La technologie générale concernant les adénovirus est divulguée dans Graham et Prevec (1991,Coenhage or MVA), adenovirus, baculovirus, herpes virus, virus associated with an adenovirus or retrovirus. Such vectors are widely described in the literature. In particular, when it is an adenoviral vector, it can be derived from a human (preferably type 2 or 5), animal (preferably canine or bovine) adenovirus or a hybrid between various species. The general technology for adenoviruses is disclosed in Graham and Prevec (1991,
Methods in Molecular Biology, Vol 7, Gène transfer and Expression Protocols ;Methods in Molecular Biology, Vol 7, Gene transfer and Expression Protocols;
Ed E.J. Murray, the Human Press Inc, p 109-118).Ed E.J. Murray, the Human Press Inc, p 109-118).
Conforméments aux buts poursuivis dans le cadre de la présente invention, ladite séquence nucléotidique est de préférence positionnée en amont d'un gène d'intérêt pour améliorer la traduction du produit d'expression pour lequel celui-ci code. Elle peut être mise en oeuvre dans une cassette d'expression de type monocistronique (pour l'expression d'un gène d'intérêt placé sous le contrôle d'un promoteur) ou polycistronique (pour l'expression d'au moins deux gènes d'intérêt
placés sous le contrôle d'un même promoteur). Cette dernière peut contenir plusieurs éléments en tandem "site IRES-gène d'intérêt" dont au moins un des sites IRES est constitué par une séquence nucléotidique telle que définie auparavant. On préfère tout particulièrement l'utilisation dans une cassette dicistronique soit en amont du premier gène d'intérêt soit en amont du second, cette dernière variante étant la préférée.In accordance with the aims pursued in the context of the present invention, said nucleotide sequence is preferably positioned upstream of a gene of interest to improve the translation of the expression product for which it codes. It can be implemented in an expression cassette of the monocistronic type (for the expression of a gene of interest placed under the control of a promoter) or polycistronic (for the expression of at least two genes d 'interest placed under the control of the same promoter). The latter can contain several elements in tandem "IRES site-gene of interest" of which at least one of the IRES sites consists of a nucleotide sequence as defined above. Particularly preferred is the use in a dicistronic cassette either upstream of the first gene of interest or upstream of the second, the latter variant being the preferred.
Lorsqu'un vecteur selon l'invention comprend plusieurs cassettes d'expression, celles-ci peuvent être insérées dans une orientation quelconque les unes par rapport aux autres, soit dans une même orientation (promoteur agissant dans une même direction) ou en orientation réverse (promoteur agissant dans une orientation opposée). Par ailleurs, un vecteur selon l'invention peut comprendre plusieurs séquences nucléotidiques en usage selon l'invention. Dans ce cas, il est préférable qu'elles dérivent de retrovirus de type C différents.When a vector according to the invention comprises several expression cassettes, these can be inserted in any orientation relative to each other, either in the same orientation (promoter acting in the same direction) or in reverse orientation ( promoter acting in an opposite orientation). Furthermore, a vector according to the invention can comprise several nucleotide sequences in use according to the invention. In this case, it is preferable that they are derived from different type C retroviruses.
Selon un mode de réalisation tout à fait préféré, un vecteur selon l'invention dérive d'un retrovirus. On peut citer à titre d'exemples, les retrovirus aviaires tels que le virus de l'érythroblastose aviaire (AEV), le virus de la leucémie aviaire (AVL), le virus du sarcome aviaire (ASV), le virus de la nécrose de la rate (SNV) et le virus du sarcome de Rous (RSV), les retrovirus bovins, les retrovirus félins (FLV, FSV....), les retrovirus murins tels que le virus de la leucémie murine (MuLV), le virus de Friend (FMLV) et le virus du sarcome murin (MSV) et les retrovirus de primate (GALV, FSV, BAEV...). Bien entendu, d'autres retrovirus peuvent être mis en oeuvre. Cependant, on préfère tout particulièrement avoir recours au virus MoMLV. Les nombreux vecteurs rétroviraux décrits dans la littérature peuvent être utilisés dans le cadre de la présente invention. Les vecteurs rétroviraux envisageables aux fins de la présente invention comprennent au moins les éléments suivants associés d'une manière fonctionnelle : un LTR 5' et un LTR 3' rétroviraux, un ou plusieurs gène(s) d'intérêt, et la séquence nucléotidique en usage dans le cadre de la présente invention pour permettre ou améliorer l'encapsidation dudit vecteur dans une particule virale
et/ou à titre de site IRES pour permettre ou favoriser l'expression d'un gène d'intérêt positionné en aval de ladite séquence nucléotidique. Il va sans dire que le LTR 5' rétroviral peut être utilisé comme promoteur mais on peut également avoir recours à un promoteur interne. Par ailleurs, le LTR 5' et éventuellement 3' peuvent avoir la même origine rétrovirale (par exemple REV) que la séquence nucléotidique ou une origine différente. Par exemple, un vecteur monocistronique comprendra de 5' vers 3' un LTR 5', la séquence nucléotidique, un gène d'intérêt et un LTR 3'.According to an entirely preferred embodiment, a vector according to the invention derives from a retrovirus. By way of example, mention may be made of avian retroviruses such as avian erythroblastosis virus (AEV), avian leukemia virus (AVL), avian sarcoma virus (ASV), necrosis virus of spleen (SNV) and Rous sarcoma virus (RSV), bovine retroviruses, feline retroviruses (FLV, FSV ....), murine retroviruses such as murine leukemia virus (MuLV), the virus Friend's (FMLV) and murine sarcoma virus (MSV) and primate retroviruses (GALV, FSV, BAEV ...). Of course, other retroviruses can be used. However, we particularly prefer to use the MoMLV virus. The numerous retroviral vectors described in the literature can be used in the context of the present invention. The retroviral vectors which can be envisaged for the purposes of the present invention comprise at least the following elements which are operatively associated: a 5 'LTR and a 3' LTR retroviral, one or more gene (s) of interest, and the nucleotide sequence use in the context of the present invention to allow or improve the packaging of said vector in a viral particle and / or as an IRES site to allow or promote the expression of a gene of interest positioned downstream of said nucleotide sequence. It goes without saying that the retroviral 5 'LTR can be used as a promoter, but an internal promoter can also be used. Furthermore, the 5 ′ and possibly 3 ′ LTR may have the same retroviral origin (for example REV) as the nucleotide sequence or a different origin. For example, a monocistronic vector will comprise from 5 'to 3' a 5 'LTR, the nucleotide sequence, a gene of interest and a 3' LTR.
Bien entendu, un vecteur rétroviral selon l'invention peut également comprendre une région d'encapsidation (E+) conventionnelle. Cependant, la présence de cette dernière n'est pas exigée lorsque la séquence nucléotidique en usage dans la présente invention peut exercer à elle-seule la fonction d'encapsidation. Un tel mode de réalisation peut être plus particulièrement envisagé lorsque le LTR 5' rétroviral dérive d'un virus REV et, de préférence du SNV, et la séquence nucléotidique est substantiellement homologue ou identique à la séquence présentée dans la SEQ ID NO: 2, commençant au nt 1 et se terminant au nt 578 ou commençant au nt 265 et se terminant au nt 578.Of course, a retroviral vector according to the invention can also comprise a conventional (E +) packaging region. However, the presence of the latter is not required when the nucleotide sequence in use in the present invention can alone exercise the packaging function. Such an embodiment can be more particularly envisaged when the retroviral LTR 5 ′ derives from a REV virus and, preferably from SNV, and the nucleotide sequence is substantially homologous or identical to the sequence presented in SEQ ID NO: 2, starting at nt 1 and ending at nt 578 or starting at nt 265 and ending at nt 578.
Selon un mode de réalisation avantageux, un vecteur rétroviral selon l'invention, comprend au moins : (a) un LTR 5' rétroviral,According to an advantageous embodiment, a retroviral vector according to the invention comprises at least: (a) a 5 'retroviral LTR,
(b) une région d'encapsidation,(b) an encapsidation region,
(c) de manière optionnelle, un premier gène d'intérêt suivi d'une région promotrice interne d'une origine différente de celle dudit LTR 5' rétroviral, (d) un second gène d'intérêt,(c) optionally, a first gene of interest followed by an internal promoter region of an origin different from that of said retroviral 5 ′ LTR, (d) a second gene of interest,
(e) un site IRES,(e) an IRES site,
(f) un troisième gène d'intérêt, et(f) a third gene of interest, and
(g) un LTR 3' rétroviral, l'un au moins de la région d'encapsidation et du site IRES étant constitué
par ladite séquence nucléotidique en usage selon l'invention.(g) a 3 ′ retroviral LTR, at least one of the packaging region and of the IRES site being constituted by said nucleotide sequence in use according to the invention.
Dans le cas où le vecteur rétroviral selon l'invention comporte une cassette d'expression dirigée par une région promotrice interne, il est préférable pour favoriser l'expression génique, que celle-ci soit dans une orientation inverse par rapport aux LTRs 5' et 3' rétroviraux. On peut également inclure d'autres éléments, par exemple un autre site IRES et un autre gène d'intérêt ou une autre cassette d'expression.In the case where the retroviral vector according to the invention comprises an expression cassette directed by an internal promoter region, it is preferable to favor the gene expression, that this is in an opposite orientation with respect to the 5 'LTRs and 3 'retrovirals. Other elements can also be included, for example another IRES site and another gene of interest or another expression cassette.
Un vecteur rétroviral préféré selon l'invention comprend une région d'encapsidation dérivant d'un retrovirus murin, notamment d'un MoMLV, ou d'un rétrotransposon de type VL30 et un site IRES comprenant une séquence nucléotidique substantiellement homologue ou identique à la séquence présentée dans l'identificateur de séquence SEQ ID NO: 2 :A preferred retroviral vector according to the invention comprises an encapsidation region deriving from a murine retrovirus, in particular from a MoMLV, or from a VL30 type retrotransposon and an IRES site comprising a nucleotide sequence substantially homologous or identical to the sequence presented in the sequence identifier SEQ ID NO: 2:
(i) commençant au nucleotide 1 et se terminant au nucleotide 578,(i) starting at nucleotide 1 and ending at nucleotide 578,
(ii) commençant au nucleotide 265 et se terminant au nucleotide 578, ou(ii) starting at nucleotide 265 and ending at nucleotide 578, or
(iii) commençant au nucleotide 452 et se terminant au nucleotide 578.(iii) starting at nucleotide 452 and ending at nucleotide 578.
On peut citer en particulier les vecteurs rétroviraux dicistroniques de type pREV HW-3 et HW-6, dans lesquels la région d'encapsidation dérive d'un MoMLV et le site IRES est constitué par une séquence nucléotidique identique à la séquence présentée dans la SEQ ID NO: 2 commençant au nucleotide 265 et se terminant au nucleotide 578 ou commençant au nucleotide 452 et se terminant au nucleotide 578. Bien entendu, l'homme du métier peut faire varier les gènes d'intérêt selon l'effet thérapeutique recherché.Mention may in particular be made of the dicistronic retroviral vectors of the pREV HW-3 and HW-6 type, in which the packaging region derives from a MoMLV and the IRES site consists of a nucleotide sequence identical to the sequence presented in SEQ ID NO: 2 starting at nucleotide 265 and ending at nucleotide 578 or starting at nucleotide 452 and ending at nucleotide 578. Of course, those skilled in the art can vary the genes of interest according to the desired therapeutic effect.
Aux fins de la présente invention, un gène d'intérêt en usage dans l'invention peut être obtenu d'un organisme eucaryote, procaryote ou d'un virus par toute technique conventionnelle de biologie moléculaire. Il peut coder pour un polypeptide correspondant à une protéine native telle que trouvée dans la nature homologue à la cellule hôte ou non, un fragment protéique, une protéine chimérique provenant de la fusion de polypeptides d'origines diverses ou un
mutant présentant des propriétés biologiques améliorées et/ou modifiées. Un tel mutant peut être généré par substitution, délétion et/ou addition d'un ou plusieurs résidus acides aminés. En outre, le polypeptide peut être (i) intracellulaire (ii) membranaire présent à la surface de la cellule hôte ou encore (iii) sécrété hors de la cellule hôte et donc comprendre des éléments additionnels appropriés, comme une séquence codant pour un signal de sécrétion ou une région d'ancrage transmembranaire.For the purposes of the present invention, a gene of interest in use in the invention can be obtained from a eukaryotic or prokaryotic organism or from a virus by any conventional molecular biology technique. It can code for a polypeptide corresponding to a native protein as found in nature homologous to the host cell or not, a protein fragment, a chimeric protein originating from the fusion of polypeptides of various origins or a mutant with improved and / or modified biological properties. Such a mutant can be generated by substitution, deletion and / or addition of one or more amino acid residues. In addition, the polypeptide can be (i) intracellular (ii) membrane present on the surface of the host cell or else (iii) secreted outside the host cell and therefore comprise appropriate additional elements, such as a sequence coding for a signal of secretion or a transmembrane anchoring region.
On préfère tout particulièrement mettre en oeuvre un gène d'intérêt thérapeutique codant pour un produit d'expression capable d'inhiber ou retarder l'établissement et/ou le développement d'une maladie génétique ou acquise. Un vecteur selon l'invention est particulièrement destiné à la prévention ou au traitement de la mucoviscidose, de l'hémophilie A ou B, de la myopathie de Duchenne ou de Becker, du cancer, du SIDA, de maladies cardiovasculaires (resténose, arthériosclérose, ischémie...) et d'autres maladies infectieuses dues à un organisme pathogène : virus, bactérie, parasite ou prion. Les gènes d'intérêt utilisables dans la présente invention, sont ceux qui codent pour les protéines suivantes : une cytokine et notamment une interleukine (IL-2, IL-7, IL- 10, IL- 12...), un interféron, un facteur de nécrose tissulaire et un facteur de croissance et notamment hématopoïétique (G-CSF, GM-CSF), un facteur ou cofacteur impliqué dans la coagulation et notamment le facteur VIII, le facteur IX, le facteur von Willebrand, l'antithrombine III, la protéine C, la thrombine et l'hirudine, une enzyme et notamment la trypsine, une ribonucléase, la phosphatase alcaline (plap) et la β-galactosidase, un inhibiteur d'enzyme tel que l'αl-antitrypsine et les inhibiteurs de protéases virales un produit d'expression d'un gène suicide comme la thymidine kinase du virus HSV (virus de l'herpès) de type 1, celui du gènefiirl
et/ou fcyl de Saccharomyces cerevisiae, la ricine, un activateur ou un inhibiteur de canaux ioniques, une protéine dont l'absence, la modification ou la dérégulation de l'expression est responsable d'une maladie génétique, telle que la protéine CFTR, la dystrophine ou minidystrophine, l'insuline, l'ADAIt is particularly preferred to use a gene of therapeutic interest coding for an expression product capable of inhibiting or delaying the establishment and / or the development of a genetic or acquired disease. A vector according to the invention is particularly intended for the prevention or treatment of cystic fibrosis, hemophilia A or B, Duchenne or Becker's myopathy, cancer, AIDS, cardiovascular diseases (restenosis, arteriosclerosis, ischemia ...) and other infectious diseases due to a pathogenic organism: virus, bacteria, parasite or prion. The genes of interest which can be used in the present invention are those which code for the following proteins: a cytokine and in particular an interleukin (IL-2, IL-7, IL-10, IL-12 ...), an interferon, a tissue necrosis factor and a growth factor and in particular hematopoietic (G-CSF, GM-CSF), a factor or cofactor involved in coagulation and in particular factor VIII, factor IX, von Willebrand factor, antithrombin III , protein C, thrombin and hirudin, an enzyme and in particular trypsin, a ribonuclease, alkaline phosphatase (plap) and β-galactosidase, an enzyme inhibitor such as αl-antitrypsin and inhibitors of viral proteases an expression product of a suicide gene such as thymidine kinase of the HSV virus (herpes virus) type 1, that of the fiirl gene and / or fcyl of Saccharomyces cerevisiae, ricin, an activator or an inhibitor of ion channels, a protein whose absence, modification or deregulation of expression is responsible for a genetic disease, such as the protein CFTR, dystrophin or minidystrophin, insulin, ADA
(adénosine diaminose), la glucocérébrosidase et la phénylhydroxylase, une protéine capable d'inhiber l'initiation ou la progression de cancers, telles que les produits d'expression des gènes supresseurs de tumeurs, par exemple les gènes p53, p73 et Rb, une protéine capable de stimuler une réponse immunitaire, un anticorps, les antigènes du complexe majeur d'histocompatibilité ou une immunotoxine, une protéine capable d'inhiber une infection virale ou son développement, par exemple les épitopes antigéniques du virus en cause ou des variants altérés de protéines virales susceptibles d'entrer en compétition avec les protéines virales natives, un récepteur cellulaire ou nucléaire ou un de leur ligand, un facteur de croissance (FGF pour Fibroblast Growth Factor, VEGF pour Vascular Endothelial cell Growth Factor...), et un inducteur d'apoptose (Bax...), un inhibiteur d'apoptose (Bcl2, BclX...), un agent cytostatique (p21, pl6, Rb...), une nitric oxide synthase (NOS), une apolipoprotéine (apoAI, apoE...), une catalase, une SOD, un facteur agissant sur l'angiogénèse (PAI pour Plasminogen Activator Inhibitor... ) .(adenosine diaminose), glucocerebrosidase and phenylhydroxylase, a protein capable of inhibiting the initiation or progression of cancers, such as the expression products of tumor suppressor genes, for example the p53, p73 and Rb genes, a protein capable of stimulating an immune response, an antibody, the antigens of the major histocompatibility complex or an immunotoxin, a protein capable of inhibiting a viral infection or its development, for example the antigenic epitopes of the virus in question or altered variants of viral proteins likely to compete with native viral proteins, a cellular or nuclear receptor or one of their ligands, a growth factor (FGF for Fibroblast Growth Factor, VEGF for Vascular Endothelial cell Growth Factor ...), and a apoptosis inducer (Bax ...), an apoptosis inhibitor (Bcl2, BclX ...), a cytostatic agent (p21, pl6, Rb ...), a nitric oxide synthase (NOS), a e apolipoprotein (apoAI, apoE ...), a catalase, a SOD, a factor acting on angiogenesis (PAI for Plasminogen Activator Inhibitor ...).
' Par ailleurs, un gène d'intérêt en usage dans la présente invention, peut également coder pour un marqueur de sélection permettant de sélectionner ou identifier les cellules hôtes transfectées par un vecteur selon l'invention. On peut citer le gène néo (néomycine) conferrant une résistance à l'antibiotique G418, le
gène dhjr (dihydrofolate réductase), le gène CAT (Chloramphenicol Acetyl Transférase) ou encore le gène gpt (xanthine phosphoribosyl). 'Furthermore, a use in gene of interest in the present invention may also encode a selectable marker to select or identify the transfected host cell with a vector according to the invention. We can cite the neo gene (neomycin) conferring resistance to the antibiotic G418, dhjr gene (dihydrofolate reductase), the CAT gene (Chloramphenicol Acetyl Transferase) or even the gpt gene (xanthine phosphoribosyl).
D'une manière générale, on aura recours pour l'expression d'un ou des gène(s) d'intérêt à un promoteur fonctionnel dans la cellule hôte considérée et, de préférence, une cellule humaine. Le choix du promoteur est très large et à la portée de l'homme du métier. Il peut s'agir d'un promoteur gouvernant naturellement l'expression d'un gène d'intérêt en usage dans la présente invention ou de tout autre promoteur d'une origine quelconque. Par ailleurs, il peut être de nature constitutive ou régulable, notamment en réponse à certains signaux cellulaires tissu- spécifiques ou événements-spécifiques. Par exemple, il peut être avantageux de cibler l'expression du gène d'intérêt au niveau des cellules lymphocytaires dans le cadre du SIDA, des cellules pulmonaires dans le cadre de la mucoviscidose ou des cellules musculaires dans le cadre des myopathies.In general, use will be made, for the expression of a gene or genes of interest, of a functional promoter in the host cell considered and, preferably, a human cell. The choice of promoter is very wide and within the reach of those skilled in the art. It may be a promoter naturally governing the expression of a gene of interest in use in the present invention or any other promoter of any origin. Furthermore, it can be constitutive or regulable in nature, in particular in response to certain tissue-specific or event-specific cellular signals. For example, it may be advantageous to target the expression of the gene of interest at the level of lymphocyte cells in the context of AIDS, of lung cells in the context of cystic fibrosis or of muscle cells in the context of myopathies.
A titre d'exemples, les promoteurs convenant dans le cadre de la présente invention peuvent être choisis parmi les promoteurs SV40 (Virus Simian 40), CMV (Cytomégalovirus), HMG (Hydroxyméthyl-Glutaryl Coenzyme A), TK (Thymidine kinase), les LTRs rétroviraux comme celui du MoMLV, RSV ou du MSV lorsqu'on met en oeuvre un vecteur rétroviral, les promoteurs adénoviraux El A et tardif MLP (Major Late Promoteur) notamment dans le contexte d'un vecteur adénoviral, les promoteurs 7,5K, H5R, pKlL, p28 et pi 1 destinés à des vecteurs poxviraux comme le virus de la vaccine, le promoteur PGK (Phosphoglycéro kinase), les promoteurs foie-spécifiques des gènes codant pour l'αl-antitrypsine, le facteur IX, l'albumine et la transferrine, les promoteurs des gènes d'immunoglobulines qui permettent une expression dans les lymphocytes, et enfin les promoteurs des gènes codant pour le surfactant ou la protéine CFTR qui présentent une certaine spécificité pour les tissus pulmonaires. Il peut également s'agir d'un promoteur stimulant l'expression dans une cellule tumorale ou cancéreuse. On peut citer notamment les promoteurs des gènes MUC-1 surexprimé dans les cancers du sein et de la prostate (Chen et al., 1995, J. Clin.
Invest. 96, 2775-2782), CEA (pour carcinoma embryonic antigen) surexprimé dans les cancers du colon (Schrewe et al., 1990, Mol. Cell. Biol. 10, 2738-2748), tyrosinase surexprimé dans les mélanomes (Vile et al., 1993, Cancer Res. 53, 3860-3864), ERB-2 surexprimé dans les cancers du sein et du pancréas (Harris et al., 1994, Gène Therapy 1, 170-175), α-fétoprotéine surexprimée dans les cancers du foie (Kanai et al., 1997, Cancer Res. 57, 461-465), APC surexprimé dans les cancers colorectaux, BRCA-1 et 2 (Wooster et al., 1995, Nature 378, 789-792) surexprimés dans les cancers des ovaires et PSA (pour prostate spécifie antigen) surexprimé dans les cancers de la prostate. Par ailleurs, le gène d'intérêt en usage dans la présente invention peut comporter d'autres séquences améliorant son expression, tant au niveau de la transcription que de la traduction ; par exemple une séquence activatrice de la transcription de type enhancer, une séquence intronique, un signal de terminaison de la transcription (polyA) et, comme indiqué précédemment, un signal de sécrétion ou une région transmembranaire.By way of examples, the promoters suitable for the present invention can be chosen from promoters SV40 (Simian 40 virus), CMV (Cytomegalovirus), HMG (Hydroxymethyl-Glutaryl Coenzyme A), TK (Thymidine kinase), Retroviral LTRs such as that of MoMLV, RSV or MSV when a retroviral vector, the adenoviral El A and late MLP (Major Late Promotor) promoters are used, in particular in the context of an adenoviral vector, the 7.5K promoters, H5R, pKlL, p28 and pi 1 intended for poxviral vectors like the vaccinia virus, the promoter PGK (Phosphoglycero kinase), the liver-specific promoters of the genes coding for the alpha-antitrypsin, factor IX, albumin and transferrin, the promoters of the immunoglobulin genes which allow expression in lymphocytes, and finally the promoters of the genes coding for the surfactant or the CFTR protein which have a certain specificity for lung tissues. It can also be a promoter stimulating expression in a tumor or cancer cell. Muc-1 gene promoters overexpressed in breast and prostate cancers can be mentioned in particular (Chen et al., 1995, J. Clin. Invest. 96, 2775-2782), CEA (for carcinoma embryonic antigen) overexpressed in colon cancer (Schrewe et al., 1990, Mol. Cell. Biol. 10, 2738-2748), tyrosinase overexpressed in melanomas (Vile et al ., 1993, Cancer Res. 53, 3860-3864), ERB-2 overexpressed in breast and pancreatic cancers (Harris et al., 1994, Gene Therapy 1, 170-175), α-fetoprotein overexpressed in cancers liver (Kanai et al., 1997, Cancer Res. 57, 461-465), APC overexpressed in colorectal cancers, BRCA-1 and 2 (Wooster et al., 1995, Nature 378, 789-792) overexpressed in ovarian cancer and PSA (for prostate specifies antigen) overexpressed in prostate cancer. Furthermore, the gene of interest in use in the present invention may comprise other sequences improving its expression, both at the level of transcription and of translation; for example an enhancer-type transcription activating sequence, an intronic sequence, a transcription termination signal (polyA) and, as indicated above, a secretion signal or a transmembrane region.
L'invention couvre également les particules virales générées à partir d'un vecteur viral selon l'invention. On procède généralement par transfection de celui- ci dans une lignée cellulaire adéquate. Si le vecteur viral utilisé est défectif pour la réplication, on aura recours à une lignée de complémentation. D'une manière générale, l'homme du métier connaît les lignées pouvant être employées pour générer des particules virales infectieuses ainsi que le procédé à mettre en oeuvre selon le vecteur utilisé.The invention also covers the viral particles generated from a viral vector according to the invention. This is generally done by transfection of the latter into a suitable cell line. If the viral vector used is defective for replication, a complementation line will be used. In general, a person skilled in the art knows the lines that can be used to generate infectious viral particles as well as the process to be implemented according to the vector used.
Par exemple, dans le cas d'un vecteur adénoviral, on peut avoir recours à la lignée 293 (Graham et al., 1977, J. Gen. Virol., 36, 59-72). S'agissant d'un vecteur rétroviral, on peut envisager d'employer des lignées cellulaires écotropes, comme la lignée CRE (Danos et Mulligan, 1988, Proc. Natl. Acad. Sci. USA, 85, 6460-6464) ou GP+E-86 (Markowitz et al., 1988, J. Virol., 62, 1120-1124). Mais on préfère tout particulièrement mettre en oeuvre une lignée de complémentation amphotrope telle que la lignée PG13 (Miller et al., 1991, J. Virol., 65, 2220-2224)
ou Psi Env-am (Markowitz et al., 1988, T.A.A.P. Vol. CI, 212-218). Généralement, on récupère les particules virales infectieuses dans le surnageant de culture des cellules de complémentation transfectées.For example, in the case of an adenoviral vector, use may be made of line 293 (Graham et al., 1977, J. Gen. Virol., 36, 59-72). Being a retroviral vector, one can consider using ecotropic cell lines, such as the CRE line (Danos and Mulligan, 1988, Proc. Natl. Acad. Sci. USA, 85, 6460-6464) or GP + E-86 (Markowitz et al., 1988, J. Virol., 62, 1120-1124). However, it is particularly preferred to use an amphotropic complementation line such as the PG13 line (Miller et al., 1991, J. Virol., 65, 2220-2224) or Psi Env-am (Markowitz et al., 1988, TAAP Vol. CI, 212-218). Generally, the infectious viral particles are recovered in the culture supernatant of the transfected complementation cells.
L'invention s'étend également aux cellules comprenant un vecteur selon l'invention ou infectées par des particules virales infectieuses selon l'invention. Les méthodes de transfection sont bien connues de l'homme de l'art. On peut citer la technique de précipitation au phosphate de calcium, celle au DEAE dextrane, la microinjection ou l'encapsulation dans des véhicules lipidiques. D'autre part, les vecteurs selon l'invention peuvent être présents dans la cellule hôte sous forme intégrée dans le génome cellulaire ou sous forme d'épisomes aussi bien dans le noyau que dans le cytoplasme. La cellule selon l'invention est avantageusement une cellule eucaryote, notamment mammifère et, de préférence, une cellule humaine. Il peut s'agir d'une cellule primaire ou tumorale d'une origine hématopoïétique (cellule souche totipotente, leucocyte, lymphocyte, monocyte, macrophage ...), hépatique, épithéliale, fibroblaste, du système nerveux central et, tout particulièrement, d'une cellule musculaire (myoblaste, myocyte, cellule satellite, muscle lisse...), cardiaque, vasculaire, trachéale, pulmonaire ou du système nerveux central.The invention also extends to cells comprising a vector according to the invention or infected with infectious viral particles according to the invention. The transfection methods are well known to those skilled in the art. Mention may be made of the calcium phosphate precipitation technique, that of DEAE dextran, microinjection or encapsulation in lipid vehicles. On the other hand, the vectors according to the invention can be present in the host cell in a form integrated into the cell genome or in the form of episomes both in the nucleus and in the cytoplasm. The cell according to the invention is advantageously a eukaryotic cell, in particular a mammalian cell and, preferably, a human cell. It can be a primary or tumor cell of hematopoietic origin (totipotent stem cell, leukocyte, lymphocyte, monocyte, macrophage ...), hepatic, epithelial, fibroblast, of the central nervous system and, in particular, d '' a muscle cell (myoblast, myocyte, satellite cell, smooth muscle ...), cardiac, vascular, tracheal, pulmonary or central nervous system.
La présente invention concerne également l'usage thérapeutique d'un vecteur, d'une particule virale ou d'une cellule selon l'invention, pour la préparation d'une composition pharmaceutique destinée au traitement et/ou à la prévention d'une maladie traitable par thérapie génique, notamment d'une maladie génétique, d'une maladie acquise comme le cancer ou d'une maladie infectieuse.The present invention also relates to the therapeutic use of a vector, a viral particle or a cell according to the invention, for the preparation of a pharmaceutical composition intended for the treatment and / or prevention of a disease. treatable by gene therapy, including a genetic disease, an acquired disease such as cancer or an infectious disease.
Cependant, un tel usage n'est pas limité à une application de type thérapie génique somatique. En particulier, un vecteur selon l'invention peut être utilisé à d'autres fins comme la production par voie recombinante dans des cellules procàryotes ou eucaryotes de produit(s) d'expression codé(s) par au moins un des gènes d'intérêt. Par exemple, on peut envisager la coexpression de deux gènes d'intérêt dans un vecteur d'expression dicistronique utilisant une séquence
nucléotidique selon l'invention. La coexpression d'un gène de résistance à un antibiotique à titre de second cistron peut permettre d'augmenter l'expression d'un premier cistron. Il est possible d'obtenir un produit mature par la coexpression de deux gènes dont le produit d'expression de l'un permet la maturation du polypeptide codé par l'autre (par exemple précurseur polypeptidique et une protéase clivant le précurseur en polypeptide mature). Dans ce cas, on peut avoir recours à des cellules procàryotes (E.coli ...), eucaryotes inférieures (levure, champignon, insecte ...) ou animales. Il s'agira ensuite de récolter et éventuellement purifier ledit produit d'expression d'intérêt du surnageant ou de la culture cellulaire par les techniques conventionnelles. Une autre possibilité d'utilisation consiste en la production d'animaux transgéniques ayant intégré dans leur génome une cassette pour l'expression d'un ou plusieurs gènes d'intérêt et comprenant une séquence nucléotidique selon l'invention. Il peut s'agir de souris, rats, lapins, poissons, primates ou d'animaux de ferme (bovins, ovins, porcins ...) Les techniques pour générer ces animaux transgéniques sont connues. Le polypeptide d'intérêt peut être récupéré de manière conventionnelle par exemple dans les fluides biologiques (sang, lait ... etc) de l'animal.However, such use is not limited to an application of the somatic gene therapy type. In particular, a vector according to the invention can be used for other purposes such as the recombinant production in prokaryotic or eukaryotic cells of expression product (s) encoded by at least one of the genes of interest. . For example, it is possible to envisage the coexpression of two genes of interest in a dicistronic expression vector using a sequence nucleotide according to the invention. The coexpression of an antibiotic resistance gene as a second cistron can make it possible to increase the expression of a first cistron. It is possible to obtain a mature product by the coexpression of two genes whose expression product of one allows the maturation of the polypeptide encoded by the other (for example polypeptide precursor and a protease cleaving the precursor into mature polypeptide) . In this case, we can use prokaryotic (E. coli ...), lower eukaryotic (yeast, fungus, insect ...) or animal cells. It will then be a question of harvesting and possibly purifying said expression product of interest of the supernatant or of cell culture by conventional techniques. Another possibility of use consists in the production of transgenic animals which have integrated into their genome a cassette for the expression of one or more genes of interest and comprising a nucleotide sequence according to the invention. It can be mice, rats, rabbits, fish, primates or farm animals (cattle, sheep, pigs ...) The techniques for generating these transgenic animals are known. The polypeptide of interest can be recovered in a conventional manner, for example in the biological fluids (blood, milk, etc.) of the animal.
L'invention s'adresse également à une composition pharmaceutique comprenant à titre d'agent thérapeutique ou prophylactique un vecteur, une particule virale ou une cellule selon l'invention ou un polypeptide d'intérêt obtenu conformément à l'utilisation selon l'invention, en association avec un véhicule acceptable d'un point de vue pharmaceutique.The invention also relates to a pharmaceutical composition comprising, as therapeutic or prophylactic agent, a vector, a viral particle or a cell according to the invention or a polypeptide of interest obtained in accordance with the use according to the invention, in combination with a pharmaceutically acceptable vehicle.
Une composition pharmaceutique selon l'invention peut être fabriquée de manière conventionnelle. En particulier, on associe une quantité thérapeutiquement efficace d'un tel agent à un support, un diluant ou un adjuvant acceptable. Elle peut être administrée selon n'importe quelle route d'administration et ceci en dose unique ou répétée après un certain délai d'intervalle. On préférera notamment l'administration intraveineuse, intramusculaire, intrapulmonaire (éventuellement par aérosolisation) ou intratumorale. La quantité à administrer
sera choisie en fonction de différents critères, en particulier l'usage à titre de traitement ou de vaccin, la voie d'administration, le patient, le type de maladie à traiter et son état d'évolution, la durée du traitement, le vecteur retenu ...etc. A titre indicatif, une composition pharmaceutique selon l'invention comprend entre 104 et 1014 pfu (unité formant des plages), avantageusement entre 105 et 1013 pfu et, de préférence, entre 106 et 10" pfu de particules virales. Une composition à base de vecteur peut être formulée sous forme de doses comprenant de 0,01 à 100 mg d'ADN, de préférence, de 0,05 à 10 mg et, de manière tout à fait préférée, de 0,1 à 5 mg. La formulation peut également inclure seul ou en combinaison un diluant, un adjuvant ou un excipient acceptable d'un point de vue pharmaceutique, de même qu'un agent de solubilisation, de stabilisation ou de conservation. La composition peut être présentée en dose unique ou en multidoses sous forme liquide ou sèche (lyophilisât...) susceptible d'être reconstituée de manière extamporanée par un diluant approprié.A pharmaceutical composition according to the invention can be manufactured in a conventional manner. In particular, a therapeutically effective amount of such an agent is combined with an acceptable carrier, diluent or adjuvant. It can be administered according to any route of administration and this in a single or repeated dose after a certain time interval. In particular, intravenous, intramuscular, intrapulmonary (possibly aerosolized) or intratumoral administration is preferred. The amount to be administered will be chosen according to different criteria, in particular the use as treatment or vaccine, the route of administration, the patient, the type of disease to be treated and its state of evolution, the duration of treatment, the vector retained ... etc. As an indication, a pharmaceutical composition according to the invention comprises between 10 4 and 10 14 pfu (unit forming plaques), advantageously between 10 5 and 10 13 pfu and, preferably, between 10 6 and 10 "pfu of viral particles. A vector-based composition can be formulated as doses comprising from 0.01 to 100 mg of DNA, preferably from 0.05 to 10 mg and, most preferably, from 0.1 to 5 The formulation can also include, alone or in combination, a pharmaceutically acceptable diluent, adjuvant or excipient, as well as a solubilizing, stabilizing or preserving agent. single or in multiple doses in liquid or dry form (lyophilisate ...) capable of being reconstituted extamporanally with an appropriate diluent.
Par ailleurs, l'invention concerne une méthode de traitement de maladies génétiques, cancers et maladies infectieuses selon laquelle on administre une quantité thérapeutiquement efficace d'un vecteur, d'une particule virale ou d'une cellule selon l'invention à un patient ayant besoin d'un tel traitement. Selon un premier protocole thérapeutique, on peut les administrer directement in vivo, par exemple par injection intraveineuse, intramusculaire, intratumorale ou par aérosolisation dans les poumons. De manière alternative, on peut adopter un protocole de thérapie génique ex vivo qui consiste à prélever les cellules d'un patient (cellules souches de la moelle osseuse, lymphocytes du sang périphérique...), à les transfecter avec un vecteur selon l'invention et à les cultiver in vitro avant de les réimplanter au patient.Furthermore, the invention relates to a method of treatment of genetic diseases, cancers and infectious diseases according to which a therapeutically effective amount of a vector, a viral particle or a cell according to the invention is administered to a patient having need such treatment. According to a first therapeutic protocol, they can be administered directly in vivo, for example by intravenous, intramuscular, intratumoral injection or by aerosolization in the lungs. Alternatively, one can adopt an ex vivo gene therapy protocol which consists in removing the cells from a patient (stem cells from the bone marrow, peripheral blood lymphocytes, etc.), transfecting them with a vector according to the invention and cultivating them in vitro before re-implanting them in the patient.
Enfin, l'invention concerne l'utilisation d'un vecteur, d'une particule virale ou d'une composition pharmaceutique selon l'invention pour la transfection ou l'infection de cellules pluripotentes, notamment de cellules pluripotentes du
système nerveux central.Finally, the invention relates to the use of a vector, a viral particle or a pharmaceutical composition according to the invention for the transfection or infection of pluripotent cells, in particular pluripotent cells of the central nervous system.
L'invention est illustrée ci-après par référence aux figures suivantes. La Figure 1 est une représentation schématique des plasmides monocistroniques utilisés comme matrices pour la synthèse in vitro d' ARN coiffés et non-coiffés. Ils contiennent le promoteur précoce du cytomégalovirus (Po CMV) utilisable pour l'expression in vivo, le promoteur du gène codant pour l'ARN polymérase du phage T7 (Po T7) utilisable pour les expériences in vitro, différentes portions de l'extrémité 5' non traduite (leader) du virus REV-A (1 à 578 pour pREV CB-95, 578 à 1 pour pREV CG-53, 1 à 578 délétées des nt 268 à 452 pour pREV CG-54, 265 à 578 pour pREV CG-55 et 452 à 578 pour pREV CG-56) et le gène LacZ (ΔLacZ) codant pour une β-galactosidase tronquée à l'extrémité C-terminale de masse moléculaire d'environ 46 kDa.The invention is illustrated below with reference to the following figures. Figure 1 is a schematic representation of the monocistronic plasmids used as templates for the in vitro synthesis of capped and non-capped RNAs. They contain the early cytomegalovirus (Po CMV) promoter usable for expression in vivo, the promoter of the gene coding for phage T7 RNA polymerase (Po T7) usable for in vitro experiments, different portions of the 5 end '' untranslated (leader) of the REV-A virus (1 to 578 for pREV CB-95, 578 to 1 for pREV CG-53, 1 to 578 deleted from nt 268 to 452 for pREV CG-54, 265 to 578 for pREV CG-55 and 452 to 578 for pREV CG-56) and the LacZ gene (ΔLacZ) coding for a truncated β-galactosidase at the C-terminal end with a molecular mass of approximately 46 kDa.
La Figure 2 est une représentation schématique des plasmides dicistroniques utilisés comme matrices pour la synthèse in vitro d'ARN coiffés et non-coiffés. Ils contiennent le promoteur précoce du cytomégalovirus (Po CMV) utilisable pour l'expression in vivo, le promoteur du gène codant pour l'ARN polymérase du phage T7 (Po T7) utilisable pour les expériences in vitro, le gène neo, différentes portions de l'extrémité 5' non traduite (leader) du virus REV-A (1 à 578 pour pREV CB-54, 578 à 1 pour pREV CG-50, 1 à 578 délétées des nt 268 à 452 pour pREV CG-52, 265 à 578 pour pREV CB-55 et 452 à 578 pour pREV CG-58) et le gène LacZ (ΔLacZ) codant pour une β-galactosidase tronquée à l'extrémité C-terminale de masse moléculaire d'environ 46 kDa.Figure 2 is a schematic representation of the dicistronic plasmids used as templates for the in vitro synthesis of capped and uncapped RNA. They contain the early cytomegalovirus promoter (Po CMV) usable for expression in vivo, the promoter of the gene coding for phage T7 RNA polymerase (Po T7) usable for in vitro experiments, the neo gene, different portions of the 5 'untranslated end (leader) of the REV-A virus (1 to 578 for pREV CB-54, 578 to 1 for pREV CG-50, 1 to 578 deleted from nt 268 to 452 for pREV CG-52, 265 to 578 for pREV CB-55 and 452 to 578 for pREV CG-58) and the LacZ gene (ΔLacZ) coding for a truncated β-galactosidase at the C-terminal end with a molecular mass of approximately 46 kDa.
La Figure 3 A est une représentation schématique des vecteurs rétroviraux dicistroniques possédant deux éléments d'origine rétrovirale différente, à titre d'IRES et de région d'encapsidation (E) et deux gènes d'intérêt comme les gènes rapporteurs plap codant pour la phosphatase alcaline placentaire et neo codant pour la néomycine phosphotransférase. B) Vecteurs rétroviraux de la série pREV HW possédant des LTRs dérivés de MLV et placés dans un contexte plasmidique pBR322. VL30E+ correspond à la région 5' non traduite de HaMSV et MoMLV
E+ correspond à la région d'encapsidation de MoMLV. C) Vecteur de référence pEMCV-CBTV ayant des LTR et la région d'encapsidation de MoMLV et 1TRES de EMCV. Dans tous les cas, les séquences sont numérotées par rapport au site cap (position +1) de l'ARN génomique. La Figure 4 illustre l'effet de la rapamycine sur les activités A) phosphatase alcaline et B) néomycine phosphotransférase produites dans les cellules GP+E-86 non transfectées ou transfectées de manière stables par les différents vecteurs pREV HW ou pEMCV-CBTV (pCBlOO) et traitées par la rapamycine (boîtes pleines) ou non traitées (contrôle, boîtes pointillées). La Figure 5 illustre l'optimisation du protocole de transduction appliqué aux cellules neuroectodermales Dev. Le pourcentage de cellules Dev transduites par les virus pEMCV-CBTV (IRES EMCV) et pREV HW-3 (IRES REV-A) est déterminé par cytométrie de flux.Figure 3A is a schematic representation of the dicistronic retroviral vectors having two elements of different retroviral origin, as IRES and packaging region (E) and two genes of interest such as the reporter genes coding for phosphatase alkaline placenta and neo coding for neomycin phosphotransferase. B) Retroviral vectors of the pREV HW series possessing LTRs derived from MLV and placed in a plasmid context pBR322. VL30E + corresponds to the 5 'untranslated region of HaMSV and MoMLV E + corresponds to the packaging region of MoMLV. C) Reference vector pEMCV-CBTV having LTRs and the packaging region of MoMLV and 1RES of EMCV. In all cases, the sequences are numbered with respect to the cap site (position +1) of the genomic RNA. Figure 4 illustrates the effect of rapamycin on the activities A) alkaline phosphatase and B) neomycin phosphotransferase produced in GP + E-86 cells not transfected or stably transfected by the different vectors pREV HW or pEMCV-CBTV (pCBlOO ) and treated with rapamycin (full boxes) or not treated (control, dotted boxes). Figure 5 illustrates the optimization of the transduction protocol applied to Dev neuroectodermal cells. The percentage of Dev cells transduced by the pEMCV-CBTV (IRES EMCV) and pREV HW-3 viruses (IRES REV-A) is determined by flow cytometry.
EXEMPLESEXAMPLES
Les constructions ci-après décrites sont réalisées selon les techniques générales de génie génétique et de clonage moléculaire détaillées dans Sambrook et al. (1989, Molecular cloning : A Laboratory Manual, 2nd εd, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) ou selon les recommandations du fabricant lorsqu'on utilise un kit commercial. Les techniques de PCR sont connues de l'homme de l'art et abondamment décrites dans PCR Protocols, a guide to methods and applications (Ed : Innis, Gelfand, Sninsky et White, Académie Press, Inc.). Les amplifications d'ADN plasmidique sont réalisées dans Eschenchia coli HB101 souche 1035 (recA). Par ailleurs, la position des séquences REV-A utilisées dans les constructions est indiquée par référence à la molécule ARN, la position + 1 correspondant au premier nucleotide de la molécule d'ARN, c'est à dire au site d'initiation de la transcription (Darlix et al., 1992, J. Virol. 66: 7245-7252).
EXEMPLE 1 : Identification d'un site IRES au niveau de l'extrémité 5' leader de l'ARN de REV-A.The constructions described below are carried out according to the general techniques of genetic engineering and molecular cloning detailed in Sambrook et al. (1989, Molecular cloning: A Laboratory Manual, 2nd εd, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) or according to the manufacturer's recommendations when using a commercial kit. PCR techniques are known to those skilled in the art and extensively described in PCR Protocols, a guide to methods and applications (Ed: Innis, Gelfand, Sninsky and White, Académie Press, Inc.). Amplifications of plasmid DNA are carried out in Eschenchia coli HB101 strain 1035 (recA). Furthermore, the position of the REV-A sequences used in the constructions is indicated by reference to the RNA molecule, the position + 1 corresponding to the first nucleotide of the RNA molecule, that is to say at the site of initiation of the transcription (Darlix et al., 1992, J. Virol. 66: 7245-7252). EXAMPLE 1: Identification of an IRES site at the 5 ′ end of the REV-A RNA.
Des études de synthèse protéique in vitro ont été entreprises à l'aide d'une série de plasmides mono et dicistroniques contenant des fragments du leader 5' de l'ARN génomique REV-A afin de rechercher s'ils permettent la traduction de cistrons par liaison interne des ribosomes.In vitro protein synthesis studies have been undertaken using a series of mono and dicistronic plasmids containing fragments of the 5 'leader of the REV-A genomic RNA in order to determine whether they allow the translation of cistrons by internal binding of ribosomes.
1. Construction des plasmides mono et dicistroniques .1. Construction of mono and dicistronic plasmids.
Les fragments d'ADN correspondant aux séquences 1 à 578, 265 à 578 et 452 à 578 de l'ARN REV-A sont isolés par PCR à partir de la matrice pREVSC-1 (Darlix et al., 1992, J. Virol. 66, 7245-7252). On utilise des amorces appropriées que l'homme du métier peut concevoir, munies à leurs extrémités d'un site Mzel. Après digestion par cette enzyme, les fragments PCR sont insérés en amont du gène LacZ dans le vecteur pEMCV-M260-837 (Berlioz et al. , 1995, J. Virol. 69, 6400-6407) préalablement clivé par Nhel. Le gène LacZ mis en oeuvre code pour un produit β-galactosidase tronqué à l'extrémité C-terminale. On obtient les plasmides monocistroniques pREV CB-95 (1-578), pREV CG-55 (265-578) et pREV CG-56 (452-578) illustrés à la Figure 1. Les plasmides dicistroniques pREV CB-54 (1-578), pREV CB-55 (265-578) et pREV CG-58 (452-578) sont représentés à la Figure 2 et résultent de l'insertion des fragments PCR précédents entre les gènes neo et LacZ de pEMCV-D260-837 (pCBlOl) (Berlioz et al., 1995, J. Virol. 69, 6400-6407) également soumis à une digestion par Nhel. L'amplification des nt 1 à 578 délétés des séquences 268 à 452 est réalisée à partir du vecteur pREVSC-1 préalablement digéré par Kpnl et Sα , traité par le fragment Klenow de l'ADΝ polymérase d'E. coli et religué. Le fragment amplifié digéré par Mzel est clone dans pEMCV-M260-837 en amont du gène LacZ ou entre les gènes neo et LacZ de pEMCV-D260-837, les
deux vecteurs ayant été digérés par Mzel, pour donner respectivement pREV CG-54 (Fig 1) et pREV CG-52 (Fig 2). Enfin des plasmides contrôles monocistronique pREV CG-53 (Fig 1) et dicistronique pREV CG-50 (Fig 2) ont été construits par introduction du fragment PCR portant les séquences REV-A l à 578 dans les vecteurs précédents en orientation inverse (578-1). Dans l'ensemble des constructions contenant les séquences REV-A en orientation sens, l'initiation de la traduction de la β-galactosidase est sous le contrôle du codon AUG du gène gag de REV-A situé en position 574-576, alors que dans les plasmides contrôles, la synthèse de la β-galactosidase dépend d'un AUG placé dans un contexte de Kozak favorable introduit par PCR.The DNA fragments corresponding to sequences 1 to 578, 265 to 578 and 452 to 578 of the REV-A RNA are isolated by PCR from the pREVSC-1 template (Darlix et al., 1992, J. Virol. 66, 7245-7252). Appropriate primers are used that a person skilled in the art can design, provided at their ends with a Mzel site. After digestion with this enzyme, the PCR fragments are inserted upstream of the LacZ gene in the vector pEMCV-M260-837 (Berlioz et al., 1995, J. Virol. 69, 6400-6407) previously cleaved by Nhel. The LacZ gene used codes for a truncated β-galactosidase product at the C-terminal end. The monocistronic plasmids pREV CB-95 (1-578), pREV CG-55 (265-578) and pREV CG-56 (452-578) are obtained, illustrated in Figure 1. The dicistronic plasmids pREV CB-54 (1- 578), pREV CB-55 (265-578) and pREV CG-58 (452-578) are shown in Figure 2 and result from the insertion of the previous PCR fragments between the neo and LacZ genes of pEMCV-D260-837 (pCBlOl) (Berlioz et al., 1995, J. Virol. 69, 6400-6407) also subjected to digestion with Nhel. Amplification of nt 1 to 578 deleted from sequences 268 to 452 is carried out using the vector pREVSC-1 previously digested with Kpnl and Sα, treated with the Klenow fragment of AD de polymerase from E. coli and religious. The amplified fragment digested by Mzel is cloned in pEMCV-M260-837 upstream of the LacZ gene or between the neo and LacZ genes of pEMCV-D260-837, the two vectors having been digested with Mzel, to give respectively pREV CG-54 (Fig 1) and pREV CG-52 (Fig 2). Finally, monistristrum control plasmids pREV CG-53 (Fig 1) and dicistronic pREV CG-50 (Fig 2) were constructed by introduction of the PCR fragment carrying the sequences REV-A l to 578 in the previous vectors in reverse orientation (578- 1). In all of the constructions containing the REV-A sequences in sense orientation, the initiation of the translation of β-galactosidase is under the control of the AUG codon of the gag gene of REV-A located at position 574-576, while in the control plasmids, the synthesis of β-galactosidase depends on an AUG placed in a favorable Kozak context introduced by PCR.
2. Synthèse d 'ARN et traduction in vitro.2. Synthesis of RNA and in vitro translation.
Les ARN coiffés et non coiffés sont synthétisés à partir de 1 μg d'ADN plasmidique linéarisé par Sspl (position 1240 dans le gène LacZ) à l'aide de l'ARN polymérase T7 (mMessage mMachine ou MAXIscript , Ambion) dans un volume réactionnel de 20 μl selon le protocole indiqué par le fournisseur. La transcription est stoppée par traitement de la matrice ADN par l'enzyme DNasel suivi d'une précipitation des ARN en présence de chlorure de lithium. Les ARN sont repris dans 50 μl de tampon TE (Tris-HCl 10 mM pH7,5, EDTA ImM) avant d'être purifiés et désalés par passage sur une colonne S-300 MicroSpin™ (Pharmacia BioTech) selon les indications du fournisseur. L'intégrité des ARN transcrits est vérifiée par électrophorèse sur gel d'agarose 0,7 % contenant du bromure d'éthidium (0,5 μg/ml). La concentration finale en ARN est déterminée spectrophotométriquement. Les ARN coiffés et non coiffés (10 μg/ml) sont traduits dans le système cellulaire RRL (Promega) utilisé à 50 % de sa concentration initiale en présence de 1 mCi de [35S] méthionine par ml (Amersham) à 31 °C pendant 1 h. Le mélange réactionnel est supplémenté par de l'acétate de potassium à une concentration finale de 120 mM. Par ailleurs, l'ARN luciférase est testé dans les
mêmes conditions réactionnelles (témoin positif). Un essai mené en absence d'ARN constitue le témoin négatif. En parallèle, on teste l'effet de la protéase L du virus FMDV (Foot and mouth disease virus) sur la traduction des ARN dicistroniques. Cette protéase clive le facteur d'initiation de la traduction eIF4G entre la glycine en position 479 et l'arginine en position 480 pour générer deux fragments peptidiques dépourvus d'activité initiatrice (Kirchweger et al., 1995, J. Virol. 68, 5677-5684). En outre, Ohlmann et al. (1995, Nucleic Acid Res. 23, 334-340 ; 1996, EMBO J. 15, 1371-1382) a montré que le traitement des lysats de réticulocyte par la protéase L inhibe la traduction in vitro des ARN cellulaires coiffés alors que l'initiation interne dirigée par 1TRES du cardiovirus n'est pas touchée. Ainsi si un élément IRES existe dans le leader 5' REV-A, la présence de la protéase L ne devrait pas affecter l'expression du cistron dont la traduction est sous sa dépendance. Dans ce cas, les essais mettent en oeuvre le système RRL Flexi (Promega) à 50 % de sa concentration initiale, 8 μg/ml d'ARN, 1 mCi de [35S] méthionine par ml (Amersham) et 30 ng de protéase L recombinante et purifiée par les méthodes conventionnelles. Le mélange réactionnel est supplémenté par du chlorure de potassium à une concentration finale de 80 mM. La réaction est poursuivie à 31 °C pendant 1 h.The capped and uncapped RNAs are synthesized from 1 μg of plasmid DNA linearized by Sspl (position 1240 in the LacZ gene) using T7 RNA polymerase (mMessage mMachine or MAXIscript, Ambion) in a reaction volume 20 μl according to the protocol indicated by the supplier. Transcription is stopped by treatment of the DNA matrix with the enzyme DNasel followed by precipitation of the RNAs in the presence of lithium chloride. The RNAs are taken up in 50 μl of TE buffer (10 mM Tris-HCl pH7.5, EDTA ImM) before being purified and desalted by passage through an S-300 MicroSpin ™ column (Pharmacia BioTech) according to the supplier's instructions. The integrity of the transcribed RNAs is verified by electrophoresis on 0.7% agarose gel containing ethidium bromide (0.5 μg / ml). The final RNA concentration is determined spectrophotometrically. The capped and uncapped RNAs (10 μg / ml) are translated into the RRL cellular system (Promega) used at 50% of its initial concentration in the presence of 1 mCi of [ 35 S] methionine per ml (Amersham) at 31 ° C. for 1 hour. The reaction mixture is supplemented with potassium acetate to a final concentration of 120 mM. Furthermore, RNA luciferase is tested in same reaction conditions (positive control). A test carried out in the absence of RNA constitutes the negative control. In parallel, we tested the effect of the L and FMDV (Foot and mouth disease virus) protease on the translation of dicistronic RNAs. This protease cleaves the eIF4G translation initiation factor between glycine at position 479 and arginine at position 480 to generate two peptide fragments lacking initiating activity (Kirchweger et al., 1995, J. Virol. 68, 5677 -5684). In addition, Ohlmann et al. (1995, Nucleic Acid Res. 23, 334-340; 1996, EMBO J. 15, 1371-1382) has shown that the treatment of reticulocyte lysates by protease L inhibits the in vitro translation of capped cellular RNAs while the internal initiation directed by 1TRE of the cardiovirus is not affected. Thus if an IRES element exists in the 5 ′ leader REV-A, the presence of protease L should not affect the expression of the cistron whose translation is dependent on it. In this case, the tests use the RRL Flexi system (Promega) at 50% of its initial concentration, 8 μg / ml of RNA, 1 mCi of [ 35 S] methionine per ml (Amersham) and 30 ng of protease L recombinant and purified by conventional methods. The reaction mixture is supplemented with potassium chloride to a final concentration of 80 mM. The reaction is continued at 31 ° C for 1 h.
Les échantillons sont dénaturés par la chaleur dans 62,5 mM de Tris-HCl pH6,8, 2 % de sodium dodecyl sulphate (SDS), 10 % de glycérol, 5 % de β- mercaptoéthanol et 0,02 % de bleu de bromophénol et les protéines marquées analysées par électrophorèse sur gel de polyacrylamide 12 % (poids/vol), 0,2 % SDS. Le produit du gène neo et la β-galactosidase migrent à une masse moléculaire d'environ 28 et 46 kDa respectivement. L'efficacité de la traduction coiffe-dépendante et indépendante est quantifiée par scanographie (Phospho- Imageύr Storm 840, version 4.00, Molecular Dynamics ; Image Quant ™ version 1.1, Molecular Dynamics). Dans le cas des vecteurs dicistroniques, l'intensité du marquage du produit d'expression du second cistron (β- galactosidase) dont la traduction est médiée par PIRES est évaluée après
standardisation du niveau d'expression du produit neo.The samples are heat denatured in 62.5 mM Tris-HCl pH 6.8, 2% sodium dodecyl sulphate (SDS), 10% glycerol, 5% β-mercaptoethanol and 0.02% bromophenol blue and the labeled proteins analyzed by electrophoresis on polyacrylamide gel 12% (weight / vol), 0.2% SDS. The neo gene product and β-galactosidase migrate at a molecular mass of approximately 28 and 46 kDa respectively. The efficiency of the cap-dependent and independent translation is quantified by CT scan (Phospho-Imageύr Storm 840, version 4.00, Molecular Dynamics; Image Quant ™ version 1.1, Molecular Dynamics). In the case of dicistronic vectors, the intensity of the labeling of the expression product of the second cistron (β-galactosidase) whose translation is mediated by PIRES is evaluated after standardization of the level of expression of the neo product.
On observe que la traduction des ARN non coiffés obtenus à partir des plasmides monocistroniques pREV CB-95, pREV CG-53, pREV CG-54, pREV CG-55 et pREV CG-56 est aussi efficace que celle des ARN coiffés. Cependant, comme attendu, la quantité de β-galactosidase générée à partir du plasmide pREV CG-53 dans lequel les séquences REV-A (1 à 578) sont en orientation antisens est beaucoup plus faible que celle obtenue avec les constructions utilisant une séquence REV-A dans l'orientation sens. Lorsque les fragments REV-A sont mis en oeuvre d'une manière dicistronique entre les gènes neo et LacZ, l'expression de la β-galactosidase n'apparaît qu'en présence d'un IRES fonctionnel (pREV CB-54, pREV CB-55, et pREV CG-52) alors que celle du premier cistron (neo) est efficace dans tous les cas (y compris pREV CG-50). Des essais compatifs de traduction in vitro menés avec les vecteurs précédents et le plasmide pEMCV-D260-837 comprenant TIRES EMCV de référence montrent que les fragments REV-A 1-578, 265-578 et 452-578 sont capables d'initier la traduction du second cistron d'une manière plus efficace que celle dirigée par TIRES EMCV. Par ailleurs, le traitement des lysats de réticulocytes par la protéase L s'accompagne d'une inhibition de l'expression coiffe- dépendante du gène neo alors que l'expression de la β-galactosidase dépendante de TIRES est sensiblement augmentée. Pour le témoin pREV CG-50, on observe également l'inhibition de l'expression neo alors que l'expression de la β- galactosidase est à peine détectable que le traitement à la protéase L ait lieu ou non. A titre indicatif, l'effet de la protéase sur l'expression des deux gènes rapporteurs est illustré ci-après.It is observed that the translation of the non-capped RNAs obtained from the monocistronic plasmids pREV CB-95, pREV CG-53, pREV CG-54, pREV CG-55 and pREV CG-56 is as efficient as that of the capped RNAs. However, as expected, the amount of β-galactosidase generated from the plasmid pREV CG-53 in which the REV-A sequences (1 to 578) are in antisense orientation is much lower than that obtained with the constructions using a REV sequence -A in sense orientation. When the REV-A fragments are implemented in a dicistronic manner between the neo and LacZ genes, the expression of β-galactosidase only appears in the presence of a functional IRES (pREV CB-54, pREV CB -55, and pREV CG-52) while that of the first cistron (neo) is effective in all cases (including pREV CG-50). Compative in vitro translation tests carried out with the preceding vectors and the plasmid pEMCV-D260-837 comprising TIRES EMCV reference show that the fragments REV-A 1-578, 265-578 and 452-578 are capable of initiating translation of the second cistron in a more efficient way than that directed by TIRES EMCV. Furthermore, the treatment of reticulocyte lysates with protease L is accompanied by an inhibition of the cap-dependent expression of the neo gene, while the expression of TIRES-dependent β-galactosidase is significantly increased. For the pREV CG-50 control, the inhibition of neo expression is also observed while the expression of β-galactosidase is barely detectable whether or not the treatment with protease L takes place. As an indication, the effect of the protease on the expression of the two reporter genes is illustrated below.
Tableau 1 : Rapport de l'expression des gènes en présence et en absence de protéase L de FMDV.
Table 1: Report of gene expression in the presence and absence of FMDV protease L.
EXEMPLE 2 Vecteurs rétroviraux comprenant une séquence IRES REV-AEXAMPLE 2 Retroviral vectors comprising an IRES REV-A sequence
On a construit une série de vecteurs rétroviraux utilisant les séquences REV-A à titre de sites IRES ou d'éléments augmentant l'encapsidation. La Figure 3 illustre les vecteurs de la série pREV HW possédant des LTRs de type MoMLV et les vecteurs témoins utilisés dans les expériences décrites ci-après. Bien que ceux-ci ne soient pas représentés, on a également construit des vecteurs désignés pMC qui diffèrent des pREV HW uniquement par le fait que leurs LTRs sont d'origine SNV et des contrôles négatifs dans lesquels les séquences REV-A sont positionnées en orientation reverse (3' -> 5') par rapport aux LTRs. Pour toutes les étapes de biologie moléculaire, ces vecteurs sont introduits dans le plasmide pBR322.A series of retroviral vectors has been constructed using the REV-A sequences as IRES sites or as elements that increase packaging. FIG. 3 illustrates the vectors of the pREV HW series having LTRs of MoMLV type and the control vectors used in the experiments described below. Although these are not represented, vectors designated pMC have also been constructed which differ from pREV HW only in that their LTRs are of SNV origin and negative controls in which the REV-A sequences are positioned in orientation reverse (3 '-> 5') compared to LTRs. For all the molecular biology stages, these vectors are introduced into the plasmid pBR322.
1. Construction des vecteurs rétroviraux.1. Construction of retroviral vectors.
Le vecteur témoin pEMCV-CBTV (pBClOO) est un vecteur dicistronique comprenant, outre les LTRs et la région d'encapsidation dérivés de MoMLV, le gène codant pour la phosphatase alcaline placentaire (plap) dont la traduction est coiffe-dépendante et le gène neo dont la traduction est dépendante du siteThe control vector pEMCV-CBTV (pBC100) is a dicistronic vector comprising, in addition to the LTRs and the packaging region derived from MoMLV, the gene coding for placental alkaline phosphatase (plap), the translation of which is cap-dependent and the gene neo. whose translation is site dependent
IRES EMCV (Torrent et al., 1996, Human Gène Therapy 7, 603-611).IRES EMCV (Torrent et al., 1996, Human Gène Therapy 7, 603-611).
Les vecteurs pREV HW ont été obtenus de la façon suivante : pREV HW-1 : le fragment REV-A s'étendant des nt 265 à 578 généré par PCR
et digéré par zel est clone entre les gènes plap et neo de pMLV-CB71 (Berlioz et Darlix, 1995, J. Virol. 69, 2214-2222). pREV HW-2 : le fragment EcoRI de pVL CBT5 (Torrent et al. , 1996, Human Gène Therapy 7, 603-611) portant le LTR 5' MoMLV et les séquences d'encapsidation de VL30 est introduit dans le vecteur pRΕV HW-1 linéarisé par EcoRI. pRΕV HW-3 : le fragment EcoRI de pΕMCV-CBTV contenant le LTR 5' et les séquences d'encapsidation de MoMLV est inséré dans le vecteur pRΕV HW-1 linéarisé par EcoRI. pRΕV HW-4 : le fragment RΕV-A s'étendant des nt 452 à 578 généré par PCR et digéré par Nftel est clone entre les gènes plap et neo de pMLV-CB71. pRΕV HW-5 : le fragment EcoRI de pVL CBT5 portant le LTR 5' MoMLV et les séquences d'encapsidation de VL30 est introduit dans le vecteur pRΕV HW-4 linéarisé par EcoRI. pRΕV HW-6 : le fragment EcoRI de pΕMCV-CBTV contenant le LTR 5' et les séquences d'encapsidation de MoMLV est inséré dans le vecteur pRΕV HW-4 linéarisé par EcoRI.The pREV HW vectors were obtained in the following way: pREV HW-1: the REV-A fragment extending from nt 265 to 578 generated by PCR and digested with zel is cloned between the plap and neo genes of pMLV-CB71 (Berlioz and Darlix, 1995, J. Virol. 69, 2214-2222). pREV HW-2: the EcoRI fragment of pVL CBT5 (Torrent et al., 1996, Human Gene Therapy 7, 603-611) carrying the LTR 5 ′ MoMLV and the packaging sequences of VL30 is introduced into the vector pRΕV HW- 1 linearized by EcoRI. pRΕV HW-3: the EcoRI fragment from pΕMCV-CBTV containing the 5 'LTR and the packaging sequences of MoMLV is inserted into the vector pRΕV HW-1 linearized by EcoRI. pRΕV HW-4: the RΕV-A fragment extending from nt 452 to 578 generated by PCR and digested with Nftel is cloned between the plap and neo genes of pMLV-CB71. pRΕV HW-5: the EcoRI fragment of pVL CBT5 carrying the LTR 5 ′ MoMLV and the packaging sequences of VL30 is introduced into the vector pRΕV HW-4 linearized by EcoRI. pRΕV HW-6: the EcoRI fragment from pΕMCV-CBTV containing the 5 'LTR and the MoMLV packaging sequences is inserted into the vector pRΕV HW-4 linearized by EcoRI.
Les vecteurs de la série pMC sont obtenus selon le schéma de construction suivant : Les LTRs SΝV sont générés par PCR à partir du plasmide RΕV-A 2-20-6 (O'Rear et Temin, 1982, Proc. Νatl. Acad. Sci. USA 79, 1230- 1234 ; Darlix et al., 1992, J. Virol. 66, 7245-7252). Le gène neo est isolé de pMLV-CB71 par digestion avec Sali et BamΑl puis introduit entre les mêmes sites du vecteur pUC19 (Gibco BRL). Le LTR 5' du SΝV (nt 1 à 861) est digéré par H diπ et Sali, et inséré dans pUC19-neo préalablement clivé par ces mêmes enzymes. Le LTR 3' SΝV (nt 7230-8300) digéré par Smαl et EcoRI est clone dans le vecteur précédent pour donner pCG-61 contenant LTR 5' SΝV-neo-LTR 3' SΝV. En parallèle, on génère un vecteur désigné pCG-62 qui diffère du précédent par la délétion des séquences env (nt 7230-7691) obtenu par traitement BglR-AvrTl, Klenow et religation. Le gène plap isolé du clone Cla-12AP (DGoff)
est introduit entre les sites EcoRI et Xbal d'un plasmide bluescript préalablement délété du site Sali (digestion EcoRI-.X7zoI) avant d'être réisolé sous la forme d'un fragment Kpnl-SaR et clone entre les mêmes sites de pCG-61 et pCG-62, pour donner pCG-63 et pCG-64 respectivement. Le gène LacZ est obtenu par digestion partielle de pRΕV CB-95 par les enzymes Sali et BamΑl. Son insertion entre les sites Sali et BamUl de pCG-61 et pCG-62 donne lieu à pCG-65 et pCG-66 respectivement. Enfin, le bloc LTR-Gene-LTR est isolé de chaque plasmide pCG-62, pCG-64 et pCG-66 par digestion H dlII-EcoRI pour être inséré dans le vecteur pBR322 clivé par ces mêmes enzymes. On génère pMCl, pMC2 et pMC3.The pMC series vectors are obtained according to the following construction scheme: The SΝV LTRs are generated by PCR from the plasmid RΕV-A 2-20-6 (O'Rear and Temin, 1982, Proc. Νatl. Acad. Sci USA 79, 1230-1234; Darlix et al., 1992, J. Virol. 66, 7245-7252). The neo gene is isolated from pMLV-CB71 by digestion with Sali and BamHI then introduced between the same sites of the vector pUC19 (Gibco BRL). The 5 'LTR of SΝV (nt 1 to 861) is digested with H diπ and Sali, and inserted into pUC19-neo previously cleaved by these same enzymes. The LTR 3 'SΝV (nt 7230-8300) digested with Smαl and EcoRI is cloned in the preceding vector to give pCG-61 containing LTR 5' SΝV-neo-LTR 3 'SΝV. In parallel, a vector designated pCG-62 is generated which differs from the previous one by deleting the env sequences (nt 7230-7691) obtained by BglR-AvrTl, Klenow treatment and religation. The plap gene isolated from the clone Cla-12AP (DGoff) is introduced between the EcoRI and Xbal sites of a bluescript plasmid previously deleted from the Sali site (EcoRI-.X7zoI digestion) before being re-isolated in the form of a Kpnl-SaR fragment and cloned between the same pCG-61 sites and pCG-62, to give pCG-63 and pCG-64 respectively. The LacZ gene is obtained by partial digestion of pRΕV CB-95 with the enzymes Sali and BamΑl. Its insertion between the SalI and BamUl sites of pCG-61 and pCG-62 gives rise to pCG-65 and pCG-66 respectively. Finally, the LTR-Gene-LTR block is isolated from each plasmid pCG-62, pCG-64 and pCG-66 by H dlII-EcoRI digestion to be inserted into the vector pBR322 cleaved by these same enzymes. PMCl, pMC2 and pMC3 are generated.
2. Génération de particules virales infectieuses et détermination du titre viral et de l'expression des gènes reporteurs plap et neo.2. Generation of infectious viral particles and determination of the viral titer and of the expression of the plap and neo reporter genes.
La lignée de complémentation écotrope GP+Ε-86 (Markowitz et al., 1988, J. Virol., 62, 1120-1124) et les cellules cibles NIΗ3T3 (cellules fibroblastiques de souris) disponibles à TATCC, sont cultivées à 37 °C en présence de 5% de CO2 dans du milieu DMΕM (Dulbecco's Modified Εagle's Médium, Gibco BRL) complémenté avec 10% de sérum de veau de nouveau-né. Les cellules helper GP+Ε-86 et les cellules cibles NIH3T3 sont mises en culture la veille de la transfection et de l'infection. Les infections virales sont réalisées selon le protocole conventionnel décrit dans la littérature.The GP + Ε-86 ecotropic complementation line (Markowitz et al., 1988, J. Virol., 62, 1120-1124) and the NIΗ3T3 target cells (mouse fibroblastic cells) available at TATCC, are cultured at 37 ° C. in the presence of 5% CO 2 in DMΕM medium (Dulbecco's Modified Eagle's Medium, Gibco BRL) supplemented with 10% newborn calf serum. GP + Ε-86 helper cells and NIH3T3 target cells are cultured the day before transfection and infection. Viral infections are carried out according to the conventional protocol described in the literature.
20 μg de vecteurs pRΕV HW-1 à 6 ainsi que de vecteur de référence pΕMCV-CBTV sont transfectés en parallèle dans les cellules GP+Ε-86 (5xl05 cellules par boîte de 10cm) selon la méthode de Chen et Okyama (1987, Mol. Cell. Biol. , 7, 2745-2753 ; 1988, Bio/Techniques 6, 632-637). Différentes dilutions de surnageants des cultures GP+Ε-86 stables ou transitoires sont utilisées pour infecter les cellules cibles NIH3T3 ensemencées la veille de l'infection à raison de 2x10* cellules par puits. Au préalable, les surnageants viraux ont été filtrés (sur filtres de 0,45 μm) et mis en présence de polybrène à
une concentration finale de 8 μg/ml. L'infection est pousuivie toute la nuit à 37°C et le jour suivant, les cellules sont lavées et cultivées dans du milieu frais. Après 48 h, les cellules sont placées en milieu sélectif (1 mg/ml de G418) ou colorées pour déterminer le nombre de cellules exprimant la phosphatase alcaline plap. On procède tout d'abord à une fixation dans du tampon PBSxl contenant 2% de formaldéhyde et 0,2% de glutaraldéhyde. Après deux rinçages dans du PBSxl suivis d'une incubation de 30 min à 65 °C dans du PBSxl, les cellules sont lavées à deux reprises dans du tampon AP (0,1 M Tris-HCl pH 9,5, 0,1 M NaCl, 50 mM MgCl2 dans du PBSxl) et placées 5 h dans la solution de coloration (0,1 mg/ml de 5-bromo-4-chloro-3-indolyl phosphate (BCIP), 1 mg/ml d'un sel de térazolium de Nitroblue (NBT) et 1 mM de Levamisol dans du tampon AP). Ces expériences de coloration histochimique confirment l'expression de la phosphatase alcaline dans les cellules helper GP+E-86 et dans les cellules cibles NIH3T3. Le titre des virus recombinants est déterminé après transfection des cellules écotropes GP+E-86. Après deux jours d'incubation, le surnageant viral est récolté et utilisé pour déterminer le titre viral (expression transitoire). Ensuite, les cellules transfectées sont sélectionnées au G418 pendant un mois. Après cette sélection, on détermine le titre viral sur le surnageant récolté (expression stable). Celui-ci correspond au nombre de particules infectieuses par ml de surnageant. Par la méthode des dilutions limites, les cellules cibles NIH3T3 sont infectées avec des dilutions en série de surnageant viral et, après deux jours d'incubation, les cellules sont colorées histochimiquement et comptées. Les résultats suivants sont obtenus (Tableau 2):
20 μg of pRΕV HW-1 to 6 vectors as well as of reference vector pΕMCV-CBTV are transfected in parallel in GP + Ε-86 cells ( 5 × 10 5 cells per 10 cm dish) according to the method of Chen and Okyama (1987, Mol. Cell. Biol., 7, 2745-2753; 1988, Bio / Techniques 6, 632-637). Different dilutions of supernatants from stable or transient GP + Ε-86 cultures are used to infect the target NIH3T3 cells seeded the day before infection at the rate of 2x10 * cells per well. Beforehand, the viral supernatants were filtered (on 0.45 μm filters) and placed in the presence of polybrene to a final concentration of 8 μg / ml. The infection is continued overnight at 37 ° C. and the following day, the cells are washed and cultured in fresh medium. After 48 h, the cells are placed in a selective medium (1 mg / ml of G418) or stained to determine the number of cells expressing the alkaline phosphatase plap. First of all, fixing is carried out in PBSxl buffer containing 2% formaldehyde and 0.2% glutaraldehyde. After two rinses in PBSxl followed by a 30 min incubation at 65 ° C in PBSxl, the cells are washed twice in AP buffer (0.1 M Tris-HCl pH 9.5, 0.1 M NaCl, 50 mM MgCl 2 in PBSxl) and placed for 5 h in the staining solution (0.1 mg / ml of 5-bromo-4-chloro-3-indolyl phosphate (BCIP), 1 mg / ml of a terazolium salt of Nitroblue (NBT) and 1 mM Levamisol in buffer AP). These histochemical staining experiments confirm the expression of alkaline phosphatase in the GP + E-86 helper cells and in the NIH3T3 target cells. The titer of the recombinant viruses is determined after transfection of the GP + E-86 ecotropic cells. After two days of incubation, the viral supernatant is harvested and used to determine the viral titer (transient expression). Then, the transfected cells are selected with G418 for one month. After this selection, the viral titer is determined on the harvested supernatant (stable expression). This corresponds to the number of infectious particles per ml of supernatant. By the limit dilution method, the NIH3T3 target cells are infected with serial dilutions of viral supernatant and, after two days of incubation, the cells are stained histochemically and counted. The following results are obtained (Table 2):
Les vecteurs pREV HW-1 et pREV HW-4 dépourvus de région d'encapsidation conventionnelle sont incapables de produire des particules virales infectieuses après transfection dans la lignée helper MLV (GP+E-86). Cependant, on indique que le vecteur pMCl peut être encapsidé dans des particules virales SNV après transfection de la lignée helper SNV D17-C3A2 (par exemple ATCC CRL8468), indiquant que les séquences REV-A s'étendant des nt 265 à 578 peuvent être utilisées dans ce contexte à titre de région d'encapsidation. Les vecteurs rétroviraux comprenant à la fois une séquence REV-A (265-578 ou 452-578) et une région d'encapsidation conventionnelle produisent des particules virales à un titre élevé (pREV HW-2, 3, 5 et 6). Cependant l'association avec la région d'encapsidation de MLV s'avère particulièrement avantageuse puisqu'elle donne des titres viraux 2 (pREV HW-6) à 5 fois (pREV HW-3) plus élevés que le vecteur de référence pEMCV-CBTV combinant cette même région d'encapsidation et TIRES EMCV. De plus, la comparaison des données obtenues avec les vecteurs identiques variant uniquement au niveau du segment REV-A mis en oeuvre (pREV HW-2 et pREV HW-5 oμ pREV HW-3 et pREV HW-6) laisse supposer que la séquence allant des nt 265 à 578 est capable de coopérer avec la région d'encapsidation et ainsi améliorer l'encapsidation des ARN viraux et en conséquence les titres viraux. Un élément interagissant d'une manière positive avec l'encapsidation pourrait être
présent entre les nt 452 et 265 dans le génome REV-A.The pREV HW-1 and pREV HW-4 vectors lacking a conventional packaging region are incapable of producing infectious viral particles after transfection into the MLV helper line (GP + E-86). However, it is indicated that the vector pMC1 can be packaged in SNV viral particles after transfection of the helper line SNV D17-C3A2 (for example ATCC CRL8468), indicating that the REV-A sequences extending from nt 265 to 578 can be used in this context as an encapsidation region. Retroviral vectors comprising both a REV-A sequence (265-578 or 452-578) and a conventional packaging region produce high titer viral particles (pREV HW-2, 3, 5 and 6). However, the association with the packaging region of MLV proves to be particularly advantageous since it gives viral titers 2 (pREV HW-6) to 5 times (pREV HW-3) higher than the reference vector pEMCV-CBTV combining this same encapsidation region and TIRES EMCV. Furthermore, the comparison of the data obtained with the identical vectors varying only at the level of the REV-A segment used (pREV HW-2 and pREV HW-5 oμ pREV HW-3 and pREV HW-6) suggests that the sequence ranging from nt 265 to 578 is capable of cooperating with the packaging region and thus improving the packaging of viral RNAs and consequently the viral titers. An element interacting positively with packaging could be present between nt 452 and 265 in the REV-A genome.
3. Analyse des virus recombinants par microscopie électronique.3. Analysis of recombinant viruses by electron microscopy.
La morphologie des virions recombinants pREV HW produits après transfection de la lignée GP+E-86 par les vecteurs correspondants est analysée par microcopie électronique. On utilise à titre de témoins les virus obtenus de pEMCV-CBTV dans les mêmes conditions et les retrovirus sauvages obtenus après infection des cellules NIH3T3 avec la souche FMLV-29 (Friend murine leukemia virus souche 29). Les résultats de microscopie indiquent que le contenu en ARN n'affecte pas la morphologie des virus recombinants.The morphology of the recombinant pREV HW virions produced after transfection of the GP + E-86 line with the corresponding vectors is analyzed by electron microcopying. The viruses obtained from pEMCV-CBTV under the same conditions are used as controls and the wild retroviruses obtained after infection of the NIH3T3 cells with the FMLV-29 strain (Friend murine leukemia virus strain 29). Microscopy results indicate that the RNA content does not affect the morphology of the recombinant viruses.
4. Effet de la rapamycine sur l'expression des cistrons plap et neo.4. Effect of rapamycin on the expression of plap and neo cistrons.
Les cellules GP+E-86 sont transfectées d'une manière stable par 20 μg de vecteurs de la série pREV HW ou pEMCV-CBTV et cultivées en conditions sélectives (G418) pendant 15 jours. A 70 à 80 % de confluence, elles sont mises en présence de rapamycine à une concentration finale de 20 ng/ml. Cette dernière a un effet inhibiteur sur la traduction coiffe-dépendante variant de 15 à 40 % selon la lignée cellulaire (Beretta et al. , 1996, EMBO J. 15, 658-664) mais n'affecte pas la traduction cap-indépendante. Les extraits cellulaires sont préparés classiquement après 20 h d'incubation. Brièvement, les cellules sont lavées deux fois dans du PBSxl, placées dans 1 ml de TEN (40 mM Tris-HCl pH7,5, 1 mM EDTA, 50 mM NaCl) pour une boîte de 10 cm puis récupérées par grattage et centrifugées à faible vitesse. Le culot est repris dans 100 μl de Tris-HCl 0,25 M, pH8 et soumis à une lyse cellulaire par 3 cycles de congélation-décongélation. Après centrifugation 10 min à 14000 g, le surnageant est récupéré et peut être conservé à -70 °C en attendant de procéder aux tests enzymatiques. La concentration finale en protéine est déterminée par le test Micro BCA (Pierce). L'activité enzymatique plap des extraits cellulaires est évaluée spectrophotométriquement (kit alcaline phosphatase, BIORAD). Les
unités plap sont déterminées par rapport à un standard constitué par la phosphatase alcaline d'intestin de veau (Boehringer Mannheim). Les activités neo sont mesurées par le transfert de phosphate marqué au [γ-32P]sur la néomycine (Ramesh et Osborne, 1991, Anal. Biochem. 193, 316-318). Les résultats de l'expression des gènes plap et neo mesurés en absence et en présence de rapamycine sont illustrés à la Figure 4 et présentés dans le Tableau 3.GP + E-86 cells are stably transfected with 20 μg of vectors of the pREV HW or pEMCV-CBTV series and cultured under selective conditions (G418) for 15 days. At 70 to 80% confluence, they are brought into the presence of rapamycin at a final concentration of 20 ng / ml. The latter has an inhibitory effect on cap-dependent translation varying from 15 to 40% depending on the cell line (Beretta et al., 1996, EMBO J. 15, 658-664) but does not affect cap-independent translation. Cell extracts are conventionally prepared after 20 h of incubation. Briefly, the cells are washed twice in PBSxl, placed in 1 ml of TEN (40 mM Tris-HCl pH7.5, 1 mM EDTA, 50 mM NaCl) for a 10 cm dish then recovered by scraping and centrifuged on low speed. The pellet is taken up in 100 μl of 0.25 M Tris-HCl, pH8 and subjected to cell lysis by 3 freeze-thaw cycles. After centrifugation for 10 min at 14,000 g, the supernatant is recovered and can be stored at -70 ° C while waiting for the enzymatic tests. The final protein concentration is determined by the Micro BCA test (Pierce). The plap enzymatic activity of the cell extracts is evaluated spectrophotometrically (alkaline phosphatase kit, BIORAD). The plap units are determined in relation to a standard consisting of alkaline phosphatase from calf intestine (Boehringer Mannheim). The neo activities are measured by the transfer of phosphate labeled with [γ- 32 P] on neomycin (Ramesh and Osborne, 1991, Anal. Biochem. 193, 316-318). The results of the expression of the plap and neo genes measured in the absence and in the presence of rapamycin are illustrated in FIG. 4 and presented in Table 3.
Tableau 3 : effet de la rapamycine sur l'expression des cistrons plap et neo exprimé en % par rapport aux cellules non traitées.Table 3: effect of rapamycin on the expression of plap and neo cistrons expressed in% relative to untreated cells.
Dans les vecteurs pREV HW-1 et pREV HW-4, la présence de rapamycine réduit la traduction cap-dépendante et augmente celle dépendante de TIRES. Cette stimulation peut s'expliquer par une moindre compétition pour la machinerie traductionnelle en présence de rapamycine. Lorsque deux éléments IRES sont présents, l'addition de rapamycine s'accompagne d'une augmentation de l'expression des deux gènes. Cependant, les données quantitatives d'expreέsion indiquent que l'activité relative des IRES est différente, ce qui suggère une compétiton entre eux pour les ribosomes.In the vectors pREV HW-1 and pREV HW-4, the presence of rapamycin reduces the cap-dependent translation and increases that dependent on TIRES. This stimulation can be explained by less competition for the translational machinery in the presence of rapamycin. When two IRES elements are present, the addition of rapamycin is accompanied by an increase in the expression of the two genes. However, quantitative expression data indicate that the relative activity of IRES is different, suggesting a competition between them for ribosomes.
En résumé, l'ensemble des données montrent la présence d'un site IRES
efficace dans le leader 5' des ARN du virus REV-A et, probablement d'un élément interagissant de manière positive avec l'encapsidation. L'élément IRES minimum est contenu au sein d'une séquence de 129 nt (positions 452 à 578).In summary, all the data show the presence of an IRES site effective in the 5 'leader of REV-A virus RNA and probably of a positive interacting element with packaging. The minimum IRES element is contained within a sequence of 129 nt (positions 452 to 578).
EXEMPLE 3 : Transduction de cellules neuroectodermales humaines pluripotentesEXAMPLE 3 Transduction of Pluripotent Human Neuroectodermal Cells
Cette étude est réalisée dans la lignée cellulaire humaine Dev qui constitue un modèle cellulaire du système nerveux central, cible potentielle pour la thérapie génique humaine. Les cellules Dev dérivent d'une tumeur primaire humaine d'origine neuroectodermale (PNET) et se comportent comme des cellules souches pluripotentes (Derrington et al., 1997, Oncogene, sous presse). De plus, il est possible d'induire leur différenciation soit en neurones soit en cellules gliales (Derrington et al., 1997, supra ; Dufay et al., 1994, Eur. J. Neurosci. 6, 1633-1640 ; Giraudon et al., 1993, Neurosci. 52, 1069-1079). Dans cette étude, le vecteur dicistronique pREV HW-3 (IRES REV-A 265-578) est comparé au vecteur contrôle pEMCV CBTV (IRES EMCV).This study is carried out in the human Dev cell line, which constitutes a cellular model of the central nervous system, a potential target for human gene therapy. Dev cells are derived from a human primary tumor of neuroectodermal origin (PNET) and behave like pluripotent stem cells (Derrington et al., 1997, Oncogene, in press). Moreover, it is possible to induce their differentiation either into neurons or into glial cells (Derrington et al., 1997, supra; Dufay et al., 1994, Eur. J. Neurosci. 6, 1633-1640; Giraudon et al ., 1993, Neurosci. 52, 1069-1079). In this study, the dicistronic vector pREV HW-3 (IRES REV-A 265-578) is compared with the control vector pEMCV CBTV (IRES EMCV).
Les cellules Dev sont infectées avec une dilution au 1/100 de surnageant viral pendant 2 jours puis fixées, colorées histochimiquement selon le protocole ci-dessus et comptées. Le titre viral est similaire pour les deux vecteurs et de Tordre de 3xl03 TU/ml. Les unités de transduction (TU/ml) correspondent au rapport du nombre de colonies x dilution du retrovirus infectant par le volume total (ml) du vecteur dilué placé sur les cellules.The Dev cells are infected with a 1/100 dilution of viral supernatant for 2 days then fixed, histochemically stained according to the above protocol and counted. The viral titer is similar for the two vectors and of the order of 3 × 10 3 TU / ml. The transduction units (TU / ml) correspond to the ratio of the number of colonies x dilution of the infecting retrovirus by the total volume (ml) of the diluted vector placed on the cells.
On vérifie également l'expression des deux cistrons neo et plap. Pour ce faire, les cellules cibles sont comme précédemment transduites avec une dilution 1/100 de surnageant viral et sélectionnées en présence de G418 pendant 3 semaines. On détermine l'intensité de la fluorescence par cytométrie de flux avec un anticorps spécifique pour la plap (DAKO). On indique qu'un anticorps polyclonal convient. Les résultats montrent la production de l'enzyme plap par les
cellules transduites et sélectionnées au G418. En parallèle, la synthèse de l'enzyme plap est confirmée par coloration histochimique des clones résistants. Ces données montrent que le vecteur dicistronique pREV HW-3 peut transduire de façon efficace des cellules humaines dérivées du système nerveux central et y transférer des gènes d'intérêt et confirment la fonctionnalité du site IRES REV-A pour médier la production du produit d'expression du second cistron.We also check the expression of the two neo and plap cistrons. To do this, the target cells are as previously transduced with a 1/100 dilution of viral supernatant and selected in the presence of G418 for 3 weeks. The intensity of the fluorescence is determined by flow cytometry with an antibody specific for the plap (DAKO). It is indicated that a polyclonal antibody is suitable. The results show the production of the enzyme plap by cells transduced and selected with G418. In parallel, the synthesis of the enzyme plap is confirmed by histochemical staining of the resistant clones. These data show that the dicistronic vector pREV HW-3 can efficiently transduce human cells derived from the central nervous system and transfer genes of interest therein and confirm the functionality of the IRES REV-A site to mediate the production of the product. expression of the second cistron.
Par ailleurs, différents protocoles de transduction ont été étudiés dans un but d'optimisation. Les variantes sont les conditions de culture des cellules en présence ou en absence de sérum et en présence ou en absence de facteurs de croissance (FGF-2) et la production des virus en présence ou en absence de sérum.In addition, different transduction protocols have been studied for the purpose of optimization. Variants are the cell culture conditions in the presence or absence of serum and the presence or absence of growth factors (FGF-2) and the production of viruses in the presence or absence of serum.
Les six protocoles suivants ont été comparés avec les virus pEMCV CBTV et pREV HW-3 possédant l'enveloppe polytrope GaLV (production sur cellulesThe following six protocols were compared with the pEMCV CBTV and pREV HW-3 viruses possessing the GaLV polytrope envelope (production on cells
PG13, ATCC CRL-10686). Protocole 1 : cellules cultivées en milieu avec sérum (10 %), virus produit en présence de sérum (10 %).PG13, ATCC CRL-10686). Protocol 1: cells cultured in medium with serum (10%), virus produced in the presence of serum (10%).
Protocole 2 : cellules cultivées en milieu avec sérum (10 %), virus produit en absence de sérum. Protocole 3 : cellules cultivées en milieu sans sérum, virus produit en présence de sérum (10 %).Protocol 2: cells cultured in medium with serum (10%), virus produced in the absence of serum. Protocol 3: cells cultured in serum-free medium, virus produced in the presence of serum (10%).
Protocole 4 : cellules cultivées en milieu sans sérum, virus produit en absence de sérum. Protocole 5 : cellules cultivées en milieu sans sérum, virus produit en présence de sérum (10 %), présence de FGF-2. Protocole 6 : cellules cultivées en milieu sans sérum, virus produit en absence de sérum, présence de FGF-2. Le pourcentage de cellules Dev transduites est déterminé par cytométrie de flux (Figure 5). Le pourcentage de cellules transduites par pREV HW-3 dépasse 30% lorsque la culture des cellules Dev est effectuée en absence de sérum.
Un tel % n'est pas atteint avec le virus conventionnel pEMCV CBTV. L'ajout de facteurs de croissance est également avantageux. Parmi tous les protocoles mis en oeuvre, le protocole 5 permet de transduire plus de 50 % de cellules Dev. Ces résultats montrent que les vecteurs polycistroniques de l'invention portant TIRES REV-A sont fonctionnels pour transduire les cellules neuroectodermales pluripotentes. Le développement de protocoles pour la transduction efficace de lignées cellulaires humaines est un point essentiel dans l'élaboration des stratégies de transfert de gènes.Protocol 4: cells cultured in serum-free medium, virus produced in the absence of serum. Protocol 5: cells cultured in serum-free medium, virus produced in the presence of serum (10%), presence of FGF-2. Protocol 6: cells cultured in serum-free medium, virus produced in the absence of serum, presence of FGF-2. The percentage of Dev cells transduced is determined by flow cytometry (Figure 5). The percentage of cells transduced by pREV HW-3 exceeds 30% when the culture of Dev cells is carried out in the absence of serum. Such a% is not reached with the conventional virus pEMCV CBTV. The addition of growth factors is also advantageous. Among all the protocols used, protocol 5 allows more than 50% of Dev cells to be transduced. These results show that the polycistronic vectors of the invention carrying TIRES REV-A are functional for transducing pluripotent neuroectodermal cells. The development of protocols for the efficient transduction of human cell lines is an essential point in the development of gene transfer strategies.
L'expression des cistrons plap et neo est évaluée après différenciation neuronale et gliale (Derrington et al., 1997, supra). Brièvement, les cellules Dev adoptent un phénotype différencié en présence de sérum et de FGF-2 alors que lorsque la culture est réalisée en absence de sérum, le phénotype est pluripotent. Les résultats d'immunofluorescence avec un anticorps spécifique anti-plap sur cellules Dev transduites, sélectionnées au G418 et différenciées montrent une expression de la plap dans les cellules neuronales et gliales. Ces données suggèrent que l'état de différenciation n'inhibe pas la traduction médiée par TIRES REV-A.
The expression of plap and neo cistrons is evaluated after neuronal and glial differentiation (Derrington et al., 1997, supra). Briefly, the Dev cells adopt a differentiated phenotype in the presence of serum and FGF-2 whereas when the culture is carried out in the absence of serum, the phenotype is pluripotent. Immunofluorescence results with a specific anti-plap antibody on transduced Dev cells, selected with G418 and differentiated show expression of the plap in neuronal and glial cells. These data suggest that the state of differentiation does not inhibit TIRES REV-A mediated translation.
LISTE DE SEQUENCESLIST OF SEQUENCES
(1) INFORMATION GENERALE:(1) GENERAL INFORMATION:
(i) DEPOSANT:(i) DEPOSITOR:
(A) NOM: INSERM(A) NAME: INSERM
(B) RUE: 101 rue de Tolbiac(B) STREET: 101 rue de Tolbiac
(C) VILLE: Paris cedex 13(C) CITY: Paris cedex 13
(E) PAYS: France(E) COUNTRY: France
(F) CODE POSTAL: 75654(F) POSTAL CODE: 75654
(G) TELEPHONE: 01 44 23 60 00 (H) TELECOPIE: 01 45 85 68 56(G) TELEPHONE: 01 44 23 60 00 (H) FAX: 01 45 85 68 56
(ii) TITRE DE L' INVENTION: Nouveau site interne d'entrée des ribosomes et vecteur le contenant.(ii) TITLE OF THE INVENTION: New internal ribosome entry site and vector containing it.
(iii) NOMBRE DE SEQUENCES: 2(iii) NUMBER OF SEQUENCES: 2
(iv) FORME LISIBLE PAR ORDINATEUR:(iv) COMPUTER-READABLE FORM:
(A) TYPE DE SUPPORT: Tape(A) TYPE OF SUPPORT: Tape
(B) ORDINATEUR: IBM PC compatible(B) COMPUTER: IBM PC compatible
(C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS(C) OPERATING SYSTEM: PC-DOS / MS-DOS
(D) LOGICIEL: Patentln Release #1.0, Version #1.25 (OEB)(D) SOFTWARE: Patentln Release # 1.0, Version # 1.25 (EPO)
(2) INFORMATION POUR LA SEQ ID NO: 1:(2) INFORMATION FOR SEQ ID NO: 1:
(i) CARACTERISTIQUES DE LA SEQUENCE:(i) CHARACTERISTICS OF THE SEQUENCE:
(A) LONGUEUR: 940 paires de bases(A) LENGTH: 940 base pairs
(B) TYPE: acide nucléique(B) TYPE: nucleic acid
(C) NOMBRE DE BRINS: simple(C) NUMBER OF STRANDS: single
(D) CONFIGURATION: linéaire(D) CONFIGURATION: linear
(ii) TYPE DE MOLECULE: ARN (génomique) (iii) HYPOTHETIQUE: NON (iii) ANTI-SENS: NON(ii) TYPE OF MOLECULE: RNA (genomics) (iii) HYPOTHETIC: NO (iii) ANTI-SENSE: NO
(vi) ORIGINE:(vi) ORIGIN:
(A) ORGANISME: Reticuloendotheliosis virus(A) ORGANISM: Reticuloendotheliosis virus
(B) SOUCHE: type A (REV-A)(B) STRAIN: type A (REV-A)
(C) INDIVIDUEL ISOLE: leader 5' de l'ARN génomique REV-A(C) INDIVIDUAL ISOLATED: leader 5 'of the genomic RNA REV-A
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:(xi) DESCRIPTION OF THE SEQUENCE: SEQ ID NO: 1:
AAUGUGGGAG GGAGCUCCGG GGGGAAUAGC GCUGGCUCGC UAACUGCCAU AUUAGCUUCU 60AAUGUGGGAG GGAGCUCCGG GGGGAAUAGC GCUGGCUCGC UAACUGCCAU AUUAGCUUCU 60
GUAAUCAUGC UUGCUUGCCU UAGCCGCCAU UGUACUUGAU AUAUUUCGCU GAUAUCAUUU 120GUAAUCAUGC UUGCUUGCCU UAGCCGCCAU UGUACUUGAU AUAUUUCGCU GAUAUCAUUU 120
CUCGGAAUCG' GCAUCAUUUC UCGGAAUCGG CAUCAAGAGC AGGCUCAUAG ACCAUAAAAG 180CUCGGAAUCG ' GCAUCAUUUC UCGGAAUCGG CAUCAAGAGC AGGCUCAUAG ACCAUAAAAG 180
GAAAUGUUCG' UUGGAGGCGA GCAUCAGACC ACUUGCGCCA UCCAAUCACG AGCAAACACG 240GAAAUGUUCG ' UUGGAGGCGA GCAUCAGACC ACUUGCGCCA UCCAAUCACG AGCAAACACG 240
AGAUCGAACU AUCAUACUGA GCCAAUGGUU GUAAAGGGCA GAUGCUAUCC UCCAAUGAGG 300AGAUCGAACU AUCAUACUGA GCCAAUGGUU GUAAAGGGCA GAUGCUAUCC UCCAAUGAGG 300
GAAAAUGUCA UGCAACAUCC UGUCCUGUAA GCGGCUAUAU AAGCCAGGUG CAUCUCUUGC 360
UCGGGGUCGC CGUCCUACAC AUUGUUGUGA CGCGCGGCCC AGAUUCGAAU CUGUAAUAAA 420GAAAAUGUCA UGCAACAUCC UGUCCUGUAA GCGGCUAUAU AAGCCAGGUG CAUCUCUUGC 360 UCGGGGUCGC CGUCCUACAC AUUGUUGUGA CGCGCGGCCC AGAUUCGAAU CUGUAAUAAA 420
AGUUUUUUUC UUCUAUAUCC UCAGAUUGGC AGUGAGAGGA GAUUUUGUUC GUGGUGUAGG 480AGUUUUUUUC UUCUAUAUCC UCAGAUUGGC AGUGAGAGGA GAUUUUGUUC GUGGUGUAGG 480
CUGGCCUACU GGGUGGGGUA GGGGUCCGGA CUGAAUCCGU AGUAUUUCGA UACAACAUUU 540CUGGCCUACU GGGUGGGGUA GGGGUCCGGA CUGAAUCCGU AGUAUUUCGA UACAACAUUU 540
GGGGGCUCGU CCGGGAUUCC UCCCCAUCGG CAGAAGUGCC UACUGUUUCU UCGAACUCCG 600GGGGGCUCGU CCGGGAUUCC UCCCCAUCGG CAGAAGUGCC UACUGUUUCU UCGAACUCCG 600
GCGCCGGUAA GUAAGUACUU GAUUUUGGUA CCUCGCGAGG GUUUGGGAGG AUCGGAGUGG 660GCGCCGGUAA GUAAGUACUU GAUUUUGGUA CCUCGCGAGG GUUUGGGAGG AUCGGAGUGG 660
CGGGACGCUG CCGGGAAGCU CCACCUCCGC UCAGCAGGGG ACGCCCUGAU CUGAGCUCUG 720CGGGACGCUG CCGGGAAGCU CCACCUCCGC UCAGCAGGGG ACGCCCUGAU CUGAGCUCUG 720
UGGUAUCUGA UUGUUGUUGG ACCGUCUCCA AGACGGUGAU AAUAUAAGUC GUGGUUUGUG 780UGGUAUCUGA UUGUUGUUGG ACCGUCUCCA AGACGGUGAU AAUAUAAGUC GUGGUUUGUG 780
UGUUUGUUUG UUACCUUGUG UUUGUUCGUC ACUUGUCGAC AGCGCCCUGC GAAUUGGUGU 840UGUUUGUUUG UUACCUUGUG UUUGUUCGUC ACUUGUCGAC AGCGCCCUGC GAAUUGGUGU 840
GCCCACACCG CGCGGCUUGC GAAUAAUACU UUGGAGAGUC UUUUGCCUCC AGUGUCUUCC 900GCCCACACCG CGCGGCUUGC GAAUAAUACU UUGGAGAGUC UUUUGCCUCC AGUGUCUUCC 900
GUUUGUACUC GUCCUCCUCU CCCUCUCCGG CCGGGAUGGG 940 (2) INFORMATION POUR LA SEQ ID NO: 2:GUUUGUACUC GUCCUCCUCU CCCUCUCCGG CCGGGAUGGG 940 (2) INFORMATION FOR SEQ ID NO: 2:
(i) CARACTERISTIQUES DE LA SEQUENCE:(i) CHARACTERISTICS OF THE SEQUENCE:
(A) LONGUEUR: 578 paires de bases(A) LENGTH: 578 base pairs
(B) TYPE: acide nucléique(B) TYPE: nucleic acid
(C) NOMBRE DE BRINS: simple(C) NUMBER OF STRANDS: single
(D) CONFIGURATION: linéaire(D) CONFIGURATION: linear
(ii) TYPE DE MOLECULE: ARN (génomique) (iii) HYPOTHETIQUE: NON (iii) ANTI-SENS: NON(ii) TYPE OF MOLECULE: RNA (genomics) (iii) HYPOTHETIC: NO (iii) ANTI-SENSE: NO
(vi) ORIGINE:(vi) ORIGIN:
(A) ORGANISME: Reticuloendotheliosis virus(A) ORGANISM: Reticuloendotheliosis virus
(B) SOUCHE: type A (REV-A)(B) STRAIN: type A (REV-A)
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:(xi) DESCRIPTION OF THE SEQUENCE: SEQ ID NO: 2:
GGGGUCGCCG UCCUACACAU UGUUGUGACG CGCGGCCCAG AUUCGAAUCU GUAAUAAAAG 60GGGGUCGCCG UCCUACACAU UGUUGUGACG CGCGGCCCAG AUUCGAAUCU GUAAUAAAAG 60
UUUUUUUCUU CUAUAUCCUC AGAUUGGCAG UGAGAGGAGA UUUUGUUCGU GGUGUAGGCU 120UUUUUUUCUU CUAUAUCCUC AGAUUGGCAG UGAGAGGAGA UUUUGUUCGU GGUGUAGGCU 120
GGCCUACUGG GUGGGGUAGG GGUCCGGACU GAAUCCGUAG UAUUUCGAUA CAACAUUUGG 180GGCCUACUGG GUGGGGUAGG GGUCCGGACU GAAUCCGUAG UAUUUCGAUA CAACAUUUGG 180
GGGCUCGUCC GGGAUUCCUC CCCAUCGGCA GAAGUGCCUA CUGUUUCUUC GAACUCCGGC 240GGGCUCGUCC GGGAUUCCUC CCCAUCGGCA GAAGUGCCUA CUGUUUCUUC GAACUCCGGC 240
GCCGGUAAGU AAGUACUUGA UUUUGGUACC UCGCGAGGGU UUGGGAGGAU CGGAGUGGCG 300GCCGGUAAGU AAGUACUUGA UUUUGGUACC UCGCGAGGGU UUGGGAGGAU CGGAGUGGCG 300
GGACGCUGCC GGGAAGCUCC ACCUCCGCUC AGCAGGGGAC GCCCUGAUCU GAGCUCUGUG 360GGACGCUGCC GGGAAGCUCC ACCUCCGCUC AGCAGGGGAC GCCCUGAUCU GAGCUCUGUG 360
GUAUCUGAUU GUUGUUGGAC CGUCUCCAAG ACGGUGAUAA UAUAAGUCGU GGUUUGUGUG 420GUAUCUGAUU GUUGUUGGAC CGUCUCCAAG ACGGUGAUAA UAUAAGUCGU GGUUUGUGUG 420
UUUGUUUGUU ACCUUGUGUU UGUUCGUCAC UUGUCGACAG CGCCCUGCGA AUUGGUGUGC 480UUUGUUUGUU ACCUUGUGUU UGUUCGUCAC UUGUCGACAG CGCCCUGCGA AUUGGUGUGC 480
CCACACCGCG CGGCUUGCGA AUAAUACUUU GGAGAGUCUU UUGCCUCCAG UGUCUUCCGU 540CCACACCGCG CGGCUUGCGA AUAAUACUUU GGAGAGUCUU UUGCCUCCAG UGUCUUCCGU 540
UUGUACUCGU CCUCCUCUCC CUCUCCGGCC GGGAUGGG 578
UUGUACUCGU CCUCCUCUCC CUCUCCGGCC GGGAUGGG 578
Claims
1. Utilisation d'une séquence nucléotidique dérivée de tout ou partie de l'extrémité 5' de TARN génomique d'un retrovirus de type C à l'exception des virus de la leucémie murine de Friend (FMLV) et de Moloney1. Use of a nucleotide sequence derived from all or part of the 5 'end of the genomic RNA of a type C retrovirus with the exception of the murine leukemia viruses of Friend (FMLV) and Moloney
(MoMLV), à titre de site interne d'entrée des ribosomes (IRES) dans un vecteur et/ou pour permettre ou améliorer l'encapsidation d'un vecteur rétroviral.(MoMLV), as an internal ribosome entry site (IRES) in a vector and / or to allow or improve the encapsidation of a retroviral vector.
2. Utilisation selon la revendication 1, selon laquelle le retrovirus de type C est sélectionné parmi les virus REV, MSV, MHV, MEV, FMOV, AMLV, MEELV, SFFV, RASV, FLV, FSV, EFLV, SSV, GALV et BAEV.2. Use according to claim 1, according to which the type C retrovirus is selected from the REV, MSV, MHV, MEV, FMOV, AMLV, MEELV, SFFV, RASV, FLV, FSV, EFLV, SSV, GALV and BAEV viruses.
3. Utilisation selon la revendication 2, selon laquelle ladite séquence nucléotidique dérive de tout ou partie de l'extrémité 5' de TARN génomique d'un virus de la réticuloendotéliose.3. Use according to claim 2, according to which said nucleotide sequence derives from all or part of the 5 ′ end of genomic RNA of a reticuloendoteliosis virus.
4. Utilisation selon la revendication 3, selon laquelle ladite séquence nucléotidique dérive de tout ou partie de l'extrémité 5' de TARN génomique d'un virus de la réticuloendotéliose aviaire et, notamment de type A.4. Use according to claim 3, according to which said nucleotide sequence derives from all or part of the 5 'end of genomic RNA of an avian reticuloendoteliosis virus, and in particular of type A.
5. Utilisation selon Tune des revendications 1 à 4, selon laquelle ladite séquence nucléotidique est substantiellement homologue ou identique à tout ou partie de la séquence présentée dans l'identificateur de séquence SEQ ID NO: 1.5. Use according to one of claims 1 to 4, according to which said nucleotide sequence is substantially homologous or identical to all or part of the sequence presented in the sequence identifier SEQ ID NO: 1.
6. Utilisation selon la revendication 5, selon laquelle ladite séquence nucléotidique est substantiellement homologue ou identique à la séquence présentée dans l'identificateur de séquence SEQ ID NO: 2 :
(i) commençant au nucleotide 1 et se terminant au nucleotide 578, (ii) commençant au nucleotide 265 et se terminant au nucleotide 578, ou (iii) commençant au nucleotide 452 et se terminant au nucleotide 578.6. Use according to claim 5, according to which said nucleotide sequence is substantially homologous or identical to the sequence presented in the sequence identifier SEQ ID NO: 2: (i) starting at nucleotide 1 and ending at nucleotide 578, (ii) starting at nucleotide 265 and ending at nucleotide 578, or (iii) starting at nucleotide 452 and ending at nucleotide 578.
7. Utilisation selon la revendication 6, selon laquelle ladite séquence nucléotidique est identique à la séquence présentée dans l'identificateur de séquence SEQ ID NO: 2 :7. Use according to claim 6, according to which said nucleotide sequence is identical to the sequence presented in the sequence identifier SEQ ID NO: 2:
(i) commençant au nucleotide 1 et se terminant au nucleotide 578, (ii) commençant au nucleotide 265 et se terminant au nucleotide 578, ou (iii) commençant au nucleotide 452 et se terminant au nucleotide 578.(i) starting at nucleotide 1 and ending at nucleotide 578, (ii) starting at nucleotide 265 and ending at nucleotide 578, or (iii) starting at nucleotide 452 and ending at nucleotide 578.
8. Vecteur pour l'expression d'un ou plusieurs gène(s) d'intérêt comprenant ladite séquence nucléotidique en usage selon Tune des revendications 1 à 7.8. Vector for the expression of one or more gene (s) of interest comprising said nucleotide sequence in use according to one of claims 1 to 7.
9. Vecteur selon la revendication 8, caractérisé en ce qu'il s'agit d'un vecteur plasmidique ou d'un vecteur viral dérivé d'un virus sélectionné parmi le groupe des poxvirus, adénovirus, baculovirus, virus de l'herpès, virus associé à un adénovirus et retrovirus.9. Vector according to claim 8, characterized in that it is a plasmid vector or a viral vector derived from a virus selected from the group of poxviruses, adenoviruses, baculoviruses, herpes viruses, virus associated with an adenovirus and retrovirus.
10. Vecteur selon la revendication 8 ou 9, dérivant d'un retrovirus et comprenant au moins les éléments suivants associés d'une manière fonctionnelle : un LTR 5' et un LTR 3' rétroviraux, un ou plusieurs gène(s) d'intérêt, et ladite séquence nucléotidique telle que définie dans Tune des revendications 1 à 7 pour permettre ou améliorer l'encapsidation dudit vecteur dans une particule virale et/ou à titre de site IRES pour permettre ou améliorer l'expression d'un gène d'intérêt positionné en aval de ladite séquence nucléotidique.
10. Vector according to claim 8 or 9, derived from a retrovirus and comprising at least the following elements associated in a functional manner: a 5 'LTR and a 3' LTR retroviral, one or more gene (s) of interest , and said nucleotide sequence as defined in one of claims 1 to 7 to allow or improve the encapsidation of said vector in a viral particle and / or as an IRES site to allow or improve the expression of a gene of interest positioned downstream of said nucleotide sequence.
1 1. Vecteur rétroviral selon la revendication 10, dans lequel ladite séquence nucléotidique est à titre de site IRES et comprenant en outre une région d'encapsidation hétérologue à ladite séquence nucléotidique.1 1. The retroviral vector according to claim 10, wherein said nucleotide sequence is as IRES site and further comprising a packaging region heterologous to said nucleotide sequence.
12. Vecteur rétroviral selon la revendication 10 ou 1 1, comprenant au moins :12. The retroviral vector according to claim 10 or 1 1, comprising at least:
(a) un LTR 5' rétroviral,(a) a retroviral 5 'LTR,
(b) une région d'encapsidation,(b) an encapsidation region,
(c) de manière optionnelle, un premier gène d'intérêt suivi d'une région promotrice interne une origine différente de celle dudit LTR 5' rétroviral,(c) optionally, a first gene of interest followed by an internal promoter region of an origin different from that of said retroviral 5 ′ LTR,
(d) un second gène d'intérêt,(d) a second gene of interest,
(e) un site 1RES,,(e) a 1RES site ,,
(f) un troisième gène d'intérêt, et(f) a third gene of interest, and
(g) un LTR 3' rétroviral, l'un au moins de la région d'encapsidation et du site IRES étant constitué par ladite séquence nucléotidique en usage selon Tune des revendications l à 7.(g) a 3 ′ retroviral LTR, at least one of the packaging region and of the IRES site consisting of said nucleotide sequence in use according to one of claims 1 to 7.
13. Vecteur rétroviral selon la revendication 12, dans lequel la région promotrice interne, le second gène d'intérêt, le site IRES et le troisième gène d'intérêt sont dans une orientation inverse par rapport aux LTRs 5' et 3' rétroviraux.13. The retroviral vector according to claim 12, in which the internal promoter region, the second gene of interest, the IRES site and the third gene of interest are in a reverse orientation with respect to the retroviral 5 'and 3' LTRs.
14. Vecteur rétroviral selon la revendication 12 ou 13, dans lequel la région d'encapsidation dérive d'un retrovirus murin, notamment d'un MoMLV, ou d'un rétrotransposon de type VL30 et le site IRES comprend une séquence nucléotidique telle que définie à la revendication 6.14. The retroviral vector according to claim 12 or 13, in which the packaging region derives from a murine retrovirus, in particular from a MoMLV, or from a VL30 type retrotransposon and the IRES site comprises a nucleotide sequence as defined. to claim 6.
15. Vecteur rétroviral selon la revendication 14, dans lequel la région
d'encapsidation dérive d'un MoMLV et le site IRES comprend une séquence nucléotidique identique à la séquence présentée dans l'identificateur de séquence SEQ ID NO: 2 commençant au nucleotide 265 et se terminant au nucleotide 578 ou commençant au nucleotide 452 et se terminant au nucleotide 578.15. The retroviral vector of claim 14, wherein the region packaging derived from a MoMLV and the IRES site includes a nucleotide sequence identical to the sequence presented in the sequence identifier SEQ ID NO: 2 starting at nucleotide 265 and ending at nucleotide 578 or starting at nucleotide 452 and ending at nucleotide 578.
16. Vecteur rétroviral selon la revendication 10, comprenant un LTR 5' rétroviral dérivé d'un virus REV, notamment SNV, un LTR 3' rétroviral d'une origine quelconque, un ou plusieurs gène(s) d'intérêt, et une séquence nucléotidique substantiellement homologue ou identique à la séquence présentée dans l'identificateur de séquence SEQ ID NO: 2 commençant au nucleotide 1 et se terminant au nucleotide 578, ou commençant au nucleotide 265 et se terminant au nucleotide 578, à titre de région d'encapsidation.16. The retroviral vector according to claim 10, comprising a 5 ′ retroviral LTR derived from a REV virus, in particular SNV, a 3 ′ retroviral LTR of any origin, one or more gene (s) of interest, and a sequence nucleotide substantially homologous or identical to the sequence presented in the sequence identifier SEQ ID NO: 2 starting at nucleotide 1 and ending at nucleotide 578, or starting at nucleotide 265 and ending at nucleotide 578, as an encapsidation region .
17. Un vecteur selon l'une des revendications 8 à 16, comprenant un gène d'intérêt codant pour un produit d'expression sélectionné parmi le facteur VIII, le facteur IX, la protéine CFTR, la dystrophine, l'insuline, l'interféron alpha, béta, gamma, une interleukine (IL) notamment TIL-2 et un marqueur de sélection.17. A vector according to one of claims 8 to 16, comprising a gene of interest encoding an expression product selected from factor VIII, factor IX, the CFTR protein, dystrophin, insulin, the interferon alpha, beta, gamma, an interleukin (IL) including TIL-2 and a selection marker.
18. Une particule virale générée à partir d'un vecteur viral selon l'une des revendications 8 à 17.18. A viral particle generated from a viral vector according to one of claims 8 to 17.
19. Une cellule comprenant un vecteur selon l'une des revendications 8 à 17 ou infectée par une particule virale selon la revendication 18.19. A cell comprising a vector according to one of claims 8 to 17 or infected with a viral particle according to claim 18.
20. Utilisation d'un vecteur selon l'une des revendications 8 à 17, d'une particule virale selon la revendication 18 ou d'une cellule selon la revendication 19
pour la préparation d'une composition pharmaceutique destinée au traitement et/ou à la prévention d'une maladie traitable par thérapie génique.20. Use of a vector according to one of claims 8 to 17, of a viral particle according to claim 18 or of a cell according to claim 19 for the preparation of a pharmaceutical composition intended for the treatment and / or prevention of a disease treatable by gene therapy.
21. Utilisation d'un vecteur selon l'une des revendications 8 à 17, d'une particule virale selon la revendication 18 ou d'une cellule selon la revendication 19 pour la préparation d'un ou plusieurs polypeptides d'intérêt par voie recombinante ou pour la production d'un animal transgénique.21. Use of a vector according to one of claims 8 to 17, of a viral particle according to claim 18 or of a cell according to claim 19 for the preparation of one or more polypeptides of interest by recombinant route or for the production of a transgenic animal.
22. Une composition pharmaceutique comprenant à titre d'agent thérapeutique ou prophylactique, un vecteur selon l'une des revendications 8 à 17, une particule virale selon la revendication 18, une cellule selon la revendication 19 ou un polypeptide d'intérêt obtenu selon l'utilisation selon la revendication 21, en association avec un véhicule pharmaceutiquement acceptable.22. A pharmaceutical composition comprising, as therapeutic or prophylactic agent, a vector according to one of claims 8 to 17, a viral particle according to claim 18, a cell according to claim 19 or a polypeptide of interest obtained according to l use according to claim 21, in combination with a pharmaceutically acceptable vehicle.
23. Une composition pharmaceutique selon la revendication 22, caractérisée en ce qu'elle comprend entre 104 et 10'4 pfu, et de préférence entre 106 et 10" pfu particules virales selon la revendication 18.23. A pharmaceutical composition according to claim 22, characterized in that it comprises between 10 4 and 10 ′ 4 pfu, and preferably between 10 6 and 10 ″ pfu viral particles according to claim 18.
24. Utilisation d'un vecteur selon l'une des revendications 8 à 17, d'une particule virale selon la revendication 18 ou d'une composition pharmaceutique selon la revendication 22 ou 23, pour la transfection ou l'infection de cellules pluripotentes, notamment de cellules pluripotentes du système nerveux central.
24. Use of a vector according to one of claims 8 to 17, of a viral particle according to claim 18 or of a pharmaceutical composition according to claim 22 or 23, for the transfection or infection of pluripotent cells, in particular pluripotent cells of the central nervous system.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR9705203 | 1997-04-28 | ||
| FR9705203A FR2762615B1 (en) | 1997-04-28 | 1997-04-28 | NEW INTERNAL RIBOSOME ENTRY SITE AND VECTOR CONTAINING THE SAME |
| PCT/FR1998/000849 WO1998049334A1 (en) | 1997-04-28 | 1998-04-28 | Novel internal ribosome entry site and vector containing same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP0918875A1 true EP0918875A1 (en) | 1999-06-02 |
Family
ID=9506363
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP98922883A Withdrawn EP0918875A1 (en) | 1997-04-28 | 1998-04-28 | Novel internal ribosome entry site and vector containing same |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US6783977B1 (en) |
| EP (1) | EP0918875A1 (en) |
| JP (1) | JP2001500021A (en) |
| AU (1) | AU749250B2 (en) |
| CA (1) | CA2258490A1 (en) |
| FR (1) | FR2762615B1 (en) |
| WO (1) | WO1998049334A1 (en) |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2766091A1 (en) | 1997-07-18 | 1999-01-22 | Transgene Sa | ANTITUMOR COMPOSITION BASED ON MODIFIED IMMUNOGENIC POLYPEPTIDE WITH CELL LOCATION |
| EP1266022B1 (en) * | 2000-03-24 | 2008-10-22 | Cell Genesys, Inc. | Cell-specific adenovirus vectors comprising an internal ribosome entry site |
| DK1649023T3 (en) | 2003-07-21 | 2008-10-06 | Transgene Sa | Polypeptide with enhanced cytosine deaminase activity |
| US20080096228A1 (en) * | 2006-08-08 | 2008-04-24 | The Regents Of The University Of California | Compositions And Methods Relating To Mammalian Internal Ribosome Entry Sites |
| DE602007012460D1 (en) | 2006-10-23 | 2011-03-24 | Res Org Information & Systems | IGNITION FOR TETRACYCLIN-INDUCED GENE EXPRESSION OR A CELL STEM WITH CONDITIONAL GENE KNOCKOUT, AND USE OF CELL STRAINS |
| EP2687609B1 (en) | 2008-11-10 | 2017-01-04 | The United States of America, as represented by The Secretary, Department of Health and Human Services | Method for treating solid tumor |
| US9150926B2 (en) | 2010-12-06 | 2015-10-06 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Diagnosis and treatment of adrenocortical tumors using human microRNA-483 |
| JP6189829B2 (en) | 2011-05-13 | 2017-08-30 | ザ・ユナイテッド・ステイツ・オブ・アメリカ・アズ・リプリゼンティド・バイ・ザ・セクレタリー・フォー・ザ・デパートメント・オブ・ヘルス・アンド・ヒューマン・サービシズ | Direct reprogramming of somatic cells using ZSCAN4 and ZSCAN4-dependent genes |
| CA3176825A1 (en) | 2013-03-15 | 2014-09-18 | Elixirgen Therapeutics, Inc. | Methods of using zscan4 for treating a disease or condition associated with a karyotype abnormality |
| CN114807145B (en) * | 2022-06-02 | 2024-02-20 | 新乡医学院 | Leader sequence for improving cap-independent translation efficiency and application thereof |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5112767A (en) * | 1988-03-04 | 1992-05-12 | University Of Southern California | Vectors with enhancer domains |
| US5997856A (en) * | 1988-10-05 | 1999-12-07 | Chiron Corporation | Method and compositions for solubilization and stabilization of polypeptides, especially proteins |
| EP0598029B1 (en) * | 1991-08-07 | 2002-02-27 | ANDERSON, W., French | Retroviral vectors containing internal ribosome entry sites |
| GB9119762D0 (en) * | 1991-09-16 | 1991-10-30 | Filler Aaron G | Particulate agents for nmt |
| DE4228458A1 (en) * | 1992-08-27 | 1994-06-01 | Beiersdorf Ag | Multicistronic expression units and their use |
| DE4228457A1 (en) * | 1992-08-27 | 1994-04-28 | Beiersdorf Ag | Production of heterodimeric PDGF-AB using a bicistronic vector system in mammalian cells |
| WO1994029437A1 (en) * | 1993-06-07 | 1994-12-22 | University Of Medicine & Dentistry Of New Jersey | Highly-efficient, self-inactivating, recombination-free, u3-free retroviral vectors |
| FR2722208B1 (en) * | 1994-07-05 | 1996-10-04 | Inst Nat Sante Rech Med | NEW INTERNAL RIBOSOME ENTRY SITE, VECTOR CONTAINING SAME AND THERAPEUTIC USE |
| US5665350A (en) | 1994-11-23 | 1997-09-09 | University Of Massachusetts Medical Center | Cell cycle dependent transplantation and ex vivo gene therapy |
| US6136566A (en) * | 1996-10-04 | 2000-10-24 | Lexicon Graphics Incorporated | Indexed library of cells containing genomic modifications and methods of making and utilizing the same |
-
1997
- 1997-04-28 FR FR9705203A patent/FR2762615B1/en not_active Expired - Fee Related
-
1998
- 1998-04-28 JP JP10546672A patent/JP2001500021A/en not_active Ceased
- 1998-04-28 US US09/214,124 patent/US6783977B1/en not_active Expired - Fee Related
- 1998-04-28 WO PCT/FR1998/000849 patent/WO1998049334A1/en active IP Right Grant
- 1998-04-28 EP EP98922883A patent/EP0918875A1/en not_active Withdrawn
- 1998-04-28 CA CA002258490A patent/CA2258490A1/en not_active Abandoned
- 1998-04-28 AU AU75365/98A patent/AU749250B2/en not_active Ceased
Non-Patent Citations (1)
| Title |
|---|
| See references of WO9849334A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| US6783977B1 (en) | 2004-08-31 |
| CA2258490A1 (en) | 1998-11-05 |
| FR2762615B1 (en) | 1999-07-16 |
| AU7536598A (en) | 1998-11-24 |
| AU749250B2 (en) | 2002-06-20 |
| JP2001500021A (en) | 2001-01-09 |
| WO1998049334A1 (en) | 1998-11-05 |
| FR2762615A1 (en) | 1998-10-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0784693B1 (en) | Viral vectors for gene therapy | |
| FR2722208A1 (en) | NEW INTERNAL ENTRY SITE OF RIBOSOMES, VECTOR CONTAINER AND THERAPEUTIC USE | |
| EP0842279B1 (en) | Helper viruses for preparing recombinant viral vectors | |
| EP0988391B1 (en) | Recombinant adenoviral vectors comprising a splicing sequence | |
| EP0912723A1 (en) | Highly productive packaging lines | |
| WO1998049334A1 (en) | Novel internal ribosome entry site and vector containing same | |
| EP0781344B1 (en) | Novel implant and novel vector for the treatment of acquired diseases | |
| EP1078094B1 (en) | Methods and compositions for producing viral particles | |
| EP1002120B1 (en) | Chimeric adenoviral vectors | |
| EP1108051A2 (en) | Inducible expression system | |
| EP0906443B1 (en) | Generating replicating molecules in vivo | |
| EP0796338A1 (en) | Encapsidation cell lines for the transcomplementation of defective retroviral vectors | |
| WO1997044475A1 (en) | Adenovirus vectors for gene therapy | |
| FR2737221A1 (en) | Viral vector for gene therapy includes heterologous regulatory sequence - so that viral genes are functional only in complementing cells, also derived infectious particles | |
| WO1998049335A1 (en) | Construct and expression of a retrovirus chimerical envelope by vectors, and pharmaceutical compositions containing same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| 17P | Request for examination filed |
Effective date: 19990426 |
|
| 17Q | First examination report despatched |
Effective date: 20070328 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20090302 |