[go: up one dir, main page]

EP2499843B1 - Method for mixing microphone signals of a recording using multiple microphones - Google Patents

Method for mixing microphone signals of a recording using multiple microphones Download PDF

Info

Publication number
EP2499843B1
EP2499843B1 EP10779267.3A EP10779267A EP2499843B1 EP 2499843 B1 EP2499843 B1 EP 2499843B1 EP 10779267 A EP10779267 A EP 10779267A EP 2499843 B1 EP2499843 B1 EP 2499843B1
Authority
EP
European Patent Office
Prior art keywords
spectral values
signal
microphone
imag
real
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10779267.3A
Other languages
German (de)
French (fr)
Other versions
EP2499843A1 (en
Inventor
Jens Groh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut fuer Rundfunktechnik GmbH
Original Assignee
Institut fuer Rundfunktechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fuer Rundfunktechnik GmbH filed Critical Institut fuer Rundfunktechnik GmbH
Publication of EP2499843A1 publication Critical patent/EP2499843A1/en
Application granted granted Critical
Publication of EP2499843B1 publication Critical patent/EP2499843B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/008Systems employing more than two channels, e.g. quadraphonic in which the audio signals are in digital form, i.e. employing more than two discrete digital channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/02Arrangements for generating broadcast information; Arrangements for generating broadcast-related information with a direct linking to broadcast information or to broadcast space-time; Arrangements for simultaneous generation of broadcast information and broadcast-related information
    • H04H60/04Studio equipment; Interconnection of studios

Definitions

  • the invention relates to a method for mixing microphone signals of a sound exception with multiple microphones according to the preamble of claim 1. Such a method is known from WO 2004/084 185 A1 known.
  • An extended acoustic scene may be, for example, a concert hall with an orchestra of a variety of musical instruments.
  • each individual musical instrument is recorded with a single, closely positioned microphone and also positions further microphones at a greater distance to capture the overall acoustic image, including the reverberation in the concert hall and the audience noises (in particular applause).
  • Another example of an extended acoustic scene is a drum kit consisting of several percussion instruments recorded in the recording studio.
  • a microphone is positioned in close proximity in front of the individual percussion instruments and an additional microphone is mounted above the percussionist.
  • Such multimicrophone sound recordings make it possible to capture as many acoustic and sound properties of the details as possible as well as of the overall picture of the scenery in high quality and make them aesthetically satisfactorily shapable.
  • Each microphone signal of the plurality of microphones is usually recorded as multi-track recording. In the subsequent mixing of the microphone signals further creative work is done. In special cases it is also possible to mix "live" immediately and record only the result of the mixdown.
  • the design goals of the mix are usually a balanced ratio of the volumes of all sound sources, a natural sound and a realistic spatial impression of the overall acoustic image.
  • a method for mixing microphone signals of a multi-microphone sound recording it is known to form the spectral values of overlapping time windows of samples from a first microphone signal and a second microphone signal.
  • the spectral values of the first microphone signal are distributed to the spectral values of the second microphone signal in a first summation stage to form spectral values of a first sum signal, thereby dynamically correcting the spectral values of one of the two microphone signals.
  • spectral values of a result signal are formed, which are subjected to inverse Fourier transformation and block merging. For each block of samples, individual correction factors can be determined in this way.
  • the object of the invention is to largely compensate for the sound changes resulting from the mixing of multi-microphone sound recordings as a result of multipath propagation of sound components.
  • FIG. 3 shows a general block diagram of an arrangement for carrying out the method according to the invention.
  • a first microphone signal 100 and a second microphone signal 101 are each supplied to an associated blocking and spectral transformation unit 320.
  • the supplied microphone signals 100 and 101 are first divided into blocks of time-overlapping signal portions, whereupon the formed blocks undergo a Fourier transform. This results in the spectral values 300 of the first microphone signal 100 and the spectral values 301 of the second microphone signal 101 at the outputs of the blocks 320.
  • the spectral values 300 and 301 are then fed to a first summation stage 310, which generates the spectral values 311 of a first sum signal from the spectral values 300 and 301.
  • the spectral values 311 also form the spectral values 399 of a result signal, which are first subjected to an inverse Fourier transformation in a unit 330. The inverse spectral values thus formed are then combined to form blocks. The resulting blocks of time-overlapping signal portions are accumulated into the result signal 199.
  • the mentioned series connection of assemblies 700 should be understood as meaning that at the beginning of the series connection the spectral values 400 simultaneously form the spectral values of the first sum signal 311 and at the end of the series connection the spectral values 411 also form the spectral values of the result signal 399. In all other sections of the series connection, the spectral values 411 of a summation level 410 also form the spectral values 400 of the subsequent summation level 410.
  • Each block formation and spectral transformation unit 320 of an assembly 700 of FIG A n + 2 -th microphone signal 201 is fed in series, in which it is divided into blocks of time-overlapping signal sections.
  • the formed blocks of time-overlapping signal sections are Fourier-transformed, resulting in the spectral values 401 of the n + 2-th microphone signal.
  • the spectral values 400 of the n-th sum signal and the spectral values 401 of the n + 2-th microphone signal are then supplied to the n + 1-th summation stage 410, which generates from them the spectral values 411 of the n + 1-th sum signal.
  • the degree L is chosen so that experience has shown that no background noises are perceived. Typically, the degree L is on the order of 0.5. The greater the degree L, the lower the probability of the disturbances, but this also partially reduces the compensation of sound changes determined by the setting of D.
  • the spectral values A (k) of the signal 501 to be prioritized are additionally supplied to a multiplier 520, while the spectral values B (k) of the signal 502 which is not to be prioritized are additionally supplied to an adder 530.
  • the multiplier 520 receives the correction factor values m (k) of the output signal 511 from the calculation unit 510, where it is complex with the spectral values A (k) 501 (after real part and imaginary part). be multiplied.
  • the result values of the multiplier 520 are supplied to the adder 530 where they are added complexly (after real part and imaginary part) with the spectral values B (k) of the non-prioritizing signal 502. This results in the spectral values 311 of the first summation signal of the first summation stage 310.
  • the decisive factor for the prioritization is thus the multiplication of the correction factor m (k) with exactly one of the two summands of the addition performed in the adder 530.
  • the entire signal path of this summand is "prioritized" from the microphone signal input to the adder 530.
  • FIG. 6 represents the details of the n + 1-th summation stage 410.
  • the n + 1-th summation stage 410 is similar in construction to the first summation stage 310, but with the difference that here the allocation unit 500 the spectral values 400 of the n-th sum signal and the Spectral values 401 of the n + 2 nd microphone signal, and that the result values of the adder 530 form the spectral values 411 of the n + 1 th sum signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Circuit For Audible Band Transducer (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zum Abmischen von Mikrofonsignalen einer Tonausnahme mit mehreren Mikrofonen gemäß dem Oberbegriff des Patentanspruchs 1. Ein derartiges Verfahren ist aus der WO 2004/084 185 A1 bekannt.The invention relates to a method for mixing microphone signals of a sound exception with multiple microphones according to the preamble of claim 1. Such a method is known from WO 2004/084 185 A1 known.

Um bei der Herstellung von Tonaufnahmen für Musikkonserven, Filme, Rundfunksendungen, Schallarchive, Computerspiele, Multimedia-Präsentationen oder Internet-Präsenzen eine ausgedehnte akustische Szenerie zu erfassen, ist es aus dem " Handbuch der Tonstudiotechnik" von Michael Dickreiter et al., ISBN 978-3598117657 bekannt, mehrere Mikrofone anstelle nur eines einzelnen Mikrofons zu verwenden. Hierfür wird allgemein der Ausdruck "Multimikrofon-Tonaufnahme" gebraucht. Eine ausgedehnte akustische Szenerie kann zum Beispiel ein Konzertsaal mit einem Orchester aus einer Vielzahl von Musikinstrumenten sein. Für die Erfassung der klanglichen Details nimmt man hier jedes einzelne Musikinstrument mit jeweils einem einzelnen, nahe positionierten Mikrofon auf und positioniert zusätzlich für die Erfassung des akustischen Gesamtbildes einschließlich des Nachhalls im Konzertsaal und der Publikumsgeräusche (insbesondere Beifall) weitere Mikrofone in größerer Entfernung. Ein anderes Beispiel für eine ausgedehnte akustische Szenerie ist ein aus mehreren Schlaginstrumenten bestehendes Schlagzeug, das im Tonstudio aufgenommen wird. Bei der "Multimikrofon-Tonaufnahme" wird in diesem Falle vor den einzelnen Schlaginstrumenten jeweils ein Mikrofon nahe positioniert und es wird ein zusätzliches Mikrofon oberhalb des Schlagzeugers angebracht.In order to record an extensive acoustic scene in the production of sound recordings for music conserves, films, radio broadcasts, sound archives, computer games, multimedia presentations or Internet presences, it is from the " Handbuch der Tonstudiotechnik "by Michael Dickreiter et al., ISBN 978-3598117657 known to use multiple microphones instead of just a single microphone. For this purpose, the term "multi-microphone sound recording" is generally used. An extended acoustic scene may be, for example, a concert hall with an orchestra of a variety of musical instruments. To record the tonal details, each individual musical instrument is recorded with a single, closely positioned microphone and also positions further microphones at a greater distance to capture the overall acoustic image, including the reverberation in the concert hall and the audience noises (in particular applause). Another example of an extended acoustic scene is a drum kit consisting of several percussion instruments recorded in the recording studio. In the case of the "multi-microphone sound recording", in each case a microphone is positioned in close proximity in front of the individual percussion instruments and an additional microphone is mounted above the percussionist.

Derartige Multimikrofon-Tonaufnahmen ermöglichen es, dass möglichst viele akustische und klangliche Eigenschaften sowohl der Details als auch des Gesamtbildes der Szenerie in hoher Qualität erfasst und ästhetisch befriedigend gestaltbar gemacht werden. Jedes Mikrofonsignal der Vielzahl von Mikrofonen wird in der Regel als Vielspuraufnahme aufgezeichnet. Bei der nachfolgenden Abmischung der Mikrofonsignale erfolgt die weitere gestalterische Arbeit. In Sonderfällen kann auch unmittelbar "live" abgemischt und nur das Ergebnis der Abmischung aufgezeichnet werden.Such multimicrophone sound recordings make it possible to capture as many acoustic and sound properties of the details as possible as well as of the overall picture of the scenery in high quality and make them aesthetically satisfactorily shapable. Each microphone signal of the plurality of microphones is usually recorded as multi-track recording. In the subsequent mixing of the microphone signals further creative work is done. In special cases it is also possible to mix "live" immediately and record only the result of the mixdown.

Die gestalterischen Ziele der Abmischung sind in der Regel ein ausgewogenes Verhältnis der Lautstärken aller Schallquellen, ein natürlicher Klang und ein wirklichkeitsnaher räumlicher Eindruck des akustischen Gesamtbildes.The design goals of the mix are usually a balanced ratio of the volumes of all sound sources, a natural sound and a realistic spatial impression of the overall acoustic image.

Bei der herkömmliche Abmischungstechnik in einem Tonmischpult oder in der Mischfunktion von digitalen Tonschnittsystemen erfolgt eine Summierung der zugeführten Mikrofonsignale, ausgeführt von einem Summierer ("Bus"), der eine technische Realisierung einer gewöhnlichen mathematischen Addition ist. In Figur 1 ist beispielhaft eine einzelne Summation im Signalweg eines herkömmlichen Tonmischpults oder digitalen Tonschnittsystems dargestellt. Eine Hintereinanderschaltung von Summationen im Summierer ("Bus") im Signalweg eines herkömmlichen Tonmischpults oder digitalen Tonschnittsystems ist in Figur 2 beispielhaft veranschaulicht. In den Figuren 1 und 2 bedeuten die Bezugszeichen

100
ein erstes Mikrofonsignal
101
ein zweites Mikrofonsignal
110
eine auf Addition basierende Summierungsstufe
111
ein Summensignal
199
ein Ergebnissignal
200
ein n -tes Summensignal
201
ein n+2 -tes Mikrofonsignal
210
eine n+1 -te, auf Addition basierende Summierungsstufe
211
ein n+1 -tes Summensignal
In the conventional mixing technique in a sound mixing console or in the mixing function of digital sound editing systems, summation of the supplied microphone signals is carried out by a summer ("bus"), which is a technical realization of ordinary mathematical addition. In FIG. 1 By way of example, a single summation in the signal path of a conventional audio mixer or digital sound system is shown. A series connection of summations in the summer ("bus") in the signal path of a conventional sound mixer or digital sound system is in FIG. 2 exemplified. In the FIGS. 1 and 2 the reference numerals
100
a first microphone signal
101
a second microphone signal
110
an addition-based summation level
111
a sum signal
199
a result signal
200
an n-th sum signal
201
a n + 2 -th microphone signal
210
an n + 1th addition-based summation level
211
an n + 1-th sum signal

Bei Multimikrofon-Tonaufnahmen enthalten infolge der unvermeidlichen Mehrwegeausbreitung des Schalls mindestens zwei Mikrofonsignale Schallanteile, die vom Schall ein und derselben Schallquelle herrühren. Da diese Schallanteile infolge der unterschiedlichen Schallwege mit unterschiedlicher Laufzeit an den Mikrofonen eintreffen, entstehen bei herkömmlicher Abmischungstechnik im Summierer Kammfiltereffekte, die als Klangveränderungen hörbar sind und der angestrebten Natürlichkeit des Klanges zuwiderlaufen. Bei herkömmlicher Abmischungstechnik können derartige Klangveränderungen infolge von Kammfiltereffekten durch eine einstellbare Verstärkung und gegebenenfalls eine einstellbare Verzögerung der aufgezeichneten Mikrofonsignale verringert werden. Eine solche Verringerung ist indessen nur in eingeschränktem Maße möglich, wenn eine Mehrwege-Schallausbreitung von mehr als nur einer einzigen Schallquelle vorliegt. In jedem Falle ist aber ein erheblicher Einstellaufwand am Mischpult bzw. digitalen Tonschnittsystem für das Auffinden des besten Kompromisses erforderlich.In multi-microphone sound recordings contain at least two microphone signals due to the unavoidable multipath propagation of sound portions of sound that come from the sound of one and the same sound source. Since these sound components arrive at the microphones as a result of the different sound paths with different transit times, comb filter effects, which are audible as sound changes and run counter to the intended naturalness of the sound, are produced in conventional mixer technology in the summer. In conventional mixing techniques, such sound variations due to comb filter effects can be reduced by adjustable gain and optionally adjustable delay of the recorded microphone signals. However, such a reduction is only possible to a limited extent if there is a multipath sound propagation of more than a single sound source. In any case, however, a considerable adjustment effort on the mixer or digital sound system for finding the best compromise is required.

In der älteren DE 10 2008 056 704 ist eine Abwärtsmischung (sogenanntes "Downmixing") für die Erzeugung eines zweikanaligen Tonformates aus einem mehrkanaligen (z.B. fünfkanaligen) Tonformat beschrieben, mit dem Phantomschallquellen abgebildet werden. Hierbei werden jeweils zwei Eingangssignale summiert, wobei eine Gewichtung der spektralen Koeffizienten eines der beiden zu summierenden Eingangssignale mit einem Korrekturfaktor erfolgt; dasjenige Eingangssignal, welches mit dem Korrekturfaktor gewichtet wird, ist gegenüber dem anderen Eingangssignal priorisiert. Die in der DE 10 2008 056 704 beschriebene Bestimmung des Korrekturfaktors führt jedoch dazu, dass in Fällen, wo die Amplitude des priorisierten Signals gegenüber der des nicht-priorisierten Signals gering ist, störende Nebengeräusche hörbar werden können. Die Wahrscheinlichkeit des Auftretens von solchen Störungen ist zwar gering, aber nicht beeinflussbar.In the older one DE 10 2008 056 704 is a downmixing (so-called "downmixing") described for the generation of a two-channel sound format from a multi-channel (eg, five-channel) sound format, are shown with the phantom sound sources. In each case, two input signals are summed, wherein a weighting of the spectral coefficients of one of the two input signals to be summed takes place with a correction factor; that input signal which is weighted by the correction factor is prioritized to the other input signal. The in the DE 10 2008 056 704 However, the determination of the correction factor described results in that in cases where the amplitude of the prioritized signal is low compared to that of the non-prioritized signal, disturbing background noises can be heard. The probability of occurrence of such disturbances is low, but not influenced.

Aus der WO 2004/084 185 A1 ist es bei einem Verfahren zum Abmischen von Mikrofonsignalen einer Tonaufnahme mit mehreren Mikrofonen bekannt, von einem ersten Mikrofonsignal und einem zweiten Mikrofonsignal jeweils die Spektralwerte überlappender Zeitfenster von Abtastwerten zu bilden. Die Spektralwerte des ersten Mikrofonsignals werden auf die Spektralwerte des zweiten Mikrofonsignals in einer ersten Summierungsstufe unter Bildung von Spektralwerten eines ersten Summensignals verteilt, wodurch eine dynamische Korrektur der Spektralwerte eines der beiden Mikrofonsignale erfolgt. Aus den Spektralwerten des ersten Summensignals werden Spektralwerte eines Ergebnissignals gebildet, die einer inversen Fourier-Transformation und Blockzusammenführung unterworfen werden. Für jeden Block von Abtastwerten können auf diese Weise individuelle Korrekturfaktoren bestimmt werden. Die dynamische Korrektur durch eine signalabhängige Gewichtung spektraler Koeffizienten anstelle einer gewöhnlichen Addition vermindert unerwünschte Kammfiltereffekte bei der Multimikrofon-Tonabmischung, die in den Summiergliedern des Tonmischpultes oder Tonschnittsystems durch gewöhnliche Additionen entstehen. Indessen sind auch bei diesem Verfahren störende Nebengeräusche hörbar, falls die Amplitude des priorisierten Signals gegenüber der des nicht-priorisierten Signals gering ist.From the WO 2004/084 185 A1 For example, in a method for mixing microphone signals of a multi-microphone sound recording, it is known to form the spectral values of overlapping time windows of samples from a first microphone signal and a second microphone signal. The spectral values of the first microphone signal are distributed to the spectral values of the second microphone signal in a first summation stage to form spectral values of a first sum signal, thereby dynamically correcting the spectral values of one of the two microphone signals. From the spectral values of the first sum signal, spectral values of a result signal are formed, which are subjected to inverse Fourier transformation and block merging. For each block of samples, individual correction factors can be determined in this way. The dynamic correction by signal-dependent weighting of spectral coefficients, rather than ordinary addition, reduces undesirable comb filter effects in multimicrophone tone-mixing that arise in the summators of the sound mixer or tone-cutting system by ordinary additions. Meanwhile, even in this method disturbing noise is audible if the amplitude of the prioritized signal is low compared to that of the non-prioritized signal.

Die am IRT erstellte Diplomarbeit " Automatischer Stereo-Downmix von 5.1 Mehrkanalproduktionen" von B. Runow (6.7.2008 ) zeigt ein Verfahren zum Abmischen von Mikrofonsignalen, bei dem eins der Signale nach Spektraltransformation mit einem Faktor gewichtet wird und danach zu einem anderen spektral transformierten Mikrofonsignal addiert wird. Der Faktor berechnet sich aus Real- und Imaginärteil der transformierten Signale. Nach der Addition wird das Ergebnissignal zurück transformiert.The diploma thesis written at the IRT " Automatic stereo downmix of 5.1 multichannel productions "by B. Runow (6.7.2008 ) shows a method for mixing microphone signals, in which one of the signals after spectral transformation is weighted by a factor and then added to another spectrally transformed microphone signal. The factor is calculated from the real and imaginary parts of the transformed signals. After the addition, the result signal is transformed back.

Die Aufgabe der Erfindung besteht darin, die beim Abmischen von Multimikrofon-Tonaufnahmen infolge einer Mehrwegeausbreitung von Schallanteilen entstehenden Klangveränderungen weitgehend zu kompensieren.The object of the invention is to largely compensate for the sound changes resulting from the mixing of multi-microphone sound recordings as a result of multipath propagation of sound components.

Die Lösung dieser Aufgabe ergibt sich aus den Merkmalen des Patentanspruchs 1.The solution to this problem arises from the features of claim 1.

Vorteilhafte Ausgestaltungen und Weiterbildungen des erfindungsgemäßen Verfahrens sind in den Unteransprüchen angegeben.Advantageous embodiments and further developments of the method according to the invention are specified in the subclaims.

Die Erfindung wird anhand der in den Figuren 3 bis 6 gezeigten Ausführungsbeispiele erläutert. Es zeigt

Figur 3
ein generelles Blockschaltbild einer Anordnung zur Durchführung des erfindungsgemäßen Verfahrens;
Figur 4
ein ähnliches Blockschaltbild wie in Fig. 3, jedoch mit dem Unterschied, dass die erste Summierungsstufe um eine Anzahl von weiteren Summierungsstufen erweitert ist;
Figur 5
ein Blockschaltbild einer in den Figuren 3 und 4 vorgesehenen ersten Summierungsstufe, und
Figur 6
ein Blockschaltbild einer in Figur 4 vorgesehenen weiteren Summierungsstufe.
The invention is based on the in the FIGS. 3 to 6 illustrated embodiments explained. It shows
FIG. 3
a general block diagram of an arrangement for carrying out the method according to the invention;
FIG. 4
a similar block diagram as in Fig. 3 , but with the difference that the first summation stage is extended by a number of further summation stages;
FIG. 5
a block diagram of one in the Figures 3 and 4 provided for the first summation stage, and
FIG. 6
a block diagram of an in FIG. 4 provided further summation stage.

In den Figuren 3 bis 6 haben die Bezugszeichen folgende Bedeutungen:

100
ein erstes Mikrofonsignal
101
ein zweites Mikrofonsignal
199
ein Ergebnissignal
201
ein n+2 -tes Mikrofonsignal
300
Spektralwerte des ersten Mikrofonsignals
301
Spektralwerte des zweiten Mikrofonsignals
310
eine erste Summierungsstufe
311
Spektralwerte eines ersten Summensignals
320
eine Blockbildungs- und Spektraltransformationseinheit
330
eine inverse Spektraltransformations- und Blockzusammenführungseinheit
399
Spektralwerte eines Ergebnissignals
400
Spektralwerte eines n -ten Summensignals
401
Spektralwerte eines n+2 -ten Mikrofonsignals
410
eine n+1 -te Summierungsstufe
411
Spektralwerte eines n+1 -ten Summensignals
500
Zuordnungseinheit
501
Spektralwerte A(k) des zu priorisierenden Signals
502
Spektralwerte B(k) des nicht zu priorisierenden Signals
510
Berechnungseinheit für Korrekturfaktorwerte
511
Korrekturfaktorwerte m(k)
520
Multiplizierer-Addierer-Einheit
700
eine n -te Baugruppe bestehend aus der Einheit 320 und der n+1 -ten Summierungsstufe 410
In the FIGS. 3 to 6 the reference signs have the following meanings:
100
a first microphone signal
101
a second microphone signal
199
a result signal
201
a n + 2 -th microphone signal
300
Spectral values of the first microphone signal
301
Spectral values of the second microphone signal
310
a first summation level
311
Spectral values of a first sum signal
320
a blocking and spectral transformation unit
330
an inverse spectral transformation and block merging unit
399
Spectral values of a result signal
400
Spectral values of an n-th sum signal
401
Spectral values of a n + 2-th microphone signal
410
an n + 1th summation level
411
Spectral values of an n + 1-th sum signal
500
allocation unit
501
Spectral values A (k) of the signal to be prioritized
502
Spectral values B (k) of the signal not to be prioritized
510
Calculation unit for correction factor values
511
Correction factor values m (k)
520
Multiplier-adder unit
700
an n-th module consisting of the unit 320 and the n + 1-th summation stage 410th

Figur 3 zeigt ein generelles Blockschaltbild einer Anordnung zur Durchführung des erfindungsgemäßen Verfahrens. Ein erstes Mikrofonsignal 100 und ein zweites Mikrofonsignal 101 werden je einer zugeordneten Blockbildungs- und Spektraltransformationseinheit 320 zugeführt. In den Einheiten 320 werden die zugeführten Mikrofonsignale 100 und 101 zunächst in Blöcke von zeitlich überlappenden Signalabschnitten unterteilt, worauf die gebildeten Blöcke einer Fourier-Transformation unterzogen werden. Hieraus ergeben sich die Spektralwerte 300 des ersten Mikrofonsignals 100 beziehungsweise die Spektralwerte 301 des zweiten Mikrofonsignals 101 an den Ausgängen der Blöcke 320. Die Spektralwerte 300 und 301 werden anschließend einer ersten Summierungsstufe 310 zugeführt, welche aus den Spektralwerten 300 und 301 die Spektralwerte 311 eines ersten Summensignals erzeugt. Die Spektralwerte 311 bilden zugleich die Spektralwerte 399 eines Ergebnissignals, welche in einer Einheit 330 zuerst einer inversen Fourier-Transformation unterzogen werden. Die so gebildeten inversen Spektralwerte werden anschließend zu Blöcken zusammengeführt werden. Die daraus entstandenen Blöcke von zeitlich überlappenden Signalabschnitten werden zu dem Ergebnissignal 199 akkumuliert. FIG. 3 shows a general block diagram of an arrangement for carrying out the method according to the invention. A first microphone signal 100 and a second microphone signal 101 are each supplied to an associated blocking and spectral transformation unit 320. In the units 320, the supplied microphone signals 100 and 101 are first divided into blocks of time-overlapping signal portions, whereupon the formed blocks undergo a Fourier transform. This results in the spectral values 300 of the first microphone signal 100 and the spectral values 301 of the second microphone signal 101 at the outputs of the blocks 320. The spectral values 300 and 301 are then fed to a first summation stage 310, which generates the spectral values 311 of a first sum signal from the spectral values 300 and 301. The spectral values 311 also form the spectral values 399 of a result signal, which are first subjected to an inverse Fourier transformation in a unit 330. The inverse spectral values thus formed are then combined to form blocks. The resulting blocks of time-overlapping signal portions are accumulated into the result signal 199.

Das in Figur 4 veranschaulichte Blockschaltbild ist ähnlich aufgebaut wie das Blockschaltbild in Figur 3, jedoch mit dem wesentlichen Unterschied, dass die Spektralwerte 399 nicht zugleich die Spektralwerte 311 darstellen. Vielmehr ist in Fig. 4 zwischen den Spektralwerten 311 und den Spektralwerten 399 eine Hintereinanderschaltung von einer oder mehreren gleichen Baugruppen 700 aus je einer Blockbildungs- und Spektraltransformationseinheit 320 und einer n+1 -ten Summierungsstufe 410 eingefügt. Von der Baugruppe 700 ist in Fig. 4 zur Vereinfachung nur eine einzige Baugruppe 700 im Blockschaltbild dargestellt, die nachfolgend beschrieben wird, wobei der Zählindex n der fortlaufenden Nummerierung dient. Die erwähnte Hintereinanderschaltung von Baugruppen 700 ist so zu verstehen, dass am Anfang der Hintereinanderschaltung die Spektralwerte 400 zugleich die Spektralwerte des ersten Summensignals 311 bilden und am Ende der Hintereinanderschaltung die Spektralwerte 411 zugleich die Spektralwerte des Ergebnissignals 399 bilden. Bei allen anderen Abschnitten der Hintereinanderschaltung bilden die Spektralwerte 411 einer Summierungsstufe 410 zugleich die Spektralwerte 400 der nachfolgenden Summierungsstufe 410. Jeder Blockbildungs- und Spektraltransformationseinheit 320 einer Baugruppe 700 der Hintereinanderschaltung wird ein n+2 -tes Mikrofonsignal 201 zugeführt, in der es in Blöcke von zeitlich überlappenden Signalabschnitten unterteilt wird. Die gebildeten Blöcke von zeitlich überlappenden Signalabschnitten werden Fourier-transformiert, woraus sich die Spektralwerte 401 des n+2 -ten Mikrofonsignals ergeben. Die Spektralwerte 400 des n -ten Summensignals und die Spektralwerte 401 des n+2 -ten Mikrofonsignals werden dann der n+1 -ten Summierungsstufe 410 zugeführt, welche aus ihnen die Spektralwerte 411 des n+1 -ten Summensignals erzeugt.This in FIG. 4 illustrated block diagram is similar in structure as the block diagram in FIG. 3 , but with the essential difference that the spectral values 399 do not simultaneously represent the spectral values 311. Rather, it is in Fig. 4 between the spectral values 311 and the spectral values 399, a series connection of one or more identical assemblies 700 each consisting of a blocking and spectral transformation unit 320 and an n + 1-th summation stage 410 is inserted. From the assembly 700 is in Fig. 4 for simplicity, only a single assembly 700 is shown in the block diagram, which will be described below, where the count index n is for sequential numbering. The mentioned series connection of assemblies 700 should be understood as meaning that at the beginning of the series connection the spectral values 400 simultaneously form the spectral values of the first sum signal 311 and at the end of the series connection the spectral values 411 also form the spectral values of the result signal 399. In all other sections of the series connection, the spectral values 411 of a summation level 410 also form the spectral values 400 of the subsequent summation level 410. Each block formation and spectral transformation unit 320 of an assembly 700 of FIG A n + 2 -th microphone signal 201 is fed in series, in which it is divided into blocks of time-overlapping signal sections. The formed blocks of time-overlapping signal sections are Fourier-transformed, resulting in the spectral values 401 of the n + 2-th microphone signal. The spectral values 400 of the n-th sum signal and the spectral values 401 of the n + 2-th microphone signal are then supplied to the n + 1-th summation stage 410, which generates from them the spectral values 411 of the n + 1-th sum signal.

Figur 5 stellt die Details der ersten Summierungsstufe 310 dar. In der Summierungsstufe 310 werden die Spektralwerte 300 des ersten Mikrofonsignals 100 und die Spektralwerte 301 des zweiten Mikrofonsignals 101 einer Zuordnungseinheit 500 zugeführt, in der je nach getroffener Wahl des Herstellers oder eines Benutzers eine Priorisierung der Ausgangssignale 501, 502 der Einheit 500 erfolgt. Zwei alternative Zuordnungen sind möglich: Bei Priorisierung des Ausgangssignals 501 werden die Spektralwerte A(k) des zu priorisierenden Signals 501 den Spektralwerten 301 und die Spektralwerte B(k) des nicht zu priorisierenden Signals 502 den Spektralwerten 300 zugeordnet. Alternativ werden die Spektralwerte A(k) des zu priorisierenden Signals 501 den Spektralwerten 300 und die Spektralwerte B(k) des nicht zu priorisierenden Signals 502 den Spektralwerten 301 zugeordnet. Die Wahl der Priorisierungszuordnung bestimmt den räumlichen Eindruck des akustischen Gesamtbildes und wird entsprechend den gestalterischen Anforderungen getroffen. Eine typische Möglichkeit ist, die Signale derjenigen Mikrofone, die zur Erfassung des akustischen Gesamtbildes bestimmt sind (so genannte Hauptmikrofone) beziehungsweise die erfindungsgemäß gebildeten Summensignale dem priorisierten Signalweg zuzuordnen und die Signale derjenigen Mikrofone, die nahe an den Schallquellen positioniert sind (so genannte Stützmikrofone) dem nicht priorisierten Signalweg zuzuordnen. Die zugeordneten Spektralwerte A(k) des zu priorisierenden Signals 501 und Spektralwerte B(k) des nicht zu priorisierenden Signals 502 werden dann einer Berechnungseinheit 510 für Korrekturfaktorwerte m(k) zugeführt, welche aus den Spektralwerten A(k) und B(k) die Korrekturfaktorwerte m(k) als Ausgangssignal 511 wie folgt berechnet:

  • Entweder wird der Korrekturfaktor m(k) wie folgt berechnet: eA k = Real A k Real A k + Imag A k Imag A k
    Figure imgb0001
    x k = Real A k Real B k + Imag A k Imag B k
    Figure imgb0002
    w k = D x k / eA k
    Figure imgb0003
    m k = w k 2 + 1 1 / 2 = w k
    Figure imgb0004
    oder der Korrekturfaktor m(k) wird wie folgt berechnet: eA k = Real A k Real A k + Imag A k Imag A k
    Figure imgb0005
    eB k = Real B k Real B k + Imag B k Imag B k
    Figure imgb0006
    x k = Real A k Real B k + Imag A k Imag B k
    Figure imgb0007
    w k = D x k / eA k + L eB k
    Figure imgb0008
    m k = w k 2 + 1 1 / 2 w k
    Figure imgb0009
    wobei
    • m(k) der k -te Korrekturfaktor
    • A(k) der k -te Spektralwert des zu priorisierenden Signals
    • B(k) der k -te Spektralwert des nicht zu priorisierenden Signals
    • D der Grad der Kompensation
    • L der Grad der Begrenzung der Kompensation
    bedeuten.
FIG. 5 represents the details of the first summation stage 310. In the summation stage 310, the spectral values 300 of the first microphone signal 100 and the spectral values 301 of the second microphone signal 101 are fed to an allocation unit 500, in which prioritization of the output signals 501, depending on the manufacturer's or a user's choice , 502 of the unit 500 takes place. Two alternative assignments are possible: Prioritizing the output signal 501, the spectral values A (k) of the signal 501 to be prioritized are assigned to the spectral values 301 and the spectral values B (k) of the signal 502 to be prioritized to the spectral values 300. Alternatively, the spectral values A (k) of the signal 501 to be prioritized are assigned to the spectral values 300 and the spectral values B (k) of the signal 502 that is not to be prioritized are assigned to the spectral values 301. The choice of Priorisierungszuordnung determines the spatial impression of the overall acoustic image and is made according to the design requirements. A typical possibility is to assign the signals of those microphones that are intended for recording the overall acoustic image (so-called main microphones) or the summation signals formed according to the invention to the prioritized signal path, and the Assign signals from those microphones positioned near the sound sources (called support microphones) to the non-prioritized signal path. The associated spectral values A (k) of the signal 501 to be prioritized and spectral values B (k) of the signal 502 that is not to be prioritized are then fed to a correction factor value m (k) calculating unit 510 which uses the spectral values A (k) and B (k) the correction factor values m (k) are calculated as an output signal 511 as follows:
  • Either the correction factor m (k) is calculated as follows: eA k = real A k real A k + imag A k imag A k
    Figure imgb0001
    x k = real A k real B k + imag A k imag B k
    Figure imgb0002
    w k = D x k / eA k
    Figure imgb0003
    m k = w k 2 + 1 1 / 2 = w k
    Figure imgb0004
    or the correction factor m (k) is calculated as follows: eA k = real A k real A k + imag A k imag A k
    Figure imgb0005
    eB k = real B k real B k + imag B k imag B k
    Figure imgb0006
    x k = real A k real B k + imag A k imag B k
    Figure imgb0007
    w k = D x k / eA k + L eB k
    Figure imgb0008
    m k = w k 2 + 1 1 / 2 - w k
    Figure imgb0009
    in which
    • m (k) is the k-th correction factor
    • A (k) is the k-th spectral value of the signal to be prioritized
    • B (k) is the k-th spectral value of the signal which is not to be prioritized
    • D the degree of compensation
    • L is the degree of limitation of the compensation
    mean.

Der Grad D der Kompensation ist ein Zahlenwert, der bestimmt, in welchem Maße die durch Kammfiltereffekte verursachten Klangveränderungen ausgeglichen werden. Er wird je nach den gestalterischen Anforderungen und der gewünschten klanglichen Wirkung gewählt und liegt vorteilhafterweise im Bereich von 0 bis 1. Ist D=0, so entspricht der Klang genau dem der konventionellen Abmischung. Ist D=1, so ergibt sich eine vollständige Entfernung der Kammfilterwirkung. Werte für D zwischen 0 und 1 ergeben entsprechend eine klangliche Wirkung zwischen derjenigen bei D=0 und derjenigen bei D=1.Degree of compensation is a numerical value that determines the extent to which the sound effects caused by comb filter effects are compensated. It is chosen according to the design requirements and the desired tonal effect and is advantageously in the range of 0 to 1. If D = 0, the sound is exactly the same as the conventional mix. If D = 1, this results in a complete removal of the comb filter effect. Values for D between 0 and 1 accordingly give a sound effect between that at D = 0 and that at D = 1.

Der Grad L der Begrenzung der Kompensation ist ein Zahlenwert, der bestimmt, in welchem Maße die Wahrscheinlichkeit des Auftretens von störend wahrnehmbaren Nebengeräuschen verringert wird. Diese Wahrscheinlichkeit ist gegeben, wenn die Amplitude des zu priorisierenden Mikrofonsignals gegenüber der des nicht zu priorisierenden Mikrofonsignals gering ist. Es gilt L>=0. Ist L=0, so ergibt sich keine Verringerung der Wahrscheinlichkeit der störenden Nebengeräusche. Der Grad L wird so gewählt, dass erfahrungsgemäß gerade keine Nebengeräusche mehr wahrgenommen werden. Typischerweise liegt der Grad L in der Größenordnung von 0,5. Je größer der Grad L ist, umso geringer wird die Wahrscheinlichkeit der Störungen, jedoch verringert sich damit auch teilweise der durch die Einstellung von D bestimmte Ausgleich von Klangveränderungen.The degree L of the limitation of the compensation is a numerical value which determines to what extent the probability of the occurrence of disturbing perceptible background noises is reduced. This probability is given if the amplitude of the microphone signal to be prioritized is small compared to that of the microphone signal which is not to be prioritized. It is L> = 0. If L = 0, there is no reduction in the probability of disturbing background noises. The degree L is chosen so that experience has shown that no background noises are perceived. Typically, the degree L is on the order of 0.5. The greater the degree L, the lower the probability of the disturbances, but this also partially reduces the compensation of sound changes determined by the setting of D.

Die Spektralwerte A(k) des zu priorisierenden Signals 501 werden zusätzlich einem Multiplizierer 520 zugeführt, während die Spektralwerte B(k) des nicht zu priorisierenden Signals 502 zusätzlich einem Addierer 530 zugeführt werden. Außerdem werden dem Multiplizierer 520 die Korrekturfaktorwerte m(k) des Ausgangssignals 511 der Berechnungseinheit 510 zugeführt, wo sie mit den Spektralwerten A(k) 501 komplex (nach Realteil und Imaginärteil) multipliziert werden. Die Ergebniswerte des Multiplizierers 520 werden dem Addierer 530 zugeführt, wo sie mit den Spektralwerten B(k) des nicht zu priorisierenden Signals 502 komplex (nach Realteil und Imaginärteil) addiert werden. Hieraus ergeben sich die Spektralwerte 311 des ersten Summensignals der ersten Summierungsstufe 310.The spectral values A (k) of the signal 501 to be prioritized are additionally supplied to a multiplier 520, while the spectral values B (k) of the signal 502 which is not to be prioritized are additionally supplied to an adder 530. In addition, the multiplier 520 receives the correction factor values m (k) of the output signal 511 from the calculation unit 510, where it is complex with the spectral values A (k) 501 (after real part and imaginary part). be multiplied. The result values of the multiplier 520 are supplied to the adder 530 where they are added complexly (after real part and imaginary part) with the spectral values B (k) of the non-prioritizing signal 502. This results in the spectral values 311 of the first summation signal of the first summation stage 310.

Das Entscheidende für die Priorisierung ist somit die Multiplikation des Korrekturfaktors m(k) mit genau einem der beiden Summanden der im Addierer 530 durchgeführten Addition. Damit wird der gesamte Signalpfad dieses Summanden vom Mikrofonsignaleingang bis zum Addierer 530 "priorisiert".The decisive factor for the prioritization is thus the multiplication of the correction factor m (k) with exactly one of the two summands of the addition performed in the adder 530. Thus, the entire signal path of this summand is "prioritized" from the microphone signal input to the adder 530.

Figur 6 stellt die Details der n+1 -ten Summierungsstufe 410 dar. Die n+1 -te Summierungsstufe 410 gleicht in ihrem Aufbau der ersten Summierungsstufe 310, jedoch mit dem Unterschied, dass hier der Zuordnungseinheit 500 die Spektralwerte 400 des n-ten Summensignals und die Spektralwerte 401 des n+2 -ten Mikrofonsignals zugeführt werden, ferner, dass die Ergebniswerte des Addierers 530 die Spektralwerte 411 des n+1 -ten Summensignals bilden. FIG. 6 represents the details of the n + 1-th summation stage 410. The n + 1-th summation stage 410 is similar in construction to the first summation stage 310, but with the difference that here the allocation unit 500 the spectral values 400 of the n-th sum signal and the Spectral values 401 of the n + 2 nd microphone signal, and that the result values of the adder 530 form the spectral values 411 of the n + 1 th sum signal.

Claims (3)

  1. Method for mixing microphone signals of an audio recording with a plurality of microphones (multi-microphone audio recording), wherein a multipath propagation of sound portions is given and
    - a first microphone signal (100) and a second microphone signal (101) are subject to the building of blocks of samples and a Fourier-transformation, wherein the spectral values (300, 301) of the respective microphone signal (100, 101) are generated,
    - the spectral values (300) of the first microphone signal (100) are distributed onto the spectral values (301) of the second microphone signal (101) in a first summing level (310) while formation of spectral values (311) of a first sum signal, wherein a dynamic correction of the spectral values (300, 301) of one of the two microphone signals (100, 101) occurs,
    - in order to generate the spectral values (311) of the first sum signal of the spectral values (300) of the first microphone signal (100) and the spectral values (301) of the second microphone signal (101) the spectral values (300, 301) of one of the two signals is chosen, which is to be prioritized over the other signal,
    - the spectral values (311) of the first sum signal form spectral values (399) of a result value, and
    - the spectral values (399) of the result value undergo an inverse Fouriertransformation,
    - the so-formed inverse spectral values are merged into blocks of temporally overlapping signal segments and the hence resulting blocks are accumulated to the result signal (199),
    wherein the spectral values (A(k)) of the signal to be prioritized are multiplied with the respective corresponding corrective factors m(k), and that the spectral values (B(k)) of the signal not to be prioritized and the corrected spectral values m(k) · A(k) of the signal to be prioritized are added while formation of spectral values (399) of a result signal (199),
    characterized in that,
    the calculation of the corrective factors m(k) is as follows: eA k = Real A k Real A k + Imag A k Imag A k
    Figure imgb0019
    x k = Real A k Real B k + Imag A k Imag B k
    Figure imgb0020
    w k = D x k / eA k
    Figure imgb0021
    m k = w k 2 + 1 1 / 2 w k
    Figure imgb0022
    or calculated as follows: eA k = Real A k Real A k + Imag A k Imag A k
    Figure imgb0023
    eB k = Real B k Real B k + Imag B k Imag B k
    Figure imgb0024
    x k = Real A k Real B k + Imag A k Imag B k
    Figure imgb0025
    w k = D x k / eA k + L eB k
    Figure imgb0026
    m k = w k 2 + 1 1 / 2 w k
    Figure imgb0027
    and
    m(k) is the kth corrective factor
    and
    A(k) is the kth spectral value of the signal to be prioritized
    and
    B(k) is the kth spectral value of the signal not to be prioritized
    and
    D is the grade of compensation
    and
    L is the grade of limitation of the compensation,
    that the grade L of the limitation of the compensation is a numeric value which determines in how far the probability of the occurrence of disturbing ambient noises is reduced, wherein this probability is given when the amplitude of the microphone signal to be prioritized is low in contrast to the microphone signal not to be prioritized,
    that the value of the grade L of the limitation of the compensation is bigger than or equal to zero, wherein for L=0 no reduction of the probability of disturbing ambient noises is given and the grade L is chosen according to experience so that just no more ambient noises can be heard,
    that the grade D of the compensation is a numeric value which determines in how far the sound changes due to comb-filter effects are balanced, wherein the value of D is chosen according to the creative demand and the intended tonal effect which lies in the range of 0 to 1, wherein for D=0 the sound is exactly the sound of mixing without the corrective factor m(k) and for D=1 the comb-filter effect is completely removed.
  2. Method according to claim 1, characterized in that the grade L of the limitation of the compensation has a value of about 0.5.
  3. Method according to claim 1, characterized in that the first summing level (310) is expanded by a number N of additional summing levels (410),
    in that respectively during the n+1th summing level (410) an n+2th microphone signal (201) undergoes a formation of blocks of samples and a Fourier-transformation, whereat the spectral values (401) of the n+2th microphone signal (201) are generated,
    in that during the n+1th summing level (410) the spectral values (400) of the nth sum signals are distributed to the spectral values (401) of the n+2th microphone signal (201) with generation of the spectral values (411) of an n+1th sum signal, wherein a dynamic correction of either the spectral values (400) of the nth summing level or the spectral values (401) of the n+2th microphone signal (201) occurs,
    in that respectively during the n+1th summing level (410) of spectral values (400) of the nth sum signal and the spectral values (401) of the n+2th microphone signal (201) the spectral values (400, 401) of one of the two signals is chosen, which is to be prioritized over the other signals,
    wherein
    n = [1 ... N] is the serial number of the summing level
    and
    N is the amount of expanded summing levels.
EP10779267.3A 2009-11-12 2010-11-02 Method for mixing microphone signals of a recording using multiple microphones Not-in-force EP2499843B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910052992 DE102009052992B3 (en) 2009-11-12 2009-11-12 Method for mixing microphone signals of a multi-microphone sound recording
PCT/EP2010/066657 WO2011057922A1 (en) 2009-11-12 2010-11-02 Method for dubbing microphone signals of a sound recording having a plurality of microphones

Publications (2)

Publication Number Publication Date
EP2499843A1 EP2499843A1 (en) 2012-09-19
EP2499843B1 true EP2499843B1 (en) 2016-07-13

Family

ID=43571276

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10779267.3A Not-in-force EP2499843B1 (en) 2009-11-12 2010-11-02 Method for mixing microphone signals of a recording using multiple microphones

Country Status (8)

Country Link
US (1) US9049531B2 (en)
EP (1) EP2499843B1 (en)
JP (1) JP5812440B2 (en)
KR (1) KR101759976B1 (en)
CN (1) CN102687535B (en)
DE (1) DE102009052992B3 (en)
TW (1) TWI492640B (en)
WO (1) WO2011057922A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20110890A1 (en) 2011-10-05 2013-04-06 Inst Rundfunktechnik Gmbh INTERPOLATIONSSCHALTUNG ZUM INTERPOLIEREN EINES ERSTEN UND ZWEITEN MIKROFONSIGNALS.
ITTO20120067A1 (en) 2012-01-26 2013-07-27 Inst Rundfunktechnik Gmbh METHOD AND APPARATUS FOR CONVERSION OF A MULTI-CHANNEL AUDIO SIGNAL INTO TWO-CHANNEL AUDIO SIGNAL.
ITTO20120274A1 (en) * 2012-03-27 2013-09-28 Inst Rundfunktechnik Gmbh DEVICE FOR MISSING AT LEAST TWO AUDIO SIGNALS.
ITTO20130028A1 (en) * 2013-01-11 2014-07-12 Inst Rundfunktechnik Gmbh MIKROFONANORDNUNG MIT VERBESSERTER RICHTCHARAKTERISTIK
WO2015173422A1 (en) 2014-05-15 2015-11-19 Stormingswiss Sàrl Method and apparatus for generating an upmix from a downmix without residuals
IT201700040732A1 (en) * 2017-04-12 2018-10-12 Inst Rundfunktechnik Gmbh VERFAHREN UND VORRICHTUNG ZUM MISCHEN VON N INFORMATIONSSIGNALEN
EP3963902A4 (en) * 2019-09-24 2022-07-13 Samsung Electronics Co., Ltd. Methods and systems for recording mixed audio signal and reproducing directional audio
CN114449434B (en) * 2022-04-07 2022-08-16 北京荣耀终端有限公司 Microphone calibration method and electronic equipment

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228093A (en) 1991-10-24 1993-07-13 Agnello Anthony M Method for mixing source audio signals and an audio signal mixing system
WO2000030404A1 (en) 1998-11-16 2000-05-25 The Board Of Trustees Of The University Of Illinois Binaural signal processing techniques
US6154552A (en) * 1997-05-15 2000-11-28 Planning Systems Inc. Hybrid adaptive beamformer
JP4163294B2 (en) * 1998-07-31 2008-10-08 株式会社東芝 Noise suppression processing apparatus and noise suppression processing method
EP1081985A3 (en) * 1999-09-01 2006-03-22 Northrop Grumman Corporation Microphone array processing system for noisy multipath environments
US6668062B1 (en) * 2000-05-09 2003-12-23 Gn Resound As FFT-based technique for adaptive directionality of dual microphones
EP1356706A2 (en) * 2000-09-29 2003-10-29 Knowles Electronics, LLC Second order microphone array
GB2375698A (en) * 2001-02-07 2002-11-20 Canon Kk Audio signal processing apparatus
US7315623B2 (en) * 2001-12-04 2008-01-01 Harman Becker Automotive Systems Gmbh Method for supressing surrounding noise in a hands-free device and hands-free device
JP4286637B2 (en) * 2002-11-18 2009-07-01 パナソニック株式会社 Microphone device and playback device
KR101035104B1 (en) 2003-03-17 2011-05-19 코닌클리케 필립스 일렉트로닉스 엔.브이. Processing Multi-Channel Signals
DE102004005998B3 (en) * 2004-02-06 2005-05-25 Ruwisch, Dietmar, Dr. Separating sound signals involves Fourier transformation, inverse transformation using filter function dependent on angle of incidence with maximum at preferred angle and combined with frequency spectrum by multiplication
MY145083A (en) 2004-03-01 2011-12-15 Dolby Lab Licensing Corp Low bit rate audio encoding and decoding in which multiple channels are represented by fewer channels and auxiliary information.
WO2005109951A1 (en) * 2004-05-05 2005-11-17 Deka Products Limited Partnership Angular discrimination of acoustical or radio signals
US20060147063A1 (en) * 2004-12-22 2006-07-06 Broadcom Corporation Echo cancellation in telephones with multiple microphones
JP4896449B2 (en) * 2005-06-29 2012-03-14 株式会社東芝 Acoustic signal processing method, apparatus and program
DE102006027673A1 (en) 2006-06-14 2007-12-20 Friedrich-Alexander-Universität Erlangen-Nürnberg Signal isolator, method for determining output signals based on microphone signals and computer program
JP4455614B2 (en) * 2007-06-13 2010-04-21 株式会社東芝 Acoustic signal processing method and apparatus
JP2009069181A (en) * 2007-09-10 2009-04-02 Sharp Corp Sound field correction device
KR101434200B1 (en) * 2007-10-01 2014-08-26 삼성전자주식회사 Method and apparatus for identifying sound source from mixed sound
DE102008056704B4 (en) 2008-11-11 2010-11-04 Institut für Rundfunktechnik GmbH Method for generating a backwards compatible sound format

Also Published As

Publication number Publication date
TW201129115A (en) 2011-08-16
JP2013511178A (en) 2013-03-28
EP2499843A1 (en) 2012-09-19
DE102009052992B3 (en) 2011-03-17
US9049531B2 (en) 2015-06-02
TWI492640B (en) 2015-07-11
JP5812440B2 (en) 2015-11-11
CN102687535A (en) 2012-09-19
CN102687535B (en) 2015-09-23
WO2011057922A1 (en) 2011-05-19
KR101759976B1 (en) 2017-07-20
KR20120095971A (en) 2012-08-29
US20120237055A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
EP2499843B1 (en) Method for mixing microphone signals of a recording using multiple microphones
EP2206113B1 (en) Device and method for generating a multi-channel signal using voice signal processing
DE69827775T2 (en) TONKANALSMISCHUNG
EP1844627B1 (en) Device and method for simulating an electromagnetic field synthesis system
DE102018127071B3 (en) Audio signal processing with acoustic echo cancellation
DE4134130C2 (en) Device for expanding and balancing sound fields
EP2402942B1 (en) Method and device for creating an environmental signal
DE69214523T2 (en) DECODER FOR VARIABLE NUMBER OF CHANNEL DISPLAYS OF MULTI-DIMENSIONAL SOUND FIELDS
DE69827911T2 (en) METHOD AND DEVICE FOR MULTI-CHANNEL COMPENSATION OF AN ACOUSTIC ECHO
DE102007018032B4 (en) Generation of decorrelated signals
DE102010030534A1 (en) Device for changing an audio scene and device for generating a directional function
DE19715498A1 (en) Stereo acoustic image enhancement device
EP0808076B1 (en) Surround sound system
DE69934069T2 (en) Sound effect adding device
DE10148351B4 (en) Method and device for selecting a sound algorithm
DE102012025016B3 (en) Method for determining at least two individual signals from at least two output signals
DE102019102414B4 (en) Method and system for detecting fricatives in speech signals
DE19900961A1 (en) Method and device for reproducing multi-channel sound signals
DE69227273T2 (en) Method for determining the coefficient of a reverberation unit
EP1518441B1 (en) Device and method for suppressing a feedback
DE10125229A1 (en) Audio system with virtual loudspeakers that are positioned using processor so that listener is at sweet spot
DE102010015630B3 (en) Method for generating a backwards compatible sound format
DE102006059764B4 (en) signal processing
DE102020100131A1 (en) Method for processing a multi-channel audio signal
EP1900250B1 (en) Electroacoustic method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120607

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130308

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160216

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 813129

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010012024

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KATZAROV S.A., CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160713

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161013

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161114

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161014

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010012024

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161013

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

26N No opposition filed

Effective date: 20170418

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 813129

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010012024

Country of ref document: DE

Representative=s name: KOPLIN, MORITZ, DR., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010012024

Country of ref document: DE

Representative=s name: KOPLIN PATENTANWALTSGESELLSCHAFT MBH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010012024

Country of ref document: DE

Representative=s name: KOPLIN PATENTANWALTSGESELLSCHAFT MBH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010012024

Country of ref document: DE

Representative=s name: KOPLIN PATENTANWALTSGESELLSCHAFT MBH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221123

Year of fee payment: 13

Ref country code: FR

Payment date: 20221118

Year of fee payment: 13

Ref country code: DE

Payment date: 20221121

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010012024

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20231102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231102

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231130

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240601