EP3037265B1 - Inkjet dyeing method - Google Patents
Inkjet dyeing method Download PDFInfo
- Publication number
- EP3037265B1 EP3037265B1 EP14837343.4A EP14837343A EP3037265B1 EP 3037265 B1 EP3037265 B1 EP 3037265B1 EP 14837343 A EP14837343 A EP 14837343A EP 3037265 B1 EP3037265 B1 EP 3037265B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- drive
- ink
- inkjet
- pressure
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 47
- 238000004043 dyeing Methods 0.000 title claims description 30
- 239000000986 disperse dye Substances 0.000 claims description 34
- 239000002270 dispersing agent Substances 0.000 claims description 29
- 239000002245 particle Substances 0.000 claims description 27
- 239000000835 fiber Substances 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 238000007599 discharging Methods 0.000 claims description 13
- 239000003960 organic solvent Substances 0.000 claims description 8
- 238000004891 communication Methods 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 6
- 230000009974 thixotropic effect Effects 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 4
- 239000000976 ink Substances 0.000 description 114
- -1 sulfato group Chemical group 0.000 description 48
- 239000004744 fabric Substances 0.000 description 40
- 239000000975 dye Substances 0.000 description 27
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 21
- 239000006185 dispersion Substances 0.000 description 18
- 235000014113 dietary fatty acids Nutrition 0.000 description 17
- 239000000194 fatty acid Substances 0.000 description 17
- 229930195729 fatty acid Natural products 0.000 description 17
- 239000007788 liquid Substances 0.000 description 16
- 238000007639 printing Methods 0.000 description 16
- 239000004094 surface-active agent Substances 0.000 description 12
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 11
- 239000011362 coarse particle Substances 0.000 description 11
- 238000005192 partition Methods 0.000 description 11
- 235000021251 pulses Nutrition 0.000 description 11
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 10
- 238000011161 development Methods 0.000 description 10
- 230000018109 developmental process Effects 0.000 description 10
- 238000007641 inkjet printing Methods 0.000 description 9
- 238000005406 washing Methods 0.000 description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- 239000003945 anionic surfactant Substances 0.000 description 7
- 239000002736 nonionic surfactant Substances 0.000 description 7
- 229920003169 water-soluble polymer Polymers 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- TUXJTJITXCHUEL-UHFFFAOYSA-N disperse red 11 Chemical compound C1=CC=C2C(=O)C3=C(N)C(OC)=CC(N)=C3C(=O)C2=C1 TUXJTJITXCHUEL-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- VGKYEIFFSOPYEW-UHFFFAOYSA-N 2-methyl-4-[(4-phenyldiazenylphenyl)diazenyl]phenol Chemical compound Cc1cc(ccc1O)N=Nc1ccc(cc1)N=Nc1ccccc1 VGKYEIFFSOPYEW-UHFFFAOYSA-N 0.000 description 5
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 150000005215 alkyl ethers Chemical class 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 150000004665 fatty acids Chemical class 0.000 description 5
- 238000005304 joining Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000002280 amphoteric surfactant Substances 0.000 description 4
- 230000002421 anti-septic effect Effects 0.000 description 4
- DMSMPAJRVJJAGA-UHFFFAOYSA-N benzo[d]isothiazol-3-one Chemical compound C1=CC=C2C(=O)NSC2=C1 DMSMPAJRVJJAGA-UHFFFAOYSA-N 0.000 description 4
- 239000003093 cationic surfactant Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000000855 fungicidal effect Effects 0.000 description 4
- 239000000417 fungicide Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000012510 hollow fiber Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- LEGWLJGBFZBZSC-UHFFFAOYSA-N n-[2-[(2,6-dicyano-4-nitrophenyl)diazenyl]-5-(diethylamino)phenyl]acetamide Chemical compound CC(=O)NC1=CC(N(CC)CC)=CC=C1N=NC1=C(C#N)C=C([N+]([O-])=O)C=C1C#N LEGWLJGBFZBZSC-UHFFFAOYSA-N 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 230000000644 propagated effect Effects 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical compound [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229920001214 Polysorbate 60 Polymers 0.000 description 3
- 229920000297 Rayon Polymers 0.000 description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910017053 inorganic salt Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000010025 steaming Methods 0.000 description 3
- ARXKVVRQIIOZGF-UHFFFAOYSA-N 1,2,4-butanetriol Chemical compound OCCC(O)CO ARXKVVRQIIOZGF-UHFFFAOYSA-N 0.000 description 2
- QPUYECUOLPXSFR-UHFFFAOYSA-N 1-methylnaphthalene Chemical compound C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- 244000215068 Acacia senegal Species 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 229920000084 Gum arabic Polymers 0.000 description 2
- WRYCSMQKUKOKBP-UHFFFAOYSA-N Imidazolidine Chemical class C1CNCN1 WRYCSMQKUKOKBP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920001732 Lignosulfonate Polymers 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 235000010489 acacia gum Nutrition 0.000 description 2
- 239000000205 acacia gum Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- LLEMOWNGBBNAJR-UHFFFAOYSA-N biphenyl-2-ol Chemical compound OC1=CC=CC=C1C1=CC=CC=C1 LLEMOWNGBBNAJR-UHFFFAOYSA-N 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000374 eutectic mixture Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- 230000002940 repellent Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 238000007669 thermal treatment Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- PSBDWGZCVUAZQS-UHFFFAOYSA-N (dimethylsulfonio)acetate Chemical compound C[S+](C)CC([O-])=O PSBDWGZCVUAZQS-UHFFFAOYSA-N 0.000 description 1
- 229940015975 1,2-hexanediol Drugs 0.000 description 1
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 1
- ZLCUIOWQYBYEBG-UHFFFAOYSA-N 1-Amino-2-methylanthraquinone Chemical compound C1=CC=C2C(=O)C3=C(N)C(C)=CC=C3C(=O)C2=C1 ZLCUIOWQYBYEBG-UHFFFAOYSA-N 0.000 description 1
- RWNUSVWFHDHRCJ-UHFFFAOYSA-N 1-butoxypropan-2-ol Chemical compound CCCCOCC(C)O RWNUSVWFHDHRCJ-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- RZCXRDBYLLLRKH-UHFFFAOYSA-N 2-(2-ethylhexyl)-2-sulfobutanedioic acid Chemical compound CCCCC(CC)CC(S(O)(=O)=O)(C(O)=O)CC(O)=O RZCXRDBYLLLRKH-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- COBPKKZHLDDMTB-UHFFFAOYSA-N 2-[2-(2-butoxyethoxy)ethoxy]ethanol Chemical compound CCCCOCCOCCOCCO COBPKKZHLDDMTB-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- ZNUBBVSUTSNSIM-UHFFFAOYSA-N 2-[n-(2-cyanoethyl)-4-[(6-nitro-1,3-benzothiazol-2-yl)diazenyl]anilino]ethyl acetate Chemical compound C1=CC(N(CCC#N)CCOC(=O)C)=CC=C1N=NC1=NC2=CC=C([N+]([O-])=O)C=C2S1 ZNUBBVSUTSNSIM-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 1
- QWGRWMMWNDWRQN-UHFFFAOYSA-N 2-methylpropane-1,3-diol Chemical compound OCC(C)CO QWGRWMMWNDWRQN-UHFFFAOYSA-N 0.000 description 1
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical compound COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 description 1
- PWUVCFDFTBWAFJ-UHFFFAOYSA-N 3-[n-ethyl-4-[(6-nitro-1,3-benzothiazol-2-yl)diazenyl]anilino]propanenitrile Chemical compound C1=CC(N(CCC#N)CC)=CC=C1N=NC1=NC2=CC=C([N+]([O-])=O)C=C2S1 PWUVCFDFTBWAFJ-UHFFFAOYSA-N 0.000 description 1
- XPFCZYUVICHKDS-UHFFFAOYSA-N 3-methylbutane-1,3-diol Chemical compound CC(C)(O)CCO XPFCZYUVICHKDS-UHFFFAOYSA-N 0.000 description 1
- SXFJDZNJHVPHPH-UHFFFAOYSA-N 3-methylpentane-1,5-diol Chemical compound OCCC(C)CCO SXFJDZNJHVPHPH-UHFFFAOYSA-N 0.000 description 1
- WBCXRDHKXHADQF-UHFFFAOYSA-N 4,11-diamino-2-(3-methoxypropyl)naphtho[2,3-f]isoindole-1,3,5,10-tetrone Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C(N)=C(C(N(CCCOC)C1=O)=O)C1=C2N WBCXRDHKXHADQF-UHFFFAOYSA-N 0.000 description 1
- ALXCWDABTQQKAH-UHFFFAOYSA-N 4-(1-amino-4-hydroxy-9,10-dioxoanthracen-2-yl)oxy-n-(3-ethoxypropyl)benzenesulfonamide Chemical compound C1=CC(S(=O)(=O)NCCCOCC)=CC=C1OC1=CC(O)=C(C(=O)C=2C(=CC=CC=2)C2=O)C2=C1N ALXCWDABTQQKAH-UHFFFAOYSA-N 0.000 description 1
- CFKMVGJGLGKFKI-UHFFFAOYSA-N 4-chloro-m-cresol Chemical compound CC1=CC(O)=CC=C1Cl CFKMVGJGLGKFKI-UHFFFAOYSA-N 0.000 description 1
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- JSFUMBWFPQSADC-UHFFFAOYSA-N Disperse Blue 1 Chemical compound O=C1C2=C(N)C=CC(N)=C2C(=O)C2=C1C(N)=CC=C2N JSFUMBWFPQSADC-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 240000004584 Tamarindus indica Species 0.000 description 1
- 235000004298 Tamarindus indica Nutrition 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- NTZOUXAZCADJBZ-UHFFFAOYSA-N [4-[(4-hydroxy-9,10-dioxoanthracen-1-yl)amino]phenyl] methanesulfonate Chemical compound C1=CC(OS(=O)(=O)C)=CC=C1NC1=CC=C(O)C2=C1C(=O)C1=CC=CC=C1C2=O NTZOUXAZCADJBZ-UHFFFAOYSA-N 0.000 description 1
- PFRUBEOIWWEFOL-UHFFFAOYSA-N [N].[S] Chemical class [N].[S] PFRUBEOIWWEFOL-UHFFFAOYSA-N 0.000 description 1
- ZUQAPLKKNAQJAU-UHFFFAOYSA-N acetylenediol Chemical compound OC#CO ZUQAPLKKNAQJAU-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- AEMOLEFTQBMNLQ-BKBMJHBISA-N alpha-D-galacturonic acid Chemical compound O[C@H]1O[C@H](C(O)=O)[C@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-BKBMJHBISA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- CYDRXTMLKJDRQH-UHFFFAOYSA-N benzododecinium Chemical class CCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 CYDRXTMLKJDRQH-UHFFFAOYSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- YXVFYQXJAXKLAK-UHFFFAOYSA-N biphenyl-4-ol Chemical compound C1=CC(O)=CC=C1C1=CC=CC=C1 YXVFYQXJAXKLAK-UHFFFAOYSA-N 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 229920006184 cellulose methylcellulose Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010014 continuous dyeing Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical class OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- GSPKZYJPUDYKPI-UHFFFAOYSA-N diethoxy sulfate Chemical compound CCOOS(=O)(=O)OOCC GSPKZYJPUDYKPI-UHFFFAOYSA-N 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- GRWZHXKQBITJKP-UHFFFAOYSA-L dithionite(2-) Chemical compound [O-]S(=O)S([O-])=O GRWZHXKQBITJKP-UHFFFAOYSA-L 0.000 description 1
- DLAHAXOYRFRPFQ-UHFFFAOYSA-N dodecyl benzoate Chemical compound CCCCCCCCCCCCOC(=O)C1=CC=CC=C1 DLAHAXOYRFRPFQ-UHFFFAOYSA-N 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 229940031098 ethanolamine Drugs 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229930182478 glucoside Natural products 0.000 description 1
- 150000008131 glucosides Chemical class 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 229920000591 gum Polymers 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- FHKSXSQHXQEMOK-UHFFFAOYSA-N hexane-1,2-diol Chemical compound CCCCC(O)CO FHKSXSQHXQEMOK-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229920000831 ionic polymer Polymers 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000009981 jet dyeing Methods 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- QENHCSSJTJWZAL-UHFFFAOYSA-N magnesium sulfide Chemical compound [Mg+2].[S-2] QENHCSSJTJWZAL-UHFFFAOYSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- JWZXKXIUSSIAMR-UHFFFAOYSA-N methylene bis(thiocyanate) Chemical compound N#CSCSC#N JWZXKXIUSSIAMR-UHFFFAOYSA-N 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 235000010292 orthophenyl phenol Nutrition 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- WCVRQHFDJLLWFE-UHFFFAOYSA-N pentane-1,2-diol Chemical compound CCCC(O)CO WCVRQHFDJLLWFE-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 125000001476 phosphono group Chemical group [H]OP(*)(=O)O[H] 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000223 polyglycerol Polymers 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 229940117986 sulfobetaine Drugs 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- YODZTKMDCQEPHD-UHFFFAOYSA-N thiodiglycol Chemical compound OCCSCCO YODZTKMDCQEPHD-UHFFFAOYSA-N 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/015—Ink jet characterised by the jet generation process
- B41J2/04—Ink jet characterised by the jet generation process generating single droplets or particles on demand
- B41J2/045—Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
- B41J2/04501—Control methods or devices therefor, e.g. driver circuits, control circuits
- B41J2/04581—Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on piezoelectric elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/015—Ink jet characterised by the jet generation process
- B41J2/04—Ink jet characterised by the jet generation process generating single droplets or particles on demand
- B41J2/045—Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
- B41J2/04501—Control methods or devices therefor, e.g. driver circuits, control circuits
- B41J2/04588—Control methods or devices therefor, e.g. driver circuits, control circuits using a specific waveform
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/14—Structure thereof only for on-demand ink jet heads
- B41J2/14201—Structure of print heads with piezoelectric elements
- B41J2/14209—Structure of print heads with piezoelectric elements of finger type, chamber walls consisting integrally of piezoelectric material
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P5/00—Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
- D06P5/30—Ink jet printing
Definitions
- the present invention relates to an inkjet dyeing method.
- An inkjet head that generates pressure in a pressure chamber by the operation of a pressure-imparting means to discharge an ink inside the pressure chamber from a nozzle is required to perform faster and higher-definition recording, and thus the number of nozzles and the number of nozzle rows have tended to be more and more increased.
- there has been a problem of the increase of crosstalk where a pressure wave generated in a pressure chamber during discharge is propagated to other pressure chambers to destabilize droplet velocity (droplet volume).
- the destabilization of the droplet velocity due the crosstalk occurs as a result of the following process: the pressure wave generated in the pressure chamber during discharge is propagated to a common ink chamber through the inlet side of the pressure chamber to affect other pressure chambers via the common ink chamber.
- the pressure wave is also propagated to pressure chambers of other pressure chamber rows via the common ink chamber, and therefore it is important to suppress the crosstalk between the pressure chamber rows.
- Patent Literature 1 discloses that a common ink chamber is halved by a separation wall between and along pressure chamber rows to prevent the propagation of a pressure wave from one pressure chamber row to the other pressure chamber row.
- PTL 2 discloses that the wall surface of a common ink chamber facing the inlet of a pressure chamber is specified to have a predetermined value or lower of volume elasticity to thereby attenuate a pressure wave propagated into the common ink chamber, thus reducing crosstalk.
- EP 1 634 705 A1 discloses a line-type ink-jet recording apparatus including a conveyance mechanism, a passage unit, a plurality of actuators, and an actuator controller.
- the actuator controller supplies an ejection signal to each of the actuators so that ink is ejected from n ejection openings communicating with one common ink chamber at m different timings within one printing cycle and that ink is ejected from each of the n ejection openings at two or more different timings among the m timings within a printing period including two or more of the printing cycles.
- satellites are likely to be generated.
- the mechanism by which the satellites are generated is not particularly limited, it is considered that satellites are likely to be generated, due to the inhibition of predetermined droplet formation by coarse particles, or due to high thixotropic index during high-speed continuous driving and low-speed intermittent driving causing applied voltage to be out of a proper range.
- the present invention provides a means for enhancing the ejection stability of an inkjet head in an inkjet dyeing method with an ink containing a disperse dye.
- the present invention reduces the frequency of occurrence of nozzle omission in inkjet dyeing with high ejection frequency.
- the inkjet dyeing method of the present invention it is possible to suppress the generation of satellites and the occurrence of nozzle omission (phenomenon in which ink droplets fail to be discharged from a nozzle) leading to the enhancement of ejection stability. Therefore, it is possible to achieve a high-quality image at high ejection frequency (such as a solid image).
- an inkjet ink containing at least a disperse dye, a dispersant, water and a water-soluble organic solvent is ejected from an inkjet head to dye a fiber.
- An ink used in the inkjet dyeing method of the present invention contains at least a disperse dye, a dispersant, water and a water-soluble organic solvent.
- the ink used in the inkjet dyeing method of the present invention contains a disperse dye as a colorant.
- the disperse dye is a non-ionic dye not having an ionic water-soluble group such as a sulfonic acid or carboxy group, and is less soluble to water. Therefore, the disperse dye is in a fine powdery shape, and is typically dispersed in water by a dispersant to be blended in the ink. Unlike a pigment, the disperse dye is soluble in an organic solvent such as acetone or dimethylformamide. Further, the disperse dye can be diffused in a molecular state in a synthetic fiber for coloring. An ink containing the disperse dye is used, for example, for dyeing a synthetic fiber.
- a disperse dye When a dye is allowed to develop color with a high temperature treatment in a dyeing process, it is preferable to select a disperse dye with good sublimation fastness, in order not to cause a stain due to the sublimation of the dye at the white ground of a cloth or a machine.
- the disperse dye content in the ink is preferably 0.1 to 20 mass%, and more preferably 0.2 to 13 mass%.
- a commercially available product may be used as it is, but it is preferable to perform a refining treatment.
- refining methods include a known recrystallization method and washing.
- a refining method and an organic solvent used for the refining treatment are selected appropriately depending on the type of dyes.
- the volume average particle diameter of the disperse dye it is preferable that the volume average particle diameter is 300 nm or less, and that the maximum particle diameter is 900 nm or less.
- the volume average particle diameter and the maximum particle diameter exceed the above-mentioned ranges, nozzle clogging is likely to occur, making it difficult to perform stable ejection in an inkjet printing method in which an ink is ejected from fine nozzles.
- the volume average particle diameter can be determined by means of a commercially available particle size analyzer using light scattering method, electrophoresis method, laser Doppler method, or the like, and specific examples of the particle size analyzer include Zetasizer 1000, manufactured by Malvern Instruments Ltd.
- the ratio of the number of disperse dye particles having a particle diameter of 5 ⁇ m or more to the total number of the disperse dye particles contained in the ink is preferably 5% or less, and more preferably 1% or less. Further, the ratio of the number of disperse dye particles having a particle diameter of 2 ⁇ m or more to the total number of the disperse dye particles contained in the ink is preferably 5% or less, and more preferably 1% or less.
- the ratio of the number of disperse dye particles having a particle diameter of 5 ⁇ m or more can be determined by actually measuring the total number of the disperse dye particles and the number of disperse dye particles having a particle diameter of 5 ⁇ m or more using a liquid particle counter (e.g., HIAC-8000A manufactured by Hach Company) and by obtaining the ratio therebetween.
- a liquid particle counter e.g., HIAC-8000A manufactured by Hach Company
- the dispersant contained in the ink used in the inkjet dyeing method of the present invention is preferably a polymer dispersant, a low-molecular surfactant, or the like.
- the polymer dispersant include natural rubbers such as gum arabic and gum tragacanth, glucosides such as saponin, cellulose derivatives such as methyl cellulose, carboxy cellulose and hydroxymethyl cellulose, natural polymers such as lignosulfonate and shellac, anionic polymers such as polyacrylate, salt of styrene-acrylic acid copolymer, salt of vinylnaphthalene-maleic acid copolymer, sodium salt of ⁇ -naphthalenesulfonic acid-formalin condensate and phosphonate, and non-ionic polymers such as polyvinyl alcohol, polyvinylpyrrolidone and polyethylene glycol.
- the dispersant is preferably a dispersant having a carboxyl group, and such a dispersant is available as a commercially available product; examples thereof include polymer dispersants such as lignosulfonate (e.g., Vanillex RN manufactured by Nippon Paper Industries Co., Ltd.), copolymer of ⁇ -olefin and maleic anhydride (e.g., Flowlen G-700 manufactured by Kyoeisha Chemical Co., Ltd.), and San X (manufactured by Nippon Paper Industries Co., Ltd.).
- polymer dispersants such as lignosulfonate (e.g., Vanillex RN manufactured by Nippon Paper Industries Co., Ltd.), copolymer of ⁇ -olefin and maleic anhydride (e.g., Flowlen G-700 manufactured by Kyoeisha Chemical Co., Ltd.), and San X (manufactured by Nippon Paper Industries Co., Ltd.).
- the content of the dispersant such as a polymer dispersant is preferably 20 to 200 mass% to the mass of the disperse dye.
- the content of the dispersant such as a polymer dispersant is preferably 20 to 200 mass% to the mass of the disperse dye.
- the ratio of the molar number of carboxyl groups to the molar number of the total acidic dissociable groups of the dispersant is preferably 50% by mol or more, more preferably 80% by mol or more, and even more preferably 80% by mol or more and 100% by mol or less.
- acidic dissociable group of the dispersant as used herein is also referred to as a proton dissociable group, and examples thereof include carboxyl group, sulfo group, sulfato group, phosphono group, alkylsulfonylcarbamoyl group, acylcarbamoyl group, acylsulfamoyl group, and alkylsulfonylsulfamoyl group.
- low-molecular surfactant examples include anionic surfactants such as fatty acid salts, higher alcohol sulfuric acid ester salts, liquid fatty acid sulfuric acid ester salts and alkylallylsulfonic acid salts, and non-ionic surfactants such as polyoxyethylene alkyl ethers, sorbitan alkyl esters and polyoxyethylene sorbitan alkyl esters. Either a single of these compounds or two or more thereof can be appropriately selected for using.
- the content of the low-molecular surfactant as the dispersant is preferably in a range of from 1 to 20 mass% to the total mass of the ink.
- water-soluble organic solvent contained in the ink used in the inkjet dyeing method of the present invention examples include polyhydric alcohols (such as ethylene glycol, glycerol, 2-ethyl-2-(hydroxymethyl)-1,3-propanediol, tetraethylene glycol, triethylene glycol, tripropylene glycol, 1,2,4-butanetriol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, 1,6-hexanediol, 1,2-hexanediol, 1,5-pentanediol, 1,2-pentanediol, 2,2-dimethyl-1,3-propanediol, 2-methyl-2,4-pentanediol, 3-methyl-1,5-pentanediol, 3-methyl-1,3-butanediol, and 2-methyl-1,3-propanediol), amines (such as ethanol amine and 2-
- Water contained in the ink used in the inkjet dyeing method of the present invention may be ion-exchanged water.
- the amount of the water to the total mass of the ink is typically 20 mass% or more and less than 60 mass%, but is not particularly limited thereto.
- the ink used in the inkjet dyeing method of the present invention may contain other arbitrary components such as a surfactant, an inorganic salt, an antiseptic, a fungicide, and a dye auxiliary.
- cationic surfactant examples include aliphatic amine salt, aliphatic quaternary ammonium salt, benzalkonium salt, benzethonium chloride, pyridinium salt, and imidazolidinium salt.
- anionic surfactants include fatty acid soap, N-acyl-N-methyl glycine salt, N-acyl-N-methyl- ⁇ -alanine salt, N-acylglutamate, alkyl ether carboxylate, acylated peptide, alkylsulfonate, alkylbenzenesulfonate, alkynaphthalenesulfonate, dialkylsulfo succinic acid ester salt, alkylsulfo acetate, ⁇ -olefin sulfonate, N-acyl-methyl taurine, sulfated oil, higher alcohol sulfuric acid ester salt, secondary higher alcohol sulfuric acid ester salt, alkyl ether sulfate, secondary higher alcohol ethoxysulfate, polyoxyethylene alkylphenyl ether sulfate, monoglysulfate, fatty acid alkylol amide sulfuric acid ester salt, alkyl ether phosphoric acid ester salt
- amphoteric surfactant examples include a carboxybetaine type, a sulfobetaine type, aminocarboxylate, and imidazolinium betaine.
- non-ionic surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene secondary alcohol ether, polyoxyethylene alkylphenyl ether (e.g., Emulgen 911), polyoxyethylene sterol ether, polyoxyethylenelanolin derivative, polyoxyethylene polyoxypropylene alkyl ether (e.g., Newpol PE-62), polyoxyethylene glycerol fatty acid ester, polyoxyethylene castor oil, hydrogenated castor oil, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyethylene glycol fatty acid ester, fatty acid monoglyceride, polyglycerol fatty acid ester, sorbitan fatty acid ester, propylene glycol fatty acid ester, sucrose fatty acid ester, fatty acid alkano
- surfactants can be used either singly or as a mixture of two or more thereof, and are added in a range of from 0.001 to 3.0 mass% to the total amount of the ink.
- non-ionic surfactants or anionic surfactants are preferred, and dodecylbenzene sulfonic acid soda, 2-ethylhexylsulfosuccinic acid soda, alkylnaphthalenesulfonic acid soda, an ethylene oxide adduct of phenol, and an ethylene oxide adduct of acetylene diol are particularly preferred.
- an inorganic salt may be added into the ink.
- the inorganic salt include sodium chloride, sodium sulfate, magnesium chloride, and magnesium sulfide.
- the inorganic salts are not limited to those mentioned above.
- an antiseptic or fungicide may be added into the ink.
- the antiseptic or fungicide include aromatic halogen compounds (e.g., Preventol CMK), methylene dithiocyanate, halogen-containing nitrogen sulfur compounds, and 1,2-benzisothiazolin-3-one (e.g., PROXEL GXL).
- aromatic halogen compounds e.g., Preventol CMK
- methylene dithiocyanate e.g., methylene dithiocyanate
- halogen-containing nitrogen sulfur compounds e.g., 1,2-benzisothiazolin-3-one
- PROXEL GXL 1,2-benzisothiazolin-3-one
- the antiseptic or fungicide is not limited to those mentioned above.
- the thixotropic index of the ink used in the inkjet dyeing method of the present invention is preferably 1.2 or less, and more preferably 1.1 or less.
- the term thixotropic index means the ratio between viscosity value A and viscosity value B ("viscosity value A / viscosity value B") when the viscosity at a shearing rate of 100/sec is set as viscosity value A, and the viscosity at a shearing rate of 1,000/sec is set as viscosity value B.
- the viscosity value A and viscosity value B can be measured using a rotary rheometer (e.g., MCR-300 manufactured by Anton Paar GmbH).
- FIG. 1 is a schematic configuration illustrating an example of an inkjet recording apparatus provided with an inkjet head.
- Inkjet recording apparatus 100 has a pair of conveyance rollers 201 of conveyance mechanism 200, which nips recording medium P. Further, inkjet recording apparatus 100 has conveyance roller 203 which is rotationally driven by conveyance motor 202. Recording medium P is designed to be conveyed in illustrated Y direction (sub-scanning direction) by the pair of conveyance rollers 201 and conveyance roller 203.
- Inkjet recording apparatus 100 is provided with inkjet head H arranged so as to face recording surface PS of recording medium P, between conveyance roller 203 and the pair of conveyance rollers 201.
- Inkjet head H is mounted on carriage 400 such that the nozzle surface side is arranged to face recording surface PS of recording medium P.
- Carriage 400 is provided reciprocably in illustrated X-X' direction (main scanning direction) approximately orthogonal to the conveyance direction of recording medium P (sub-scanning direction) by a driving means (not illustrated) along guide rail 300 bridged in the width direction of recording medium P.
- inkjet head H is connected electrically to drive apparatus 500 via flexible printed circuit board (FPC) 4.
- FPC flexible printed circuit board
- Inkjet head H moves for scanning over recording surface PS of recording medium P in illustrated direction X-X', in association with the movement of carriage 400 in the main scanning direction. In the course of this movement for scanning, droplets are discharged from nozzles to thereby record a desired image.
- FIGS. 2 to 4 illustrate an example of inkjet head H which is preferably used.
- FIG. 2 is a broken perspective view of the inkjet head
- FIG. 3 is a partial rear view of the head chip of the inkjet head
- FIG. 4 is a partial sectional view of the head chip.
- Inkjet head H illustrated in FIGS. 2 to 4 has so-called harmonica-shaped head chip 1, nozzle plate 2, wiring circuit board 3, FPC 4 and ink manifold 5.
- Head chip 1 is in a hexahedral shape, and has two channel rows (row A and row B) in which a plurality of channels are arranged.
- drive channel 11 which is a pressure chamber and from which an ink is discharged
- dummy channel 12 from which the ink is not discharged are arranged alternately.
- Head chip 1 is an independent drive type head chip which performs recording by discharging an ink only from drive channels 11.
- the drive channels arranged in row A of the two channel rows are defined as 11A, and dummy channels arranged in row A are defined as 12A. Further, the drive channels arranged in row B of the two channel rows are defined as 11B, and dummy channels arranged in row B are defined as 12B.
- each channel row (row A or row B), drive channels (11A, 11B) and dummy channels (12A, 12B) are disposed alternately.
- Partition walls 13 between drive channels (11A, 11B) and dummy channels (12A, 12B) adjacent to each other function as a pressure-imparting means composed of a piezoelectric element such as PZT.
- the partition walls in row A and row B may be sometimes referred to as 13A and 13B, respectively.
- Each of the drive channels (11A, 11B) and each of the dummy channels (12A, 12B) opens at both front end surface la and rear end surface 1b of head chip 1.
- the end surface on the ink-discharging side of head chip 1 is referred to as "front end surface 1a,” and the end surface on the opposite side is referred to as “rear end surface 1b.”
- each channel On the inner surface of each channel (11A, 11B, 12A, 12B), drive electrode 14 is formed closely.
- An outlet of each channel is provided at front end surface 1a of head chip 1, and an inlet thereof is provided at rear end surface 1b of head chip 1.
- Each channel is formed straight from the inlet to the outlet.
- connection electrodes (15A, 15B) are formed on rear end surface 1b of head chip 1.
- One end of each connection electrode (15A, 15B) is conducted to a drive electrode in the corresponding drive channel 11A or 11B or dummy channel 12A or 12B.
- connection electrode 15A elongates from the inside of each channel 11A or 12A to one end edge 1c of head chip 1.
- Connection electrode 15B extends toward row A from the inside of each channel 11B or 12B, and elongates to an area before the channel row of row A.
- both of connection electrodes 15A and 15B extend in the same direction from each channel (11A, 11B, 12A, 12B).
- Nozzle plate 2 is joined to front end surface la of head chip 1 with an adhesive.
- nozzles 21 open only at positions corresponding to drive channels 11A and 11B.
- Wiring circuit board 3 is a tabular circuit board larger than rear end surface 1b of head chip 1.
- Through-holes 32A and 32B are provided separately.
- the positions of through-holes 32A and 32B correspond, respectively, to drive channels 11A and 11B which open at rear end surface 1b of head chip 1.
- the ink is suppled from common ink chamber 51 of ink manifold 5 to the inside of the respective drive channels (11A, 11B).
- Common ink chamber 51 is composed of the inner space of box-shaped ink manifold 5 adhered to the rear surface side (opposite to head chip 1) of wiring circuit board 3.
- the ink inside common ink chamber 51 is supplied to the respective drive channels 11A and 11B through through-holes 32A and 32B. Accordingly, drive channels 11A and 11B are in fluid communication with each other via this common ink chamber 51.
- Dummy channels 12A and 12B are sealed with wiring circuit board 3, and are not in fluid communication with common ink chamber 51.
- wiring electrodes 33A and 33B are formed, which are electrically connected to the respective connection electrodes 15A and 15B arranged on rear end surface 1b of head chip 1.
- Wiring electrodes 33A and 33B extend on the surface of wiring circuit board 3 in the direction orthogonal to the channel rows (row A and row B) of head chip 1.
- Wiring electrodes 33A and 33B are arranged alternately. Further, wiring electrodes 33A and 33B are formed by means of vapor deposition or a sputtering method.
- wiring electrode 33A corresponding to connection electrode 15A drawn from each of channels 11A and 12A arranged in row A is positioned in the vicinity corresponding to each of channels 11A and 12A in row A in joining area 31. Further, wiring electrode 33A extends in a direction orthogonal to the channel rows of head chip 1 from joining area 31, and elongates to end portion 3a of wiring circuit board 3.
- wiring electrode 33B corresponding to connection electrode 15B drawn from each of channels 11B and 12B arranged in row B is positioned in the vicinity corresponding to each of channels 11B and 12B in row B in joining area 31. Further, wiring electrode 33B extends in the same direction as wiring electrode 33A, and elongates to end portion 3a of wiring circuit board 3 through between adjacent through-holes 32A in row A.
- Wiring circuit board 3 is pasted to rear end surface 1b of head chip 1, so that connection electrodes (15A, 15B) of head chip 1 and wiring electrodes (33A, 33B) of wiring circuit board 3 correspondingly connect to each other electrically.
- Wiring circuit board 3 and head chip 1 are joined together by an adhesive at a predetermined pressing force (e.g., 1 MPa or more).
- the adhesive to be used may be an anisotropic conductive adhesive containing conductive particles, but is preferably an adhesive not containing conductive particles for enhancing the reliability in preventing short circuit.
- Inkjet head H is mounted on carriage 400 of inkjet recording apparatus 100 such that the row direction of the channel rows (row A and row B) is in the same direction as Y direction in FIG. 1 .
- Inkjet head H is electrically connected to drive apparatus 500 via FPC 4 (refer to FIG. 1 ).
- FPC 4 FPC 4
- partition wall 13 undergoes shear deformation to change the volume of drive channels 11, thus imparting discharging pressure to the ink inside drive channels 11.
- FIG. 5 illustrates an example of a drive signal given to inkjet head H for discharging the ink from nozzles 21 of inkjet head H.
- the drive signal is a rectangular wave composed of a positive voltage (+V) with pulse width PW, and generates a negative pressure in the channel.
- FIGS. 6A and 6B illustrate a single drive channel 11, two dummy channels 12 arranged adjacently on both sides of the signal drive channel 11, and two partition walls 13 therebetween, in a single channel row of inkjet head H.
- a drive signal illustrated in FIG. 5 is applied to drive electrode 14 of drive channel 11.
- an electric field is generated in a direction perpendicular to the polarization direction (indicated by arrows in drawings) of a piezoelectric element forming partition wall 13.
- both partition walls 13 undergo shear deformation outwardly from each other in a doglegged shape to expand the volume of drive channel 11.
- the ink flows into drive channel 11.
- the deformed state is maintained for the period of predetermined pulse width PW, and then the drive signal returns to 0 potential. Thereupon, pressure is applied to the ink inside drive channel 11 to discharge droplets from nozzles 21.
- pulse width PW which is a duration of positive voltage of the drive signal be approximated to the time difference (1AL) between the timing at which the pressure inside drive channel 11 shifts "from negative to positive” and the timing at which the pressure inside drive channel 11 shifts "from positive to negative,” and specifically pulse width PW is preferably set in a range of from 0.8 AL or more to 1.2 AL or less.
- AL indicating the duration of the drive signal refers to 1/2 of the acoustic resonance period of a pressure wave in dummy channel 12.
- AL is determined as a pulse width at which the flying velocity of a droplet is the maximum, when measuring the velocity of a droplet discharged at the time of applying rectangular wave drive signals to drive electrode 14, with pulse width PW of the rectangular wave being varied, and the voltage value of the rectangular wave being constant.
- the pulse is a rectangular wave of a constant voltage peak value.
- Pulse width PW is defined as a time difference between the timing at which the voltage reaches 10% after rising from 0 V and the timing at which the voltage reaches 10% after falling from the peal value, when 0 V is set as 0% and the peak value of the voltage is set as 100%.
- the rectangular wave refers to a wave form in which both the time required for the voltage to rise from 10% to 90% and the time required for the voltage to fall from 90% to 10% are within 1/2 of AL, and more preferably within 1/4 of AL.
- Drive apparatus 500 drives N (N is an integer of 2 or more) drive groups independently into which all the channel rows of inkjet head H are divided.
- the drive channels in a channel row belonging to a single drive group receive drive signals applied from drive apparatus 500 at identical timing within drive period T of inkjet head H.
- a plurality of channel rows may belong to a single drive group.
- Each drive channel 11 and each dummy channel 12 included in a single channel row are inevitably included in an identical drive group.
- inkjet head H illustrated in FIG. 2 has two channel rows.
- N 2
- the channel row of row A is defined as drive group A
- the channel row of row B is defined as drive group B, as illustrated in FIG. 7 . That is, all the channel rows of inkjet head H are divided into two drive groups.
- inkjet head H all drive channels 11 in a channel row belonging to an identical drive group receive applied drive signals simultaneously.
- Phase difference "nAL + t" is given to between a drive signal applied to drive electrode 14 of each of drive channels 11 constituting drive group A from drive apparatus 500 and a drive signal applied to drive electrode 14 of each of drive channels 11 constituting drive group B therefrom, as illustrated in the timing chart of FIG. 8 .
- a drive signal is applied to drive period T of drive group A, so that drive group A is driven prior to drive group B.
- n is an integer of 1 or more
- AL is 1/2 of acoustic resonance period of a pressure wave in drive channel 11, as described above.
- t is a pressure wave transmission time determined by "inter-nozzle distance between drive groups"/"speed at which sound is transmitted in an ink.”
- between drive groups in the "inter-nozzle distance between drive groups” represents the meaning of “between two drive groups which are to be driven with a phase difference.”
- inter-nozzle distance between drive groups is a distance indicated by D in FIG. 7 .
- Drive channels 11A of drive group A and drive channels 11B of drive group B are in fluid communication with each other via common ink chamber 51. Therefore, when drive signals are applied respectively to drive electrodes 14 of drive channels 11A of drive group A and drive electrodes 14 of drive channels 11B of drive group B to discharge droplets, the droplets velocity may sometimes fluctuate considerably due to the influence of crosstalk.
- the velocity of a droplet discharged from drive channels 11B repeats reversion toward plus or minus for every 1AL, after "time lag" from the time of discharging droplets from drive group A.
- the velocity of the droplets from drive channels 11B of drive group B becomes substantially equal to the velocity of the droplets from drive channels 11A of drive group A.
- the "time lag" from the time of discharging droplets from drive group A corresponds to the above-mentioned "time t.”
- the velocity of the droplets from drive channels 11B of drive group B after the elapse of nAL + t from the time of discharging droplets from drive channels 11A of drive group A is substantially equal to the velocity of the droplets from drive channels 11A of drive group A.
- phase difference nAL + t to between drive signals applied to drive groups A and drive signals applied to drive groups B, it becomes possible to substantially ignore the influence of crosstalk between drive groups A and B sharing common ink chamber 51 without modifying the head structure of inkjet head H at all. That is, it becomes possible to suppress the fluctuation of ink droplet velocity between channel rows.
- the drive load is also suppressed, because a phase difference is imparted to between the drive signals for drive group A and the drive signals for drive group B.
- an inkjet head having a plurality of channel rows discharges droplets from nozzles at preset different timings, in order to adjust the deviation of landing position due to the differences in the physical nozzle position among channel rows adjacent to each other.
- a first channel row e.g., drive group A
- recording medium P and inkjet head H move relatively to each other
- nozzles 21 of a second channel row drive group B
- the respective drive channels 11 typically perform discharging at the same drive timing, and differ for every channel row only in the starting time and the finishing time.
- the phase difference nAL + t among drive groups in the present invention means a Delay time not including the difference in the starting time and the finishing time caused by the landing position adjustment (time period of landing position adjustment between drive groups) due to the difference in the physical nozzle position among drive groups. That is, as illustrated in FIG. 10 , the phase difference nAL + t means a Delay time provided in a time period during which two drive groups to which a phase difference is imparted are driven together. That is, the phase difference nAL + t is imparted between different drive groups A and B at a timing of application of drive signals in the time period during which two drive groups are driven together. Thus, the timings per se at which droplets are discharged are different.
- any of a plurality of channel rows can be sufficient for the inkjet head.
- the plurality of channel rows can be divided into N (N is an integer of 2 or more) drive groups to be driven in the same manner as described above.
- FIG. 11 illustrates a case where the inkjet head has four channel rows; and four channel rows are divided into 2 drive groups (drive groups A and B).
- Drive groups A and B are arranged alternately such that channel rows adjacent to each other belong to drive groups different from each other.
- D' is preferably substantially as large as D or large enough to attenuate a pressure wave.
- D is defined as "inter-nozzle distance between drive groups.”
- FIG. 13 illustrates a case where the inkjet head has six channel rows; all the six channel rows are divided into three drive groups (drive groups A, B, and C). Drive groups are arranged in the order of A, B, C, A, B, C such that channel rows adjacent to each other belong to drive groups different from each other.
- D' is preferably substantially as large as D or large enough to attenuate a pressure wave.
- D is defined as "inter-nozzle distance between drive groups.”
- n values in the phase difference nAL + t among drive groups be the same values, from the viewpoint of avoiding the lowering of printing speed.
- drive groups in adjacent channel rows are preferably different from each other.
- the clearance between the same drive groups is increased, thus lowering the influence of crosstalk between the same drive groups.
- Drive apparatus 500 may have two or more drive circuits, and may allow the two or more drive circuits to drive channel rows of each drive group.
- channel rows driven by a single drive circuit preferably belong to drive groups different from each other.
- FIG. 15 illustrates an example in which two of four channel rows of inkjet head H are respectively driven by two drive circuits (drive circuits 501 and 502) inside drive apparatus 500.
- two channel rows driven by drive circuit 501 belong to drive groups (A and B) different from each other.
- two channel rows driven by drive circuit 502 belong to drive groups (A and B) different from each other.
- the drive signal of a rectangular wave composed of a positive voltage (+V) with pulse width PW is employed for generating a negative pressure for dummy channels 12, but the drive signal is not limited to such a drive signal. Any drive signal for charging droplets can be employed.
- harmonica-shaped head chip assuming a hexagonal shape with inlets and outlets of channels being disposed on end surfaces opposite to each other is employed as head chip 1 of inkjet head H.
- the inlets of drive channels 11 of all the channel rows are disposed on rear end surface 1b, and common ink chamber 51 is disposed on the side of the inlets of drive channels 11. Accordingly, the influence of crosstalk is relatively large, and thus droplet velocity fluctuation is likely to occur. Therefore, this head chip structure is a preferred mode, because a remarkable effect is easily obtained from the configuration of the present invention.
- the head chip structure in the present invention is not necessarily limited to such a structure, and any structure in which respective pressure chambers in a plurality of pressure chamber rows are in fluid communication with each other can be sufficient.
- the inkjet recording apparatus in the present invention is not limited to the one which discharges droplets for recording in the course of moving inkjet head H for scanning in the width direction (main scanning direction) of recording medium P; it is also possible to employ an inkjet recording apparatus which is configured by a line-shaped inkjet head fixed over recording medium P in the width direction and which discharges droplets from nozzles 21 for recording in the course of moving recording medium P in Y direction in FIG. 1 .
- the channel rows of inkjet head H are arranged in X-X' direction in FIG. 1 .
- Fibers to be dyed by the dyeing method of the present invention are not particularly limited as long as the fibers can be dyed with a disperse dye; above all, fibers such as polyester, acetate, and triacetate are preferred. Among those, polyester fibers are particularly preferred.
- Fibers to be dyed may be clothes. Clothes in any form of woven fabric, knit fabric, and nonwoven fabric cloth of fibers can be sufficient. Further, a cloth made of 100% fiber which is dyeable with a disperse dye is suitable, but a blended fabric cloth or blended nonwoven fabric cloth with rayon, cotton, polyurethane, acrylic fiber, nylon, wool, silk, and the like can also be used as a cloth for printing.
- the thickness of yarn for composing the above-mentioned cloth is preferably in a range of from 10 to 100 d.
- a cloth to be dyed by means of high-temperature steaming preferably contains a dye auxiliary.
- the dye auxiliary produces a eutectic mixture with water condensed on a printed cloth when steaming the cloth, thus restricting the amount of water content which evaporates again to shorten the temperature rising time. Further, this eutectic mixture dissolves a dye on a fabric to accelerate the speed of diffusion of the dye into the fiber.
- the dye auxiliary include urea.
- the inkjet dyeing method of the present invention may be printing (inkjet printing).
- the inkjet dyeing method of the present invention it is desirable to wash natural impurities (such as fat and oil, wax, pectic substance, and natural coloring matter) adhered to a fiber, residual chemical agents (such as sizing agent) used in cloth production processes, and stains, before subjecting the fiber to a pretreatment with a water-soluble polymers to obtain a uniformly dyed product.
- natural impurities such as fat and oil, wax, pectic substance, and natural coloring matter
- residual chemical agents such as sizing agent
- stains such as sizing agent
- a washing agent to be used in washing include alkalis such as sodium hydroxide and sodium carbonate, surfactants such as anionic surfactants and non-ionic surfactants, and enzymes.
- a pretreatment agent by means of padding method, coating method, spray method, and the like for a bleed-preventing effect (pretreatment step).
- pretreatment step an image is formed on a fiber which is dyeable with a disperse dye in an inkjet recording method using the above-described ink (ink-imparting step), then a cloth to which the ink was imparted is subjected to a thermal treatment (color development step), and further the cloth having been subjected to the thermal treatment is washed (washing step), thereby finishing the printing on the fiber to obtain a dyed product (printed product).
- a method suitable to a fiber material or an ink can be appropriately selected from known methods such as a method in which a fiber is treated with a water-soluble polymer, and the pretreatment method is not particularly limited.
- the pretreatment method is not particularly limited.
- a single material selected from the group consisting of a water-soluble metal salt, a polycation compound, a water-soluble polymer, a surfactant and a water repellant is used so as to be added to the fiber at a ratio of 0.2 to 50 mass%, a high degree of bleeding prevention is possible, which preferably enables a high-definition image to be printed on a cloth.
- Examples of the specific water-soluble polymer used in the pretreatment include starches such as corn and wheat, cellulose derivatives such as carboxymethyl cellulose, methyl cellulose and hydroxyethyl cellulose, polysaccharides such as sodium alginate, guar gum, tamarind gum, locust bean gum and gum arabic, and protein substances such as gelatin, casein and keratin, and synthesized water-soluble polymers such as polyvinyl alcohol, polyvinyl pyrrolidone and acrylic acid-based polymer.
- Examples of the surfactant used in the pretreatment include anionic, cationic, amphoteric and nonionic surfactants.
- Typical examples thereof include anionic surfactants such as a higher alcohol sulfuric acid ester salt and a sulfonate of a naphthalene derivative; cationic surfactants such as a quaternary ammonium salt; amphoteric surfactants such as an imidazolidine derivative; and nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene propylene block polymer, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, and an ethylene oxide adduct of acetylene alcohol.
- anionic surfactants such as a higher alcohol sulfuric acid ester salt and a sulfonate of a naphthalene derivative
- cationic surfactants such as a quaternary ammonium salt
- amphoteric surfactants such as an imidazolidine derivative
- nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene propylene block polymer, sorbit
- water repellent examples include a silicon-based, fluorine-based, and wax-based water repellents.
- These water-soluble polymers and surfactants to be added to a cloth in advance are preferably stable to a high-temperature environment, so as not to be a cause of stain by tarring at the time of color development at a high temperature during inkjet printing. Further, these water-soluble polymers and surfactants to be added to a cloth in advance are preferably those which can be easily removed from the cloth with a washing treatment after the color development at a high temperature during inkjet printing.
- An inkjet printing method for performing printing on a cloth desirably winds the printed cloth after ink discharge, develops color with heating, and washes and dries the cloth.
- satisfactory dyeing is not obtained only by performing printing on a cloth with an ink and merely leaving the ink printed on the cloth to stand.
- printed cloth continues to be stacked on a floor or the like, and therefore it not only takes up space due to continuous discharge of the cloth, but also is insecure and causes a stain unexpectedly. For these reasons, it becomes necessary to perform a winding operation after printing. During this operation, a medium not involved in printing such as paper, fabric or vinyl, may be interposed between the clothes.
- winding is not always necessary.
- the color development step is a step of developing an original color hue of an ink by allowing a dye in the ink having been only adhered to the surface of a cloth after printing but not having been sufficiently adsorbed or fixed to the cloth, to adsorb and fix to the cloth.
- a dye in the ink having been only adhered to the surface of a cloth after printing but not having been sufficiently adsorbed or fixed to the cloth, to adsorb and fix to the cloth.
- the color development method steaming with vapor, baking with dry heat, thermosol, and HT steamer with superheated vapor are used. These color development methods are appropriately selected depending on materials, inks, or the like.
- the printed cloth may be dried and subjected to color development treatment depending on use applications by subjecting the printed cloth to heating treatment either immediately, or after having been left to stand for a while; the present invention may employ either of these methods.
- a carrier may also be used in addition to a method of color development at a high temperature.
- Compounds to be used as a carrier preferably have features of large dye enhancement, simple usage, stability, less load on human body or environment, easy removal from fiber, and no influence on dye fastness.
- the carrier include phenols such as o-phenylphenol, p-phenylphenol, methylnaphthalene, alkyl benzoate, alkyl salicylate, chlorobenzene and diphenyl, ethers, organic acids, and hydrocarbons.
- the carrier facilitates the swelling and plasticization of a fiber such as a polyester difficult to be dyed at a temperature around 100°C to allow the disperse dye to easily enter the fiber.
- the carrier may be either adsorbed to fibers of a cloth to be used for inkjet printing in advance, or contained in an inkjet printing ink.
- a washing step is necessary after the heating treatment, because the remaining of a dye not having been involved in dyeing deteriorates the stability of color to lower the fastness of the color. Further, it is also necessary to remove a pretreatment substance applied to the cloth. When the pretreatment substance is left as it is, not only the fastness is lowered, but also the cloth undergoes discoloration. Therefore, washing depending on substances to be removed or purposes is essential.
- the method therefor is selected depending on materials to be printed or inks; for example, a polyester is treated typically with a liquid mixture of caustic soda, a surfactant and hydrosulfite. The method therefor is typically performed using an open soaper in continuous dyeing, or using a jet dyeing machine in batch dyeing; in the present invention, either of the above methods may be used.
- Drying is necessary after the washing.
- the washed cloth is squeezed or dewatered, and subsequently aired or dried using a drying machine, heat roll, iron, or the like.
- a liquid mixture obtained by sequentially mixing the following additives was subjected to dispersion treatment using a sand grinder to prepare a dye dispersion liquid.
- the amount of coarse particles in a liquid particle counter (HIAC-8000A manufactured by Hach Company) was measured. When a set percentage was obtained, the dispersion treatment was finished.
- Dispersant (Type listed in Table 1) 25 parts Glycerol 30 parts Dispersant (Type and amount listed in Table 1) Ion-exchanged water amount required to make the total amount 100 parts [Table 1] Dispersion Liquid Dye Dispersant Addition Amount of Dispersant Percentage of Coarse Particles of 5 ⁇ m or more Percentage of Coarse Particles of 2 ⁇ m or more A1 C.I.Disperse Yellow 114 12 parts 6% - A2 C.I.Disperse Yellow 114 12 parts 3% - A3 C.I.Disperse Yellow 114 12 parts 1% - A4 C.I.Disperse Yellow 114 12 parts 0.5 % - B1 C.I.Disperse Blue 165 4 parts 6% - B2 C.I.Disperse Blue 165 7 parts 3% - B3 C.I.Disperse Blue 165 10 parts 1 % - B4 C.I.Disperse Blue 165 BYK-190 (BYK,
- Inks A1 to A4, B1 to B4, C1, D1, E1 to E4, F1, and G1 were prepared in accordance with the following formulation using the above-prepared respective dye dispersion liquids.
- Dye Dispersion Liquid 40 parts Ethylene glycol 15 parts Glycerol appropriate amount Diethylhexyl sodium sulfosuccinate appropriate amount PROXEL GXL (Avecia Biotechnology, Inc.) 0.1 part Ion-exchanged water amount required to make the total amount 100 parts
- the amount of glycerol was adjusted such that the viscosity of the ink was 5.7 mPa ⁇ s.
- An appropriate amount of diethylhexyl sodium sulfosuccinate was added to set the surface tension of the ink at 41 mN/m.
- each ink having been prepared was flowed into a hollow fiber film having gas permeability (manufactured by Mitsubishi Rayon Co., Ltd.), and the outer surface side of the hollow fiber film was depressurized with a water-flow aspirator to thereby remove gas dissolved in the ink. Further, the ink was filled into a vacuum pack after the degassing to prevent air from mixing into the ink.
- the four channel rows of this inkjet head were driven by two drive circuits.
- the inks A1 to A4, B1 to B4, C1, D1, E1 to E4, F1 and G1 had a viscosity of 5.7 mPa ⁇ s and a surface tension of 41 mN/m, and the speed at which sound is transmitted in the ink was 1,600 m/s.
- An inkjet head was mounted on a carriage of an inkjet recording apparatus illustrated in FIG. 1 .
- Droplets discharged from the nozzles of each of drive groups A and B were captured using a camera.
- the obtained droplet image was subjected to image processing to thereby calculate droplet velocity.
- the average velocity of the nozzles for each channel row was determined.
- the influence of crosstalk was evaluated according to the following criteria. The results thereof are shown in Table 2.
- Disperse dye (type listed in Table 3) 25 parts Glycerol 30 parts
- Dispersant (Type and amount listed in Table 1) Ion-exchanged water amount required to make the total amount 100 parts [Table 3] Dispersion Liquid Dye Dispersant Addition Amount of Dispersant Percentage of Coarse Particles of 2 ⁇ m or more H1 C.I.Disperse Red 343 BYK-190 (BYK, Inc.) 12 parts 0.5% H2 C.I.Disperse Red 145 0.5%
- dye dispersion liquids H1 and H2 were prepared in accordance with the following formulation.
- Dye Dispersion Liquid 40 parts Ethylene glycol 20 parts Glycerol appropriate amount Diethylhexyl sodium sulfosuccinate appropriate amount PROXEL GXL (Avecia Biotechnology, Inc.) 0.1 part Ion-exchanged water amount required to make the total amount 100 parts
- the amount of glycerol was adjusted such that the viscosity of the ink was 10.0 mPa ⁇ s.
- the appropriate amount of diethylhexyl sodium sulfosuccinate was added such that the surface tension of the ink was 32 mN/m.
- each ink having been prepared was flowed into a hollow fiber film having gas permeability (manufactured by Mitsubishi Rayon Co., Ltd.), and the outer surface side of the hollow fiber film was depressurized with a water-flow aspirator to thereby remove gas dissolved in the ink. Further, the ink was filled into a vacuum pack after the degassing to prevent air from mixing into the ink.
- An inkjet head having two channel rows with the same structure as that of the inkjet head illustrated in FIG. 2 was prepared.
- One channel row was defined as drive group A, and the other channel row as drive group B.
- the two channel rows of this inkjet head were driven by the same drive circuit.
- the inks H1 and H2 had a viscosity of 10 mPa ⁇ s and a surface tension of 32 mN/m, and the speed at which sound is transmitted in the ink was 1,300 m/s.
- the inkjet head was mounted on a carriage of an inkjet recording apparatus illustrated in FIG. 1 .
- the inkjet dyeing method of the present invention is capable of enhancing the ejection stability of an ink from an inkjet head, and accordingly can make it possible to obtain a high-quality inkjet dyed product.
Landscapes
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
- Ink Jet (AREA)
- Ink Jet Recording Methods And Recording Media Thereof (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Description
- The present invention relates to an inkjet dyeing method.
- An inkjet head that generates pressure in a pressure chamber by the operation of a pressure-imparting means to discharge an ink inside the pressure chamber from a nozzle is required to perform faster and higher-definition recording, and thus the number of nozzles and the number of nozzle rows have tended to be more and more increased. In association with the tendency, there has been a problem of the increase of crosstalk where a pressure wave generated in a pressure chamber during discharge is propagated to other pressure chambers to destabilize droplet velocity (droplet volume).
- The destabilization of the droplet velocity due the crosstalk occurs as a result of the following process: the pressure wave generated in the pressure chamber during discharge is propagated to a common ink chamber through the inlet side of the pressure chamber to affect other pressure chambers via the common ink chamber. In particular, in the case of an inkjet head which has two or more pressure chamber rows and in which pressure chambers of each pressure chamber row are in fluid communication with each other via a common ink chamber, the pressure wave is also propagated to pressure chambers of other pressure chamber rows via the common ink chamber, and therefore it is important to suppress the crosstalk between the pressure chamber rows.
- As for the crosstalk problem, Patent Literature (hereinafter, referred to as "PTL") 1 discloses that a common ink chamber is halved by a separation wall between and along pressure chamber rows to prevent the propagation of a pressure wave from one pressure chamber row to the other pressure chamber row. In addition,
PTL 2 discloses that the wall surface of a common ink chamber facing the inlet of a pressure chamber is specified to have a predetermined value or lower of volume elasticity to thereby attenuate a pressure wave propagated into the common ink chamber, thus reducing crosstalk. -
-
PTL 1
Japanese Patent Application Laid-Open No.2003-11368 -
PTL 2
Japanese Patent Application Laid-Open No.2007-168185 -
discloses a line-type ink-jet recording apparatus including a conveyance mechanism, a passage unit, a plurality of actuators, and an actuator controller. The actuator controller supplies an ejection signal to each of the actuators so that ink is ejected from n ejection openings communicating with one common ink chamber at m different timings within one printing cycle and that ink is ejected from each of the n ejection openings at two or more different timings among the m timings within a printing period including two or more of the printing cycles.EP 1 634 705 A1 - There is also a problem of satellites being likely to be generated for ink droplets discharged from an inkjet head when crosstalk occurs in the inkjet head. When satellites are generated in the case of printing an image at high ejection frequency (such as a solid image), it is highly probable that the generated satellites are adhered to a nozzle surface of the inkjet head. When the satellites are adhered to the vicinity of a nozzle on a nozzle surface, the volume of a droplet ejected from the nozzle may differ from a set volume; the discharging direction of the droplets may differ from a set direction; or, in addition, droplets may fail to be ejected from the nozzle. As a result, defect occurs in a printed image.
- There is also a problem in which, when the ink to be applied by an inkjet head is an ink containing a disperse dye having many coarse particles or an ink having a high thixotropic index, satellites are likely to be generated. Although the mechanism by which the satellites are generated is not particularly limited, it is considered that satellites are likely to be generated, due to the inhibition of predetermined droplet formation by coarse particles, or due to high thixotropic index during high-speed continuous driving and low-speed intermittent driving causing applied voltage to be out of a proper range.
- The present invention provides a means for enhancing the ejection stability of an inkjet head in an inkjet dyeing method with an ink containing a disperse dye. In particular, specifically, the present invention reduces the frequency of occurrence of nozzle omission in inkjet dyeing with high ejection frequency.
- Accordingly, there is provided an inkjet dyeing method as set out in
independent claim 1. Advantageous developments are defined in the dependent claims. - According to the inkjet dyeing method of the present invention, it is possible to suppress the generation of satellites and the occurrence of nozzle omission (phenomenon in which ink droplets fail to be discharged from a nozzle) leading to the enhancement of ejection stability. Therefore, it is possible to achieve a high-quality image at high ejection frequency (such as a solid image).
-
-
FIG. 1 illustrates a schematic configuration of an inkjet recording apparatus; -
FIG. 2 is a broken perspective view illustrating a schematic configuration of an inkjet head; -
FIG. 3 is a partial rear view of a head chip illustrated inFIG. 2 ; -
FIG. 4 is a partial sectional view of the head chip; -
FIG. 5 illustrates an example of a drive signal used in the present invention; -
FIGS. 6A and 6B are explanatory drawings of a deformation operation of a partition wall by the drive signal illustrated inFIG. 5 ; -
FIG. 7 is a front view of a head chip illustrating a mode in which drive groups are divided into two channel rows; -
FIG. 8 is a timing chart of a drive signal applied to each of the drive groups illustrated inFIG. 7 ; -
FIG. 9 is an explanatory graph of a relationship between droplet velocity fluctuation and Delay [AL]; -
FIG. 10 is an explanatory drawing of a drive timing between a plurality of channel rows; -
FIG. 11 is a front view of a head chip illustrating a mode in which drive groups are divided into four channel rows; -
FIG. 12 is a timing chart of a drive signal applied to each of the drive groups illustrated inFIG. 11 ; -
FIG. 13 is a front view of a head chip illustrating a mode in which drive groups are divided into six channel rows; -
FIG. 14 is a timing chart of a drive signal applied to each of the drive groups illustrated inFIG. 13 ; and -
FIG. 15 is an explanatory drawing of a mode in which a plurality of channel rows are driven by a plurality of drive circuits. - In the inkjet dyeing method of the present invention, an inkjet ink containing at least a disperse dye, a dispersant, water and a water-soluble organic solvent is ejected from an inkjet head to dye a fiber.
- An ink used in the inkjet dyeing method of the present invention contains at least a disperse dye, a dispersant, water and a water-soluble organic solvent.
- The ink used in the inkjet dyeing method of the present invention contains a disperse dye as a colorant. The disperse dye is a non-ionic dye not having an ionic water-soluble group such as a sulfonic acid or carboxy group, and is less soluble to water. Therefore, the disperse dye is in a fine powdery shape, and is typically dispersed in water by a dispersant to be blended in the ink. Unlike a pigment, the disperse dye is soluble in an organic solvent such as acetone or dimethylformamide. Further, the disperse dye can be diffused in a molecular state in a synthetic fiber for coloring. An ink containing the disperse dye is used, for example, for dyeing a synthetic fiber.
- Specific compounds of preferred disperse dyes is listed below, but not limited to the exemplified compounds.
- [C.I. Disperse Yellow] 3, 4, 5, 7, 9, 13, 23, 24, 30, 33, 34, 42, 44, 49, 50, 51, 54, 56, 58, 60, 63, 64, 66, 68, 71, 74, 76, 79, 82, 83, 85, 86, 88, 90, 91, 93, 98, 99, 100, 104, 108, 114, 116, 118, 119, 122, 124, 126, 135, 140, 141, 149, 160, 162, 163, 164, 165, 179, 180, 182, 183, 184, 186, 192, 198, 199, 202, 204, 210, 211, 215, 216, 218, 224, 227, 231, 232
- [C.I. Disperse Orange] 1, 3, 5, 7, 11, 13, 17, 20, 21, 25, 29, 30, 31, 32, 33, 37, 38, 42, 43, 44, 45, 46, 47, 48, 49, 50, 53, 54, 55, 56, 57, 58, 59, 61, 66, 71, 73, 76, 78, 80, 89, 90, 91, 93, 96, 97, 119, 127, 130, 139, 142
- [C.I. Disperse Red] 1, 4, 5, 7, 11, 12, 13, 15, 17, 27, 43, 44, 50, 52, 53, 54, 55, 56, 58, 59, 60, 65, 72, 73, 74, 75, 76, 78, 81, 82, 86, 88, 90, 91, 92, 93, 96, 103, 105, 106, 107, 108, 110, 111, 113, 117, 118, 121, 122, 126, 127, 128, 131, 132, 134, 135, 137, 143, 145, 146, 151, 152, 153, 154, 157, 159, 164, 167, 169, 177, 179, 181, 183, 184, 185, 188, 189, 190, 191, 192, 200, 201, 202, 203, 205, 206, 207, 210, 221, 224, 225, 227, 229, 239, 240, 257, 258, 277, 278, 279, 281, 288, 298, 302, 303, 310, 311, 312, 320, 324, 328
- [C.I. Disperse Violet] 1, 4, 8, 23, 26, 27, 28, 31, 33, 35, 36, 38, 40, 43, 46, 48, 50, 51, 52, 56, 57, 59, 61, 63, 69, 77
- [C.I. Disperse Green] 9
- [C.I. Disperse Brown] 1, 2, 4, 9, 13, 19
- [C.I. Disperse Blue] 3, 7, 9, 14, 16, 19, 20, 26, 27, 35, 43, 44, 54, 55, 56, 58, 60, 62, 64, 71, 72, 73, 75, 79, 81, 82, 83, 87, 91, 93, 94, 95, 96, 102, 106, 108, 112, 113, 115, 118, 120, 122, 125, 128, 130, 139, 141, 142, 143, 146, 148, 149, 153, 154, 158, 165, 167, 171, 173, 174, 176, 181, 183, 185, 186, 187, 189, 197, 198, 200, 201, 205, 207, 211, 214, 224, 225, 257, 259, 267, 268, 270, 284, 285, 287, 288, 291, 293, 295, 297, 301, 315, 330, 333,373
- [C.I. Disperse Black] 1, 3, 10, 24
- When a dye is allowed to develop color with a high temperature treatment in a dyeing process, it is preferable to select a disperse dye with good sublimation fastness, in order not to cause a stain due to the sublimation of the dye at the white ground of a cloth or a machine.
- The disperse dye content in the ink is preferably 0.1 to 20 mass%, and more preferably 0.2 to 13 mass%. As the disperse dye, a commercially available product may be used as it is, but it is preferable to perform a refining treatment. Examples of possible refining methods include a known recrystallization method and washing. Preferably, a refining method and an organic solvent used for the refining treatment are selected appropriately depending on the type of dyes.
- As for the particle diameter of the disperse dye, it is preferable that the volume average particle diameter is 300 nm or less, and that the maximum particle diameter is 900 nm or less. When the volume average particle diameter and the maximum particle diameter exceed the above-mentioned ranges, nozzle clogging is likely to occur, making it difficult to perform stable ejection in an inkjet printing method in which an ink is ejected from fine nozzles. It is noted that the volume average particle diameter can be determined by means of a commercially available particle size analyzer using light scattering method, electrophoresis method, laser Doppler method, or the like, and specific examples of the particle size analyzer include Zetasizer 1000, manufactured by Malvern Instruments Ltd.
- The ratio of the number of disperse dye particles having a particle diameter of 5 µm or more to the total number of the disperse dye particles contained in the ink is preferably 5% or less, and more preferably 1% or less. Further, the ratio of the number of disperse dye particles having a particle diameter of 2 µm or more to the total number of the disperse dye particles contained in the ink is preferably 5% or less, and more preferably 1% or less.
- The ratio of the number of disperse dye particles having a particle diameter of 5 µm or more can be determined by actually measuring the total number of the disperse dye particles and the number of disperse dye particles having a particle diameter of 5 µm or more using a liquid particle counter (e.g., HIAC-8000A manufactured by Hach Company) and by obtaining the ratio therebetween.
- The dispersant contained in the ink used in the inkjet dyeing method of the present invention is preferably a polymer dispersant, a low-molecular surfactant, or the like. Examples of the polymer dispersant include natural rubbers such as gum arabic and gum tragacanth, glucosides such as saponin, cellulose derivatives such as methyl cellulose, carboxy cellulose and hydroxymethyl cellulose, natural polymers such as lignosulfonate and shellac, anionic polymers such as polyacrylate, salt of styrene-acrylic acid copolymer, salt of vinylnaphthalene-maleic acid copolymer, sodium salt of β-naphthalenesulfonic acid-formalin condensate and phosphonate, and non-ionic polymers such as polyvinyl alcohol, polyvinylpyrrolidone and polyethylene glycol.
- The dispersant is preferably a dispersant having a carboxyl group, and such a dispersant is available as a commercially available product; examples thereof include polymer dispersants such as lignosulfonate (e.g., Vanillex RN manufactured by Nippon Paper Industries Co., Ltd.), copolymer of α-olefin and maleic anhydride (e.g., Flowlen G-700 manufactured by Kyoeisha Chemical Co., Ltd.), and San X (manufactured by Nippon Paper Industries Co., Ltd.).
- The content of the dispersant such as a polymer dispersant is preferably 20 to 200 mass% to the mass of the disperse dye. When there is less dispersant, the micronizing capacity and dispersion stability of the disperse dye become insufficient, whereas when there is more dispersant content, the micronization and dispersion stability are deteriorated, causing ink viscosity to be undesirably increased. These dispersants may be used either singly or in combination.
- As for the dispersant, the ratio of the molar number of carboxyl groups to the molar number of the total acidic dissociable groups of the dispersant is preferably 50% by mol or more, more preferably 80% by mol or more, and even more preferably 80% by mol or more and 100% by mol or less. By using the dispersant having the above-specified molar number ratio of carboxyl groups, the effects of the present invention including discharge stability are demonstrated more effectively.
- The term acidic dissociable group of the dispersant as used herein is also referred to as a proton dissociable group, and examples thereof include carboxyl group, sulfo group, sulfato group, phosphono group, alkylsulfonylcarbamoyl group, acylcarbamoyl group, acylsulfamoyl group, and alkylsulfonylsulfamoyl group.
- Examples of the low-molecular surfactant as the dispersant include anionic surfactants such as fatty acid salts, higher alcohol sulfuric acid ester salts, liquid fatty acid sulfuric acid ester salts and alkylallylsulfonic acid salts, and non-ionic surfactants such as polyoxyethylene alkyl ethers, sorbitan alkyl esters and polyoxyethylene sorbitan alkyl esters. Either a single of these compounds or two or more thereof can be appropriately selected for using. The content of the low-molecular surfactant as the dispersant is preferably in a range of from 1 to 20 mass% to the total mass of the ink.
- Examples of the water-soluble organic solvent contained in the ink used in the inkjet dyeing method of the present invention include polyhydric alcohols (such as ethylene glycol, glycerol, 2-ethyl-2-(hydroxymethyl)-1,3-propanediol, tetraethylene glycol, triethylene glycol, tripropylene glycol, 1,2,4-butanetriol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, 1,6-hexanediol, 1,2-hexanediol, 1,5-pentanediol, 1,2-pentanediol, 2,2-dimethyl-1,3-propanediol, 2-methyl-2,4-pentanediol, 3-methyl-1,5-pentanediol, 3-methyl-1,3-butanediol, and 2-methyl-1,3-propanediol), amines (such as ethanol amine and 2-(dimethylamino)ethanol), monohydric alcohols (such as methanol, ethanol, and butanol), polyhydric alcohol alkyl ethers (such as diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monobutyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, and dipropylene glycol monomethyl ether), 2,2'-thiodiethanol, amides (such as N,N-dimethylformamide), heterocycles (such as 2-pyrrolidone), and acetonitrile. The amount of the water-soluble organic solvent to the total mass of the ink is preferably 10 to 60 mass%.
- Water contained in the ink used in the inkjet dyeing method of the present invention may be ion-exchanged water. The amount of the water to the total mass of the ink is typically 20 mass% or more and less than 60 mass%, but is not particularly limited thereto.
- The ink used in the inkjet dyeing method of the present invention may contain other arbitrary components such as a surfactant, an inorganic salt, an antiseptic, a fungicide, and a dye auxiliary.
- Any of cationic, anionic, amphoteric, and non-ionic surfactants can be used. Examples of the cationic surfactant include aliphatic amine salt, aliphatic quaternary ammonium salt, benzalkonium salt, benzethonium chloride, pyridinium salt, and imidazolidinium salt. Examples of the anionic surfactants include fatty acid soap, N-acyl-N-methyl glycine salt, N-acyl-N-methyl-β-alanine salt, N-acylglutamate, alkyl ether carboxylate, acylated peptide, alkylsulfonate, alkylbenzenesulfonate, alkynaphthalenesulfonate, dialkylsulfo succinic acid ester salt, alkylsulfo acetate, α-olefin sulfonate, N-acyl-methyl taurine, sulfated oil, higher alcohol sulfuric acid ester salt, secondary higher alcohol sulfuric acid ester salt, alkyl ether sulfate, secondary higher alcohol ethoxysulfate, polyoxyethylene alkylphenyl ether sulfate, monoglysulfate, fatty acid alkylol amide sulfuric acid ester salt, alkyl ether phosphoric acid ester salt, and alkyl phosphoric acid ester salt. Examples of the amphoteric surfactant include a carboxybetaine type, a sulfobetaine type, aminocarboxylate, and imidazolinium betaine. Examples of the non-ionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene secondary alcohol ether, polyoxyethylene alkylphenyl ether (e.g., Emulgen 911), polyoxyethylene sterol ether, polyoxyethylenelanolin derivative, polyoxyethylene polyoxypropylene alkyl ether (e.g., Newpol PE-62), polyoxyethylene glycerol fatty acid ester, polyoxyethylene castor oil, hydrogenated castor oil, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyethylene glycol fatty acid ester, fatty acid monoglyceride, polyglycerol fatty acid ester, sorbitan fatty acid ester, propylene glycol fatty acid ester, sucrose fatty acid ester, fatty acid alkanol amide, polyoxyethylene fatty acid amide, polyoxyethylene alkylamine, alkylamine oxide, acetylene glycol, and acetylene alcohol. In the present invention, the surfactants are not limited to those mentioned above.
- These surfactants can be used either singly or as a mixture of two or more thereof, and are added in a range of from 0.001 to 3.0 mass% to the total amount of the ink.
- In the present invention, non-ionic surfactants or anionic surfactants are preferred, and dodecylbenzene sulfonic acid soda, 2-ethylhexylsulfosuccinic acid soda, alkylnaphthalenesulfonic acid soda, an ethylene oxide adduct of phenol, and an ethylene oxide adduct of acetylene diol are particularly preferred.
- In order to maintain the viscosity of and a dye in an ink, or to enhance the color development, an inorganic salt may be added into the ink. Examples of the inorganic salt include sodium chloride, sodium sulfate, magnesium chloride, and magnesium sulfide. When the present invention is carried out, the inorganic salts are not limited to those mentioned above.
- In order to maintain the long-term storage stability of the ink, an antiseptic or fungicide may be added into the ink. Examples of the antiseptic or fungicide include aromatic halogen compounds (e.g., Preventol CMK), methylene dithiocyanate, halogen-containing nitrogen sulfur compounds, and 1,2-benzisothiazolin-3-one (e.g., PROXEL GXL). In the present invention, the antiseptic or fungicide is not limited to those mentioned above.
- The thixotropic index of the ink used in the inkjet dyeing method of the present invention is preferably 1.2 or less, and more preferably 1.1 or less. The term thixotropic index means the ratio between viscosity value A and viscosity value B ("viscosity value A / viscosity value B") when the viscosity at a shearing rate of 100/sec is set as viscosity value A, and the viscosity at a shearing rate of 1,000/sec is set as viscosity value B. The viscosity value A and viscosity value B can be measured using a rotary rheometer (e.g., MCR-300 manufactured by Anton Paar GmbH).
- The inkjet dyeing method of the present invention is typically performed using an inkjet recording apparatus provided with an inkjet head.
FIG. 1 is a schematic configuration illustrating an example of an inkjet recording apparatus provided with an inkjet head. -
Inkjet recording apparatus 100 has a pair ofconveyance rollers 201 ofconveyance mechanism 200, which nips recording medium P. Further,inkjet recording apparatus 100 hasconveyance roller 203 which is rotationally driven byconveyance motor 202. Recording medium P is designed to be conveyed in illustrated Y direction (sub-scanning direction) by the pair ofconveyance rollers 201 andconveyance roller 203. -
Inkjet recording apparatus 100 is provided with inkjet head H arranged so as to face recording surface PS of recording medium P, betweenconveyance roller 203 and the pair ofconveyance rollers 201. Inkjet head H is mounted oncarriage 400 such that the nozzle surface side is arranged to face recording surface PS of recordingmedium P. Carriage 400 is provided reciprocably in illustrated X-X' direction (main scanning direction) approximately orthogonal to the conveyance direction of recording medium P (sub-scanning direction) by a driving means (not illustrated) alongguide rail 300 bridged in the width direction of recording medium P. As described in detail hereinafter, inkjet head H is connected electrically to driveapparatus 500 via flexible printed circuit board (FPC) 4. - Inkjet head H moves for scanning over recording surface PS of recording medium P in illustrated direction X-X', in association with the movement of
carriage 400 in the main scanning direction. In the course of this movement for scanning, droplets are discharged from nozzles to thereby record a desired image. -
FIGS. 2 to 4 illustrate an example of inkjet head H which is preferably used.FIG. 2 is a broken perspective view of the inkjet head,FIG. 3 is a partial rear view of the head chip of the inkjet head, andFIG. 4 is a partial sectional view of the head chip. - Inkjet head H illustrated in
FIGS. 2 to 4 has so-called harmonica-shapedhead chip 1,nozzle plate 2,wiring circuit board 3,FPC 4 andink manifold 5. -
Head chip 1 is in a hexahedral shape, and has two channel rows (row A and row B) in which a plurality of channels are arranged. In the channel rows ofhead chip 1, drivechannel 11 which is a pressure chamber and from which an ink is discharged, anddummy channel 12 from which the ink is not discharged are arranged alternately.Head chip 1 is an independent drive type head chip which performs recording by discharging an ink only fromdrive channels 11. - The drive channels arranged in row A of the two channel rows are defined as 11A, and dummy channels arranged in row A are defined as 12A. Further, the drive channels arranged in row B of the two channel rows are defined as 11B, and dummy channels arranged in row B are defined as 12B.
- In each channel row (row A or row B), drive channels (11A, 11B) and dummy channels (12A, 12B) are disposed alternately.
Partition walls 13 between drive channels (11A, 11B) and dummy channels (12A, 12B) adjacent to each other function as a pressure-imparting means composed of a piezoelectric element such as PZT. Hereinafter, the partition walls in row A and row B may be sometimes referred to as 13A and 13B, respectively. - Each of the drive channels (11A, 11B) and each of the dummy channels (12A, 12B) opens at both front end surface la and
rear end surface 1b ofhead chip 1. In inkjet head H illustrated inFIG. 2 , the end surface on the ink-discharging side ofhead chip 1 is referred to as "front end surface 1a," and the end surface on the opposite side is referred to as "rear end surface 1b." - On the inner surface of each channel (11A, 11B, 12A, 12B),
drive electrode 14 is formed closely. An outlet of each channel is provided at front end surface 1a ofhead chip 1, and an inlet thereof is provided atrear end surface 1b ofhead chip 1. Each channel is formed straight from the inlet to the outlet. - On
rear end surface 1b ofhead chip 1, connection electrodes (15A, 15B) are formed. One end of each connection electrode (15A, 15B) is conducted to a drive electrode in the 11A or 11B orcorresponding drive channel 12A or 12B. Further,dummy channel connection electrode 15A elongates from the inside of each 11A or 12A to onechannel end edge 1c ofhead chip 1. Connection electrode 15B extends toward row A from the inside of each 11B or 12B, and elongates to an area before the channel row of row A. Thus, both ofchannel connection electrodes 15A and 15B extend in the same direction from each channel (11A, 11B, 12A, 12B). -
Nozzle plate 2 is joined to front end surface la ofhead chip 1 with an adhesive. Innozzle plate 2,nozzles 21 open only at positions corresponding to drive 11A and 11B.channels -
Wiring circuit board 3 is a tabular circuit board larger thanrear end surface 1b ofhead chip 1. At an area within a joining area (area indicated by dashed line inFIG. 2 ) 31 ofwiring circuit board 3, to whichrear end surface 1b ofhead chip 1 is joined, through- 32A and 32B are provided separately. The positions of through-holes 32A and 32B correspond, respectively, to driveholes 11A and 11B which open atchannels rear end surface 1b ofhead chip 1. Through through- 32A and 32B, the ink is suppled fromholes common ink chamber 51 ofink manifold 5 to the inside of the respective drive channels (11A, 11B). -
Common ink chamber 51 is composed of the inner space of box-shapedink manifold 5 adhered to the rear surface side (opposite to head chip 1) ofwiring circuit board 3. The ink insidecommon ink chamber 51 is supplied to the 11A and 11B through through-respective drive channels 32A and 32B. Accordingly, driveholes 11A and 11B are in fluid communication with each other via thischannels common ink chamber 51. 12A and 12B are sealed withDummy channels wiring circuit board 3, and are not in fluid communication withcommon ink chamber 51. - On the surface of
wiring circuit board 3, 33A and 33B are formed, which are electrically connected to thewiring electrodes respective connection electrodes 15A and 15B arranged onrear end surface 1b ofhead chip 1. 33A and 33B extend on the surface ofWiring electrodes wiring circuit board 3 in the direction orthogonal to the channel rows (row A and row B) ofhead chip 1. 33A and 33B are arranged alternately. Further,Wiring electrodes 33A and 33B are formed by means of vapor deposition or a sputtering method.wiring electrodes - One end of
wiring electrode 33A corresponding toconnection electrode 15A drawn from each of 11A and 12A arranged in row A is positioned in the vicinity corresponding to each ofchannels 11A and 12A in row A in joiningchannels area 31. Further,wiring electrode 33A extends in a direction orthogonal to the channel rows ofhead chip 1 from joiningarea 31, and elongates to end portion 3a ofwiring circuit board 3. - On the other hand, one end of
wiring electrode 33B corresponding to connection electrode 15B drawn from each of 11B and 12B arranged in row B is positioned in the vicinity corresponding to each ofchannels 11B and 12B in row B in joiningchannels area 31. Further,wiring electrode 33B extends in the same direction aswiring electrode 33A, and elongates to end portion 3a ofwiring circuit board 3 through between adjacent through-holes 32A in row A. -
Wiring circuit board 3 is pasted torear end surface 1b ofhead chip 1, so that connection electrodes (15A, 15B) ofhead chip 1 and wiring electrodes (33A, 33B) ofwiring circuit board 3 correspondingly connect to each other electrically.Wiring circuit board 3 andhead chip 1 are joined together by an adhesive at a predetermined pressing force (e.g., 1 MPa or more). The adhesive to be used may be an anisotropic conductive adhesive containing conductive particles, but is preferably an adhesive not containing conductive particles for enhancing the reliability in preventing short circuit. - Inkjet head H is mounted on
carriage 400 ofinkjet recording apparatus 100 such that the row direction of the channel rows (row A and row B) is in the same direction as Y direction inFIG. 1 . Inkjet head H is electrically connected to driveapparatus 500 via FPC 4 (refer toFIG. 1 ). When a drive signal corresponding to image data transmitted from a drive circuit indrive apparatus 500 is applied to driveelectrode 14 of each ofdrive channels 11 viaFPC 4,partition wall 13 undergoes shear deformation to change the volume ofdrive channels 11, thus imparting discharging pressure to the ink insidedrive channels 11. -
FIG. 5 illustrates an example of a drive signal given to inkjet head H for discharging the ink fromnozzles 21 of inkjet head H. The drive signal is a rectangular wave composed of a positive voltage (+V) with pulse width PW, and generates a negative pressure in the channel. - The ink-discharging operation of inkjet head H by the drive signal is described with reference to
FIGS. 6A and 6B. FIGS. 6A and 6B illustrate asingle drive channel 11, twodummy channels 12 arranged adjacently on both sides of thesignal drive channel 11, and twopartition walls 13 therebetween, in a single channel row of inkjet head H. - As illustrated in
FIG. 6A , whenpartition wall 13 betweendrive channel 11 anddummy channel 12 is in a medium state, a drive signal illustrated inFIG. 5 is applied to driveelectrode 14 ofdrive channel 11. Then, as illustrated inFIG. 6B , an electric field is generated in a direction perpendicular to the polarization direction (indicated by arrows in drawings) of a piezoelectric element formingpartition wall 13. As a result, bothpartition walls 13 undergo shear deformation outwardly from each other in a doglegged shape to expand the volume ofdrive channel 11. Due to the deformation ofpartition wall 13, the ink flows intodrive channel 11. The deformed state is maintained for the period of predetermined pulse width PW, and then the drive signal returns to 0 potential. Thereupon, pressure is applied to the ink insidedrive channel 11 to discharge droplets fromnozzles 21. - The variation of ink pressure inside
drive channel 11 caused by the deformation ofpartition wall 13 repeats reversion for every 1 acoustic length (AL) "from negative to positive" and "positive to negative." Therefore, in order to discharge droplets efficiently, it is preferable that pulse width PW which is a duration of positive voltage of the drive signal be approximated to the time difference (1AL) between the timing at which the pressure insidedrive channel 11 shifts "from negative to positive" and the timing at which the pressure insidedrive channel 11 shifts "from positive to negative," and specifically pulse width PW is preferably set in a range of from 0.8 AL or more to 1.2 AL or less. - AL indicating the duration of the drive signal refers to 1/2 of the acoustic resonance period of a pressure wave in
dummy channel 12. AL is determined as a pulse width at which the flying velocity of a droplet is the maximum, when measuring the velocity of a droplet discharged at the time of applying rectangular wave drive signals to driveelectrode 14, with pulse width PW of the rectangular wave being varied, and the voltage value of the rectangular wave being constant. - The pulse is a rectangular wave of a constant voltage peak value. Pulse width PW is defined as a time difference between the timing at which the voltage reaches 10% after rising from 0 V and the timing at which the voltage reaches 10% after falling from the peal value, when 0 V is set as 0% and the peak value of the voltage is set as 100%.
- The rectangular wave refers to a wave form in which both the time required for the voltage to rise from 10% to 90% and the time required for the voltage to fall from 90% to 10% are within 1/2 of AL, and more preferably within 1/4 of AL.
- Next, a method in which drive
apparatus 500 applies a drive signal to inkjet head H. -
Drive apparatus 500 drives N (N is an integer of 2 or more) drive groups independently into which all the channel rows of inkjet head H are divided. - The drive channels in a channel row belonging to a single drive group receive drive signals applied from
drive apparatus 500 at identical timing within drive period T of inkjet head H. A plurality of channel rows may belong to a single drive group. Eachdrive channel 11 and eachdummy channel 12 included in a single channel row are inevitably included in an identical drive group. - For example, inkjet head H illustrated in
FIG. 2 has two channel rows. Here, under the condition of N = 2, the channel row of row A is defined as drive group A, and the channel row of row B as drive group B, as illustrated inFIG. 7 . That is, all the channel rows of inkjet head H are divided into two drive groups. - In inkjet head H, all drive
channels 11 in a channel row belonging to an identical drive group receive applied drive signals simultaneously. - Phase difference "nAL + t" is given to between a drive signal applied to drive
electrode 14 of each ofdrive channels 11 constituting drive group A fromdrive apparatus 500 and a drive signal applied to driveelectrode 14 of each ofdrive channels 11 constituting drive group B therefrom, as illustrated in the timing chart ofFIG. 8 . Here, a drive signal is applied to drive period T of drive group A, so that drive group A is driven prior to drive group B. It is noted that n is an integer of 1 or more, and AL is 1/2 of acoustic resonance period of a pressure wave indrive channel 11, as described above.FIG. 8 exemplifies the case of n = 1. - Further, t is a pressure wave transmission time determined by "inter-nozzle distance between drive groups"/"speed at which sound is transmitted in an ink."
- The term "between drive groups" in the "inter-nozzle distance between drive groups" represents the meaning of "between two drive groups which are to be driven with a phase difference." When there are two channel rows as illustrated in
FIG. 7 , "inter-nozzle distance between drive groups" is a distance indicated by D inFIG. 7 . -
-
Drive channels 11A of drive group A and drivechannels 11B of drive group B are in fluid communication with each other viacommon ink chamber 51. Therefore, when drive signals are applied respectively to driveelectrodes 14 ofdrive channels 11A of drive group A and driveelectrodes 14 ofdrive channels 11B of drive group B to discharge droplets, the droplets velocity may sometimes fluctuate considerably due to the influence of crosstalk. However, according to the experiments of the present inventors, it has been found that, for example, when inkjet head H is driven such that droplets are discharged fromdrive channels 11A of drive group A and then droplets are discharged fromdrive channels 11B of drive group B after the elapse of a predetermined Delay time, the velocity of the droplets discharged fromdrive channels 11B of drive group B periodically fluctuate depending on the Delay time with respect to the velocity of the droplets discharged fromdrive channels 11A of drive group A. - As illustrated in
FIG. 9 , the velocity of a droplet discharged fromdrive channels 11B repeats reversion toward plus or minus for every 1AL, after "time lag" from the time of discharging droplets from drive group A. At the time of the reversion, the velocity of the droplets fromdrive channels 11B of drive group B becomes substantially equal to the velocity of the droplets fromdrive channels 11A of drive group A. Further, it has been ascertained that the "time lag" from the time of discharging droplets from drive group A corresponds to the above-mentioned "time t." - That is, it has been found that the velocity of the droplets from
drive channels 11B of drive group B after the elapse of nAL + t from the time of discharging droplets fromdrive channels 11A of drive group A is substantially equal to the velocity of the droplets fromdrive channels 11A of drive group A. - Therefore, by imparting phase difference nAL + t to between drive signals applied to drive groups A and drive signals applied to drive groups B, it becomes possible to substantially ignore the influence of crosstalk between drive groups A and B sharing
common ink chamber 51 without modifying the head structure of inkjet head H at all. That is, it becomes possible to suppress the fluctuation of ink droplet velocity between channel rows. Moreover, the drive load is also suppressed, because a phase difference is imparted to between the drive signals for drive group A and the drive signals for drive group B. - As illustrated in
FIG. 9 , the velocity of the droplets fromdrive channels 11 of drive group B undergoes reversion toward plus or minus for every 1AL after the elapse of time t. Therefore, any integer of 1 or more can be employed for n. However, it is necessary that drive signals for the discharge from a drive group to be driven later should not overlap subsequent drive period T. Further, when n value becomes too large, the differences among timings to drive different drive groups become large, which may cause printing speed to be lowered. Therefore, from the viewpoint of high-speed printing, n is preferably a value as small as possible, and n = 1 is the most preferred. - Typically, an inkjet head having a plurality of channel rows discharges droplets from nozzles at preset different timings, in order to adjust the deviation of landing position due to the differences in the physical nozzle position among channel rows adjacent to each other. For example, in inkjet head H having two channel rows, as illustrated in
FIG. 10 , at a certain physical position, a first channel row (e.g., drive group A) starts discharging; recording medium P and inkjet head H move relatively to each other; andnozzles 21 of a second channel row (drive group B) reach the above-mentioned physical position. Then, the moment thenozzles 21 of the second channel row (drive group B) reach there, the second channel row starts discharging. Even in this case, therespective drive channels 11 typically perform discharging at the same drive timing, and differ for every channel row only in the starting time and the finishing time. - Thus, the phase difference nAL + t among drive groups in the present invention means a Delay time not including the difference in the starting time and the finishing time caused by the landing position adjustment (time period of landing position adjustment between drive groups) due to the difference in the physical nozzle position among drive groups. That is, as illustrated in
FIG. 10 , the phase difference nAL + t means a Delay time provided in a time period during which two drive groups to which a phase difference is imparted are driven together. That is, the phase difference nAL + t is imparted between different drive groups A and B at a timing of application of drive signals in the time period during which two drive groups are driven together. Thus, the timings per se at which droplets are discharged are different. - Strictly speaking, there is a problem where imparting the phase difference nAL + t to between drive groups A and B requires the landing position adjustment between drive groups A and B. However, this problem can be solved by adjusting the relative moving speed between recording medium P and inkjet head H.
- The above description is an explanation for the case where the inkjet head has two channel rows. In the present invention, any of a plurality of channel rows can be sufficient for the inkjet head. The plurality of channel rows can be divided into N (N is an integer of 2 or more) drive groups to be driven in the same manner as described above.
-
FIG. 11 illustrates a case where the inkjet head has four channel rows; and four channel rows are divided into 2 drive groups (drive groups A and B). Drive groups A and B are arranged alternately such that channel rows adjacent to each other belong to drive groups different from each other. - In the embodiment illustrated in
FIG. 11 , D' is preferably substantially as large as D or large enough to attenuate a pressure wave. Among these, D is defined as "inter-nozzle distance between drive groups." - As for the timing of application of drive signals in this case, as illustrated in
FIG. 12 , phase difference of 1AL + t (in the case of n = 1) is imparted to between drive groups A and B. Thus, it becomes possible to suppress droplet velocity fluctuation between drive groups A and B, and to lower the drive load. -
FIG. 13 illustrates a case where the inkjet head has six channel rows; all the six channel rows are divided into three drive groups (drive groups A, B, and C). Drive groups are arranged in the order of A, B, C, A, B, C such that channel rows adjacent to each other belong to drive groups different from each other. - In the embodiment illustrated in
FIG. 13 , D' is preferably substantially as large as D or large enough to attenuate a pressure wave. Among these, D is defined as "inter-nozzle distance between drive groups." - As for the timing of application of drive signals in this case, as illustrated in
FIG. 14 , phase difference of 1AL + t (in the case of n = 1) is imparted to between drive groups A and B adjacent to each other, and to between drive groups B and C adjacent to each other. Thus, it becomes possible to suppress droplet velocity fluctuation among drive groups A, B, and C, and to lower the drive load. - Thus, when the channel rows are divided into three or more drive groups, it is preferable that all n values in the phase difference nAL + t among drive groups be the same values, from the viewpoint of avoiding the lowering of printing speed.
- In the case where the number of channel rows is three or more, drive groups in adjacent channel rows are preferably different from each other. When at least one channel row belonging to different drive group is arranged between channel rows belonging to the same drive group, the clearance between the same drive groups is increased, thus lowering the influence of crosstalk between the same drive groups.
- All the channel rows of inkjet head H need not be necessarily driven by a common drive circuit inside
drive apparatus 500.Drive apparatus 500 may have two or more drive circuits, and may allow the two or more drive circuits to drive channel rows of each drive group. In this case, channel rows driven by a single drive circuit preferably belong to drive groups different from each other. -
FIG. 15 illustrates an example in which two of four channel rows of inkjet head H are respectively driven by two drive circuits (drivecircuits 501 and 502) insidedrive apparatus 500. In this case, two channel rows driven bydrive circuit 501 belong to drive groups (A and B) different from each other. Likewise, two channel rows driven bydrive circuit 502 belong to drive groups (A and B) different from each other. By configuring in this manner, it becomes possible to reduce the lowering of droplet velocity. The reason for this is because the reduction in the number of drive channels driven simultaneously by a single drive circuit can reduce the load on the drive circuit, thus reducing the waveform rounding of the drive signal. - In the above description, the drive signal of a rectangular wave composed of a positive voltage (+V) with pulse width PW is employed for generating a negative pressure for
dummy channels 12, but the drive signal is not limited to such a drive signal. Any drive signal for charging droplets can be employed. - In the above description, so-called "harmonica-shaped head chip" assuming a hexagonal shape with inlets and outlets of channels being disposed on end surfaces opposite to each other is employed as
head chip 1 of inkjet head H. In harmonica-shapedhead chip 1, the inlets ofdrive channels 11 of all the channel rows are disposed onrear end surface 1b, andcommon ink chamber 51 is disposed on the side of the inlets ofdrive channels 11. Accordingly, the influence of crosstalk is relatively large, and thus droplet velocity fluctuation is likely to occur. Therefore, this head chip structure is a preferred mode, because a remarkable effect is easily obtained from the configuration of the present invention. However, the head chip structure in the present invention is not necessarily limited to such a structure, and any structure in which respective pressure chambers in a plurality of pressure chamber rows are in fluid communication with each other can be sufficient. - Further, the inkjet recording apparatus in the present invention is not limited to the one which discharges droplets for recording in the course of moving inkjet head H for scanning in the width direction (main scanning direction) of recording medium P; it is also possible to employ an inkjet recording apparatus which is configured by a line-shaped inkjet head fixed over recording medium P in the width direction and which discharges droplets from
nozzles 21 for recording in the course of moving recording medium P in Y direction inFIG. 1 . In this case, the channel rows of inkjet head H are arranged in X-X' direction inFIG. 1 . - Fibers to be dyed by the dyeing method of the present invention are not particularly limited as long as the fibers can be dyed with a disperse dye; above all, fibers such as polyester, acetate, and triacetate are preferred. Among those, polyester fibers are particularly preferred.
- Fibers to be dyed may be clothes. Clothes in any form of woven fabric, knit fabric, and nonwoven fabric cloth of fibers can be sufficient. Further, a cloth made of 100% fiber which is dyeable with a disperse dye is suitable, but a blended fabric cloth or blended nonwoven fabric cloth with rayon, cotton, polyurethane, acrylic fiber, nylon, wool, silk, and the like can also be used as a cloth for printing. The thickness of yarn for composing the above-mentioned cloth is preferably in a range of from 10 to 100 d.
- A cloth to be dyed by means of high-temperature steaming preferably contains a dye auxiliary. The dye auxiliary produces a eutectic mixture with water condensed on a printed cloth when steaming the cloth, thus restricting the amount of water content which evaporates again to shorten the temperature rising time. Further, this eutectic mixture dissolves a dye on a fabric to accelerate the speed of diffusion of the dye into the fiber. Examples of the dye auxiliary include urea.
- The inkjet dyeing method of the present invention may be printing (inkjet printing).
- In the case of the inkjet dyeing method of the present invention, it is desirable to wash natural impurities (such as fat and oil, wax, pectic substance, and natural coloring matter) adhered to a fiber, residual chemical agents (such as sizing agent) used in cloth production processes, and stains, before subjecting the fiber to a pretreatment with a water-soluble polymers to obtain a uniformly dyed product. Examples of a washing agent to be used in washing include alkalis such as sodium hydroxide and sodium carbonate, surfactants such as anionic surfactants and non-ionic surfactants, and enzymes.
- In the inkjet dyeing method of the present invention, it is preferable to apply a pretreatment agent by means of padding method, coating method, spray method, and the like for a bleed-preventing effect (pretreatment step). Thereafter, an image is formed on a fiber which is dyeable with a disperse dye in an inkjet recording method using the above-described ink (ink-imparting step), then a cloth to which the ink was imparted is subjected to a thermal treatment (color development step), and further the cloth having been subjected to the thermal treatment is washed (washing step), thereby finishing the printing on the fiber to obtain a dyed product (printed product).
- As the pretreatment, a method suitable to a fiber material or an ink can be appropriately selected from known methods such as a method in which a fiber is treated with a water-soluble polymer, and the pretreatment method is not particularly limited. For example, when at least a single material selected from the group consisting of a water-soluble metal salt, a polycation compound, a water-soluble polymer, a surfactant and a water repellant is used so as to be added to the fiber at a ratio of 0.2 to 50 mass%, a high degree of bleeding prevention is possible, which preferably enables a high-definition image to be printed on a cloth.
- Examples of the specific water-soluble polymer used in the pretreatment include starches such as corn and wheat, cellulose derivatives such as carboxymethyl cellulose, methyl cellulose and hydroxyethyl cellulose, polysaccharides such as sodium alginate, guar gum, tamarind gum, locust bean gum and gum arabic, and protein substances such as gelatin, casein and keratin, and synthesized water-soluble polymers such as polyvinyl alcohol, polyvinyl pyrrolidone and acrylic acid-based polymer. Examples of the surfactant used in the pretreatment include anionic, cationic, amphoteric and nonionic surfactants. Typical examples thereof include anionic surfactants such as a higher alcohol sulfuric acid ester salt and a sulfonate of a naphthalene derivative; cationic surfactants such as a quaternary ammonium salt; amphoteric surfactants such as an imidazolidine derivative; and nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene propylene block polymer, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, and an ethylene oxide adduct of acetylene alcohol.
- Examples of the water repellent include a silicon-based, fluorine-based, and wax-based water repellents. These water-soluble polymers and surfactants to be added to a cloth in advance are preferably stable to a high-temperature environment, so as not to be a cause of stain by tarring at the time of color development at a high temperature during inkjet printing. Further, these water-soluble polymers and surfactants to be added to a cloth in advance are preferably those which can be easily removed from the cloth with a washing treatment after the color development at a high temperature during inkjet printing.
- An inkjet printing method for performing printing on a cloth desirably winds the printed cloth after ink discharge, develops color with heating, and washes and dries the cloth. In the inkjet printing, satisfactory dyeing is not obtained only by performing printing on a cloth with an ink and merely leaving the ink printed on the cloth to stand. Further, for example, when continuing printing on a long cloth for a long period of time, printed cloth continues to be stacked on a floor or the like, and therefore it not only takes up space due to continuous discharge of the cloth, but also is insecure and causes a stain unexpectedly. For these reasons, it becomes necessary to perform a winding operation after printing. During this operation, a medium not involved in printing such as paper, fabric or vinyl, may be interposed between the clothes. However, in the case of cutting a cloth on the way or in the case of a short cloth, winding is not always necessary.
- The color development step is a step of developing an original color hue of an ink by allowing a dye in the ink having been only adhered to the surface of a cloth after printing but not having been sufficiently adsorbed or fixed to the cloth, to adsorb and fix to the cloth. As the color development method, steaming with vapor, baking with dry heat, thermosol, and HT steamer with superheated vapor are used. These color development methods are appropriately selected depending on materials, inks, or the like. Further, the printed cloth may be dried and subjected to color development treatment depending on use applications by subjecting the printed cloth to heating treatment either immediately, or after having been left to stand for a while; the present invention may employ either of these methods.
- In dyeing using a disperse dye, a carrier may also be used in addition to a method of color development at a high temperature. Compounds to be used as a carrier preferably have features of large dye enhancement, simple usage, stability, less load on human body or environment, easy removal from fiber, and no influence on dye fastness. Examples of the carrier include phenols such as o-phenylphenol, p-phenylphenol, methylnaphthalene, alkyl benzoate, alkyl salicylate, chlorobenzene and diphenyl, ethers, organic acids, and hydrocarbons. These carriers facilitates the swelling and plasticization of a fiber such as a polyester difficult to be dyed at a temperature around 100°C to allow the disperse dye to easily enter the fiber. The carrier may be either adsorbed to fibers of a cloth to be used for inkjet printing in advance, or contained in an inkjet printing ink.
- A washing step is necessary after the heating treatment, because the remaining of a dye not having been involved in dyeing deteriorates the stability of color to lower the fastness of the color. Further, it is also necessary to remove a pretreatment substance applied to the cloth. When the pretreatment substance is left as it is, not only the fastness is lowered, but also the cloth undergoes discoloration. Therefore, washing depending on substances to be removed or purposes is essential. The method therefor is selected depending on materials to be printed or inks; for example, a polyester is treated typically with a liquid mixture of caustic soda, a surfactant and hydrosulfite. The method therefor is typically performed using an open soaper in continuous dyeing, or using a jet dyeing machine in batch dyeing; in the present invention, either of the above methods may be used.
- Drying is necessary after the washing. The washed cloth is squeezed or dewatered, and subsequently aired or dried using a drying machine, heat roll, iron, or the like.
- Hereinafter, the present invention will be described in more detail by way of Examples. The scope of the present invention is not construed to be limited by these Examples.
- A liquid mixture obtained by sequentially mixing the following additives was subjected to dispersion treatment using a sand grinder to prepare a dye dispersion liquid. During the dispersion treatment, the amount of coarse particles in a liquid particle counter (HIAC-8000A manufactured by Hach Company) was measured. When a set percentage was obtained, the dispersion treatment was finished.
Dispersant (Type and amount listed in Table 1)Dye (Type listed in Table 1) 25 parts Glycerol 30 parts Ion-exchanged water amount required to make the total amount 100 parts[Table 1] Dispersion Liquid Dye Dispersant Addition Amount of Dispersant Percentage of Coarse Particles of 5 µm or more Percentage of Coarse Particles of 2 µm or more A1 C.I.Disperse Yellow 114 12 parts 6% - A2 C.I.Disperse Yellow 114 12 parts 3% - A3 C.I.Disperse Yellow 114 12 parts 1% - A4 C.I.Disperse Yellow 114 12 parts 0.5 % - B1 C.I.Disperse Blue 165 4 parts 6% - B2 C.I.Disperse Blue 165 7 parts 3% - B3 C.I.Disperse Blue 165 10 parts 1 % - B4 C.I.Disperse Blue 165 BYK-190 (BYK, Inc.) 12 parts 0.5 % - C1 C.I.Disperse Blue 60 12 parts 0.5 % - D1 C.I.Disperse Red 302 14 parts less than 5 % 6% D2 C.I.Disperse Red 302 14 parts - 3% D3 C.I.Disperse Red 302 14 parts - 1 % D4 C.I.Disperse Red 302 14 parts - 0.5 % E1 C.I.Disperse Red 92 14 parts - 0.5 % F1 C.I.Disperse Red 177 14 parts - 0.5 % G1 C.I.Disperse Violet 57 14 parts - 0.5 % - Inks A1 to A4, B1 to B4, C1, D1, E1 to E4, F1, and G1 were prepared in accordance with the following formulation using the above-prepared respective dye dispersion liquids.
Dye Dispersion Liquid 40 parts Ethylene glycol 15 parts Glycerol appropriate amount Diethylhexyl sodium sulfosuccinate appropriate amount PROXEL GXL (Avecia Biotechnology, Inc.) 0.1 part Ion-exchanged water amount required to make the total amount 100 parts - The amount of glycerol was adjusted such that the viscosity of the ink was 5.7 mPa·s. An appropriate amount of diethylhexyl sodium sulfosuccinate was added to set the surface tension of the ink at 41 mN/m. Thereafter, each ink having been prepared was flowed into a hollow fiber film having gas permeability (manufactured by Mitsubishi Rayon Co., Ltd.), and the outer surface side of the hollow fiber film was depressurized with a water-flow aspirator to thereby remove gas dissolved in the ink. Further, the ink was filled into a vacuum pack after the degassing to prevent air from mixing into the ink.
- Continuous ejection test was performed using the prepared inks A1 to A4, B1 to B4, C1, D1, E1 to E4, F1 and G1 and using an inkjet apparatus.
- As illustrated in
FIG. 11 , an inkjet head having four nozzle rows was prepared. All the channel rows were divided into two drive groups A and B such that adjacent channel rows belonged to different drive groups. Each channel row had 256 nozzles, and the inter-nozzle distance D between channel rows belonging to different drive groups was 0.846 mm, with AL = 5.0 µs. - As illustrated in
FIG. 15 , the four channel rows of this inkjet head were driven by two drive circuits. - As described above, the inks A1 to A4, B1 to B4, C1, D1, E1 to E4, F1 and G1 had a viscosity of 5.7 mPa·s and a surface tension of 41 mN/m, and the speed at which sound is transmitted in the ink was 1,600 m/s. From the above conditions, pressure wave transmission time t determined by "inter-nozzle distance between adjacent pressure chamber rows"/"speed at which sound is transmitted in an ink" was calculated as: 846 (µm) / 1,600 × 106 (µ/s) = 0.53 ×10-6 (s) = 0.53 (µs). From this calculated value, the approximation: t = 0.5 (µs) was obtained.
- As a drive signal applied to each drive channel from a drive apparatus, a rectangular wave composed only of a positive voltage (+V) illustrated in
FIG. 5 was employed. Pulse width PW was set at 1AL = 5.0, and drive period T was set at 100 µs. It is noted that drive signals are applied to all the channel rows from a common drive apparatus. - An inkjet head was mounted on a carriage of an inkjet recording apparatus illustrated in
FIG. 1 . With the phase difference between drive groups A and B: (nAL + t), where n = 1, being set as: 1 × 5.0 + 0.9 = 5.9 µs, the inkjet head was driven so as to apply drive signals first to drive group A for performing inkjet printing. - 30-minute or 60-minute continuous ink ejection was performed from all the nozzles of the used head at full duty, and the number of the occurrence of nozzle omission and of the droplets adhered to the surface of nozzles at the time of the continuous ejection to thereby evaluate the continuous ejection test. The results thereof are shown in Table 2.
- 1: No nozzle omission occurred, with no adherence of droplets
- 2: No nozzle omission occurred, with adherence of 5 droplets or less
- 3: No nozzle omission occurred, with adherence of 20 droplets or less
- 4: Nozzle omission occurred
- Droplets discharged from the nozzles of each of drive groups A and B were captured using a camera. The obtained droplet image was subjected to image processing to thereby calculate droplet velocity. From the results, the average velocity of the nozzles for each channel row was determined. From the obtained average velocity, |average velocity of drive group A - average velocity of drive group B| was calculated, from which calculated value, the fluctuation ratio relative to the average velocity of drive group A (= calculated value / average velocity of drive group A × 100: unit (%)) was determined. The influence of crosstalk was evaluated according to the following criteria. The results thereof are shown in Table 2.
- 1: less than 5%
- 2: 5% or more and less than 10%
- 3: 10% or more and less than 15%
- 4: 15% or more
- Drive load at the time of driving an inkjet head was determined as a ratio (%) to a current value set as 100 when driving all the drive channels, with no phase difference being provided with any of all the channel rows, with nAL + t = 0. A smaller drive load value is more preferred. The results thereof are shown in Table 2.
[Table 2] Ink Ejection Stability (30 min) Ejection Stability (60 min) Crosstalk Drive Load TI Value A1 4 1 50% 1.0 Comp. Ex. A2 2 1 50% 1.0 Ex. A3 1 1 50% 1.0 Ex. A4 1 1 50% 1.0 Ex. B1 4 1 50% 1.3 Comp. Ex. B2 2 1 50% 1.2 Ex. B3 1 1 50% 1.1 Ex. B4 1 1 50% 1.0 Ex. C1 1 1 50% 1.0 Ex. D1 3 1 50% 1.0 Ex. D2 2 1 50% 1.0 Ex. D3 1 1 50% 1.0 Ex. D4 1 1 50% 1.0 Ex. E1 1 1 50% 1.0 Ex. F1 1 1 50% 1.0 Ex. G1 1 1 50% 1.0 Ex. - As shown in Table 2, it was found that, in inks A1 and B1 in which the percentage of coarse particles of 5 µm or more was 6%, nozzle omission occurred, so that stable ejection was not possible. In contrast, in all the inks in which the percentage of coarse particles of 5 µm or more was 3% or less, nozzle omission did not occur. However, in inks A2 and B2 in which the percentage of coarse particles of 5 µm or more was 3%, or ink C1 or C2 in which the percentage of coarse particles of 2 µm or more was 6% or 3%, nozzle omission did not occur, but droplets were adhered to the surface of nozzles.
- After the following additives were mixed sequentially, the mixture was subjected to dispersion treatment using a sand grinder to prepare a dye dispersion liquid. At that time, in the same manner as Example 1, a liquid particle counter was used during the dispersion treatment to measure the amount of coarse particles, and the dispersion treatment was finished when a set percentage was obtained.
Disperse dye (type listed in Table 3) 25 parts Glycerol 30 parts - Dispersant (Type and amount listed in Table 1)
Ion-exchanged water amount required to make the total amount 100 parts[Table 3] Dispersion Liquid Dye Dispersant Addition Amount of Dispersant Percentage of Coarse Particles of 2 µm or more H1 C.I.Disperse Red 343 BYK-190 (BYK, Inc.) 12 parts 0.5% H2 C.I.Disperse Red 145 0.5% - Using the above-prepared dye dispersion liquids H1 and H2, inks H1 and H2 were prepared in accordance with the following formulation.
Dye Dispersion Liquid 40 parts Ethylene glycol 20 parts Glycerol appropriate amount Diethylhexyl sodium sulfosuccinate appropriate amount PROXEL GXL (Avecia Biotechnology, Inc.) 0.1 part Ion-exchanged water amount required to make the total amount 100 parts - The amount of glycerol was adjusted such that the viscosity of the ink was 10.0 mPa·s. The appropriate amount of diethylhexyl sodium sulfosuccinate was added such that the surface tension of the ink was 32 mN/m. Thereafter, each ink having been prepared was flowed into a hollow fiber film having gas permeability (manufactured by Mitsubishi Rayon Co., Ltd.), and the outer surface side of the hollow fiber film was depressurized with a water-flow aspirator to thereby remove gas dissolved in the ink. Further, the ink was filled into a vacuum pack after the degassing to prevent air from mixing into the ink.
- Continuous ejection test was performed using the prepared inks H1 and H2 and using an inkjet apparatus.
- An inkjet head having two channel rows with the same structure as that of the inkjet head illustrated in
FIG. 2 was prepared. One channel row was defined as drive group A, and the other channel row as drive group B. Each channel row had 256 nozzles, and the inter-nozzle distance D between channel rows was 1.128 mm, with AL = 5.0 µs. The two channel rows of this inkjet head were driven by the same drive circuit. - As described above, the inks H1 and H2 had a viscosity of 10 mPa·s and a surface tension of 32 mN/m, and the speed at which sound is transmitted in the ink was 1,300 m/s. From the above conditions, pressure wave transmission time t determined by "inter-nozzle distance between drive groups"/"speed at which sound is transmitted in an ink" was calculated as: 1,128 (µm) / 1,300 × 106 (µ/s) = 0.87 ×10-6 (s) = 0.87 (µs). From this calculated value, the approximation: t = 0.9 (µs) was obtained.
- As a drive signal applied to each drive channel from a drive apparatus, a rectangular wave composed only of a positive voltage (+V) illustrated in
FIG. 5 was used. Pulse width PW was set at 1AL = 5.0, and drive period T was set at 100 µs. It is noted that drive signals are applied to all the channel rows from a common drive apparatus. - The inkjet head was mounted on a carriage of an inkjet recording apparatus illustrated in
FIG. 1 . With the phase difference between drive groups A and B: (nAL + t), where n = 1, being set as: 1 × 5.0 + 0.9 = 5.9 µs, the inkjet head was driven so as to apply drive signals first to drive group A. - In the same inkjet head as that in
Drive Condition 1, a phase difference between drive groups A and B was not provided at all, with nAL + t = 0, to evaluate ejection stability, crosstalk, and drive load in the same manner. The results thereof are shown in Table 4. - In the same inkjet head as that in
Drive Condition 1, the same conditions as in Example 1 were followed except that the phase difference (nAL + t), where n = 0.5 and t = 0, was set as: 0.5 × 5.0 = 2.5 µs, to evaluate ejection stability, crosstalk, and drive load. The results thereof are shown in Table 4. - The evaluations of ejection stability (continuous ejection time was set to 120 minutes), crosstalk, and drive load were performed in the same manner as Example 1.
[Table 4] Drive Condition and Ink Ejection Stability (120 min) Crosstalk Load Value TI Value Drive Condition 1 H1 1 1 50% 1.0 H2 1 1 50% 1.0 Drive Condition 2H1 1 3 100% 1.0 H2 1 3 100% 1.0 Drive Condition 3H1 1 4 100% 1.0 H2 1 4 50% 1.0 - As shown in Table 4, in
drive condition 1, ejection was stable, with no generation of crosstalk, and drive load was also suppressed. On the other hand, indrive condition 2, no phase difference was provided between drive groups A and B, and thus crosstalk was generated. Furthermore, indrive condition 3, the phase difference between drive groups A and B was inappropriate, and thus crosstalk was generated. - The inkjet dyeing method of the present invention is capable of enhancing the ejection stability of an ink from an inkjet head, and accordingly can make it possible to obtain a high-quality inkjet dyed product.
-
- H: Inkjet head
- 1: Head chip
- 1a: Front end surface
- 1b: Rear end surface
- 1c: End edge
- 11, 11A, 11B: Drive channel (pressure chamber)
- 12, 12A, 12B: Dummy channel
- 13, 13A, 13B: Partition wall (pressure-imparting means)
- 14: Drive electrode
- 15A, 15B: Connection electrode
- 2: Nozzle plate
21: Nozzle - 3: Wiring circuit board
- 3a: End portion
- 31: Joining area
- 32A, 32B: Through-hole
- 33A, 33B: Wiring electrode
- 4: FPC
- 5: Ink manifold
51: Common ink chamber - 100: Inkjet recording apparatus
- 200: Conveyance mechanism
- 201: A pair of conveyance rollers
- 202: Conveyance motor
- 203: Conveyance roller
- 300: Guide rail
- 400: Carriage
- 500: Drive apparatus
501, 502: Drive circuit
Claims (3)
- An inkjet dyeing method for ejecting an ink from an inkjet head (H) for recording on a fiber, the ink containing at least a disperse dye, a dispersant, water and a water-soluble organic solvent, wherein
a ratio of the number of disperse dye particles having a particle diameter of 5 µm or more to the total number of disperse dye particles contained in the ink is 5% or less,
the inkjet head (H) has two or more rows in which pressure chambers (11, 11A, 11B) generating pressure for discharging an ink inside the pressure chambers (11, 11A, 11B) from a nozzle (21) with a pressure-imparting means (13, 13A, 13B) operable by application of a drive signal are arranged, with the pressure chambers (11, 11A, 11B) being in fluid communication with each other via a common ink chamber (51), and
a row in which the pressure chambers (11, 11A, 11B) are arranged is divided into N drive groups, N being an integer of 2 or more, and for each of the drive groups a phase difference of nAL + t is imparted to the drive signal to be applied to the pressure-imparting means (13, 13A, 13B) of a pressure chamber (11, 11A, 11B), with the proviso that n is an integer of 1 or more, AL is 1/2 of acoustic resonance period of a pressure wave in the pressure chamber (11, 11A, 11B), and t is a pressure wave transmission time determined by "inter-nozzle distance between drive groups"/"speed at which sound is transmitted in the ink", the inter-nozzle distance being a distance between two drive groups which are to be driven with the phase difference. - The inkjet dyeing method according to claim 1, wherein adjacent rows of the pressure chambers (11, 11A, 11B) are set as drive groups different from each other.
- The inkjet dyeing method according to claim 1 or 2, wherein a thixotropic index of the ink is 1.2 or less.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2013172330 | 2013-08-22 | ||
| PCT/JP2014/004333 WO2015025524A1 (en) | 2013-08-22 | 2014-08-22 | Inkjet dyeing method |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP3037265A1 EP3037265A1 (en) | 2016-06-29 |
| EP3037265A4 EP3037265A4 (en) | 2018-01-10 |
| EP3037265B1 true EP3037265B1 (en) | 2019-06-19 |
Family
ID=52483318
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP14837343.4A Active EP3037265B1 (en) | 2013-08-22 | 2014-08-22 | Inkjet dyeing method |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP3037265B1 (en) |
| JP (1) | JP6341206B2 (en) |
| CN (1) | CN105473339B (en) |
| WO (1) | WO2015025524A1 (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6406346B2 (en) * | 2014-03-14 | 2018-10-17 | コニカミノルタ株式会社 | Inkjet recording method |
| JP6477064B2 (en) * | 2015-03-12 | 2019-03-06 | コニカミノルタ株式会社 | Water-based ink and inkjet printing method |
| JP6593622B2 (en) * | 2015-03-20 | 2019-10-23 | セイコーエプソン株式会社 | Recording device |
| JP6558174B2 (en) * | 2015-09-18 | 2019-08-14 | コニカミノルタ株式会社 | Piezoelectric actuator unit, inkjet head, inkjet recording apparatus, head chip, and wiring board |
| JP7149765B2 (en) * | 2018-08-10 | 2022-10-07 | 東芝テック株式会社 | Chemical liquid ejection device |
| EP4112311A4 (en) | 2020-02-28 | 2023-08-16 | Konica Minolta, Inc. | Ink-jet ink and method for forming image |
| JP7545643B2 (en) * | 2021-01-20 | 2024-09-05 | 理想テクノロジーズ株式会社 | Liquid ejection head |
| CN113215841A (en) * | 2021-06-07 | 2021-08-06 | 广东立彩数码科技有限公司 | Digital ink-jet process for replacing traditional textile printing and dyeing |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000326511A (en) * | 1999-05-18 | 2000-11-28 | Nec Corp | Driving method for ink jet recording head and circuit thereof |
| JP2002137388A (en) * | 2000-11-01 | 2002-05-14 | Konica Corp | Ink jet head |
| JP4455783B2 (en) | 2001-07-04 | 2010-04-21 | 株式会社リコー | Inkjet head and inkjet recording apparatus |
| JP4247043B2 (en) * | 2002-06-28 | 2009-04-02 | 東芝テック株式会社 | Inkjet head drive device |
| JP2005255707A (en) * | 2004-03-09 | 2005-09-22 | Konica Minolta Holdings Inc | Inkjet ink, manufacturing method therefor and inkjet recording method |
| JP4543847B2 (en) * | 2004-09-14 | 2010-09-15 | ブラザー工業株式会社 | Line-type inkjet printer |
| JP2007084623A (en) * | 2005-09-20 | 2007-04-05 | Nihon Network Support:Kk | Ink for inkjet printer |
| JP2007168185A (en) | 2005-12-20 | 2007-07-05 | Konica Minolta Holdings Inc | Inkjet head |
| JP5376882B2 (en) * | 2008-09-26 | 2013-12-25 | 京セラ株式会社 | Printing apparatus and printing method |
| JP5902376B2 (en) * | 2010-04-01 | 2016-04-13 | セイコーエプソン株式会社 | Method for preparing ink composition |
| WO2013027715A1 (en) * | 2011-08-24 | 2013-02-28 | コニカミノルタIj株式会社 | Inkjet recording device and inkjet recording method |
| EP2905138B1 (en) * | 2012-10-02 | 2019-06-05 | Konica Minolta, Inc. | Driving method of inkjet head, driving apparatus of inkjet head, and inkjet recording apparatus |
-
2014
- 2014-08-22 EP EP14837343.4A patent/EP3037265B1/en active Active
- 2014-08-22 JP JP2015532714A patent/JP6341206B2/en active Active
- 2014-08-22 CN CN201480046177.3A patent/CN105473339B/en active Active
- 2014-08-22 WO PCT/JP2014/004333 patent/WO2015025524A1/en active Application Filing
Non-Patent Citations (1)
| Title |
|---|
| None * |
Also Published As
| Publication number | Publication date |
|---|---|
| JPWO2015025524A1 (en) | 2017-03-02 |
| EP3037265A4 (en) | 2018-01-10 |
| EP3037265A1 (en) | 2016-06-29 |
| WO2015025524A1 (en) | 2015-02-26 |
| JP6341206B2 (en) | 2018-06-13 |
| CN105473339B (en) | 2017-05-10 |
| CN105473339A (en) | 2016-04-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3037265B1 (en) | Inkjet dyeing method | |
| JP6406346B2 (en) | Inkjet recording method | |
| EP3431302A1 (en) | Inkjet recording method | |
| WO2011078068A1 (en) | Fabric pretreatment agent for inkjet textile printing, method for pretreating fabric, and textile printing method | |
| EP3204458B1 (en) | Ink additive combinations for improving printhead lifetime | |
| JP2017214668A (en) | Inkjet printing method | |
| JP2005281523A (en) | Manufacturing method of inkjet ink and inkjet recording method | |
| JPWO2020017431A1 (en) | Inkjet printing ink composition and hydrophobic fiber printing method | |
| EP3101069B1 (en) | Inkjet ink and inkjet recording method | |
| JP2016190936A (en) | Ink set and dyeing method using the same | |
| JP6676892B2 (en) | Direct sublimation printing method | |
| JP6477064B2 (en) | Water-based ink and inkjet printing method | |
| WO2016125869A1 (en) | Inkjet ink, inkjet printing method, fabric printed by inkjet printing method, and inkjet printing system | |
| KR20120139546A (en) | Image forming method | |
| JP2017043739A (en) | Ink set, inkjet recording method and fiber printing method | |
| EP3141656B1 (en) | Inkjet printing method and inkjet printing apparatus | |
| JP4706207B2 (en) | Inkjet printing ink set and method for producing the same, and inkjet recording method using the inkjet printing ink set | |
| JP2012167394A (en) | Pretreatment ink for inkjet printing, method for manufacturing pretreatment ink for inkjet printing, and inkjet printing method | |
| JP2004292522A (en) | Ink for inkjet printing and inkjet recording method using the same | |
| JP2010069817A (en) | Ink-jet recording method | |
| JP2010070886A (en) | Inkjet recording method | |
| JP2005263835A (en) | Inkjet-printing ink set and method for inkjet printing | |
| JP2018150405A (en) | Ink composition for inkjet printing and printing method of hydrophobic fiber | |
| JP2005264021A (en) | Ink for inkjet and inkjet recording method | |
| JP2005263836A (en) | Inkjet-printing ink set, black ink for inkjet-printing and method for inkjet-printing by using the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20160125 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| DAX | Request for extension of the european patent (deleted) | ||
| A4 | Supplementary search report drawn up and despatched |
Effective date: 20171212 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: B41J 2/01 20060101ALI20171206BHEP Ipc: D06P 3/54 20060101ALI20171206BHEP Ipc: B41J 2/055 20060101ALI20171206BHEP Ipc: D06B 11/00 20060101ALI20171206BHEP Ipc: D06P 5/00 20060101ALI20171206BHEP Ipc: B41J 2/015 20060101AFI20171206BHEP Ipc: D06P 1/16 20060101ALI20171206BHEP Ipc: D06C 23/00 20060101ALI20171206BHEP |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602014048800 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B41J0002015000 Ipc: B41J0002045000 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: B41J 2/14 20060101ALI20181129BHEP Ipc: B41J 2/045 20060101AFI20181129BHEP Ipc: D06P 5/30 20060101ALI20181129BHEP |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| INTG | Intention to grant announced |
Effective date: 20190103 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014048800 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1144962 Country of ref document: AT Kind code of ref document: T Effective date: 20190715 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190619 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190919 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190920 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190919 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1144962 Country of ref document: AT Kind code of ref document: T Effective date: 20190619 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191021 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191019 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602014048800 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190822 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 |
|
| REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190831 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190822 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200303 |
|
| 26N | No opposition filed |
Effective date: 20200603 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190919 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190919 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140822 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
| P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230510 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240710 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240731 Year of fee payment: 11 |