EP1314933B1 - Système d'injection multi-étages d'un mélange air/carburant dans une chambre de combustion de turbomachine - Google Patents
Système d'injection multi-étages d'un mélange air/carburant dans une chambre de combustion de turbomachine Download PDFInfo
- Publication number
- EP1314933B1 EP1314933B1 EP02292866A EP02292866A EP1314933B1 EP 1314933 B1 EP1314933 B1 EP 1314933B1 EP 02292866 A EP02292866 A EP 02292866A EP 02292866 A EP02292866 A EP 02292866A EP 1314933 B1 EP1314933 B1 EP 1314933B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- injector
- fuel
- air
- fuel feed
- orifices
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 title claims description 144
- 238000002347 injection Methods 0.000 title claims description 23
- 239000007924 injection Substances 0.000 title claims description 23
- 238000002485 combustion reaction Methods 0.000 title claims description 20
- 239000000203 mixture Substances 0.000 title claims description 20
- 230000007423 decrease Effects 0.000 claims description 2
- 238000004939 coking Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000000265 homogenisation Methods 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/286—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/10—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
- F23D11/106—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting at the burner outlet
- F23D11/107—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting at the burner outlet at least one of both being subjected to a swirling motion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/02—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
- F23R3/04—Air inlet arrangements
- F23R3/10—Air inlet arrangements for primary air
- F23R3/12—Air inlet arrangements for primary air inducing a vortex
- F23R3/14—Air inlet arrangements for primary air inducing a vortex by using swirl vanes
Definitions
- the present invention relates to the general field of fuel injection systems in a combustion chamber of a gas turbine engine. It is more particularly an injection system comprising in particular an aerodynamic fuel injector multi-point feed fuel.
- injection systems include fuel injectors and air intake means downstream of the injectors.
- fuel injectors There are two main categories of fuel injectors: the so-called “aeromechanical” injectors designed to deliver two fuel flows according to the engine speeds, and the so-called “aerodynamic” injectors which comprise only one fuel circuit, whatever the engine speed.
- some so-called “aerodynamic” injectors have, at their end or nose, air supply channels to directly deliver an air / fuel mixture.
- the present invention relates more particularly to injection systems comprising so-called "aerodynamic" injectors belonging to the latter category.
- the air intake means known from the prior art (as for example that disclosed in U.S. 4,425,755 ) generally comprise primary and secondary tendrils which deliver a swirling air flow at the outlet of the fuel injector.
- a venturi separating these two tendrils accelerates the flow of air from the primary swirler and a bowl mounted downstream of the secondary swirler allows the mounting of the injector on the bottom of the combustion chamber while aiming to prevent a rise in the combustion flame of the air / fuel mixture to the injector.
- This type of injection system has disadvantages.
- the air / fuel mixture delivered at the injector outlet is generally not homogeneous, thus increasing the pollutant emissions of the engine.
- the fuel flow rate at the injector outlet is also insufficient, especially for low flow rates, which leads to risks of coking at the nose of the injector and causes heterogeneity of the air / fuel mixture.
- a low fuel flow rate also has the disadvantage of increasing the risk of a rise in the combustion flame of the air / fuel mixture to the end of the injector which is detrimental to the proper functioning of the fuel. gas turbine.
- traces of coking appear between the body of the injector and the bowl.
- the present invention therefore aims to overcome such drawbacks by proposing an injection system whose fuel injector makes it possible to obtain a better homogenization of the air / fuel mixture and a greater speed of flow of the fuel at its outlet.
- a system for injecting an air / fuel mixture into a turbomachine combustion chamber comprising an injector comprising an axial internal volume which opens at one end via an axial outlet for the air mixture. /fuel ; a first fuel supply stage with a plurality of first fuel supply ports which open into the internal volume, are distributed around an axis of the injector and are connected by fuel supply channels at a fuel inlet in the injector; and at least one air supply channel which opens into the internal volume and is connected to an air inlet in the injector, characterized in that the injector further comprises at least a second supply stage in fuel with a plurality of second fuel supply ports which open into the internal volume, are distributed around the axis of the injector, and are connected to the fuel inlet in the injector through channels which are at least partly confused with the fuel supply channels of the first stage.
- the second fuel supply stage makes it possible to multiply the number of fuel supply points in the internal volume of the injector around the axis of the latter. Homogenization of the air / fuel mixture is thus improved.
- the passage in which the fuel supply openings open has a decrease in section in the direction of flow of the fuel. This feature makes it possible to increase the flow rate of the fuel to improve the resistance of the injector to coking, and to make the fuel ply more homogeneous, especially for low fuel flow rates.
- the second fuel supply orifices are axially offset with respect to the first fuel supply orifices.
- the second fuel supply ports preferably have angular positions about the axis of the injector offset from those of the first fuel supply ports.
- the fuel supply channels are oriented, in their terminal parts adjacent to the first and second fuel supply ports, substantially tangentially with respect to the wall of the internal volume. This characteristic makes it possible to obtain a rotation of the fuel in the internal volume and thus improves the flow rate and the homogeneity of the air / fuel mixture.
- the injector comprises a rear part in which the air supply channel or channels are formed, at least one ring in which the first and second fuel supply stages are formed and which is introduced into a formed housing. at the downstream end of the rear portion, and a front portion which connects to the rear portion, the ring being immobilized axially between the rear portion and the front portion of the injector.
- each fuel supply stage comprises four fuel supply orifices distributed regularly around the axis of the injector.
- the system according to the invention further comprises a bushing surrounding at least a part of the injector, a divergent forming bowl for mounting the injection system on a bottom of the combustion chamber, at least one air swirl interposed between the sleeve and the bowl, and a venturi formed between the part of the injector surrounded by the sleeve and the bowl.
- a passage for air is provided between the socket and the portion of the injector surrounded by the socket to prevent coke from forming at the nose of the injector, and through holes. of air are formed in the wall of the diverging bowl.
- the figure 1 illustrates an injection system 2 according to the invention mounted in a combustion chamber 4 of a gas turbine engine used in a turbojet for example.
- the combustion chamber 4 for example of the annular type, is delimited by internal and external walls (not shown in the drawing) joined by a chamber bottom 6.
- the latter comprises a plurality of openings 6a of axis 8 regularly spaced around the axis of the motor.
- an injection system 2 according to the invention for injecting an air / fuel mixture into the combustion chamber 4.
- the gases resulting from the combustion of this air / fuel mixture flow towards the downstream in the combustion chamber 4 and are then discharged to a high-pressure turbine (not shown).
- annular baffle 10 is mounted in each of the openings 6a.
- This deflector is disposed in the combustion chamber 4 parallel to the chamber bottom 6.
- a divergent bowl 20 is also mounted inside the opening 6a. It comprises a wall 21 flared downstream in the extension of a cylindrical wall 22 disposed coaxially with the axis 8 of the opening 6a. At its downstream end, the wall 21 of the bowl has a flange 23 which, with a facing wall 24, defines an annular recess or U-shaped bowl flange.
- the cylindrical wall 22 of the bowl 20 surrounds a venturi 30 of axis 8.
- the venturi 30 delimits the air flows coming from a primary swirler 32 and a secondary swirler 34.
- the primary swirler 32 is arranged upstream of the venturi 30 and delivers a flow of air inside the venturi.
- the secondary swirler 34 is disposed upstream of the cylindrical wall 22 of the bowl 20 and delivers a flow of air between the venturi 30 and the cylindrical wall 22.
- the primary swirler 32 is secured upstream of a retaining piece 40 which has an annular groove 42 open on the side of the axis 8 of the opening 6a and in which is mounted a sleeve 44 surrounding at least a portion of the end or nose of a fuel injector 50.
- the injection system may further be provided with a fairing typically formed of a cap 46. This fairing minimizes the losses of fuel. load of air bypassing the injector and to ensure a good supply of the chamber bottom.
- the fuel injector 50 of axis XX coincides with the axis 8 of the opening 6a, is aerodynamic type, that is to say it delivers only one fuel flow whatever the regime engine operation.
- the injector is typically formed of a tubular portion 52 supplying fuel to an injector nose 54, at which the fuel mixes with air before receiving the air from the primary and secondary tendrils and being injected. in the combustion chamber 4.
- FIGS 2 to 6 which more particularly illustrate an embodiment of the fuel injector nose of the injection system according to the invention.
- the nozzle nose 54 has an axial internal volume 56 which opens at one end via an axial outlet 58 for the air / fuel mixture.
- At the end of the nose opposite that having the axial outlet 58 is provided at least one fuel inlet 60 in the form of a cylindrical recess, for example.
- This inlet 60 is supplied with fuel by the tubular part of the fuel injector.
- Fuel supply channels 62 open into the fuel inlet 60 and are connected to a plurality of first fuel supply ports 64 forming a first fuel supply stage. These first orifices are distributed around the axis XX of the injector and open into the internal volume 56.
- At least one air supply channel 66 connected to an air inlet 68 in the injector opens also in the internal volume 56.
- the fuel injector 50 comprises, at its nose 54, at least a second fuel supply stage with a plurality of second fuel supply ports 70 which open in the volume internal 56. These second orifices are distributed around the axis XX of the injector and are connected to the fuel inlet 60 in the injector by fuel supply channels 72 which are at least partially merged with the fuel supply channels 62 of the first fuel supply stage.
- each fuel supply stage advantageously comprises four feed orifices, fuel 64, 70 connected to the fuel supply channels 62, 72 and distributed regularly around the axis XX of the injector.
- the feed channels 62, 72 are preferably arranged alternately with four air supply channels 66.
- first 64 and second 70 fuel supply ports on the one hand, and the air supply duct or channels 66, on the other hand, open in two coaxial passages 74 and 76, respectively. formed in the inner volume 56.
- the air supply channels 66 open into a central passage 76
- the first and second fuel supply ports open into an annular passage 74 surrounding the passage. central 76.
- the annular passage 74 into which the fuel supply openings open has a reduction of section 74a in the direction of flow of the fuel in order to form a convergent allowing the acceleration of the fuel. at its exit from this annular passage.
- the second fuel supply stage can be axially offset from the first stage, so that the second fuel supply ports 70 are axially offset from the first fuel supply ports 64.
- This shift of the stages fuel supply can be provided when, for reasons of space, it is not possible to have all the supply ports 64, 70 in the same axial plane.
- the second fuel supply ports 70 preferably have angular positions about the axis XX of the injector offset from those of the first fuel supply ports 64. In this way, the distribution fuel around the axis of the injector and thus the homogeneity of the air / fuel mixture are improved.
- the fuel supply channels 62, 72 each comprise a first part, respectively 62a and 72a, extending parallel to the axis XX of the injector and connected to the fuel inlet 60 in the injector, and a second portion, respectively 62b and 72b, which connects the first portion to a fuel supply port 64, 70.
- first parts 62a, 72a of the fuel supply channels 62, 72 are at least partially merged.
- these fuel supply channels are oriented substantially tangentially with respect to the wall of the internal volume 56.
- the fuel flowing in these channels is rotated before its introduction into the internal volume which allows to increase its flow rate and thus to promote the homogeneity of the air / fuel mixture.
- the arrangement of the air supply channel (s) 66 is particularly illustrated by the Figures 3 and 6 . These channels open into the internal volume 56 in a direction which is substantially tangential to the wall of the internal volume and which is inclined downstream relative to a plane normal to the axis XX of the injector. This particular arrangement also improves the homogeneity and flow velocity of the air / fuel mixture.
- the injector nose is essentially formed of three parts: a rear part 78 in which the air supply duct or ducts 66 are formed, at least one ring 80 in which the first and second fuel supply stage and which is introduced into a housing 82 formed at the downstream end of the rear portion, and a front portion 84 which connects to the rear portion, the ring being immobilized axially between the rear portion and the front part.
- the nose of the injector comprises, at the ring 80, two fuel supply stages.
- the nose of the injector, and more particularly the ring 80 has more than two stages of fuel supply so as to further multiply the number of fuel supply points in the internal volume of the fuel. the injector.
- the additional floors can be shifted axially relative to each other to increase the number of fuel supply points in the internal volume of the injector.
- FIG. 1 Another advantageous features of the injection system according to the invention are represented on the figure 1 .
- at least one passage for air is arranged between the sleeve 44 and the nose portion surrounded by it.
- This passage makes it possible to carry out an anti-coking purge, that is to say that it prevents fuel from coking at the nose of the injector, especially at low fuel flow rates.
- This passage for the air can for example be made in the form of a plurality of orifices 48 regularly distributed around the nose and opening in the vicinity of the axial outlet 58 thereof in a direction substantially parallel to the axis XX of the injector 50. In order to accelerate the flow of the air passing through these orifices 48, a reduction in section of this passage in the direction of flow of the air may be provided.
- air passage holes 25 are formed in the wall 21 of the bowl 20 to effect an anti-coking purge at the bowl. These holes open into the combustion chamber in a direction which may be tilted with respect to the X-X axis and be tangential to the flared wall 21 of the bowl to avoid any risk of coking.
- air passage holes 26 are formed in the facing wall 24 of the bowl flange to feed it, and more particularly the annular baffle 10, with air. These holes 26 open for example substantially parallel to the X-X axis of the injector so that the air passing through them hits the flange 23 of the wall 21 of the bowl and flows along the annular baffle 10.
- the holes 25, 26 and air passage holes 48 of the various elements of the injection system, as well as air slots 36, 38 respectively for the primary 32 and secondary 34 tendrils may be distributed along N 360 angular sectors. / N ° each. More specifically, for each angular sector, the bowl 20 may for example comprise n air passage holes 25 of identical shapes to each other (for example circular, elliptical, ...) and opening out parallel to each other. This same principle can be adopted for other holes and air passage slots.
- the figure 7 schematically illustrates, in a plane P perpendicular to the axis XX, an example of distribution of these different air passages.
- the air passages of an angular sector of 60 ° are represented; they comprise: three orifices 48 arranged between the bush 44 and the nose part surrounded by the latter, two air slots 36 for the primary swirler, three air slots 38 for the secondary swirler, four holes 25 for passing through air formed in the wall 21 of the bowl, and eight air passage holes 26 formed in the facing wall 24 of the bowl collar.
- the distribution of these different air passages is regular around the axis XX. They can be made directly in the foundry.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Description
- La présente invention se rapporte au domaine général des systèmes d'injection de carburant dans une chambre de combustion d'un moteur de turbine à gaz. Elle vise plus particulièrement un système d'injection comportant notamment un injecteur de carburant aérodynamique à alimentation multi-points en carburant.
- De façon connue, la chambre de combustion d'un moteur de turbine à gaz est pourvue de plusieurs systèmes d'injection lui permettant d'être alimentée en carburant et en air à tous les régimes de fonctionnement du moteur. Les systèmes d'injection comportent notamment des injecteurs de carburant et des moyens d'admission d'air en aval des injecteurs. Il existe deux catégories principales d'injecteurs de carburant : les injecteurs dits « aéromécaniques » conçus pour délivrer deux débits de carburant suivant les régimes du moteur, et les injecteurs dits « aérodynamiques » qui ne comportent qu'un seul circuit de carburant, quel que soit le régime du moteur. En outre, certains injecteurs dits « aérodynamiques » présentent, au niveau de leur extrémité ou nez, des canaux d'alimentation en air afin de délivrer directement un mélange air/carburant. La présente invention vise plus particulièrement les systèmes d'injection comportant des injecteurs dits « aérodynamiques » appartenant à cette dernière catégorie.
- Les moyens d'admission d'air connus de l'art antérieur (comme par exemple celui divulgué dans
US-4 425 755 ) comportent en général des vrilles primaire et secondaire qui délivrent un flux d'air tourbillonnant à la sortie de l'injecteur de carburant. Un venturi séparant ces deux vrilles permet d'accélérer l'écoulement d'air issu de la vrille primaire et un bol monté en aval de la vrille secondaire permet le montage de l'injecteur sur le fond de chambre de combustion tout en visant à empêcher une remontée de la flamme de combustion du mélange air/carburant vers l'injecteur. - Ce type de système d'injection présente des inconvénients. En particulier, le mélange air/carburant délivré en sortie d'injecteur n'est généralement pas homogène, augmentant ainsi les émissions polluantes du moteur. La vitesse d'écoulement du carburant en sortie d'injecteur est en outre insuffisante, notamment pour les faibles débits, ce qui entraîne des risques de cokéfaction au niveau du nez de l'injecteur et engendre une hétérogénéité du mélange air/carburant. Une faible vitesse d'écoulement du carburant a également pour inconvénient d'augmenter les risques d'une remontée de la flamme de combustion du mélange air/carburant jusqu'à l'extrémité de l'injecteur ce qui est préjudiciable au bon fonctionnement de la turbine à gaz. De plus, lors d'allumages répétés sur ce type de système d'injection, on constate que des traces de cokéfaction apparaissent entre le corps de l'injecteur et le bol.
- La présente invention vise donc à pallier de tels inconvénients en proposant un système d'injection dont l'injecteur de carburant permet d'obtenir une meilleure homogénéisation du mélange air/carburant et une plus grande vitesse d'écoulement du carburant à sa sortie.
- A cet effet, il est prévu un système d'injection d'un mélange air/carburant dans une chambre de combustion de turbomachine, comprenant un injecteur comportant un volume interne axial qui s'ouvre à une extrémité par une sortie axiale pour le mélange air/carburant ; un premier étage d'alimentation en carburant avec une pluralité de premiers orifices d'alimentation en carburant qui s'ouvrent dans le volume interne, sont répartis autour d'un axe de l'injecteur et sont reliés par des canaux d'alimentation en carburant à une entrée de carburant dans l'injecteur ; et au moins un canal d'alimentation en air qui s'ouvre dans le volume interne et est relié à une entrée d'air dans l'injecteur, caractérisé en ce que l'injecteur comporte en outre au moins un deuxième étage d'alimentation en carburant avec une pluralité de deuxièmes orifices d'alimentation en carburant qui s'ouvrent dans le volume interne, sont répartis autour de l'axe de l'injecteur, et sont reliés à l'entrée de carburant dans l'injecteur par des canaux d'alimentation en carburant qui sont au moins en partie confondus avec les canaux d'alimentation en carburant du premier étage.
- De la sorte, le deuxième étage d'alimentation en carburant permet de multiplier le nombre de points d'alimentation en carburant dans le volume interne de l'injecteur autour de l'axe de celui-ci. L'homogénéisation du mélange air/carburant s'en trouve donc améliorée.
- Les premiers et deuxièmes orifices d'alimentation en carburant, d'une part, et le ou les canaux d'alimentation en air, d'autre part, s'ouvrent dans deux passages coaxiaux formés dans le volume interne. Selon une disposition avantageuse de l'invention, le passage dans lequel s'ouvrent les orifices d'alimentation en carburant présente une diminution de section dans le sens d'écoulement du carburant. Cette caractéristique permet d'augmenter la vitesse d'écoulement du carburant pour améliorer la tenue de l'injecteur à la cokéfaction, et de rendre la nappe de carburant plus homogène, notamment pour les faibles débits de carburant.
- Selon une autre disposition avantageuse de l'invention, les deuxièmes orifices d'alimentation en carburant sont axialement décalés par rapport aux premiers orifices d'alimentation en carburant. Dans ce cas, les deuxièmes orifices d'alimentation en carburant ont de préférence des positions angulaires autour de l'axe de l'injecteur décalées par rapport à celles des premiers orifices d'alimentation en carburant. Ces dispositions avantageuses permettent de favoriser la répartition du carburant autour de l'axe de l'injecteur et donc l'homogénéité du mélange air/carburant.
- Selon encore une autre disposition avantageuse de l'invention, les canaux d'alimentation en carburant sont orientés, dans leurs parties terminales adjacentes aux premiers et deuxièmes orifices d'alimentation en carburant, sensiblement tangentiellement par rapport à la paroi du volume interne. Cette caractéristique permet d'obtenir une mise en rotation du carburant dans le volume interne et améliore ainsi la vitesse d'écoulement et l'homogénéité du mélange air/carburant.
- De préférence, l'injecteur comporte une partie arrière dans laquelle sont formés le ou les canaux d'alimentation en air, au moins une bague dans laquelle sont formés les premier et deuxième étages d'alimentation en carburant et qui est introduite dans un logement formé à l'extrémité aval de la partie arrière, et une partie avant qui se raccorde à la partie arrière, la bague étant immobilisée axialement entre la partie arrière et la partie avant de l'injecteur.
- Selon encore une caractéristique avantageuse de l'invention, chaque étage d'alimentation en carburant comprend quatre orifices d'alimentation en carburant répartis de façon régulière autour de l'axe de l'injecteur.
- Le système selon l'invention comporte en outre une douille entourant au moins une partie de l'injecteur, un bol formant divergent pour le montage du système d'injection sur un fond de chambre de combustion, au moins une vrille d'air interposée entre la douille et le bol, et un venturi formé entre la partie de l'injecteur entourée par la douille et le bol. De préférence, un passage pour de l'air est aménagé entre la douille et la partie de l'injecteur entourée par la douille afin d'empêcher que de la coke se forme au niveau du nez de l'injecteur, et des trous de passage d'air sont formés dans la paroi du bol formant divergent.
- D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures :
- la
figure 1 est vue en coupe du système d'injection selon l'invention monté dans une chambre de combustion d'un moteur à turbine à gaz ; - la
figure 2 est une vue en coupe longitudinale d'un mode de réalisation du nez de l'injecteur de carburant équipant le système d'injection selon l'invention ; - les
figures 3, 4 et 5 sont des vues en coupe de lafigure 2 respectivement selon III-III, IV-IV et V-V ; - la
figure 6 est une vue en coupe selon VI-VI de lafigure 3 ; - la
figure 7 est une vue en perspective et en éclaté du nez de l'injecteur de lafigure 2 ; et - la
figure 8 représente schématiquement un exemple de répartition des différents passages alimentant en air le système d'injection de lafigure 1 . - La
figure 1 illustre un système d'injection 2 selon l'invention monté dans une chambre de combustion 4 d'un moteur à turbine à gaz utilisé dans un turboréacteur par exemple. - La chambre de combustion 4, par exemple du type annulaire, est délimitée par des parois interne et externe (non représentées sur le dessin) réunies par un fond de chambre 6. Ce dernier comporte une pluralité d'ouvertures 6a d'axe 8 régulièrement espacées autour de l'axe du moteur. Dans chacune des ouvertures 6a est monté un système d'injection 2 selon l'invention destiné à injecter un mélange air/carburant dans la chambre de combustion 4. Les gaz issus de la combustion de ce mélange air/carburant s'écoulent vers l'aval dans la chambre de combustion 4 et sont ensuite évacués vers une turbine haute-pression (non représentée).
- De façon connue en soi, un déflecteur annulaire 10 est monté dans chacune des ouvertures 6a. Ce déflecteur est disposé dans la chambre de combustion 4 parallèlement au fond de chambre 6. Un bol 20 formant divergent est également monté à l'intérieur de l'ouverture 6a. Il comporte une paroi 21 évasée vers l'aval dans le prolongement d'une paroi cylindrique 22 disposée coaxialement à l'axe 8 de l'ouverture 6a. A son extrémité aval, la paroi 21 du bol présente un rebord 23 qui, avec une paroi en regard 24, délimite un renfoncement annulaire ou collerette de bol à section en U.
- La paroi cylindrique 22 du bol 20 entoure un venturi 30 d'axe 8. Le venturi 30 délimite les écoulements d'air issus d'une vrille primaire 32 et d'une vrille secondaire 34. La vrille primaire 32 est disposée en amont du venturi 30 et délivre un flux d'air à l'intérieur du venturi. La vrille secondaire 34 est disposée en amont de la paroi cylindrique 22 du bol 20 et délivre un flux d'air entre le venturi 30 et la paroi cylindrique 22.
- La vrille primaire 32 est solidaire en amont d'une pièce de retenue 40 qui présente une rainure annulaire 42 ouverte du côté de l'axe 8 de l'ouverture 6a et dans laquelle est montée une douille 44 entourant au moins une partie de l'extrémité ou nez d'un injecteur de carburant 50. Le système d'injection peut en outre être muni d'un carénage typiquement formé d'une casquette 46. Ce carénage permet de minimiser les pertes de charge de l'air de contournement de l'injecteur et de garantir une bonne alimentation du fond de chambre.
- L'injecteur de carburant 50, d'axe X-X confondu avec l'axe 8 de l'ouverture 6a, est de type aérodynamique, c'est à dire qu'il ne délivre qu'un seul débit de carburant quel que soit le régime de fonctionnement du moteur. L'injecteur est typiquement formé d'une partie tubulaire 52 alimentant en carburant un nez d'injecteur 54, au niveau duquel le carburant se mélange avec de l'air avant de recevoir l'air des vrilles primaire et secondaire et d'être injecté dans la chambre de combustion 4.
- On se réfère aux
figures 2 à 6 qui illustrent plus particulièrement un mode de réalisation du nez d'injecteur de carburant du système d'injection selon l'invention. - Le nez d'injecteur 54 comporte un volume interne axial 56 qui s'ouvre à une extrémité par une sortie axiale 58 pour le mélange air/carburant. A l'extrémité du nez opposée à celle comportant la sortie axiale 58, est aménagée au moins une entrée de carburant 60 se présentant sous la forme d'un évidement cylindrique par exemple. Cette entrée 60 est alimentée en carburant par la partie tubulaire de l'injecteur de carburant. Des canaux d'alimentation en carburant 62 débouchent dans l'entrée de carburant 60 et sont reliés à une pluralité de premiers orifices d'alimentation en carburant 64 formant un premier étage d'alimentation en carburant. Ces premiers orifices sont répartis autour de l'axe X-X de l'injecteur et s'ouvrent dans le volume interne 56. Au moins un canal d'alimentation en air 66 relié à une entrée d'air 68 dans l'injecteur s'ouvre également dans le volume interne 56.
- Conformément à l'invention, l'injecteur de carburant 50 comporte, au niveau de son nez 54, au moins un deuxième étage d'alimentation en carburant avec une pluralité de deuxièmes orifices d'alimentation en carburant 70 qui s'ouvrent dans le volume interne 56. Ces deuxièmes orifices sont répartis autour de l'axe X-X de l'injecteur et sont reliés à l'entrée de carburant 60 dans l'injecteur par des canaux d'alimentation en carburant 72 qui sont au moins en partie confondus avec les canaux d'alimentation en carburant 62 du premier étage d'alimentation en carburant.
- Comme l'illustre la
figure 3 , chaque étage d'alimentation en carburant comprend avantageusement quatre orifices d'alimentation en carburant 64, 70 reliés aux canaux d'alimentation en carburant 62, 72 et répartis de façon régulière autour de l'axe X-X de l'injecteur. Les canaux d'alimentation 62, 72 sont de préférence disposés en alternance avec quatre canaux d'alimentation en air 66. - Par ailleurs, les premiers 64 et deuxièmes 70 orifices d'alimentation en carburant, d'une part, et le ou les canaux d'alimentation en air 66, d'autre part, s'ouvrent dans deux passages coaxiaux, respectivement 74 et 76, formés dans le volume interne 56. Plus précisément, les canaux d'alimentation en air 66 s'ouvrent dans un passage central 76, et les premiers et deuxièmes orifices d'alimentation en carburant s'ouvrent dans un passage annulaire 74 entourant le passage central 76.
- Selon une caractéristique avantageuse de l'invention, le passage annulaire 74 dans lequel s'ouvrent les orifices d'alimentation en carburant présente une diminution de section 74a dans le sens d'écoulement du carburant afin de former un convergent permettant l'accélération du carburant à sa sortie de ce passage annulaire.
- De plus, comme illustré sur les
figures 2 à 7 , le deuxième étage d'alimentation en carburant peut être décalé axialement par rapport au premier étage, de sorte que les deuxièmes orifices d'alimentation en carburant 70 sont décalés axialement par rapport aux premiers orifices d'alimentation en carburant 64. Ce décalage des étages d'alimentation en carburant peut être prévu lorsque, pour des raisons d'encombrement, il n'est pas possible disposer tous les orifices d'alimentation 64, 70 dans le même plan axial. Dans ce cas, les deuxièmes orifices d'alimentation en carburant 70 ont de préférence des positions angulaires autour de l'axe X-X de l'injecteur décalées par rapport à celles des premiers orifices d'alimentation en carburant 64. De la sorte, la répartition du carburant autour de l'axe de l'injecteur et donc l'homogénéité du mélange air/carburant se trouvent améliorées. - Les canaux d'alimentation en carburant 62, 72 comportent chacun une première partie, respectivement 62a et 72a, s'étendant parallèlement à l'axe X-X de l'injecteur et raccordée à l'entrée de carburant 60 dans l'injecteur, et une deuxième partie, respectivement 62b et 72b, qui raccorde la première partie à un orifice 64, 70 d'alimentation en carburant. Sur la
figure 2 , on remarque bien que les premières parties 62a, 72a des canaux d'alimentation en carburant 62, 72 sont au moins en partie confondues. Comme illustré par lesfigures 4 et 5 , dans leurs parties terminales adjacentes aux premiers 64 et deuxièmes 70 orifices d'alimentation en carburant, ces canaux d'alimentation en carburant sont orientés sensiblement tangentiellement par rapport à la paroi du volume interne 56. Ainsi, le carburant s'écoulant dans ces canaux est mis en rotation avant son introduction dans le volume interne ce qui permet d'augmenter sa vitesse d'écoulement et donc de favoriser l'homogénéité du mélange air/carburant. - La disposition du ou des canaux d'alimentation en air 66 est notamment illustrée par les
figures 3 et 6 . Ces canaux débouchent dans le volume interne 56 dans une direction qui est sensiblement tangentielle par rapport à la paroi du volume interne et qui est inclinée vers l'aval par rapport à un plan normal à l'axe X-X de l'injecteur. Cette disposition particulière améliore également l'homogénéité et la vitesse d'écoulement du mélange air/carburant. - On décrira maintenant les éléments constitutifs du nez d'injecteur ci-dessus détaillé en se référant à la
figure 7 qui illustre schématiquement en perspective et en éclaté le nez 54 de l'injecteur de carburant 50. - Sur cette figure, on voit que le nez d'injecteur est essentiellement formé de trois parties : une partie arrière 78 dans laquelle sont formés le ou les canaux d'alimentation en air 66, au moins une bague 80 dans laquelle sont formés les premier et deuxième étages d'alimentation en carburant et qui est introduite dans un logement 82 formé à l'extrémité aval de la partie arrière, et une partie avant 84 qui se raccorde à la partie arrière, la bague étant immobilisée axialement entre la partie arrière et la partie avant.
- Dans le mode de réalisation illustré par les
figures 2 à 7 , le nez de l'injecteur comporte, au niveau de la bague 80, deux étages d'alimentation en carburant. Bien entendu, on peut imaginer que le nez de l'injecteur, et plus particulièrement la bague 80, comporte plus de deux étages d'alimentation en carburant de façon à multiplier davantage le nombre de points d'alimentation en carburant dans le volume interne de l'injecteur. Dans ce cas, les étages supplémentaires peuvent être décalés axialement les uns par rapport aux autres afin d'accroître le nombre de points d'alimentation en carburant dans le volume interne de l'injecteur. - D'autres caractéristiques avantageuses du système d'injection selon l'invention sont représentées sur la
figure 1 . Sur cette figure, on constate qu'au moins un passage pour l'air est aménagé entre la douille 44 et la partie de nez entourée par celle-ci. Ce passage permet de réaliser une purge anti-cokéfaction, c'est à dire qu'il empêche que du carburant ne vienne se cokéfier au niveau du nez de l'injecteur, notamment aux faibles débits de carburant. Ce passage pour l'air peut par exemple être réalisé sous la forme d'une pluralité d'orifices 48 régulièrement répartis autour du nez et débouchant au voisinage de la sortie axiale 58 de celui-ci dans une direction sensiblement parallèle à l'axe X-X de l'injecteur 50. Afin d'accélérer l'écoulement de l'air traversant ces orifices 48, il peut être prévu une diminution de section de ce passage dans le sens d'écoulement de l'air. - En outre, des trous 25 de passage d'air sont formés dans la paroi 21 du bol 20 afin de réaliser une purge anti-cokéfaction au niveau du bol. Ces trous 25 débouchent dans la chambre de combustion dans une direction qui peut présenter une inclinaison par rapport à l'axe X-X et être tangentielle par rapport à la paroi évasée 21 du bol afin d'éviter tout risque de cokéfaction.
- De même, des trous 26 de passage d'air sont formés dans la paroi en regard 24 de la collerette de bol afin d'alimenter celle-ci, et plus particulièrement le déflecteur annulaire 10, en air. Ces trous 26 débouchent par exemple de façon sensiblement parallèle à l'axe X-X de l'injecteur de sorte que l'air les traversant vient frapper le rebord 23 de la paroi 21 du bol et s'écoule le long du déflecteur annulaire 10.
- Les trous 25, 26 et orifices 48 de passage d'air des différents éléments du système d'injection, ainsi que des fentes d'air 36, 38 respectivement pour les vrilles primaire 32 et secondaire 34 peuvent être répartis selon N secteurs angulaires de 360/N° chacun. Plus précisément, pour chaque secteur angulaire, le bol 20 peut par exemple comporter n trous 25 de passage d'air de formes identiques entre eux (par exemple circulaires, elliptiques, ...) et débouchant parallèlement les uns aux autres. Ce même principe peut être adopté pour les autres trous et fentes de passage d'air. A titre d'exemple, la
figure 7 illustre schématiquement, dans un plan P perpendiculaire à l'axe X-X, un exemple de répartition de ces différents passages d'air. Sur cette figure, seuls sont représentés les passages d'air d'un secteur angulaire de 60° ; ils comprennent : trois orifices 48 aménagés entre la douille 44 et la partie de nez entourée par celle-ci, deux fentes d'air 36 pour la vrille primaire, trois fentes d'air 38 pour la vrille secondaire, quatre trous 25 de passage d'air formés dans la paroi 21 du bol, et huit trous 26 de passage d'air formés dans la paroi en regard 24 de la collerette de bol. La répartition de ces différents passages d'air est régulière autour de l'axe X-X. Ils peuvent être réalisés directement en fonderie.
Claims (18)
- Système d'injection (2) d'un mélange air/carburant dans une chambre de combustion (4) de turbomachine, comprenant un injecteur (50) comportant :un volume interne axial (56) qui s'ouvre à une extrémité par une sortie axiale (58) pour le mélange air/carburant ;un premier étage d'alimentation en carburant avec une pluralité de premiers orifices d'alimentation en carburant (64) qui s'ouvrent dans le volume interne, sont répartis autour d'un axe (X-X) de l'injecteur et sont reliés par des canaux d'alimentation en carburant (62) à une entrée de carburant (60) dans l'injecteur ; etau moins un canal d'alimentation en air (66) qui s'ouvre dans le volume interne et est relié à une entrée d'air (68) dans l'injecteur,caractérisé en ce que l'injecteur comporte en outre au moins un deuxième étage d'alimentation en carburant avec une pluralité de deuxièmes orifices d'alimentation en carburant (70) qui s'ouvrent dans le volume interne, sont répartis autour de l'axe de l'injecteur, et sont reliés à ladite entrée de carburant dans l'injecteur par des canaux d'alimentation en carburant (72) qui sont au moins en partie confondus avec les canaux d'alimentation en carburant (62) dudit premier étage.
- Système selon la revendication 1, caractérisé en ce que les premiers et deuxièmes orifices d'alimentation en carburant (64, 70), d'une part, et le ou les canaux d'alimentation en air (66), d'autre part, s'ouvrent dans deux passages coaxiaux (74, 76) formés dans le volume interne.
- Système selon la revendication 2, caractérisé en ce que le passage (74) dans lequel s'ouvrent les orifices d'alimentation en carburant (64, 70) présente une diminution de section dans le sens d'écoulement du carburant afin d'accélérer l'écoulement du carburant dans le volume interne.
- Système selon l'une des revendications 2 ou 3, caractérisé en ce que le ou les canaux d'alimentation en air (66) s'ouvrent dans un passage central (76) et les orifices d'alimentation en carburant (64, 70) s'ouvrent dans un passage annulaire (74) entourant le passage central.
- Système selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les deuxièmes orifices d'alimentation en carburant (70) sont axialement décalés par rapport aux premiers orifices d'alimentation en carburant (64).
- Système selon la revendication 5, caractérisé en ce que les deuxièmes orifices d'alimentation en carburant (70) ont des positions angulaires autour de l'axe de l'injecteur décalées par rapport à celles des premiers orifices d'alimentation en carburant (64).
- Système selon l'une quelconque des revendications 1 à 6, caractérisé en ce que, dans leurs parties terminales adjacentes aux premiers (64) et deuxièmes (70) orifices d'alimentation en carburant, les canaux d'alimentation en carburant (62, 72) sont orientés sensiblement tangentiellement par rapport à la paroi du volume interne (56).
- Système selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les canaux d'alimentation en carburant (62, 72) comportent une première partie (62a, 72a) s'étendant parallèlement à l'axe de l'injecteur et raccordée à l'entrée de carburant dans l'injecteur, et une deuxième partie (62b, 72b) qui raccorde la première partie à un orifice d'alimentation en carburant (64, 70).
- Système selon la revendication 8, caractérisé en ce que la première partie (62a) des canaux d'alimentation en carburant (62) reliés aux premiers orifices d'alimentation en carburant (64) et la première partie (72a) des canaux d'alimentation en carburant (72) reliés aux deuxièmes orifices d'alimentation en carburant (70) sont au moins en partie confondues.
- Système selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le ou les canaux d'alimentation en air (66) débouchent dans le volume interne (56) dans une direction qui est sensiblement tangentielle par rapport à la paroi du volume interne et qui est inclinée vers l'aval par rapport à un plan normal à l'axe (X-X) de l'injecteur.
- Système selon l'une quelconque des revendications 1 à 10, caractérisé en ce que l'injecteur comporte :une partie arrière (78) dans laquelle sont formés le ou les canaux d'alimentation en air (66),au moins une bague (80) dans laquelle sont formés les premier et deuxième étages d'alimentation en carburant et qui est introduite dans un logement (82) formé à l'extrémité aval de la partie arrière, etune partie avant (84) qui se raccorde à la partie arrière, la bague étant immobilisée axialement entre la partie arrière et la partie avant de l'injecteur.
- Système selon l'une quelconque des revendications 1 à 11, caractérisé en ce que chaque étage d'alimentation en carburant comprend quatre orifices d'alimentation en carburant (64, 70) répartis de façon régulière autour de l'axe (X-X) de l'injecteur.
- Système selon l'une quelconque des revendications 1 à 12, caractérisé en ce qu'il comporte en outre une douille (44) entourant au moins une partie de l'injecteur (50), un bol (20) formant divergent pour le montage du système d'injection sur un fond de chambre de combustion (6), et au moins une vrille d'air (32, 34) interposée entre la douille et le bol.
- Système selon la revendication 13, caractérisé en ce qu'au moins un passage (48) pour de l'air est aménagé entre la douille (44) et la partie de l'injecteur entourée par ladite douille.
- Système selon l'une des revendications 13 ou 14, caractérisé en ce qu'un venturi (30) est formé entre la partie de l'injecteur entourée par la douille et le bol (20).
- Système selon l'une quelconque des revendications 13 à 15, caractérisé en ce qu'il comporte deux vrilles d'air primaire (32) et secondaire (34).
- Système selon l'une quelconque des revendications 13 à 16, caractérisé en ce que des trous de passage d'air (25) sont formés dans la paroi (21) du bol formant divergent.
- Système selon l'une quelconque des revendications 13 à 17, caractérisé en ce qu'à son extrémité aval, le bol (20) présente un rebord (23) qui, avec une paroi en regard (24), délimite un renfoncement annulaire à section en U et des trous de passage d'air (26) sont formés dans ladite paroi en regard pour alimenter en air ledit renfoncement.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR0115042 | 2001-11-21 | ||
| FR0115042A FR2832493B1 (fr) | 2001-11-21 | 2001-11-21 | Systeme d'injection multi-etages d'un melange air/carburant dans une chambre de combustion de turbomachine |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP1314933A1 EP1314933A1 (fr) | 2003-05-28 |
| EP1314933B1 true EP1314933B1 (fr) | 2008-09-17 |
Family
ID=8869620
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP02292866A Expired - Lifetime EP1314933B1 (fr) | 2001-11-21 | 2002-11-19 | Système d'injection multi-étages d'un mélange air/carburant dans une chambre de combustion de turbomachine |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US6820425B2 (fr) |
| EP (1) | EP1314933B1 (fr) |
| DE (1) | DE60228924D1 (fr) |
| ES (1) | ES2314022T3 (fr) |
| FR (1) | FR2832493B1 (fr) |
| RU (1) | RU2293862C2 (fr) |
Families Citing this family (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6986255B2 (en) * | 2002-10-24 | 2006-01-17 | Rolls-Royce Plc | Piloted airblast lean direct fuel injector with modified air splitter |
| US6986253B2 (en) * | 2003-07-16 | 2006-01-17 | General Electric Company | Methods and apparatus for cooling gas turbine engine combustors |
| US6976363B2 (en) * | 2003-08-11 | 2005-12-20 | General Electric Company | Combustor dome assembly of a gas turbine engine having a contoured swirler |
| FR2875584B1 (fr) * | 2004-09-23 | 2009-10-30 | Snecma Moteurs Sa | Injecteur a effervescence pour systeme aeromecanique d'injection air/carburant dans une chambre de combustion de turbomachine |
| FR2875585B1 (fr) | 2004-09-23 | 2006-12-08 | Snecma Moteurs Sa | Systeme aerodynamique a effervescence d'injection air/carburant dans une chambre de combustion de turbomachine |
| US7340900B2 (en) * | 2004-12-15 | 2008-03-11 | General Electric Company | Method and apparatus for decreasing combustor acoustics |
| US7316117B2 (en) * | 2005-02-04 | 2008-01-08 | Siemens Power Generation, Inc. | Can-annular turbine combustors comprising swirler assembly and base plate arrangements, and combinations |
| US7513098B2 (en) | 2005-06-29 | 2009-04-07 | Siemens Energy, Inc. | Swirler assembly and combinations of same in gas turbine engine combustors |
| FR2893390B1 (fr) * | 2005-11-15 | 2011-04-01 | Snecma | Fond de chambre de combustion avec ventilation |
| FR2894327B1 (fr) * | 2005-12-05 | 2008-05-16 | Snecma Sa | Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif |
| JP5023526B2 (ja) | 2006-03-23 | 2012-09-12 | 株式会社Ihi | 燃焼器用バーナ及び燃焼方法 |
| FR2903171B1 (fr) | 2006-06-29 | 2008-10-17 | Snecma Sa | Agencement a liaison par crabot pour chambre de combustion de turbomachine |
| FR2903172B1 (fr) * | 2006-06-29 | 2008-10-17 | Snecma Sa | Agencement pour chambre de combustion de turbomachine ayant un defecteur a collerette |
| FR2903173B1 (fr) * | 2006-06-29 | 2008-08-29 | Snecma Sa | Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif |
| FR2903169B1 (fr) * | 2006-06-29 | 2011-11-11 | Snecma | Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif |
| FR2903170B1 (fr) | 2006-06-29 | 2011-12-23 | Snecma | Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif |
| FR2911666B1 (fr) * | 2007-01-18 | 2009-03-13 | Snecma Sa | Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif |
| FR2911667B1 (fr) * | 2007-01-23 | 2009-10-02 | Snecma Sa | Systeme d'injection de carburant a double injecteur. |
| US20080301276A1 (en) * | 2007-05-09 | 2008-12-04 | Ec Control Systems Llc | System and method for controlling and managing electronic communications over a network |
| US8037689B2 (en) * | 2007-08-21 | 2011-10-18 | General Electric Company | Turbine fuel delivery apparatus and system |
| FR2932251B1 (fr) * | 2008-06-10 | 2011-09-16 | Snecma | Chambre de combustion de moteur a turbine a gaz comportant des deflecteurs en cmc |
| FR2951246B1 (fr) * | 2009-10-13 | 2011-11-11 | Snecma | Injecteur multi-point pour une chambre de combustion de turbomachine |
| US20110173983A1 (en) * | 2010-01-15 | 2011-07-21 | General Electric Company | Premix fuel nozzle internal flow path enhancement |
| JP5558168B2 (ja) * | 2010-03-30 | 2014-07-23 | 三菱重工業株式会社 | 燃焼器及びガスタービン |
| US8863525B2 (en) | 2011-01-03 | 2014-10-21 | General Electric Company | Combustor with fuel staggering for flame holding mitigation |
| US9592480B2 (en) * | 2013-05-13 | 2017-03-14 | Solar Turbines Incorporated | Inner premix tube air wipe |
| US9447976B2 (en) * | 2014-01-10 | 2016-09-20 | Solar Turbines Incorporated | Fuel injector with a diffusing main gas passage |
| US10295186B2 (en) * | 2014-03-28 | 2019-05-21 | Delavan Inc. Of Des Moines Ia | Airblast nozzle with upstream fuel distribution and near-exit swirl |
| US10184403B2 (en) * | 2014-08-13 | 2019-01-22 | Pratt & Whitney Canada Corp. | Atomizing fuel nozzle |
| FR3031798B1 (fr) | 2015-01-20 | 2018-08-10 | Safran Aircraft Engines | Systeme d'injection de carburant pour turbomachine d'aeronef, comprenant un canal de traversee d'air a section variable |
| FR3040765B1 (fr) * | 2015-09-09 | 2017-09-29 | Snecma | Element d'appui pour amortir des deplacements axiaux de traversee coulissante de systeme d'injection pour turbomachine |
| FR3043173B1 (fr) | 2015-10-29 | 2017-12-22 | Snecma | Systeme d'injection aerodynamique pour turbomachine d'aeronef, a melange air/carburant ameliore |
| US11378275B2 (en) * | 2019-12-06 | 2022-07-05 | Raytheon Technologies Corporation | High shear swirler with recessed fuel filmer for a gas turbine engine |
| US11754288B2 (en) | 2020-12-09 | 2023-09-12 | General Electric Company | Combustor mixing assembly |
| US11428411B1 (en) * | 2021-05-18 | 2022-08-30 | General Electric Company | Swirler with rifled venturi for dynamics mitigation |
| US12072099B2 (en) * | 2021-12-21 | 2024-08-27 | General Electric Company | Gas turbine fuel nozzle having a lip extending from the vanes of a swirler |
| EP4202305B1 (fr) * | 2021-12-21 | 2025-09-24 | General Electric Company | Moteur de turbine à gaz |
| JP7729413B2 (ja) * | 2022-02-08 | 2025-08-26 | 株式会社Ihi | 噴射ノズルおよび燃焼装置 |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3691762A (en) * | 1970-12-04 | 1972-09-19 | Caterpillar Tractor Co | Carbureted reactor combustion system for gas turbine engine |
| US3724207A (en) * | 1971-08-05 | 1973-04-03 | Gen Motors Corp | Combustion apparatus |
| FR2249243B2 (fr) * | 1973-10-26 | 1978-09-15 | Snecma | |
| GB1421399A (en) * | 1972-11-13 | 1976-01-14 | Snecma | Fuel injectors |
| SU489866A1 (ru) * | 1973-10-16 | 1975-10-30 | Таджикское Управление Гражданской Авиации | Фронтовое устройство камеры сгорани |
| SU699284A1 (ru) * | 1977-05-10 | 1979-11-25 | Ростовское Высшее Военное Командное Училище Им. Главного Маршала Артиллерии Неделина М.И. | Центробежна саморегулируема форсунка |
| GB1597968A (en) * | 1977-06-10 | 1981-09-16 | Rolls Royce | Fuel burners for gas turbine engines |
| US4425755A (en) * | 1980-09-16 | 1984-01-17 | Rolls-Royce Limited | Gas turbine dual fuel burners |
| US4606190A (en) * | 1982-07-22 | 1986-08-19 | United Technologies Corporation | Variable area inlet guide vanes |
| JPS608610A (ja) * | 1983-06-25 | 1985-01-17 | Iwao Harayama | 燃焼装置用バ−ナ |
| US5167116A (en) * | 1989-07-07 | 1992-12-01 | Fuel Systems Textron Inc. | Small airblast fuel nozzle with high efficiency inner air swirler |
| DE4110507C2 (de) * | 1991-03-30 | 1994-04-07 | Mtu Muenchen Gmbh | Brenner für Gasturbinentriebwerke mit mindestens einer für die Zufuhr von Verbrennungsluft lastabhängig regulierbaren Dralleinrichtung |
| FR2685452B1 (fr) * | 1991-12-24 | 1994-02-11 | Snecma | Dispositif d'injection de carburant pour une chambre de combustion de turbomachine. |
| US5437158A (en) * | 1993-06-24 | 1995-08-01 | General Electric Company | Low-emission combustor having perforated plate for lean direct injection |
| FR2735214B1 (fr) * | 1995-06-08 | 1997-07-18 | Snecma | Systeme d'injection aerodynamique alimente par un carburant sous forte pression |
| FR2753779B1 (fr) * | 1996-09-26 | 1998-10-16 | Systeme d'injection aerodynamique d'un melange air carburant | |
| RU2134839C1 (ru) * | 1997-04-02 | 1999-08-20 | Открытое акционерное общество "Авиадвигатель" | Топливовоздушная горелка камеры сгорания газотурбинного двигателя |
-
2001
- 2001-11-21 FR FR0115042A patent/FR2832493B1/fr not_active Expired - Fee Related
-
2002
- 2002-11-19 EP EP02292866A patent/EP1314933B1/fr not_active Expired - Lifetime
- 2002-11-19 RU RU2002130798/06A patent/RU2293862C2/ru not_active IP Right Cessation
- 2002-11-19 DE DE60228924T patent/DE60228924D1/de not_active Expired - Lifetime
- 2002-11-19 ES ES02292866T patent/ES2314022T3/es not_active Expired - Lifetime
- 2002-11-21 US US10/300,817 patent/US6820425B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| US20030131600A1 (en) | 2003-07-17 |
| ES2314022T3 (es) | 2009-03-16 |
| DE60228924D1 (de) | 2008-10-30 |
| US6820425B2 (en) | 2004-11-23 |
| EP1314933A1 (fr) | 2003-05-28 |
| FR2832493B1 (fr) | 2004-07-09 |
| RU2293862C2 (ru) | 2007-02-20 |
| FR2832493A1 (fr) | 2003-05-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1314933B1 (fr) | Système d'injection multi-étages d'un mélange air/carburant dans une chambre de combustion de turbomachine | |
| EP2671028B1 (fr) | Injecteur de chambre de combustion de turbine a gaz a double circuit de carburant et chambre de combustion equipee d'au moins un tel injecteur | |
| EP3368826B1 (fr) | Systeme d'injection aerodynamique pour turbomachine d'aeronef, a melange air/carburant ameliore | |
| EP1857741B1 (fr) | Chambre de combustion d'une turbomachine | |
| EP1806535B1 (fr) | Système d'injection multimode pour chambre de combustion, notamment d'un turboréacteur | |
| FR2931203A1 (fr) | Injecteur de carburant pour turbine a gaz et son procede de fabrication | |
| CA2207831C (fr) | Systeme d'injection a degre d'homogeneisation avancee | |
| CA2646959C (fr) | Systeme d'injection d'un melange d'air et de carburant dans une chambre de combustion de turbomachine | |
| CA2420313C (fr) | Systeme d'injection multi-modes d'un melange air/carburant dans une chambre de combustion | |
| EP0565441B1 (fr) | Chambre de combustion munie d'un fond générateur de prémélange | |
| EP0818658A1 (fr) | Chambre de combustion anti-nox à injection de carburant de type annulaire | |
| CA2572857A1 (fr) | Refroidissement d'un dispositif d'injection multimode pour chambre de combustion, notamment d'un turboreacteur | |
| EP3784958B1 (fr) | Système d'injection pour une chambre annulaire de combustion de turbomachine | |
| EP3530908B1 (fr) | Chambre de combustion comportant deux types d'injecteurs dans lesquels les organes d'étanchéité ont un seuil d'ouverture différent | |
| FR2969253A1 (fr) | Injecteur secondaire de combustible sans tetons | |
| WO2020144416A1 (fr) | Systeme d'injection pour turbomachine, comprenant une vrille et des trous tourbillonnaires de bol melangeur | |
| FR3091332A1 (fr) | Nez d’injecteur pour turbomachine comprenant une vrille secondaire de carburant à section évolutive | |
| EP3771862A1 (fr) | Nez d'injecteur de carburant pour turbomachine comprenant une chambre de mise en rotation intérieurement délimitée par un pion | |
| EP3877699A1 (fr) | Nez d'injecteur pour turbomachine comprenant un circuit primaire de carburant agencé autour d'un circuit secondaire de carburant | |
| EP4004443B1 (fr) | Chambre de combustion comportant des systèmes d'injection secondaires et procédé d'alimentation en carburant | |
| EP3247945B1 (fr) | Ensemble comprenant un système d'injection pour chambre de combustion de turbomachine d'aéronef ainsi qu'un injecteur de carburant | |
| FR2972225A1 (fr) | Injecteur pour tete d'injection d'une chambre de combustion | |
| FR2673705A1 (fr) | Chambre de combustion de turbomachine munie d'un dispositif anti-cokefaction du fond de ladite chambre. | |
| FR3150267A1 (fr) | Système d'injection pour chambre de combustion de turbomachine à étanchéité optimisée entre injecteur et traversée coulissante | |
| FR2975466A1 (fr) | Chambre annulaire de combustion pour une turbomachine |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20021123 |
|
| AK | Designated contracting states |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
| AKX | Designation fees paid |
Designated state(s): DE ES FR GB IT SE |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT SE |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
| REF | Corresponds to: |
Ref document number: 60228924 Country of ref document: DE Date of ref document: 20081030 Kind code of ref document: P |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2314022 Country of ref document: ES Kind code of ref document: T3 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20090618 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20120419 AND 20120425 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: SNECMA Effective date: 20120816 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 60228924 Country of ref document: DE Representative=s name: CBDL PATENTANWAELTE, DE |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 60228924 Country of ref document: DE Representative=s name: CBDL PATENTANWAELTE, DE Effective date: 20121005 Ref country code: DE Ref legal event code: R081 Ref document number: 60228924 Country of ref document: DE Owner name: SNECMA, FR Free format text: FORMER OWNER: HISPANO SUIZA, COLOMBES, FR Effective date: 20121005 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20121114 Year of fee payment: 11 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20150406 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131120 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20151023 Year of fee payment: 14 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20151026 Year of fee payment: 14 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161120 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161119 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: SAFRAN AIRCRAFT ENGINES, FR Effective date: 20170719 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20211020 Year of fee payment: 20 Ref country code: DE Payment date: 20211020 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20211020 Year of fee payment: 20 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 60228924 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20221118 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20221118 |