GB2214920A - Polymeric material made from destructurized starch and zein - Google Patents
Polymeric material made from destructurized starch and zein Download PDFInfo
- Publication number
- GB2214920A GB2214920A GB8802319A GB8802319A GB2214920A GB 2214920 A GB2214920 A GB 2214920A GB 8802319 A GB8802319 A GB 8802319A GB 8802319 A GB8802319 A GB 8802319A GB 2214920 A GB2214920 A GB 2214920A
- Authority
- GB
- United Kingdom
- Prior art keywords
- starch
- anyone
- zein
- weight
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229920002472 Starch Polymers 0.000 title claims abstract description 85
- 235000019698 starch Nutrition 0.000 title claims abstract description 85
- 239000008107 starch Substances 0.000 title claims abstract description 82
- 239000000463 material Substances 0.000 title claims abstract description 30
- 229920002494 Zein Polymers 0.000 title claims abstract description 29
- 239000005019 zein Substances 0.000 title claims abstract description 29
- 229940093612 zein Drugs 0.000 title claims abstract description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 39
- 229910001868 water Inorganic materials 0.000 claims abstract description 36
- 238000001746 injection moulding Methods 0.000 claims abstract description 10
- 238000001125 extrusion Methods 0.000 claims abstract description 9
- 238000000071 blow moulding Methods 0.000 claims abstract description 3
- 238000000748 compression moulding Methods 0.000 claims abstract description 3
- 239000003814 drug Substances 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 26
- 239000000155 melt Substances 0.000 claims description 19
- 229910000077 silane Inorganic materials 0.000 claims description 13
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 12
- 239000008187 granular material Substances 0.000 claims description 10
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 9
- 239000004014 plasticizer Substances 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 239000004606 Fillers/Extenders Substances 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 6
- 229920000881 Modified starch Polymers 0.000 claims description 6
- 239000004368 Modified starch Substances 0.000 claims description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 239000000460 chlorine Substances 0.000 claims description 6
- 229910052801 chlorine Inorganic materials 0.000 claims description 6
- 235000019426 modified starch Nutrition 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 239000003086 colorant Substances 0.000 claims description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 5
- -1 ethyl propyl Chemical group 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 150000004756 silanes Chemical class 0.000 claims description 5
- 229920001169 thermoplastic Polymers 0.000 claims description 5
- 239000004416 thermosoftening plastic Substances 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 4
- 235000013311 vegetables Nutrition 0.000 claims description 4
- 240000007594 Oryza sativa Species 0.000 claims description 3
- 235000007164 Oryza sativa Nutrition 0.000 claims description 3
- 244000061456 Solanum tuberosum Species 0.000 claims description 3
- 235000002595 Solanum tuberosum Nutrition 0.000 claims description 3
- 240000008042 Zea mays Species 0.000 claims description 3
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 3
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 3
- 239000004480 active ingredient Substances 0.000 claims description 3
- 239000012876 carrier material Substances 0.000 claims description 3
- 235000005822 corn Nutrition 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 239000000314 lubricant Substances 0.000 claims description 3
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims description 3
- 235000012015 potatoes Nutrition 0.000 claims description 3
- 235000009566 rice Nutrition 0.000 claims description 3
- 229920000945 Amylopectin Polymers 0.000 claims description 2
- 229920000856 Amylose Polymers 0.000 claims description 2
- 235000007319 Avena orientalis Nutrition 0.000 claims description 2
- 244000075850 Avena orientalis Species 0.000 claims description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 2
- 240000003183 Manihot esculenta Species 0.000 claims description 2
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 claims description 2
- 241000209056 Secale Species 0.000 claims description 2
- 235000007238 Secale cereale Nutrition 0.000 claims description 2
- 235000021307 Triticum Nutrition 0.000 claims description 2
- 239000013543 active substance Substances 0.000 claims description 2
- 125000002252 acyl group Chemical group 0.000 claims description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052794 bromium Inorganic materials 0.000 claims description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 2
- 239000002775 capsule Substances 0.000 claims description 2
- 235000014633 carbohydrates Nutrition 0.000 claims description 2
- 150000001720 carbohydrates Chemical class 0.000 claims description 2
- 229910052736 halogen Inorganic materials 0.000 claims description 2
- 150000002367 halogens Chemical class 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- 150000002500 ions Chemical group 0.000 claims description 2
- TWNIBLMWSKIRAT-VFUOTHLCSA-N levoglucosan Chemical group O[C@@H]1[C@@H](O)[C@H](O)[C@H]2CO[C@@H]1O2 TWNIBLMWSKIRAT-VFUOTHLCSA-N 0.000 claims description 2
- 239000005022 packaging material Substances 0.000 claims description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 2
- 239000005871 repellent Substances 0.000 claims description 2
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 2
- 238000006467 substitution reaction Methods 0.000 claims description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 2
- 229920002554 vinyl polymer Polymers 0.000 claims description 2
- 239000000945 filler Substances 0.000 claims 2
- 238000007493 shaping process Methods 0.000 claims 2
- 241000209140 Triticum Species 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- 239000012766 organic filler Substances 0.000 claims 1
- 238000007666 vacuum forming Methods 0.000 claims 1
- 238000002844 melting Methods 0.000 abstract description 4
- 230000008018 melting Effects 0.000 abstract description 4
- 238000000465 moulding Methods 0.000 abstract 1
- 239000003925 fat Substances 0.000 description 6
- 235000019197 fats Nutrition 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 229920001592 potato starch Polymers 0.000 description 5
- 235000018102 proteins Nutrition 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 108010010803 Gelatin Proteins 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 239000000787 lecithin Substances 0.000 description 4
- 235000010445 lecithin Nutrition 0.000 description 4
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229940067606 lecithin Drugs 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- KMZHZAAOEWVPSE-UHFFFAOYSA-N 2,3-dihydroxypropyl acetate Chemical compound CC(=O)OCC(O)CO KMZHZAAOEWVPSE-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920002845 Poly(methacrylic acid) Chemical class 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- ZFOZVQLOBQUTQQ-UHFFFAOYSA-N Tributyl citrate Chemical compound CCCCOC(=O)CC(O)(C(=O)OCCCC)CC(=O)OCCCC ZFOZVQLOBQUTQQ-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- DCFKHNIGBAHNSS-UHFFFAOYSA-N chloro(triethyl)silane Chemical compound CC[Si](Cl)(CC)CC DCFKHNIGBAHNSS-UHFFFAOYSA-N 0.000 description 2
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000001023 inorganic pigment Substances 0.000 description 2
- 150000001282 organosilanes Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229920002744 polyvinyl acetate phthalate Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000012815 thermoplastic material Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- AFILDYMJSTXBAR-UHFFFAOYSA-N (4-chlorophenyl)-triethoxysilane Chemical compound CCO[Si](OCC)(OCC)C1=CC=C(Cl)C=C1 AFILDYMJSTXBAR-UHFFFAOYSA-N 0.000 description 1
- RPZANUYHRMRTTE-UHFFFAOYSA-N 2,3,4-trimethoxy-6-(methoxymethyl)-5-[3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxyoxane;1-[[3,4,5-tris(2-hydroxybutoxy)-6-[4,5,6-tris(2-hydroxybutoxy)-2-(2-hydroxybutoxymethyl)oxan-3-yl]oxyoxan-2-yl]methoxy]butan-2-ol Chemical compound COC1C(OC)C(OC)C(COC)OC1OC1C(OC)C(OC)C(OC)OC1COC.CCC(O)COC1C(OCC(O)CC)C(OCC(O)CC)C(COCC(O)CC)OC1OC1C(OCC(O)CC)C(OCC(O)CC)C(OCC(O)CC)OC1COCC(O)CC RPZANUYHRMRTTE-UHFFFAOYSA-N 0.000 description 1
- JDMMZVAKMAONFU-UHFFFAOYSA-N 2-trimethylsilylacetic acid Chemical compound C[Si](C)(C)CC(O)=O JDMMZVAKMAONFU-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- YQHDQYPKFWETPO-UHFFFAOYSA-N 4-[methoxy(dimethyl)silyl]butan-1-amine Chemical compound CO[Si](C)(C)CCCCN YQHDQYPKFWETPO-UHFFFAOYSA-N 0.000 description 1
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 108010082495 Dietary Plant Proteins Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- UXDDRFCJKNROTO-UHFFFAOYSA-N Glycerol 1,2-diacetate Chemical compound CC(=O)OCC(CO)OC(C)=O UXDDRFCJKNROTO-UHFFFAOYSA-N 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 108010073771 Soybean Proteins Proteins 0.000 description 1
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229920013820 alkyl cellulose Polymers 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000000987 azo dye Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 1
- SXPLZNMUBFBFIA-UHFFFAOYSA-N butyl(trimethoxy)silane Chemical compound CCCC[Si](OC)(OC)OC SXPLZNMUBFBFIA-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- KMVZWUQHMJAWSY-UHFFFAOYSA-N chloro-dimethyl-prop-2-enylsilane Chemical compound C[Si](C)(Cl)CC=C KMVZWUQHMJAWSY-UHFFFAOYSA-N 0.000 description 1
- HXVPUKPVLPTVCQ-UHFFFAOYSA-N chloro-dimethyl-propylsilane Chemical compound CCC[Si](C)(C)Cl HXVPUKPVLPTVCQ-UHFFFAOYSA-N 0.000 description 1
- OJZNZOXALZKPEA-UHFFFAOYSA-N chloro-methyl-diphenylsilane Chemical compound C=1C=CC=CC=1[Si](Cl)(C)C1=CC=CC=C1 OJZNZOXALZKPEA-UHFFFAOYSA-N 0.000 description 1
- ZDOBWJOCPDIBRZ-UHFFFAOYSA-N chloromethyl(triethoxy)silane Chemical compound CCO[Si](CCl)(OCC)OCC ZDOBWJOCPDIBRZ-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- UXELAVSYWBWGQM-UHFFFAOYSA-L disodium;2,2-diethyl-3-sulfobutanedioate Chemical compound [Na+].[Na+].CCC(CC)(C([O-])=O)C(C([O-])=O)S(O)(=O)=O UXELAVSYWBWGQM-UHFFFAOYSA-L 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 235000021312 gluten Nutrition 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 description 1
- VDRQNMNLNVOILV-UHFFFAOYSA-N hydroxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[SiH](O)C1=CC=CC=C1 VDRQNMNLNVOILV-UHFFFAOYSA-N 0.000 description 1
- IOANYFLVSWZRND-UHFFFAOYSA-N hydroxy(tripropyl)silane Chemical compound CCC[Si](O)(CCC)CCC IOANYFLVSWZRND-UHFFFAOYSA-N 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002800 poly crotonic acid Polymers 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000019710 soybean protein Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- BCNZYOJHNLTNEZ-UHFFFAOYSA-N tert-butyldimethylsilyl chloride Chemical compound CC(C)(C)[Si](C)(C)Cl BCNZYOJHNLTNEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- 239000001069 triethyl citrate Substances 0.000 description 1
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 1
- 235000013769 triethyl citrate Nutrition 0.000 description 1
- WVMSIBFANXCZKT-UHFFFAOYSA-N triethyl(hydroxy)silane Chemical compound CC[Si](O)(CC)CC WVMSIBFANXCZKT-UHFFFAOYSA-N 0.000 description 1
- LFRDHGNFBLIJIY-UHFFFAOYSA-N trimethoxy(prop-2-enyl)silane Chemical compound CO[Si](OC)(OC)CC=C LFRDHGNFBLIJIY-UHFFFAOYSA-N 0.000 description 1
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 1
- 239000005051 trimethylchlorosilane Substances 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 229920003170 water-soluble synthetic polymer Polymers 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/42—Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4816—Wall or shell material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L3/00—Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Medicinal Preparation (AREA)
Abstract
A polymeric material characterized in that said polymeric material is obtained by melting together a water-containing destructurized starch and zein. The product may be shaped by injection moulding, blow moulding, extrusion, coextrusion, compression moulding or vacuum moulding to give sheets, films, and other shaped articles and is suitable for encapsulating pharmaceuticals or agriculturals.
Description
Polymeric material made from destructurized
starch and zein
The present invention refers to polymeric materials made from destructurized starch and zein.
It is known that natural starch which is found in vegetable products and which contains a defined amount of water, can be treated at an elevated temperature and in a closed vessel, thereby at elevated pressure, to form a melt. The process is conveniently carried out in an injection molding machine or extruder. The starch is fed through the hopper onto a rotating, reciprocating screw. The feed material moves along the screw towards the tip. During this process, its temperature is increased by means of external heaters around the outside of the barrel and by the shearing action of the screw. Starting in the feed zone and continuing in the compression zone, the particulate feed becomes gradually molten. It is then conveyed through the metering zone, where homogenization of the melt occurs, to the end of the screw.The molten material at the tip can then be further treated by injection molding or extrusion or any other known technique to treat thermoplastic melts, to obtain shaped articles.
This treatment, which is described in the European
Patent Application No. 84 300 940.8 (Publication
No. 118 240) yields an essentially destructurized starch The reason for this being that the starch is heated above the melting and glass transition temperatures of its components so that they undergo endothermic transitions. As a consequence a melting and disordering of the molecular structure of the starch granules takes place, so that an essentially destructurized starch is obtained. The expression "destructurized starch" defined starch obtained by such thermoplastic melt formation.
Thermoplastic materials must be processed in the absence of water or volatile materials. Starch does not melt in the absence of water but decomposes at elevated temperature, i.e. around 24000. It was therefore assumed that starch could not be used as a thermoplastic component together with hydrophobic water-insoluble polymeric materials such as water insoluble polymeric aminoacids, not only due to the mentioned factors but generally due to its chemical structure and its hydrophilic nature.
It has now been found that starch, containing a defined amount of water, when heated in a closed vessel as described above to form a melt of destructurized starch, can be processed together with zein, which is a natural water-insoluble polymeric protein, decomposing at higher temperature to yield a new material with very interesting properties.
The present invention refers to a polymeric material characterized in that said polymeric material is obtained by forming a melt of a water-containing destructurized starch and zein.
The present invention refers to said polymeric material in the molten or in the solid form.
The present invention further refers to shaped articles made from said polymeric material.
The present invention further refers to a method of producing a modified destructurized starch in form of a melt by heating a starch having a water content of 5 to 30% by weight based on the starch/water composition in a closed volume to elevated temperatures thereby at elevated pressures for a time long enough to form a melt, characterized in that said process is carried out in the presence of zein admixed to said water containing starch.
The term "starch" as used herein includes chemically essentially non-modified starch as for example generally carbohydrates of natural, vegetable origin, composed mainly of amylose and/or amylopectin. They may be extracted from various plants, examples being potatoes, rice, tapioca, corn and cereals such as rye, oats, wheat. Preferred is starch made from potatoes or rice. It further includes physically modified starch such as gelatinized or cooked starch, starch with a modified acid value (pH), e.g. where acid has been added to lower its acid value to a range of about 3 to 6. Further is included starch, e.g. potato starch, in which the diva lent ions like Ca+2 or Mg+2 -ions bridging the phosphate groups have been eliminated from this bridging function, i.e. the phosphate bridges have essentially been broken down. It further includes pre-extruded starches.
It has recently been found, that starch with a water content within the range of about 5 to about 40% by weight based on the weight of the composition undergoes a "specific narrow endothermic transition" on heating to elevated temperatures and in a closed volume just prior to its endotherm change characteristic of oxidative and thermal degradation.
This specific endothermic transition can be determined by differential scanning calorimetric analysis (DSC) and is indicated on the DSC-diagram by a specific relatively narrow peak just prior to the endotherm change characteristic of oxidative and thermal degradation. This peak disappears as soon as the mentioned specific endothermic transition has been undergone. The term "starch" includes also treated starches wherein said specific endothermic transition has been undergone.
Zein is a vegetable polymeric protein of corn gluten soluble in alcohol but not in water. To use such a material in an injection molding process together with water-containing starch has never been described and it is surprising that a uniform product with new and interesting properties is obtained.
The ratio of destructurized starch to zein is preferably 50:50 to 99.5:0.5. It is however preferred that the destructurized starch contributes noticeably to the properties of the final material. Therefore, it is preferred that the destructurized starch is present in an amount of at least 70% and more preferably in the range of 80% to 99,5% by weight of the entire composition. A preferred ratio of starch to zein is 95:5 to 99:1.
A mixture of 5 to 10% by weight of the zein and 95 to 90% of the destructurized starch shows interesting variations of the properties of the obtained material.
The starch can be mixed with the zein and then heated for destructurization to form a melt. The starch can also be destructurized and granulated before it is mixed with the zein. In the latter case both components should have preferably a comparable granular size.
The essentially destructurized zein containing starch/water composition resp. granules have a preferred water content in the range of about 10 to 20% by weight of the composition, preferably 12 to 19% and especially 14 to 18% by weight, calculated to the weight of the composition.
In order to destructurize the starch, it is suitably heated in a screw barrel of an extruder for a time long enough to effect destructurization. The temperature is preferably within the range of 1200C to 1900C, preferably within the range of 1300C to 1900C depending on the type of starch used. For this destructurization, the starch material is heated preferably in a closed volume. A closed volume can be a closed vessel or the volume created by the sealing action of the unmolten feed material as happens in the screw of injection molding or extrusion equipment. In this sense the screw barrel of an injection molding machine or an extruder is to be understood as being a closed vessel.Pressures created in a closed vessel correspond to the vapour pressure of water at the used temperature but of course pressure may be applied and/or generated as normally occurs in a screw barrel.
The preferred applied and/or generated pressures are in the range of the pressures which occur in extrusion 2 and are known per se, i.e. from zero to 150 x 105 N/m2
5 2 preferably from zero to 75 x 10 N/m and most particularly from zero to 50 x 105 N/m2. The obtained destructurized starch is granulated and ready to be mixed with the zein to obtain the granular mixture of the destructurized starch/zein starting material to be fed to the screw barrel.
If the starch/zein mixture is prepared before destructurization, process conditions are the same with the exception that the temperature preferably does not exceed 1800C. Preferably the mixture is first extended and granulated, but it is possible to directly form it into the desired shaped article.
Within the screw barrel the granular mixture is heated to a temperature which is generally within the range of about 100 to 1800C, preferably within the range of about 120 to 1800C and especially at about 140 to 1750C.
The minimum pressure for forming the melt corresponds to the water vapour pressure produced at these temperatures. The process is carried out in a closed volume as explained above, i.e. in the range of the pressures which occur in extrusion processes and are known per se, e.g. from zero to 150 x 105 N/m2 preferably from zero to 75 x 105 N/m2 and most particularly from zero to 50 x 105 N/m2.
When forming a shaped article by extrusion the pressures are preferably as mentioned above. If the melt according to this invention is e.g. injection molded, the normal range of injection pressures used in injection molding is applied, namely from 300 x 105 N/m2 to 3.000 x 105 N/m2 preferably 700 x 105 - 2200 x 105 N/m2.
The starch material of the present invention may contain or may be mixed with additives such as extenders, lubricants, plasticizers and/or coloring agents.
These additives may be added before the destructurizing step or after this step, i.e. mixed with the solid granules of the destructurized starch.
Such additives are extenders of different kinds, e.g.
gelatin, vegetable proteins such as sunflower protein, soybean proteins, cotton seed proteins, peanut proteins, rape seed proteins, blood proteins, egg proteins, acrylated proteins; water-soluble polysaccharides such as: alkylcelluloses hydroxyalkylcelluloses and hydroxyalkylalkylcelluloses, such as: methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxyethylmethylcellulose, hydroxpropylmethylce llulose, hydroxybutylmethylcellulose, celluloseesters and hydroxyalkylcelluloseesters such as: celluloseacetylphtalate (CAP), Hydroxypropylmethylcellulose (HPMCP); carboxyalkylcelluloses, carboxyalkylalkylcelluloses, carboxyalkylcelluloseesters such as: carboxymethylcellulose and their alkalimetal salts; water-soluble synthetic polymers such as: polyacrylic acids and polyacrylic acid esters, polymethacrylic acids and polymethacrylic acid esters, polyvinylacetates, polyvinylalcohols, polyvinylacetatephthalates (PVAP), polyvinylpyrrolidone, polycrotonic acids; suitable are also phthalated gelatin, gelatin succinate, crosslinked gelatin, shellac, water soluble chemical derivatives of starch, cationically modified acrylates and methacrylates possessing, for example, a tertiary or quaternary amino group, such as the diethylaminoethyl group, which may be quaternized if desired; and other similar polymers.
Such extenders may optionally be added in any desired amount preferably up to and including 50 %, preferably within the range of 3 % to 10 % based on the weight of all components.
Further additives are inorganic fillers, such as the oxides of magnesium, aluminum, silicon, titanium, etc.
preferably in a concentration in the range of about 0.02 to 3 % by weight preferably 0.02 to 1 % based on the weight of all components.
Further examples of additives are plasticizers which include polyalkylene oxides, such as polyethylene glycols, polypropylene glycols, polyethylene-propylene glycols; organic plasticizers with low molecular weights, such as glycerol, glycerol monoacetate, diacetate or triacetate; propylene glycol, sorbitol, sodium diethylsulfosuccinate, triethyl citrate, tributyl citrate, etc., added in concentrations ranging from 0.5 to 15 %, preferably ranging from 0.5 to 5 % based on the weight of all the components.
Examples of coloring agents include known azo dyes, organic or inorganic pigments, or coloring agents of natural origin. Inorganic pigments are preferred, such as the oxides of iron or titanium, these oxides, known per se, being added in concentrations ranging from 0.001 to 10 %, preferably 0.5 to 3 %, based on the weight of all the components.
The sum of the plasticizer and water contents should preferably not exceed 25 %, and should most preferably not exceed 20 %, based on the weight of all the components.
There may further be added compounds to improve the flow properties of the starch material such as animal or vegetable fats, preferably in their hydrogenated form, especially those which are solid at room temperature. These fats have preferably a melting point of 500C or higher. Preferred are Triglycerides with C12 t C14 ~r C16 -, and C18 - fatty acids.
These fats can be added alone without adding extenders or plasticizers.
These fats can advantageously be added alone or together with mono- and/or diglycerides or phosphatides, especially lecithin. The mono- and diglycerides are preferably derived from the types of fats described above, i.e. with C12 -, C14 -, C16 -, and C18 - fatty acids.
The total amounts used of the fats mono-, diglycerides and/or lecithins are up to 5 % and preferably within the range of about 0.5 to 2 % by weight of the destructurized starch components.
It is further recommended to add silicon dioxide or titanium dioxide in a concentration of about 0.02 to 1 % by weight of the destructurized starch components.
It is of further advantage to add an organosilane to the destructurized starch, i.e. before or after destructurization, to modify its surface in such a way that its compatibility with the zein is improved. It further reduces the hydrophilic nature of the starch.
Preferred are organosilanes capable of reacting with a hydroxylgroup.
The amount of reactive silane added depends on the number of reactive sites on the silane as well as on the degree of modification to be incorporated to the starch material. In general a concentration of one molecule of silane to 1000 anhydro glucose units (AGU) will already show a visible effect, although higher concentrations between 2 to 50 and preferably 5 to 20 molecules of silane to 1000 AGU are preferred. It depends on the nature of silane used and is easily optimized by the expert skilled in the art.
Preferred silanes are those of the formula
(R1)x Si(OR) (Hal) (I) wherein
R1 is independently alkyl (C1 - C8), substituted alkyl (C1 - C4), vinyl or phenyl, wherein the alkyl substitution is selected from chlorine, -NH2, substitued amino, an unsaturated bond, or a rest carrying an epoxigroup; R is hydrogen or alkyl (C1 C4) or acyl (C1 - C4), preferably methyl or ethyl, Hal is halogen, preferably chlorine, bromine, preferably chlorine; x is 1, 2 or 3 preferably 1 or 2; y is zero, 1, 2 or 3; z is zero, 1, 2 or 3, the sum of y + z is 1, 2 or 3, preferably 2 or 3; and the sum of x + y + z is 4.
Preferred silanes are those wherein x is 1 or 2, preferably 1; R is methyl or ethyl, preferably methyl and R1 is methyl, ethyl, propyl, butyl and z is zero if mainly water-repellency shall be incorporated to the starch molecule.
If other properties should be incorporated, the R1 is preferably substituted, i.e. for additional crosslinking R1 is substituted e.g. with an epoxy group.
Examples for such silanes are methyltriethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, chloromethyltriethoxysilane, 3-aminopropyl-trimethoxysilane, 4-aminobutyldimethylmethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, p-chlorophenyltriethoxysilane, as well as the corresponding triethoxycompounds or the corresponding dialkoxy or monoalkoxycompounds containing one resp.
two more methylgroups. Further compounds of formula (I) are 3-glycidoxypopyltrimethoxysilane, trimethylsilylacetic acid, triethylsilanol, tri-n-propylsilanol, diphenylhydroxysilane, trimethylchlorosilane, diphenylmethylchlorosilane, tert-butyldimethylchlorosilane, triethylchlorosilane, propyldimethylchlorosilane, allyldimethylchlorosilane, wherein the alkoxysilanes with a saturated alkylrest are the preferred ones.
The silane is simply added uniformly to the starch material before transforming it into a melt by any known method, optionally using a solvent which can be evaporated. In this case special care has to be taken to keep the water content of the starch material within the prescribed range.
Optionally the pH is adjusted to lower or higher values than 7 or a catalyst like organometallic esters such as butyl-titanate which promotes the reaction between hydroxyl group and the Si-OR bond is added.
The materials described herein above form on heating and in a closed vessel a melt with thermoplastic properties, i.e. under controlled water-content and pressure condition. Such a melt can be used in various techniques just like thermoplastic materials. These techniques include injection molding, blow molding, extrusion and coextrusion (rod, pipe and film extrusion), compression molding, to produce known articles as produced with these techniques. These articles include bottles, sheets, films, packaging materials, pipes, rods, laminates, sacks, bags, pharmaceutical capsules, granules or powders.
Such modified starch may be used as a carrier material for active substances, and may be mixed with active ingredients such as pharmaceuticals and/or agriculturally active compounds such as insecticides or pesticides. The resulting extruded material can be granulated or worked to a fine powder.
It is further possible to treat a shaped article made from a destructurized starch and zein with the silanes of formula (I) to render its surface water-repellent.
The shaped article is dipped or wetted in any suitable manner with the silane dried and heated to react the surface with the added silane, optionally in the presence of a catalyst as mentioned above.
The following examples further explain the invention.
Example 1 (a) Preparation of destructurized starch granules.
Natural potato starch, a lubricant/release agent (hydrogenated fat) and a melt flow accelerator (lecithin), are mixed together in the relative proportions in a powder mixer for 10 minutes so that a composition consisting of 81,3 parts of natural potato starch, one part of the hydrogenated triglyceride containing the fatty acid C18: C16: C14 in a ratio of 65:31:4 weight percent, 0.7 parts lecithin, and 17 parts water in the form of a freely flowing powder is obtained. This material was then fed to the hopper of an extruder. In the screw barrel the powder was melted. The temperature within the barrel was measured to be 175"C, the average total residence time was 12 minutes (approx. 10 minutes heating time, approx.
2 minutes in molten state) and the pressure generated was equal to the vapour pressure of the moisture present in the volume of the extruder barrel. The melt was then extruded, and cut into granules of an average diameter of 2 to 3 mm. The material was hard, white with a fine foamed structure. The water content was 12%, as water was allowed to escape when the melt left the extruder nozzle. The obtained granulated material was then conditioned to a water content of 17%.
(b) Preparation of destructurized starch granules of
de-bridged potato starch.
600 g of native potato starch were suspended in 700 ml of 0.2N HCl and stirred for 10 minutes. The suspension was filtered and the starch washed on the filter three times with 200 ml portions of 0.2N HCl. The starch was again suspended in 500 ml 0.2N HCl, stirred again for 10 minutes, filtered, washed three times with 200 ml portions of 0.2N HCl.
After this treatment with HCl the excess of acid was removed by washing with demineralized (deionized) water in the following way: the starch was washed twice with 200 ml portions of deionized water and then suspended in 500 ml of deionized water. This washing procedure with deionized water (to remove excess acid) was repeated twice to get the starch free of HCl. This was controlled by adding silver nitrate to the washing water. When there was no more silver chloride precipitating in the washing water, the washing was completed. The washed starch was pressed on the filter and dried in a conditioning raom (250C, 40% RH) until it equilibrated at about 17.0% H2O.
Analysis have been carried out before and after the acid washing of starch and results obtained showed that the Ca+2-ions bridging the phosphate groups were essentially removed.
(c) Injection molding of a mixture of destructurized
starch and zein.
The granules as obtained under (a) and (b) above are mixed with zein in the weight ratios (i) 99.5:0.5; (ii) 99:5; (iii) 90:10 and (v) 80:20; (iv) 85:15, and injection molded to produce test pieces suitable for testing their physical properties (stress/strain behaviour) on an INSTRON tensile testing apparatus, as well as their desintegration time in water. Good results were obtained.
The term "rest" is used in this specification to represent a chemical group or radical.
Claims (25)
1. A polymeric material characterized in that said
polymeric material is obtained by forming a melt
of a water-containing destructurized starch and
zein.
2. A method of producing a modified destructurized
starch as claimed in claim 1 by heating a starch
having a water content of 5 to 30% by weight
based on the starch/water composition in a closed
volume to elevated temperatures thereby at
elevated pressures for a time long enough to form
a melt, characterized in that said process is
carried out in the presence of zein admixed to
said water containing starch.
3. A process according to claim 2, wherein the
starch is present in an amount of at least 70%
and preferably in the range of 80-99,5% by weight
of the enteric composition.
4. A method according to the claims 2 or 3, wherein
said starch is selected from chemically
essentially non-modified starch being
carbohydrates of natural, vegetable origin
composed mainly of amylose and/or amylopectin,
preferably potatoes, rice, tapioca, corn, rye,
oats, wheat; physically modified starch; starch
with a modified acid value (pH); starch, in which
the divalent ions bridging the phosphate groups
have been eliminated from this bridging function;
and/or pre-extruded starches.
5. A method according to the claims 2 to 4, wherein
said starch is heated for destructurization in a
closed volume for a time long enough to effect
destructurization to a temperature within the
range of about 1200C to 1900C, preferably within
the range of 1300C to 1900C.
6. A method according to anyone of the claims 2 to
5, wherein pressure is applied in the range of
from zero to 150 x 105 N/m2, preferably from zero
to 75 x 105 N/m2 and particularly from zero to
50 x 105 N/m2.
7. A method according to anyone of the claims 2 to
6, wherein the starch/zein composition has a
water content in the range of about 10 to 20% by
weight of the composition, preferably 12% to 19%
and especially 14% to 18% by weight, calculated
to the weight of the composition.
8. A method according to anyone of the claims 2 to
7, wherein the starch/zein composition according
to this invention is heated to a temperature
within the range of about 80 to 2000C, preferably
within the range of about 1200C to 1900C and
especially at about 1400C to 1750C.
9. A method according to anyone of the claims 2 to
8, wherein the starch/zein composition contains
extenders, fillers, lubricants, plasticizers
and/or coloring agents.
10. A method according to claim 9, characterized in
that there is added at least one extender or a
mixture or extenders within the range of up to
50%, preferably within the range of 3% to 10%,
based on the weight of all components.
11. A method according to claims 9 or 10,
characterized in that there is added at least one
organic filler or a mixture of such fillers in a
concentration of about 0.02 to 3%, preferably
0.02 to 1%, by weight of all components.
12. A method according to anyone of the claims 9 to
11, wherein there is added a plasticizer within
the range of about 0.5 to 15%, preferably 0.5 to
5% by weight of all components.
13. A method according to anyone of the claims 9 to
12, wherein a coloring agent is added in a
concentration of about 0.001 to 10%, preferably
0.5 to 3% by weight of all components.
14. A method according to anyone of the claims 9 to
13, wherein a plasticizer is added and the sum of
the plasticizer and water contents does not
exceed 25%, and preferably does not exceed 20% by
weight of all components.
15. A method according to anyone of the claims 2 to
14, wherein a reactive silane is added in an
amount within a concentration of one molecule of
silane to 1000 anhydro glucose units (AGU),
preferably between 2 to 50 and preferably 5 to 20
molecules of silane to 1000 AGU.
16. A method according to claim 15, wherein the
silane added corresponds to the formula (R1)x Si (OR) (Hal) z (I)
wherein
R1 is independently alkyl (C1 - C8), substituted
alkyl (C1 - C4), vinyl of phenyl, wherein the
alkyl substitution is selected from chlorine,
-NH2, substituted amino, an unsaturated bond or a
rest carrying an epoxigroup; R is hydrogen or
alkyl (C1 - C4) or acyl (C1 - C4), preferably
methyl or ethyl, Hal is halogen, preferably
chlorine, bromine, preferably chlorine;
x is 1, 2 or 3 preferably 1 or 2;
y is zero, 1, 2, or 3;
z is zero, 1, 2, or 3
the sum of y + z is 1, 2, or 3, preferably
2 or 3; and
the sum of x + y + z is 4.
17. A method according to claim 16, wherein silanes
of the formula (I) are used wherein x is 1 or 2,
preferably 1; R is methyl or ethyl, preferably
methyl and R1 is methyl, ethyl propyl, butyl; and
z is zero.
18. A method according to anyone of the claims 2 to
17, wherein there is added to the starch at least
one active ingredient selected from
pharamceuticals and/or agriculturally active
compounds.
19. The melt obtained according to anyone of the
claims 2 to 18.
20. The solidified destructurized starch obtained by
cooling the material obtained according to
claim 19.
21. The use of modified starch zein compositions,
obtained as claimed in anyone of the claims 2 to
20 as carrier material for active ingredients,
preferably as carrier materials for
pharmaceuticals, and/or agriculturally active
substances.
22. The process of shaping a destructurized starch
zein composition as obtained according to anyone
of the claims 2 to 21, under controlled water
content and pressure conditions as a
thermoplastic melt wherein said shaping process
is at least one member selected from the class
consisting of injection molding, blow molding,
extrusion and coextrusion, compression molding or
vacuum forming.
23. Shaped articles produced from a composition
obtained by the method as claimed in anyone of
the claims 2 to 22.
24. The articles of claim 23, wherein said articles
have been shaped as bottles, sheets, films,
packaging materials, pipes, rods, laminates,
sacks, bags or pharmaceutical capsules, granules
or powders.
25. A water-repellent article made from a
destructurized starch/zein composition obtained
by treating its surface with a silane compound
according to the claims 15 to 17.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB8802319A GB2214920A (en) | 1988-02-03 | 1988-02-03 | Polymeric material made from destructurized starch and zein |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB8802319A GB2214920A (en) | 1988-02-03 | 1988-02-03 | Polymeric material made from destructurized starch and zein |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| GB8802319D0 GB8802319D0 (en) | 1988-03-02 |
| GB2214920A true GB2214920A (en) | 1989-09-13 |
Family
ID=10630944
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| GB8802319A Withdrawn GB2214920A (en) | 1988-02-03 | 1988-02-03 | Polymeric material made from destructurized starch and zein |
Country Status (1)
| Country | Link |
|---|---|
| GB (1) | GB2214920A (en) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5035930A (en) * | 1988-12-30 | 1991-07-30 | National Starch And Chemical Investment Holding Corporation | Biodegradable shaped products and the method of preparation thereof |
| US5043196A (en) * | 1989-05-17 | 1991-08-27 | National Starch And Chemical Investment Holding Corporation | Biodegradable shaped products and the method of preparation thereof |
| DE9107213U1 (en) * | 1991-06-12 | 1991-10-24 | Vos, geb. Schneeberger, Petra, Wolfgantzen | Sacrificial candle for setting up in churches, chapels, cult memorials, etc. |
| US5095054A (en) * | 1988-02-03 | 1992-03-10 | Warner-Lambert Company | Polymer compositions containing destructurized starch |
| WO1993019125A1 (en) * | 1992-03-20 | 1993-09-30 | Iowa State University Research Foundation, Inc. | Water-resistant starch-protein thermoplastics |
| US5288765A (en) * | 1989-08-03 | 1994-02-22 | Spherilene S.R.L. | Expanded articles of biodegradable plastics materials and a method for their production |
| US5294249A (en) * | 1987-03-27 | 1994-03-15 | Luisi Pier L | Blendpolymers |
| FR2697260A1 (en) * | 1992-10-28 | 1994-04-29 | Roquette Freres | Heat mouldable biodegrable compsn. contg. prod. rich in amylose - and natural resin, tannin, latex, or plant, animal or microbial polymer |
| FR2697259A1 (en) * | 1992-10-28 | 1994-04-29 | Roquette Freres | Heat mouldable biodegradable compsn. contg. prod. rich in amylose |
| DE4237535A1 (en) * | 1992-11-06 | 1994-05-11 | Tomka Ivan | Biodegradable polymer blend |
| US5320669A (en) * | 1992-12-14 | 1994-06-14 | Iowa State University Research Foundation, Inc. | Cereal grain-based biodegradable thermoplastic compositions |
| US5523293A (en) * | 1994-05-25 | 1996-06-04 | Iowa State University Research Foundation, Inc. | Soy protein-based thermoplastic composition for preparing molded articles |
| US6340473B1 (en) | 1999-07-07 | 2002-01-22 | R.P. Scherer Technologies, Inc. | Film forming compositions comprising modified starches and iota-carrageenan and methods for manufacturing soft capsules using same |
| US6635206B1 (en) | 2000-05-03 | 2003-10-21 | The Board Of Trustees Of The University Of Illinois | Method of manufacturing improved corn zein resin films, sheets, and articles |
| CN106633207A (en) * | 2016-12-23 | 2017-05-10 | 青岛农业大学 | Corn starch film containing rutin composite nanoparticles and preparation method of corn starch film |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4076846A (en) * | 1974-11-22 | 1978-02-28 | Sumitomo Bakelite Company Limited | Protein-starch binary molding composition and shaped articles obtained therefor |
| EP0118240A2 (en) * | 1983-02-18 | 1984-09-12 | Warner-Lambert Company | Process for injection moulding starch |
-
1988
- 1988-02-03 GB GB8802319A patent/GB2214920A/en not_active Withdrawn
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4076846A (en) * | 1974-11-22 | 1978-02-28 | Sumitomo Bakelite Company Limited | Protein-starch binary molding composition and shaped articles obtained therefor |
| EP0118240A2 (en) * | 1983-02-18 | 1984-09-12 | Warner-Lambert Company | Process for injection moulding starch |
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5294249A (en) * | 1987-03-27 | 1994-03-15 | Luisi Pier L | Blendpolymers |
| US5095054A (en) * | 1988-02-03 | 1992-03-10 | Warner-Lambert Company | Polymer compositions containing destructurized starch |
| US5035930A (en) * | 1988-12-30 | 1991-07-30 | National Starch And Chemical Investment Holding Corporation | Biodegradable shaped products and the method of preparation thereof |
| US5043196A (en) * | 1989-05-17 | 1991-08-27 | National Starch And Chemical Investment Holding Corporation | Biodegradable shaped products and the method of preparation thereof |
| US5360830A (en) * | 1989-08-03 | 1994-11-01 | Novamont S.P.A. | Expanded articles of biodegradable plastic materials |
| US5288765A (en) * | 1989-08-03 | 1994-02-22 | Spherilene S.R.L. | Expanded articles of biodegradable plastics materials and a method for their production |
| DE9107213U1 (en) * | 1991-06-12 | 1991-10-24 | Vos, geb. Schneeberger, Petra, Wolfgantzen | Sacrificial candle for setting up in churches, chapels, cult memorials, etc. |
| WO1993019125A1 (en) * | 1992-03-20 | 1993-09-30 | Iowa State University Research Foundation, Inc. | Water-resistant starch-protein thermoplastics |
| FR2697260A1 (en) * | 1992-10-28 | 1994-04-29 | Roquette Freres | Heat mouldable biodegrable compsn. contg. prod. rich in amylose - and natural resin, tannin, latex, or plant, animal or microbial polymer |
| FR2697259A1 (en) * | 1992-10-28 | 1994-04-29 | Roquette Freres | Heat mouldable biodegradable compsn. contg. prod. rich in amylose |
| DE4237535A1 (en) * | 1992-11-06 | 1994-05-11 | Tomka Ivan | Biodegradable polymer blend |
| DE4237535C2 (en) * | 1992-11-06 | 2000-05-25 | Biotec Biolog Naturverpack | Biodegradable polymer blend, process and film |
| US5320669A (en) * | 1992-12-14 | 1994-06-14 | Iowa State University Research Foundation, Inc. | Cereal grain-based biodegradable thermoplastic compositions |
| WO1994013737A1 (en) * | 1992-12-14 | 1994-06-23 | Iowa State University Research Foundation, Inc. | Cereal grain-based biodegradable thermoplastic compositions |
| US5523293A (en) * | 1994-05-25 | 1996-06-04 | Iowa State University Research Foundation, Inc. | Soy protein-based thermoplastic composition for preparing molded articles |
| US6340473B1 (en) | 1999-07-07 | 2002-01-22 | R.P. Scherer Technologies, Inc. | Film forming compositions comprising modified starches and iota-carrageenan and methods for manufacturing soft capsules using same |
| US6582727B2 (en) | 1999-07-07 | 2003-06-24 | R. P. Scherer Technologies, Inc. | Film forming compositions comprising modified starches and iota-carrageenan and methods for manufacturing soft capsules using same |
| USRE39079E1 (en) * | 1999-07-07 | 2006-04-25 | R.P. Scherer Technologies, Inc. | Film forming compositions comprising modified starches and iota-carrageenan and methods for manufacturing soft capsules using same |
| US6635206B1 (en) | 2000-05-03 | 2003-10-21 | The Board Of Trustees Of The University Of Illinois | Method of manufacturing improved corn zein resin films, sheets, and articles |
| US6849113B2 (en) | 2000-05-03 | 2005-02-01 | The Board Of Trustees Of The University Of Illinois | Method of manufacturing improved corn zein resin films, sheets, and articles |
| CN106633207A (en) * | 2016-12-23 | 2017-05-10 | 青岛农业大学 | Corn starch film containing rutin composite nanoparticles and preparation method of corn starch film |
| CN106633207B (en) * | 2016-12-23 | 2018-11-27 | 青岛农业大学 | A kind of cornstarch film and preparation method thereof containing rutin composite nanoparticle |
Also Published As
| Publication number | Publication date |
|---|---|
| GB8802319D0 (en) | 1988-03-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| GB2214918A (en) | Polymeric materials made from destructurized starch and at least one synthetic thermoplastic polymeric material | |
| CA1328711C (en) | Shaped articles made from pre-processed starch | |
| GB2206888A (en) | Destructurized starch essentially containing no bridged phosphate groups | |
| EP0282451B1 (en) | Process for making destructurized starch | |
| EP0326517B1 (en) | Method of producing destructurized starch | |
| EP0404727B1 (en) | Polymer base blend compositions containing destructurized starch | |
| GB2214920A (en) | Polymeric material made from destructurized starch and zein | |
| EP0404723B1 (en) | Polymer base blend compositions containing destructurized starch | |
| IE83254B1 (en) | Polymeric materials made from destructurized starch and at least one synthetic thermoplastic polymeric material | |
| GB2218994A (en) | New polymer compostion | |
| AU648109B2 (en) | Shaped articles as obtained from a thermoplastic starch melt | |
| EP0408502A2 (en) | Polymer base blend compositions containing destructurized starch | |
| GB2231880A (en) | Starch | |
| EP0407350A2 (en) | Polymer base blend compositions containing destructurized starch | |
| GB2214919A (en) | Method for producing destructurized modified starch |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WAP | Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1) |