[go: up one dir, main page]

HK1175820A - Methods to predict clinical outcome of cancer - Google Patents

Methods to predict clinical outcome of cancer Download PDF

Info

Publication number
HK1175820A
HK1175820A HK13103055.1A HK13103055A HK1175820A HK 1175820 A HK1175820 A HK 1175820A HK 13103055 A HK13103055 A HK 13103055A HK 1175820 A HK1175820 A HK 1175820A
Authority
HK
Hong Kong
Prior art keywords
dna
artificial sequence
synthetic primer
expression
gene
Prior art date
Application number
HK13103055.1A
Other languages
German (de)
French (fr)
Chinese (zh)
Other versions
HK1175820B (en
Inventor
Joffre B. Baker
Maureen T. Cronin
Francois Collin
Mei-lan LIU
Original Assignee
Genomic Health, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genomic Health, Inc. filed Critical Genomic Health, Inc.
Publication of HK1175820A publication Critical patent/HK1175820A/en
Publication of HK1175820B publication Critical patent/HK1175820B/en

Links

Description

INTRODUCTION
Oncologists have a number of treatment options available to them, including different combinations of therapeutic regimens that are characterized as "standard of care." The absolute benefit from adjuvant treatment is larger for patients with poor prognostic features, and this has resulted in the policy to select only these so-called 'high-risk' patients for adjuvant chemotherapy. See, e.g., S. Paik, et al., J Clin Oncol. 24(23):3726-34 (2006). Therefore, the best likelihood of good treatment outcome requires that patients be assigned to optimal available cancer treatment, and that this assignment be made as quickly as possible following diagnosis.
Today our healthcare system is riddled with inefficiency and wasteful spending - one example of this is that the efficacy rate of many oncology therapeutics working only about 25% of the time. Many of those cancer patients are experiencing toxic side effects for costly therapies that may not be working. This imbalance between high treatment costs and low therapeutic efficacy is often a result of treating a specific diagnosis one way across a diverse patient population. But with the advent of gene profiling tools, genomic testing, and advanced diagnostics, this is beginning to change.
In particular, once a patient is diagnosed with breast cancer there is a strong need for methods that allow the physician to predict the expected course of disease, including the likelihood of cancer recurrence, long-term survival of the patient, and the like, and select the most appropriate treatment option accordingly. Accepted prognostic and predictive factors in breast cancer include age, tumor size, axillary lymph node status, histological tumor type, pathological grade and hormone receptor status. Molecular diagnostics, however, have been demonstrated to identify more patients with a low risk of breast cancer than was possible with standard prognostic indicators. S. Paik, The Oncologist 12(6):631-635 (2007). Despite recent advances, the challenge of breast cancer treatment remains to target specific treatment regimens to pathogenically distinct tumor types, and ultimately personalize tumor treatment in order to maximize outcome. Accurate prediction of prognosis and clinical outcome would allow the oncologist to tailor the administration of adjuvant chemotherapy such that women with a higher risk of a recurrence or poor prognosis would receive more aggressive treatment. Furthermore, accurately stratifying patients based on risk would greatly advance the understanding of expected absolute benefit from treatment, thereby increasing success rates for clinical trials for new breast cancer therapies.
Currently, most diagnostic tests used in clinical practice are frequently not quantitative, relying on immunohistochemistry (IHC). This method often yields different results in different laboratories, in part because the reagents are not standardized, and in part because the interpretations are subjective and cannot be easily quantified. Other RNA-based molecular diagnostics require fresh-frozen tissues, which presents a myriad of challenges including incompatibilities with current clinical practices and sample transport regulations. Fixed paraffin-embedded tissue is more readily available and methods have been established to detect RNA in fixed tissue. However, these methods typically do not allow for the study of large numbers of genes (DNA or RNA) from small amounts of material. Thus, traditionally fixed tissue has been rarely used other than for IHC detection of proteins. Karczewska et al., Cancer, v 88, no 9, p 2061-2071, 2000, investigates expression of IL6, IL6R and IL6ST in breast cancer.
SUMMARY
The present invention is defined in the claims.
The present invention provides a gene, IL6ST, the expression level of which is associated with a good prognosis in breast cancer. The good prognosis assumes the patient receives the standard of care. The clinical outcome may be defined by clinical endpoints, such as disease or recurrence free survival, metastasis free survival, overall survival, etc.
The present invention accommodates the use of archived paraffin-embedded biopsy material for assay of the gene, and therefore is compatible with the most widely available type of biopsy material. It is also compatible with several different methods of tumor tissue harvest, for example, via core biopsy or fine needle aspiration. The tissue sample may comprise cancer cells.
In one aspect, the present disclosure concerns a method of predicting a clinical outcome of a cancer patient, comprising (a) obtaining an expression level of an expression product (e.g., an RNA transcript) of at least one prognostic gene listed in Tables 1-12 from a tissue sample obtained from a tumor of the patient; (b) normalizing the expression level of the expression product of the at least one prognostic gene, to obtain a normalized expression level; and (c) calculating a risk score based on the normalized expression value, wherein increased expression of prognostic genes in Tables 1, 3, 5, and 7 are positively correlated with good prognosis, and wherein increased expression of prognostic genes in Tables 2, 4, 6, and 8 are negatively associated with good prognosis. In some embodiments, the tumor is estrogen receptor-positive. In other embodiments, the tumor is estrogen receptor negative.
In one aspect, the present disclosure provides a method of predicting a clinical outcome of a cancer patient, comprising (a) obtaining an expression level of an expression product (e.g., an RNA transcript) of at least one prognostic gene from a tissue sample obtained from a tumor of the patient, where the at least one prognostic gene is selected from GSTM2, IL6ST, GSTM3, C8orf4, TNFRSF11B, NAT1, RUNX1, CSF1, ACTR2, LMNB1, TFRC, LAPTM4B, ENO1, CDC20, and IDH2; (b) normalizing the expression level of the expression product of the at least one prognostic gene, to obtain a normalized expression level; and (c) calculating a risk score based on the normalized expression value, wherein increased expression of a prognostic gene selected from GSTM2, IL6ST, GSTM3, C8orf4, TNFRSF11B, NAT1, RUNX1, and CSF1 is positively correlated with good prognosis, and wherein increased expression of a prognostic gene selected from ACTR2, LMNB1, TFRC, LAPTM4B, ENO1, CDC20, and IDH2 is negatively associated with good prognosis. In some embodiments, the tumor is estrogen receptor-positive. In other embodiments, the tumor is estrogen receptor negative.
In various embodiments, the normalized expression level of at least 2, or at least 5, or at least 10, or at least 15, or at least 20, or a least 25 prognostic genes (as determined by assaying a level of an expression product of the gene) is determined. In alternative embodiments, the normalized expression levels of at least one of the genes that co-expresses with prognostic genes in Tables 16-18 is obtained.
In another embodiment, the risk score is determined using normalized expression levels of at least one a stromal or transferrin receptor group gene, or a gene that co-expresses with a stromal or transferrin receptor group gene.
In another embodiment, the cancer is breast cancer. In another embodiment, the patient is a human patient.
In yet another embodiment, the cancer is ER-positive breast cancer.
In yet another embodiment, the cancer is ER-negative breast cancer.
In a further embodiment, the expression product comprises RNA. For example, the RNA could be exonic RNA, intronic RNA, or short RNA (e.g., microRNA, siRNA, promoter-associated small RNA, shRNA, etc.). In various embodiments, the RNA is fragmented RNA.
In a different aspect, the invention concerns an array comprising polynucleotides hybridizing to an RNA transcription of at least one of the prognostic genes listed in Tables 1-12.
In a still further aspect, the invention concerns a method of preparing a personalized genomics profile for a patient, comprising (a) obtaining an expression level of an expression product (e.g., an RNA transcript) of at least one prognostic gene listed in Tables 1-12 from a tissue sample obtained from a tumor of the patient; (b) normalizing the expression level of the expression product of the at least one prognostic gene to obtain a normalized expression level; and (c) calculating a risk score based on the normalized expression value, wherein increased expression of prognostic genes in Tables 1, 3, 5, and 7 are positively correlated with good prognosis, and wherein increased expression of prognostic genes in Tables 2, 4, 6, and 8 are negatively associated with good prognosis. In some embodiments, the tumor is estrogen receptor-positive, and in other embodiments the tumor is estrogen receptor negative.
In various embodiments, a subject method can further include providing a report. The report may include prediction of the likelihood of risk that said patient will have a particular clinical outcome.
The invention further provides a computer-implemented method for classifying a cancer patient based on risk of cancer recurrence, comprising (a) classifying, on a computer, said patient as having a good prognosis or a poor prognosis based on an expression profile comprising measurements of expression levels of expression products of a plurality of prognostic genes in a tumor tissue sample taken from the patient, said plurality of genes comprising at least three different prognostic genes listed in any of Tables 1-12, wherein a good prognosis predicts no recurrence or metastasis within a predetermined period after initial diagnosis, and wherein a poor prognosis predicts recurrence or metastasis within said predetermined period after initial diagnosis; and (b) calculating a risk score based on said expression levels.
DETAILED DESCRIPTION DEFINITIONS
Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, NY 1994), and March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, NY 1992), provide one skilled in the art with a general guide to many of the terms used in the present application.
One skilled in the art will recognize many methods and materials similar or equivalent to those described herein, which could be used in the practice of the present invention. Indeed, the present invention is in no way limited to the methods and materials described. For purposes of the present invention, the following terms are defined below.
"Prognostic factors" are those variables related to the natural history of cancer, which influence the recurrence rates and outcome of patients once they have developed cancer. Clinical parameters that have been associated with a worse prognosis include, for example, lymph node involvement, and high grade tumors. Prognostic factors are frequently used to categorize patients into subgroups with different baseline relapse risks.
The term "prognosis" is used herein to refer to the prediction of the likelihood of cancer-attributable death or progression, including recurrence, metastatic spread, and drug resistance, of a neoplastic disease, such as breast cancer. The term "good prognosis" means a desired or "positive" clinical outcome. For example, in the context of breast cancer, a good prognosis may be an expectation of no recurrences or metastasis within two, three, four, five or more years of the initial diagnosis of breast cancer. The terms "bad prognosis" or "poor prognosis" are used herein interchangeably herein to mean an undesired clinical outcome. For example, in the context of breast cancer, a bad prognosis may be an expectation of a recurrence or metastasis within two, three, four, five or more years of the initial diagnosis of breast cancer.
The term "prognostic gene" is used herein to refer to a gene, the expression of which is correlated, positively or negatively, with a good prognosis for a cancer patient treated with the standard of care. A gene may be both a prognostic and predictive gene, depending on the correlation of the gene expression level with the corresponding endpoint. For example, using a Cox proportional hazards model, if a gene is only prognostic, its hazard ratio (HR) does not change when measured in patients treated with the standard of care or in patients treated with a new intervention.
The term "predictive gene" is used herein to refer to a gene, the expression of which is correlated, positively or negatively, with response to a beneficial response to treatment. For example, treatment could include chemotherapy.
The terms "risk score" or "risk classification" are used interchangeably herein to describe a level of risk (or likelihood) that a patient will experience a particular clinical outcome. A patient may be classified into a risk group or classified at a level of risk based on the methods of the present disclosure, e.g. high, medium, or low risk. A "risk group" is a group of subjects or individuals with a similar level of risk for a particular clinical outcome.
A clinical outcome can be defined using different endpoints. The term "long-term" survival is used herein to refer to survival for a particular time period, e.g., for at least 3 years, more preferably for at least 5 years. The term "Recurrence-Free Survival" (RFS) is used herein to refer to survival for a time period (usually in years) from randomization to first cancer recurrence or death due to recurrence of cancer. The term "Overall Survival" (OS) is used herein to refer to the time (in years) from randomization to death from any cause. The term "Disease-Free Survival" (DFS) is used herein to refer to survival for a time period (usually in years) from randomization to first cancer recurrence or death from any cause.
The calculation of the measures listed above in practice may vary from study to study depending on the definition of events to be either censored or not considered.
The term "biomarker" as used herein refers to a gene, the expression level of which, as measured using a gene product.
The term "microarray" refers to an ordered arrangement of hybridizable array elements, preferably polynucleotide probes, on a substrate.
As used herein, the term "normalized expression level" as applied to a gene refers to the normalized level of a gene product, e.g. the normalized value determined for the RNA expression level of a gene or for the polypeptide expression level of a gene.
The term "Ct" as used herein refers to threshold cycle, the cycle number in quantitative polymerase chain reaction (qPCR) at which the fluorescence generated within a reaction well exceeds the defined threshold, i.e. the point during the reaction at which a sufficient number of amplicons have accumulated to meet the defined threshold.
The term "gene product" or "expression product" are used herein to refer to the RNA transcription products (transcripts) of the gene, including mRNA, and the polypeptide translation products of such RNA transcripts. A gene product can be, for example, an unspliced RNA, an mRNA, a splice variant mRNA, a microRNA, a fragmented RNA, a polypeptide, a post-translationally modified polypeptide, a splice variant polypeptide, etc.
The term "RNA transcript" as used herein refers to the RNA transcription products of a gene, including, for example, mRNA, an unspliced RNA, a splice variant mRNA, a microRNA, and a fragmented RNA. "Fragmented RNA" as used herein refers to RNA a mixture of intact RNA and RNA that has been degraded as a result of the sample processing (e.g., fixation, slicing tissue blocks, etc.).
Unless indicated otherwise, each gene name used herein corresponds to the Official Symbol assigned to the gene and provided by Entrez Gene (URL: www.ncbi.nlm.nih.gov/sites/entrez) as of the filing date of this application.
The terms "correlated" and "associated" are used interchangeably herein to refer to a strength of association between two measurements (or measured entities). The disclosure provides genes and gene subsets, the expression levels of which are associated with a particular outcome measure. For example, the increased expression level of a gene may be positively correlated (positively associated) with an increased likelihood of good clinical outcome for the patient, such as an increased likelihood of long-term survival without recurrence of the cancer and/or metastasis-free survival. Such a positive correlation may be demonstrated statistically in various ways, e.g. by a low hazard ratio (e.g. HR < 1.0). In another example, the increased expression level of a gene may be negatively correlated (negatively associated) with an increased likelihood of good clinical outcome for the patient. In that case, for example, the patient may have a decreased likelihood of long-term survival without recurrence of the cancer and/or cancer metastasis, and the like. Such a negative correlation indicates that the patient likely has a poor prognosis, e.g., a high hazard ratio (e.g., HR > 1.0). "Correlated" is also used herein to refer to a strength of association between the expression levels of two different genes, such that expression level of a first gene can be substituted with an expression level of a second gene in a given algorithm in view of their correlation of expression. Such "correlated expression" of two genes that are substitutable in an algorithm usually gene expression levels that are positively correlated with one another, e.g., if increased expression of a first gene is positively correlated with an outcome (e.g., increased likelihood of good clinical outcome), then the second gene that is co-expressed and exhibits correlated expression with the first gene is also positively correlated with the same outcome
The term "recurrence," as used herein, refers to local or distant (metastasis) recurrence of cancer. For example, breast cancer can come back as a local recurrence (in the treated breast or near the tumor surgical site) or as a distant recurrence in the body. The most common sites of breast cancer recurrence include the lymph nodes, bones, liver, or lungs.
The term "polynucleotide," when used in singular or plural, generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. Thus, for instance, polynucleotides as defined herein include, without limitation, single- and double-stranded DNA, DNA including single- and double-stranded regions, single- and double-stranded RNA, and RNA including single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or include single- and double-stranded regions. In addition, the term "polynucleotide" as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. The term "polynucleotide" specifically includes cDNAs. The term includes DNAs (including cDNAs) and RNAs that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "polynucleotides" as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritiated bases, are included within the term "polynucleotides" as defined herein. In general, the term "polynucleotide" embraces all chemically, enzymatically and/or metabolically modified forms of unmodified polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including simple and complex cells.
The term "oligonucleotide" refers to a relatively short polynucleotide, including, without limitation, single-stranded deoxyribonucleotides, single- or double-stranded ribonucleotides, RNA:DNA hybrids and double-stranded DNAs. Oligonucleotides, such as single-stranded DNA probe oligonucleotides, are often synthesized by chemical methods, for example using automated oligonucleotide synthesizers that are commercially available. However, oligonucleotides can be made by a variety of other methods, including in vitro recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms.
The phrase "amplification" refers to a process by which multiple copies of a gene or RNA transcript are formed in a particular sample or cell line. The duplicated region (a stretch of amplified polynucleotide) is often referred to as "amplicon." Usually, the amount of the messenger RNA (mRNA) produced, i.e., the level of gene expression, also increases in the proportion of the number of copies made of the particular gene expressed.
The term "estrogen receptor (ER)" designates the estrogen receptor status of a cancer patient. A tumor is ER-positive if there is a significant number of estrogen receptors present in the cancer cells, while ER-negative indicates that the cells do not have a significant number of receptors present. The definition of "significant" varies amongst testing sites and methods (e.g., immunohistochemistry, PCR). The ER status of a cancer patient can be evaluated by various known means. For example, the ER level of breast cancer is determined by measuring an expression level of a gene encoding the estrogen receptor in a breast tumor sample obtained from a patient.
The term "tumor," as used herein, refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
The terms "cancer" and "cancerous" refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer include, but are not limited to, breast cancer, ovarian cancer, colon cancer, lung cancer, prostate cancer, hepatocellular cancer, gastric cancer, pancreatic cancer, cervical cancer, liver cancer, bladder cancer, cancer of the urinary tract, thyroid cancer, renal cancer, carcinoma, melanoma, and brain cancer.
The gene subset identified herein as the "stromal group" includes genes that are synthesized predominantly by stromal cells and are involved in stromal response and genes that co-express with stromal group genes. "Stromal cells" are defined herein as connective tissue cells that make up the support structure of biological tissues. Stromal cells include fibroblasts, immune cells, pericytes, endothelial cells, and inflammatory cells. "Stromal response" refers to a desmoplastic response of the host tissues at the site of a primary tumor or invasion. See, e.g., E. Rubin, J. Farber, Pathology, 985-986 (2nd Ed. 1994). The stromal group includes, for example, CDH11, TAGLN, ITGA4, INHBA, COLIA1, COLIA2, FN1, CXCL14, TNFRSF1, CXCL12, C10ORF116, RUNX1, GSTM2, TGFB3, CAV1, DLC1, TNFRSF10, F3, and DICER1, and co-expressed genes identified in Tables 16-18.
The gene subset identified herein as the "metabolic group" includes genes that are associated with cellular metabolism, including genes associated with carrying proteins for transferring iron, the cellular iron homeostasis pathway, and homeostatic biochemical metabolic pathways, and genes that co-express with metabolic group genes. The metabolic group includes, for example, TFRC, ENO1, IDH2, ARF1, CLDN4, PRDX1, and GBP1, and co-expressed genes identified in Tables 16-18.
The gene subset identified herein as the "immune group" includes genes that are involved in cellular immunoregulatory functions, such as T and B cell trafficking, lymphocyte-associated or lymphocyte markers, and interferon regulation genes, and genes that co-express with immune group genes. The immune group includes, for example, CCL19 and IRF1, and co-expressed genes identified in Tables 16-18.
The gene subset identified herein as the "proliferation group" includes genes that are associated with cellular development and division, cell cycle and mitotic regulation, angiogenesis, cell replication, nuclear transport/stability, wnt signaling, apoptosis, and genes that co-express with proliferation group genes. The proliferation group includes, for example, PGF, SPC25, AURKA, BIRC5, BUB1, CCNB1, CENPA, KPNA, LMNB1, MCM2, MELK, NDC80, TPX2M, and WISP1, and co-expressed genes identified in Tables 16-18.
The term "co-expressed", as used herein, refers to a statistical correlation between the expression level of one gene and the expression level of another gene. Pairwise co-expression may be calculated by various methods known in the art, e.g., by calculating Pearson correlation coefficients or Spearman correlation coefficients. Co-expressed gene cliques may also be identified using a graph theory.
As used herein, the terms "gene clique" and "clique" refer to a subgraph of a graph in which every vertex is connected by an edge to every other vertex of the subgraph.
As used herein, a "maximal clique" is a clique in which no other vertex can be added and still be a clique.
The "pathology" of cancer includes all phenomena that compromise the well-being of the patient. This includes, without limitation, abnormal or uncontrollable cell growth, metastasis, interference with the normal functioning of neighboring cells, release of cytokines or other secretory products at abnormal levels, suppression or aggravation of inflammatory or immunological response, neoplasia, premalignancy, malignancy, invasion of surrounding or distant tissues or organs, such as lymph nodes, etc.
A "computer-based system" refers to a system of hardware, software, and data storage medium used to analyze information. The minimum hardware of a patient computer-based system comprises a central processing unit (CPU), and hardware for data input, data output (e.g., display), and data storage. An ordinarily skilled artisan can readily appreciate that any currently available computer-based systems and/or components thereof are suitable for use in connection with the methods of the present disclosure. The data storage medium may comprise any manufacture comprising a recording of the present information as described above, or a memory access device that can access such a manufacture.
To "record" data, programming or other information on a computer readable medium refers to a process for storing information, using any such methods as known in the art. Any convenient data storage structure may be chosen, based on the means used to access the stored information. A variety of data processor programs and formats can be used for storage, e.g. word processing text file, database format, etc.
A "processor" or "computing means" references any hardware and/or software combination that will perform the functions required of it. For example, a suitable processor may be a programmable digital microprocessor such as available in the form of an electronic controller, mainframe, server or personal computer (desktop or portable). Where the processor is programmable, suitable programming can be communicated from a remote location to the processor, or previously saved in a computer program product (such as a portable or fixed computer readable storage medium, whether magnetic, optical or solid state device based). For example, a magnetic medium or optical disk may carry the programming, and can be read by a suitable reader communicating with each processor at its corresponding station.
As used herein, "graph theory" refers to a field of study in Computer Science and Mathematics in which situations are represented by a diagram containing a set of points and lines connecting some of those points. The diagram is referred to as a "graph", and the points and lines referred to as "vertices" and "edges" of the graph. In terms of gene co-expression analysis, a gene (or its equivalent identifier, e.g. an array probe) may be represented as a node or vertex in the graph. If the measures of similarity (e.g., correlation coefficient, mutual information, and alternating conditional expectation) between two genes are higher than a significant threshold, the two genes are said to be co-expressed and an edge will be drawn in the graph. When co-expressed edges for all possible gene pairs for a given study have been drawn, all maximal cliques are computed. The resulting maximal clique is defined as a gene clique. A gene clique is a computed co-expressed gene group that meets predefined criteria.
"Stringency" of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).
"Stringent conditions" or "high stringency conditions", as defined herein, typically: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50°C; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1 % Ficoll/0.1% polyvinylpyrrolidone/50mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42°C; or (3) employ 50% formamide, 5 x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50 µg/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with washes at 42°C in 0.2 x SSC (sodium chloride/sodium citrate) and 50% formamide at 55°C, followed by a high-stringency wash consisting of 0.1 x SSC containing EDTA at 55°C.
"Moderately stringent conditions" may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and %SDS) less stringent that those described above. An example of moderately stringent conditions is overnight incubation at 37°C in a solution comprising: 20% formamide, 5 x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 x Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1 x SSC at about 37-50°C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.
In the context of the present invention, reference to "at least one," "at least two," "at least five," etc. of the genes listed in any particular gene set means any one or any and all combinations of the genes listed.
The term "node negative" cancer, such as "node negative" breast cancer, is used herein to refer to cancer that has not spread to the lymph nodes.
The terms "splicing" and "RNA splicing" are used interchangeably and refer to RNA processing that removes introns and joins exons to produce mature mRNA with continuous coding sequence that moves into the cytoplasm of a eukaryotic cell.
In theory, the term "exon" refers to any segment of an interrupted gene that is represented in the mature RNA product (B. Lewin. Genes IV Cell Press, Cambridge Mass. 1990). In theory the term "intron" refers to any segment of DNA that is transcribed but removed from within the transcript by splicing together the exons on either side of it. Operationally, exon sequences occur in the mRNA sequence of a gene as defined by Ref. SEQ ID numbers. Operationally, intron sequences are the intervening sequences within the genomic DNA of a gene, bracketed by exon sequences and having GT and AG splice consensus sequences at their 5' and 3' boundaries.
GENE EXPRESSION ASSAY
The present disclosure provides methods that employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, and biochemistry, which are within the skill of the art. Such techniques are explained fully in the literature, such as, "Molecular Cloning: A Laboratory Manual", 2nd edition (Sambrook et al., 1989); "Oligonucleotide Synthesis" (M.J. Gait, ed., 1984); "Animal Cell Culture" (R.I. Freshney, ed., 1987); "Methods in Enzymology" (Academic Press, Inc.); "Handbook of Experimental Immunology", 4th edition (D.M. Weir & C.C. Blackwell, eds., Blackwell Science Inc., 1987); "Gene Transfer Vectors for Mammalian Cells" (J.M. Miller & M.P. Calos, eds., 1987); "Current Protocols in Molecular Biology" (F.M. Ausubel et al., eds., 1987); and "PCR: The Polymerase Chain Reaction", (Mullis et al., eds., 1994).
1. Gene Expression Profiling
Methods of gene expression profiling include methods based on hybridization analysis of polynucleotides, methods based on sequencing of polynucleotides, and proteomics-based methods. The most commonly used methods known in the art for the quantification of mRNA expression in a sample include northern blotting and in situ hybridization (Parker & Barnes, Methods in Molecular Biology 106:247-283 (1999)); RNAse protection assays (Hod, Biotechniques 13:852-854 (1992)); and PCR-based methods, such as reverse transcription polymerase chain reaction (RT-PCR) (Weis et al., Trends in Genetics 8:263-264 (1992)). Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes.
2. PCR-based Gene Expression Profiling Methods a. Reverse Transcriptase PCR (RT-PCR)
Of the techniques listed above, the most sensitive and most flexible quantitative method is RT-PCR, which can be used to compare mRNA levels in different sample populations, in normal and tumor tissues, with or without drug treatment, to characterize patterns of gene expression, to discriminate between closely related mRNAs, and to analyze RNA structure.
The first step is the isolation of mRNA from a target sample. The starting material is typically total RNA isolated from human tumors or tumor cell lines, and corresponding normal tissues or cell lines, respectively. Thus RNA can be isolated from a variety of primary tumors, including breast, lung, colon, prostate, brain, liver, kidney, pancreas, spleen, thymus, testis, ovary, uterus, etc., tumor, or tumor cell lines, with pooled DNA from healthy donors. If the source of mRNA is a primary tumor, mRNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin-fixed) tissue samples.
General methods for mRNA extraction are well known in the art and are disclosed in standard textbooks of molecular biology, including Ausubel et al., Current Protocols of Molecular Biology, John Wiley and Sons (1997). Methods for RNA extraction from paraffin embedded tissues are disclosed, for example, in Rupp and Locker, Lab Invest. 56:A67 (1987), and De Andrés et al., BioTechniques 18:42044 (1995). In particular, RNA isolation can be performed using purification kit, buffer set and protease from commercial manufacturers, such as Qiagen, according to the manufacturer's instructions. For example, total RNA from cells in culture can be isolated using Qiagen RNeasy mini-columns. Other commercially available RNA isolation kits include MasterPure™ Complete DNA and RNA Purification Kit (EPICENTRE®, Madison, WI), and Paraffin Block RNA Isolation Kit (Ambion, Inc.). Total RNA from tissue samples can be isolated using RNA Stat-60 (Tel-Test). RNA prepared from tumor can be isolated, for example, by cesium chloride density gradient centrifugation.
In some cases, it may be appropriate to amplify RNA prior to initiating expression profiling. It is often the case that only very limited amounts of valuable clinical specimens are available for molecular analysis. This may be due to the fact that the tissues have already be used for other laboratory analyses or may be due to the fact that the original specimen is very small as in the case of needle biopsy or very small primary tumors. When tissue is limiting in quantity it is generally also the case that only small amounts of total RNA can be recovered from the specimen and as a result only a limited number of genomic markers can be analyzed in the specimen. RNA amplification compensates for this limitation by faithfully reproducing the original RNA sample as a much larger amount of RNA of the same relative composition. Using this amplified copy of the original RNA specimen, unlimited genomic analysis can be done to discovery biomarkers associated with the clinical characteristics of the original biological sample. This effectively immortalizes clinical study specimens for the purposes of genomic analysis and biomarker discovery.
As RNA cannot serve as a template for PCR, the first step in gene expression profiling by real-time RT-PCR (RT-PCR) is the reverse transcription of the RNA template into cDNA, followed by its exponential amplification in a PCR reaction. The two most commonly used reverse transcriptases are avian myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney murine leukemia virus reverse transcriptase (MMLV-RT). The reverse transcription step is typically primed using specific primers, random hexamers, or oligo-dT primers, depending on the circumstances and the goal of expression profiling. For example, extracted RNA can be reverse-transcribed using a GeneAmp RNA PCR kit (Perkin Elmer, CA, USA), following the manufacturer's instructions. The derived cDNA can then be used as a template in the subsequent PCR reaction. For further details see, e.g. Held et al., Genome Research 6:986-994 (1996).
Although the PCR step can use a variety of thermostable DNA-dependent DNA polymerases, it typically employs the Taq DNA polymerase, which has a 5'-3' nuclease activity but lacks a 3'-5' proofreading endonuclease activity. Thus, TaqMan® PCR typically utilizes the 5'-nuclease activity of Taq or Tth polymerase to hydrolyze a hybridization probe bound to its target amplicon, but any enzyme with equivalent 5' nuclease activity can be used. Two oligonucleotide primers are used to generate an amplicon typical of a PCR reaction. A third oligonucleotide, or probe, is designed to detect nucleotide sequence located between the two PCR primers. The probe is non-extendible by Taq DNA polymerase enzyme, and is labeled with a reporter fluorescent dye and a quencher fluorescent dye. Any laser-induced emission from the reporter dye is quenched by the quenching dye when the two dyes are located close together as they are on the probe. During the amplification reaction, the Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner. The resultant probe fragments disassociate in solution, and signal from the released reporter dye is free from the quenching effect of the second fluorophore. One molecule of reporter dye is liberated for each new molecule synthesized, and detection of the unquenched reporter dye provides the basis for quantitative interpretation of the data.
TaqMan® RT-PCR can be performed using commercially available equipment, such as, for example, ABI PRISM 7900® Sequence Detection System™ (Perkin-Elmer-Applied Biosystems, Foster City, CA, USA), or LightCycler® 480 Real-Time PCR System (Roche Diagnostics, GmbH, Penzberg, Germany). In a preferred embodiment, the 5' nuclease procedure is run on a real-time quantitative PCR device such as the ABI PRISM 7900® Sequence Detection System™. The system consists of a thermocycler, laser, charge-coupled device (CCD), camera and computer. The system amplifies samples in a 384-well format on a thermocycler. During amplification, laser-induced fluorescent signal is collected in real-time through fiber optics cables for all 384 wells, and detected at the CCD. The system includes software for running the instrument and for analyzing the data.
5'-Nuclease assay data are initially expressed as Ct, or the threshold cycle. As discussed above, fluorescence values are recorded during every cycle and represent the amount of product amplified to that point in the amplification reaction. The point when the fluorescent signal is first recorded as statistically significant is the threshold cycle (Ct).
To minimize errors and the effect of sample-to-sample variation, RT-PCR is usually performed using an internal standard. The ideal internal standard is expressed at a constant level among different tissues, and is unaffected by the experimental treatment. RNAs most frequently used to normalize patterns of gene expression are mRNAs for the housekeeping genes glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) and β-actin.
The steps of a representative protocol for profiling gene expression using fixed, paraffin-embedded tissues as the RNA source, including mRNA isolation, purification, primer extension and amplification are given in various published journal articles. M. Cronin, Am J Pathol 164(1):35-42 (2004). Briefly, a representative process starts with cutting about 10 µm thick sections of paraffin-embedded tumor tissue samples. The RNA is then extracted, and protein and DNA are removed. After analysis of the RNA concentration, RNA repair and/or amplification steps may be included, if necessary, and RNA is reverse transcribed using gene specific primers followed by RT-PCR.
b. Design of Intron-Based PCR Primers and Probes
PCR primers and probes can be designed based upon exon or intron sequences present in the mRNA transcript of the gene of interest. Prior to carrying out primer/probe design, it is necessary to map the target gene sequence to the human genome assembly in order to identify intron-exon boundaries and overall gene structure. This can be performed using publicly available software, such as Primer3 (Whitehead Inst.) and Primer Express® (Applied Biosystems).
Where necessary or desired, repetitive sequences of the target sequence can be masked to mitigate non-specific signals. Exemplary tools to accomplish this include the Repeat Masker program available on-line through the Baylor College of Medicine, which screens DNA sequences against a library of repetitive elements and returns a query sequence in which the repetitive elements are masked. The masked intron and exon sequences can then be used to design primer and probe sequences for the desired target sites using any commercially or otherwise publicly available primer/probe design packages, such as Primer Express (Applied Biosystems); MGB assay-by-design (Applied Biosystems); Primer3 (Steve Rozen and Helen J. Skaletsky (2000) Primer3 on the WWW for general users and for biologist programmers. In: Rrawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ, pp 365-386).
Other factors that can influence PCR primer design include primer length, melting temperature (Tm), and G/C content, specificity, complementary primer sequences, and 3 '-end sequence. In general, optimal PCR primers are generally 17-30 bases in length, and contain about 20-80%, such as, for example, about 50-60% G+C bases, and exhibit Tm's between 50 and 80 0C, e.g. about 50 to 70 0C.
For further guidelines for PCR primer and probe design see, e.g. Dieffenbach, CW. et al, "General Concepts for PCR Primer Design" in: PCR Primer, A Laboratory Manual, Cold Spring Harbor Laboratory Press,. New York, 1995, pp. 133-155; Innis and Gelfand, "Optimization of PCRs" in: PCR Protocols, A Guide to Methods and Applications, CRC Press, London, 1994, pp. 5-11; and Plasterer, T.N. Primerselect: Primer and probe design. Methods Mol. Biol. 70:520-527 (1997).
Table A provides further information concerning the primer, probe, and amplicon sequences associated with the Examples disclosed herein.
c. MassARRAY System
In the MassARRAY-based gene expression profiling method, developed by Sequenom, Inc. (San Diego, CA) following the isolation of RNA and reverse transcription, the obtained cDNA is spiked with a synthetic DNA molecule (competitor), which matches the targeted cDNA region in all positions, except a single base, and serves as an internal standard. The cDNA/competitor mixture is PCR amplified and is subjected to a post-PCR shrimp alkaline phosphatase (SAP) enzyme treatment, which results in the dephosphorylation of the remaining nucleotides. After inactivation of the alkaline phosphatase, the PCR products from the competitor and cDNA are subjected to primer extension, which generates distinct mass signals for the competitor- and cDNA-derives PCR products. After purification, these products are dispensed on a chip array, which is preloaded with components needed for analysis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The cDNA present in the reaction is then quantified by analyzing the ratios of the peak areas in the mass spectrum generated. For further details see, e.g. Ding and Cantor, Proc. Natl. Acad. Sci. USA 100:3059-3064 (2003).
d. Other PCR-based Methods
Further PCR-based techniques include, for example, differential display (Liang and Pardee, Science 257:967-971 (1992)); amplified fragment length polymorphism (iAFLP) (Kawamoto et al., Genome Res. 12:1305-1312 (1999)); BeadArray™ technology (Illumina, San Diego, CA; Oliphant et al., Discovery of Markers for Disease (Supplement to Biotechniques), June 2002; Ferguson et al., Analytical Chemistry 72:5618 (2000)); BeadsArray for Detection of Gene Expression (BADGE), using the commercially available Luminex100 LabMAP system and multiple color-coded microspheres (Luminex Corp., Austin, TX) in a rapid assay for gene expression (Yang et al., Genome Res. 11:1888-1898 (2001)); and high coverage expression profiling (HiCEP) analysis (Fukumura et al., Nucl. Acids. Res. 31(16) e94 (2003)).
3. Microarrays
Differential gene expression can also be identified, or confirmed using the microarray technique. Thus, the expression profile of breast cancer-associated genes can be measured in either fresh or paraffin-embedded tumor tissue, using microarray technology. In this method, polynucleotide sequences of interest (including cDNAs and oligonucleotides) are plated, or arrayed, on a microchip substrate. The arrayed sequences are then hybridized with specific DNA probes from cells or tissues of interest. Just as in the RT-PCR method, the source of mRNA typically is total RNA isolated from human tumors or tumor cell lines, and corresponding normal tissues or cell lines. Thus RNA can be isolated from a variety of primary tumors or tumor cell lines. If the source of mRNA is a primary tumor, mRNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin-fixed) tissue samples, which are routinely prepared and preserved in everyday clinical practice.
In a specific embodiment of the microarray technique, PCR amplified inserts of cDNA clones are applied to a substrate in a dense array. Preferably at least 10,000 nucleotide sequences are applied to the substrate. The microarrayed genes, immobilized on the microchip at 10,000 elements each, are suitable for hybridization under stringent conditions. Fluorescently labeled cDNA probes may be generated through incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from tissues of interest. Labeled cDNA probes applied to the chip hybridize with specificity to each spot of DNA on the array. After stringent washing to remove non-specifically bound probes, the chip is scanned by confocal laser microscopy or by another detection method, such as a CCD camera. Quantitation of hybridization of each arrayed element allows for assessment of corresponding mRNA abundance. With dual color fluorescence, separately labeled cDNA probes generated from two sources of RNA are hybridized pairwise to the array. The relative abundance of the transcripts from the two sources corresponding to each specified gene is thus determined simultaneously. The miniaturized scale of the hybridization affords a convenient and rapid evaluation of the expression pattern for large numbers of genes. Such methods have been shown to have the sensitivity required to detect rare transcripts, which are expressed at a few copies per cell, and to reproducibly detect at least approximately twofold differences in the expression levels (Schena et al., Proc. Natl. Acad. Sci. USA 93(2):106-149 (1996)). Microarray analysis can be performed by commercially available equipment, following manufacturer's protocols, such as by using the Affymetrix GenChip technology, or Agilent's microarray technology.
The development of microarray methods for large-scale analysis of gene expression makes it possible to search systematically for molecular markers of cancer classification and outcome prediction in a variety of tumor types.
4. Gene Expression Analysis by Nucleic Acid Sequencing
Nucleic acid sequencing technologies are suitable methods for analysis of gene expression. The principle underlying these methods is that the number of times a cDNA sequence is detected in a sample is directly related to the relative expression of the mRNA corresponding to that sequence. These methods are sometimes referred to by the term Digital Gene Expression (DGE) to reflect the discrete numeric property of the resulting data. Early methods applying this principle were Serial Analysis of Gene Expression (SAGE) and Massively Parallel Signature Sequencing (MPSS). See, e.g., S. Brenner, et al., Nature Biotechnology 18(6):630-634 (2000). More recently, the advent of "next-generation" sequencing technologies has made DGE simpler, higher throughput, and more affordable. As a result, more laboratories are able to utilize DGE to screen the expression of more genes in more individual patient samples than previously possible. See, e.g., J. Marioni, Genome Research 18(9):1509-1517 (2008); R. Morin, Genome Research 18(4):610-621 (2008); A. Mortazavi, Nature Methods 5(7):621-628 (2008); N. Cloonan, Nature Methods 5(7):613-619 (2008).
5. Isolating RNA from Body Fluids
Methods of isolating RNA for expression analysis from blood, plasma and serum (See for example, Tsui NB et al. (2002) 48,1647-53 and references cited therein) and from urine (See for example, Boom R et al. (1990) J Clin Microbiol. 28, 495-503 and reference cited therein) have been described.
6. Immunohistochemistry
Immunohistochemistry methods are also suitable for detecting the expression levels of the prognostic marker of the present invention. Thus, antibodies or antisera, preferably polyclonal antisera, and most preferably monoclonal antibodies specific for each marker are used to detect expression. The antibodies can be detected by direct labeling of the antibodies themselves, for example, with radioactive labels, fluorescent labels, hapten labels such as, biotin, or an enzyme such as horse radish peroxidase or alkaline phosphatase. Alternatively, unlabeled primary antibody is used in conjunction with a labeled secondary antibody, comprising antisera, polyclonal antisera or a monoclonal antibody specific for the primary antibody. Immunohistochemistry protocols and kits are well known in the art and are commercially available.
7. Proteomics
The term "proteome" is defined as the totality of the proteins present in a sample (e.g. tissue, organism, or cell culture) at a certain point of time. Proteomics includes, among other things, study of the global changes of protein expression in a sample (also referred to as "expression proteomics"). Proteomics typically includes the following steps: (1) separation of individual proteins in a sample by 2-D gel electrophoresis (2-D PAGE); (2) identification of the individual proteins recovered from the gel, e.g. my mass spectrometry or N-terminal sequencing, and (3) analysis of the data using bioinformatics. Proteomics methods are valuable supplements to other methods of gene expression profiling, and can be used, alone or in combination with other methods, to detect the products of the prognostic marker of the present invention.
8. General Description of the mRNA Isolation, Purification, and Amplification
The steps of a representative protocol for profiling gene expression using fixed, paraffin-embedded tissues as the RNA source, including mRNA isolation, purification, primer extension and amplification are provided in various published journal articles (for example: T.E. Godfrey et al,. J. Molec. Diagnostics 2: 84-91 [2000]; K. Specht et al., Am. J. Pathol. 158: 419-29 [2001]). Briefly, a representative process starts with cutting about 10 µm thick sections of paraffin-embedded tumor tissue samples. The RNA is then extracted, and protein and DNA are removed. After analysis of the RNA concentration, RNA repair and/or amplification steps may be included, if necessary, and RNA is reverse transcribed using gene specific primers followed by RT-PCR. Finally, the data are analyzed to identify the best treatment option(s) available to the patient on the basis of the characteristic gene expression pattern identified in the tumor sample examined, dependent on the predicted likelihood of cancer recurrence.
9. Normalization
The expression data used in the methods disclosed herein can be normalized. Normalization refers to a process to correct for (normalize away), for example, differences in the amount of RNA assayed and variability in the quality of the RNA used, to remove unwanted sources of systematic variation in Ct measurements, and the like. With respect to RT-PCR experiments involving archived fixed paraffin embedded tissue samples, sources of systematic variation are known to include the degree of RNA degradation relative to the age of the patient sample and the type of fixative used to preserve the sample. Other sources of systematic variation are attributable to laboratory processing conditions.
Assays can provide for normalization by incorporating the expression of certain normalizing genes, which genes do not significantly differ in expression levels under the relevant conditions. Exemplary normalization genes include housekeeping genes such as PGK1 and UBB. (See, e.g., E. Eisenberg, et al., Trends in Genetics 19(7):362-365 (2003).) Normalization can be based on the mean or median signal (CT) of all of the assayed genes or a large subset thereof (global normalization approach). In general, the normalizing genes, also referred to as reference genes should be genes that are known not to exhibit significantly different expression in colorectal cancer as compared to non-cancerous colorectal tissue, and are not significantly affected by various sample and process conditions, thus provide for normalizing away extraneous effects.
Unless noted otherwise, normalized expression levels for each mRNA/tested tumor/patient will be expressed as a percentage of the expression level measured in the reference set. A reference set of a sufficiently high number (e.g. 40) of tumors yields a distribution of normalized levels of each mRNA species. The level measured in a particular tumor sample to be analyzed falls at some percentile within this range, which can be determined by methods well known in the art.
In exemplary embodiments, one or more of the following genes are used as references by which the expression data is normalized: AAMP, ARF1, EEF1A1, ESD, GPS1, H3F3A, HNRPC, RPL13A, RPL41, RPS23, RPS27, SDHA, TCEA1, UBB, YWHAZ, B-actin, GUS, GAPDH, RPLPO, and TFRC. For example, the calibrated weighted average Ct measurements for each of the prognostic genes may be normalized relative to the mean of at least three reference genes, at least four reference genes, or at least five reference genes.
Those skilled in the art will recognize that normalization may be achieved in numerous ways, and the techniques described above are intended only to be exemplary, not exhaustive.
REPORTING RESULTS
The methods of the present disclosure are suited for the preparation of reports summarizing the expected or predicted clinical outcome resulting from the methods of the present disclosure. A "report," as described herein, is an electronic or tangible document that includes report elements that provide information of interest relating to a likelihood assessment or a risk assessment and its results. A subject report includes at least a likelihood assessment or a risk assessment, e.g., an indication as to the risk of recurrence of breast cancer, including local recurrence and metastasis of breast cancer. A subject report can include an assessment or estimate of one or more of disease-free survival, recurrence-free survival, metastasis-free survival, and overall survival. A subject report can be completely or partially electronically generated, e.g., presented on an electronic display (e.g., computer monitor). A report can further include one or more of: 1) information regarding the testing facility; 2) service provider information; 3) patient data; 4) sample data; 5) an interpretive report, which can include various information including: a) indication; b) test data, where test data can include a normalized level of one or more genes of interest, and 6) other features.
The present disclosure thus provides for methods of creating reports and the reports resulting therefrom. The report may include a summary of the expression levels of the RNA transcripts, or the expression products of such RNA transcripts, for certain genes in the cells obtained from the patient's tumor. The report can include information relating to prognostic covariates of the patient. The report may include an estimate that the patient has an increased risk of recurrence. That estimate may be in the form of a score or patient stratifier scheme (e.g., low, intermediate, or high risk of recurrence). The report may include information relevant to assist with decisions about the appropriate surgery (e.g., partial or total mastectomy) or treatment for the patient.
Thus, in some embodiments, the methods of the present disclosure further include generating a report that includes information regarding the patient's likely clinical outcome, e.g. risk of recurrence. For example, the methods disclosed herein can further include a step of generating or outputting a report providing the results of a subject risk assessment, which report can be provided in the form of an electronic medium (e.g., an electronic display on a computer monitor), or in the form of a tangible medium (e.g., a report printed on paper or other tangible medium).
A report that includes information regarding the patient's likely prognosis (e.g., the likelihood that a patient having breast cancer will have a good prognosis or positive clinical outcome in response to surgery and/or treatment) is provided to a user. An assessment as to the likelihood is referred to below as a "risk report" or, simply, "risk score." A person or entity that prepares a report ("report generator") may also perform the likelihood assessment. The report generator may also perform one or more of sample gathering, sample processing, and data generation, e.g., the report generator may also perform one or more of: a) sample gathering; b) sample processing; c) measuring a level of a risk gene; d) measuring a level of a reference gene; and e) determining a normalized level of a risk gene. Alternatively, an entity other than the report generator can perform one or more sample gathering, sample processing, and data generation.
For clarity, it should be noted that the term "user," which is used interchangeably with "client," is meant to refer to a person or entity to whom a report is transmitted, and may be the same person or entity who does one or more of the following: a) collects a sample; b) processes a sample; c) provides a sample or a processed sample; and d) generates data (e.g., level of a risk gene; level of a reference gene product(s); normalized level of a risk gene ("prognosis gene") for use in the likelihood assessment. In some cases, the person(s) or entity(ies) who provides sample collection and/or sample processing and/or data generation, and the person who receives the results and/or report may be different persons, but are both referred to as "users" or "clients" herein to avoid confusion. In certain embodiments, e.g., where the methods are completely executed on a single computer, the user or client provides for data input and review of data output. A "user" can be a health professional (e.g., a clinician, a laboratory technician, a physician (e.g., an oncologist, surgeon, pathologist), etc.).
In embodiments where the user only executes a portion of the method, the individual who, after computerized data processing according to the methods of the present disclosure, reviews data output (e.g., results prior to release to provide a complete report, a complete, or reviews an "incomplete" report and provides for manual intervention and completion of an interpretive report) is referred to herein as a "reviewer." The reviewer may be located at a location remote to the user (e.g., at a service provided separate from a healthcare facility where a user may be located).
Where government regulations or other restrictions apply (e.g., requirements by health, malpractice, or liability insurance), all results, whether generated wholly or partially electronically, are subjected to a quality control routine prior to release to the user.
CLINICAL UTILITY
The gene expression assay and information provided by the practice of the methods disclosed herein facilitates physicians in making more well-informed treatment decisions, and to customize the treatment of cancer to the needs of individual patients, thereby maximizing the benefit of treatment and minimizing the exposure of patients to unnecessary treatments which may provide little or no significant benefits and often carry serious risks due to toxic side-effects.
Single or multi-analyte gene expression tests can be used measure the expression level of one or more genes involved in each of several relevant physiologic processes or component cellular characteristics. The expression level(s) may be used to calculate such a quantitative score, and such score may be arranged in subgroups (e.g., tertiles) wherein all patients in a given range are classified as belonging to a risk category (e.g., low, intermediate, or high). The grouping of genes may be performed at least in part based on knowledge of the contribution of the genes according to physiologic functions or component cellular characteristics, such as in the groups discussed above.
The utility of a gene marker in predicting cancer may not be unique to that marker. An alternative marker having an expression pattern that is parallel to that of a selected marker gene may be substituted for, or used in addition to, a test marker. Due to the co-expression of such genes, substitution of expression level values should have little impact on the overall prognostic utility of the test. The closely similar expression patterns of two genes may result from involvement of both genes in the same process and/or being under common regulatory control in colon tumor cells. The present disclosure thus contemplates the use of such co-expressed genes or gene sets as substitutes for, or in addition to, prognostic methods of the present disclosure.
The molecular assay and associated information provided by the methods disclosed herein for predicting the clinical outcome in cancer, e.g. breast cancer, have utility in many areas, including in the development and appropriate use of drugs to treat cancer, to stratify cancer patients for inclusion in (or exclusion from) clinical studies, to assist patients and physicians in making treatment decisions, provide economic benefits by targeting treatment based on personalized genomic profile, and the like. For example, the recurrence score may be used on samples collected from patients in a clinical trial and the results of the test used in conjunction with patient outcomes in order to determine whether subgroups of patients are more or less likely to demonstrate an absolute benefit from a new drug than the whole group or other subgroups. Further, such methods can be used to identify from clinical data subsets of patients who are expected to benefit from adjuvant therapy. Additionally, a patient is more likely to be included in a clinical trial if the results of the test indicate a higher likelihood that the patient will have a poor clinical outcome if treated with surgery alone and a patient is less likely to be included in a clinical trial if the results of the test indicate a lower likelihood that the patient will have a poor clinical outcome if treated with surgery alone.
STATISTICAL ANALYSIS OF GENE EXPRESSION LEVELS
One skilled in the art will recognize that there are many statistical methods that may be used to determine whether there is a significant relationship between an outcome of interest (e.g., likelihood of survival, likelihood of response to chemotherapy) and expression levels of a marker gene as described here. This relationship can be presented as a continuous recurrence score (RS), or patients may stratified into risk groups (e.g., low, intermediate, high). For example, a Cox proportional hazards regression model may fit to a particular clinical endpoint (e.g., RFS, DFS, OS). One assumption of the Cox proportional hazards regression model is the proportional hazards assumption, i.e. the assumption that effect parameters multiply the underlying hazard.
Coexpression Analysis
The present disclosure provides genes that co-express with particular prognostic and/or predictive gene that has been identified as having a significant correlation to recurrence and/or treatment benefit. To perform particular biological processes, genes often work together in a concerted way, i.e. they are co-expressed. Co-expressed gene significant in the amplified RNA studies described above. The meta-analysis included both fixed-effect and random-effect models, which are further described in L. Hedges and J. Vevea, Psychological Methods 3 (4): 486-504 (1998) and K. Sidik and J. Jonkman, Statistics in Medicine 26:1964-1981 (2006). The results of the validation for all genes identified as having a stastistically significant association with breast cancer clinical outcome are described in Table 13. In those tables, "Est" designates an estimated coefficient of a covariate (gene expression); "SE" is standard error; "t" is the t-score for this estimate (i.e., Est/SE); and "fe" is the fixed estimate of effect from the meta analysis. Several of gene families with significant statistical association with clinical outcome (including metabolic, proliferation, immune, and stromal group genes) in breast cancer were confirmed using the SIB dataset. For example, Table 14 contains analysis of genes included in the metabolic group and Table 15 the stromal group.
EXAMPLE 4:
A co-expression analysis was conducted using microarray data from six (6) breast cancer data sets. The "processed" expression values are taken from the GEO website, however, further processing was necessary. If the expression values are RMA, they are median normalized on the sample level. If the expression values are MAS5.0, they are: (1) changed to 10 if they are <10; (2) log base e transformed; and (3) median normalized on the sample level.
Generating Correlation Pairs: A rank matrix was generated by arranging the expression values for each sample in decreasing order. Then a correlation matrix was created by calculating the Spearman correlation values for every pair of probe IDs. Pairs of probes which had a Spearman value ≥ 0.7 were considered co-expressed. Redundant or overlapping correlation pairs in multiple datasets were identified. For each correlation matrix generated from an array dataset, pairs of significant probes that occur in >1 dataset were identified. This served to filter "non-significant" pairs from the analysis as well as provide extra evidence for "significant" pairs with their presence in multiple datasets. Depending on the number of datasets included in each tissue specific analysis, only pairs which occur in a minimum # or % of datasets were included.
Co-expression cliques were generated using the Bron-Kerbosch algorithm for maximal clique finding in an undirected graph. The algorithm generates three sets of nodes: compsub, candidates, and not. Compsub contains the set of nodes to be extended or shrunk by one depending on its traversal direction on the tree search. Candidates consists of all the above; c) an output device, connected to the computing environment, to provide information to a user (e.g., medical personnel); and d) an algorithm executed by the central computing environment (e.g., a processor), where the algorithm is executed based on the data received by the input device, and wherein the algorithm calculates a, risk, risk score, or treatment group classification, gene co-expression analysis, thresholding, or other functions described herein. The methods provided by the present invention may also be automated in whole or in part.
Manual and Computer-Assisted Methods and Products
The methods and systems described herein can be implemented in numerous ways. In one embodiment of particular interest, the methods involve use of a communications infrastructure, for example the Internet. Several embodiments are discussed below. It is also to be understood that the present disclosure may be implemented in various forms of hardware, software, firmware, processors, or a combination thereof. The methods and systems described herein can be implemented as a combination of hardware and software. The software can be implemented as an application program tangibly embodied on a program storage device, or different portions of the software implemented in the user's computing environment (e.g., as an applet) and on the reviewer's computing environment, where the reviewer may be located at a remote site associated (e.g., at a service provider's facility).
For example, during or after data input by the user, portions of the data processing can be performed in the user-side computing environment. For example, the user-side computing environment can be programmed to provide for defined test codes to denote a likelihood "risk score," where the score is transmitted as processed or partially processed responses to the reviewer's computing environment in the form of test code for subsequent execution of one or more algorithms to provide a results and/or generate a report in the reviewer's computing environment. The risk score can be a numerical score (representative of a numerical value, e.g. likelihood of recurrence based on validation study population) or a non-numerical score representative of a numerical value or range of numerical values (e.g., low, intermediate, or high).
The application program for executing the algorithms described herein may be uploaded to, and executed by, a machine comprising any suitable architecture. In general, the machine involves a computer platform having hardware such as one or more central processing units (CPU), a random access memory (RAM), and input/output (I/O) interface(s). The computer platform also includes an operating system and microinstruction code. The various processes and functions described herein may either be part of the microinstruction code or part of the application program (or a combination thereof) that is executed via the operating system. In addition, various other peripheral devices may be connected to the computer platform such as an additional data storage device and a printing device.
As a computer system, the system generally includes a processor unit. The processor unit operates to receive information, which can include test data (e.g., level of a risk gene, level of a reference gene product(s); normalized level of a gene; and may also include other data such as patient data. This information received can be stored at least temporarily in a database, and data analyzed to generate a report as described above.
Part or all of the input and output data can also be sent electronically; certain output data (e.g., reports) can be sent electronically or telephonically (e.g., by facsimile, e.g., using devices such as fax back). Exemplary output receiving devices can include a display element, a printer, a facsimile device and the like. Electronic forms of transmission and/or display can include email, interactive television, and the like. In an embodiment of particular interest, all or a portion of the input data and/or all or a portion of the output data (e.g., usually at least the final report) are maintained on a web server for access, preferably confidential access, with typical browsers. The data may be accessed or sent to health professionals as desired. The input and output data, including all or a portion of the final report, can be used to populate a patient's medical record which may exist in a confidential database at the healthcare facility.
A system for use in the methods described herein generally includes at least one computer processor (e.g., where the method is carried out in its entirety at a single site) or at least two networked computer processors (e.g., where data is to be input by a user (also referred to herein as a "client") and transmitted to a remote site to a second computer processor for analysis, where the first and second computer processors are connected by a network, e.g., via an intranet or internet). The system can also include a user component(s) for input; and a reviewer component(s) for review of data, generated reports, and manual intervention. Additional components of the system can include a server component(s); and a database(s) for storing data (e.g., as in a database of report elements, e.g., interpretive report elements, or a relational database (RDB) which can include data input by the user and data output. The computer processors can be processors that are typically found in personal desktop computers (e.g., IBM, Dell, Macintosh), portable computers, mainframes, minicomputers, or other computing devices.
The networked client/server architecture can be selected as desired, and can be, for example, a classic two or three tier client server model. A relational database management system (RDMS), either as part of an application server component or as a separate component (RDB machine) provides the interface to the database.
In one example, the architecture is provided as a database-centric client/server architecture, in which the client application generally requests services from the application server which makes requests to the database (or the database server) to populate the report with the various report elements as required, particularly the interpretive report elements, especially the interpretation text and alerts. The server(s) (e.g., either as part of the application server machine or a separate RDB/relational database machine) responds to the client's requests.
The input client components can be complete, stand-alone personal computers offering a full range of power and features to run applications. The client component usually operates under any desired operating system and includes a communication element (e.g., a modem or other hardware for connecting to a network), one or more input devices (e.g., a keyboard, mouse, keypad, or other device used to transfer information or commands), a storage element (e.g., a hard drive or other computer-readable, computer-writable storage medium), and a display element (e.g., a monitor, television, LCD, LED, or other display device that conveys information to the user). The user enters input commands into the computer processor through an input device. Generally, the user interface is a graphical user interface (GUI) written for web browser applications.
The server component(s) can be a personal computer, a minicomputer, or a mainframe and offers data management, information sharing between clients, network administration and security. The application and any databases used can be on the same or different servers.
Other computing arrangements for the client and server(s), including processing on a single machine such as a mainframe, a collection of machines, or other suitable configuration are contemplated. In general, the client and server machines work together to accomplish the processing of the present disclosure.
Where used, the database(s) is usually connected to the database server component and can be any device that will hold data. For example, the database can be a any magnetic or optical storing device for a computer (e.g., CDROM, internal hard drive, tape drive). The database can be located remote to the server component (with access via a network, modem, etc.) or locally to the server component.
Where used in the system and methods, the database can be a relational database that is organized and accessed according to relationships between data items. The relational database is generally composed of a plurality of tables (entities). The rows of a table represent records (collections of information about separate items) and the columns represent fields (particular attributes of a record). In its simplest conception, the relational database is a collection of data entries that "relate" to each other through at least one common field.
Additional workstations equipped with computers and printers may be used at point of service to enter data and, in some embodiments, generate appropriate reports, if desired. The computer(s) can have a shortcut (e.g., on the desktop) to launch the application to facilitate initiation of data entry, transmission, analysis, report receipt, etc. as desired.
Computer-readable storage media
The present disclosure also contemplates a computer-readable storage medium (e.g. CD-ROM, memory key, flash memory card, diskette, etc.) having stored thereon a program which, when executed in a computing environment, provides for implementation of algorithms to carry out all or a portion of the results of a response likelihood assessment as described herein. Where the computer-readable medium contains a complete program for carrying out the methods described herein, the program includes program instructions for collecting, analyzing and generating output, and generally includes computer readable code devices for interacting with a user as described herein, processing that data in conjunction with analytical information, and generating unique printed or electronic media for that user.
Where the storage medium provides a program that provides for implementation of a portion of the methods described herein (e.g., the user-side aspect of the methods (e.g., data input, report receipt capabilities, etc.)), the program provides for transmission of data input by the user (e.g., via the internet, via an intranet, etc.) to a computing environment at a remote site. Processing or completion of processing of the data is carried out at the remote site to generate a report. After review of the report, and completion of any needed manual intervention, to provide a complete report, the complete report is then transmitted back to the user as an electronic document or printed document (e.g., fax or mailed paper report). The storage medium containing a program according to the present disclosure can be packaged with instructions (e.g., for program installation, use, etc.) recorded on a suitable substrate or a web address where such instructions may be obtained. The computer-readable storage medium can also be provided in combination with one or more reagents for carrying out response likelihood assessment (e.g., primers, probes, arrays, or other such kit components).
All aspects of the present invention may also be practiced such that a limited number of additional genes that are co-expressed with the disclosed genes, for example as evidenced by statistically meaningful Pearson and/or Spearman correlation coefficients, are included in a prognostic or predictive test in addition to and/or in place of disclosed genes.
Having described the invention, the same will be more readily understood through reference to the following Examples, which are provided by way of illustration, and are not intended to limit the invention in any way.
EXAMPLE 1:
The study included breast cancer tumor samples obtained from 136 patients diagnosed with breast cancer ("Providence study"). Biostatistical modeling studies of prototypical data sets demonstrated that amplified RNA is a useful substrate for biomarker identification studies. This was verified in this study by including known breast cancer biomarkers along with candidate prognostic genesin the tissues samples. The known biomarkers were shown to be associated with clinical outcome in amplified RNA based on the criteria outlined in this protocol.
Study design
Refer to the original Providence Phase II study protocol for biopsy specimen information. The study looked at the statistical association between clinical outcome and 384candidate biomarkers tested in amplified samples derived from 25 ng of mRNA that was extracted from fixed, paraffin-embedded tissue samples obtained from 136 of the original Providence Phase II study samples. The expression level of the candidate genes was normalized using reference genes. Several reference genes were analyzed in this study: AAMP, ARF1, EEF1A1, ESD, GPS1, H3F3A, HNRPC, RPL13A, RPL41, RPS23, RPS27, SDHA, TCEA1, UBB, YWHAZ, B-actin, GUS, GAPDH, RPLPO, and TFRC.
The 136 samples were split into 3 automated RT plates each with 2X 48 samples and 40 samples and 3 RT positive and negative controls. Quantitative PCR assays were performed in 384 wells without replicate using the QuantiTect Probe PCR Master Mix® (Qiagen). Plates were analyzed on the Light Cycler® 480 and, after data quality control, all samples from the RT plate 3 were repeated and new RT-PCR data was generated. The data was normalized by subtracting the median crossing point (CP) (point at which detection rises above background signal) for five reference genes from the CP value for each individual candidate gene. This normalization is performed on each sample resulting in final data that has been adjusted for differences in overall sample CP. This data set was used for the final data analysis.
Data Analysis
For each gene, a standard z test was run.. (S. Darby, J. Reissland, Journal of the Royal Statistical Society 144(3):298-331 (1981)). This returns a z score (measure of distance in standard deviations of a sample from the mean), p value, and residuals along with other statistics and parameters from the model. If the z score is negative, expression is positively correlated with a good prognosis; if positive, expression is negatively correlated to a good prognosis. Using the p values, a q value was created using a library q value. The poorly correlated and weakly expressed genes were excluded from the calculation of the distribution used for the q values. For each gene, Cox Proportional Hazard Model test was run checking survival time matched with the event vector against gene expression. This returned a hazard ratio (HR) estimating the effect of expression of each gene (individually) on the risk of a cancer-related event. The resulting data is provided in Tables 1-6. A HR < 1 indicates that expression of that gene is positively associated with a good prognosis, while a HR > 1 indicates that expression of that gene is negatively associated with a good prognosis.
EXAMPLE 2: Study design
Amplified samples were derived from 25 ng of mRNA that was extracted from fixed, paraffin-embedded tissue samples obtained from 78 evaluable cases from a Phase II breast cancer study conducted at Rush University Medical Center. Three of the samples failed to provide sufficient amplified RNA at 25 ng, so amplification was repeated a second time with 50 ng of RNA. The study also analyzed several reference genes for use in normalization: AAMP, ARF1, EEF1A1, ESD, GPS1, H3F3A, HNRPC, RPL13A, RPL41, RPS23, RPS27, SDHA, TCEA1, UBB, YWHAZ, Beta-actin, RPLPO, TFRC, GUS, and GAPDH.
Assays were performed in 384 wells without replicate using the QuantiTect Probe PCR Master Mix. Plates were analyzed on the Light Cycler 480 instruments. This data set was used for the final data analysis. The data was normalized by subtracting the median CP for five reference genes from the CP value for each individual candidate gene. This normalization was performed on each sample resulting in final data that was adjusted for differences in overall sample CP.
Data analysis
There were 34 samples with average CP values above 35. However, none of the samples were excluded from analysis because they were deemed to have sufficient valuable information to remain in the study. Principal Component Analysis (PCA) was used to determine whether there was a plate effect causing variation across the different RT plates. The first principal component correlated well with the median expression values, indicating that expression level accounted for most of the variation between samples. Also, there were no unexpected variations between plates.
Data for Other Variables
Group - The patients were divided into two groups (cancer/non-cancer). There was little difference between the two in overall gene expression as the difference between median CP value in each group was minimal (0.7).
Sample Age - The samples varied widely in their overall gene expression but there was a trend toward lower CP values as they decreased in age.
Instrument - The overall sample gene expression from instrument to instrument was consistent. One instrument showed a slightly higher median CP compared to the other three, but it was well within the acceptable variation.
RT Plate - The overall sample gene expression between RT plates was also very consistent. The median CP for each of the 3 RT plates (2 automated RT plates and 1 manual plate containing repeated samples) were all within 1 CP of each other.
Univariate Analyses for Genes Significantly Different Between Study Groups
The genes were analyzed using the z-test and Cox Proportional Hazard Model, as described in Example 1. The resulting data can be seen in Tables 7-12.
EXAMPLE 3:
The statistical correlations between clinical outcome and expression levels of the genes identified in Examples 1 and 2 were validated in breast cancer gene expression datasets maintained by the Swiss Institute of Bioinformatics (SIB). Further information concerning the SIB database, study datasets, and processing methods, is providing in P. Wirapati, et al., Breast Cancer Research 10(4):R65 (2008). Univariate Cox proportional hazards analyses were performed to confirm the relationship between clinical outcome (DFS, MFS, OS) of breast cancer patients and expression levels of the genes identified as groups identified for a disease process like cancer can serve as biomarkers for disease progression and response to treatment. Such co-expressed genes can be assayed in lieu of, or in addition to, assaying of the prognostic and/or predictive gene with which they are co-expressed.
One skilled in the art will recognize that many co-expression analysis methods now known or later developed will fall within the scope of the present claims. These methods may incorporate, for example, correlation coefficients, co-expression network analysis, clique analysis, etc., and may be based on expression data from RT-PCR, microarrays, sequencing, and other similar technologies. For example, gene expression clusters can be identified using pair-wise analysis of correlation based on Pearson or Spearman correlation coefficients. (See, e.g., Pearson K. and Lee A., Biometrika 2, 357 (1902); C. Spearman, Amer. J. Psychol 15:72-101 (1904); J. Myers, A. Well, Research Design and Statistical Analysis, p. 508 (2nd Ed., 2003).) In general, a correlation coefficient of equal to or greater than 0.3 is considered to be statistically significant in a sample size of at least 20. (See, e.g., G. Norman, D. Streiner, Biostatistics: The Bare Essentials, 137-138 (3rd Ed. 2007).) In one embodiment disclosed herein, co-expressed genes were identified using a Spearman correlation value of at least 0.7.
Computer program
The values from the assays described above, such as expression data, recurrence score, treatment score and/or benefit score, can be calculated and stored manually. Alternatively, the above-described steps can be completely or partially performed by a computer program product. The present disclosure thus provides a computer program product including a computer readable storage medium having a computer program stored on it. The program can, when read by a computer, execute relevant calculations based on values obtained from analysis of one or more biological sample from an individual (e.g., gene expression levels, normalization, thresholding, and conversion of values from assays to a score and/or graphical depiction of likelihood of recurrence/response to chemotherapy, gene co-expression or clique analysis, and the like). The computer program product has stored therein a computer program for performing the calculation.
The present disclosure provides systems for executing the program described above, which system generally includes: a) a central computing environment; b) an input device, operatively connected to the computing environment, to receive patient data, wherein the patient data can include, for example, expression level or other value obtained from an assay using a biological sample from the patient, or microarray data, as described in detail nodes eligible to be added to compsub. Not contains the set of nodes that have been added to compsub and are now excluded from extension. The algorithm consists of five steps: selection of a candidate; adding the candidate node to compsub; creating new sets candidates and not from the old sets by removing all points not connected to the candidate node; recursively calling the extension operator on the new candidates and not sets; and upon return, remove the candidate node from compsub and place in the old not set.
There was a depth-first search with pruning, and the selection of candidate nodes had an effect on the run time of the algorithm. By selecting nodes in decreasing order of frequency in the pairs, the run time was optimized. Also, recursive algorithms generally cannot be implemented in a multi-threaded manner, but was multi-threaded the extension operator of the first recursive level. Since the data between the threads were independent because they were at the top-level of the recursive tree, they were run in parallel.
Clique Mapping and Normalization: Since the members of the co-expression pairs and cliques are at the probe level, one must map the probe IDs to genes (or Refseqs) before they can be analyzed. The Affymetrix gene map information was used to map every probe ID to a gene name. Probes may map to multiple genes, and genes may be represented by multiple probes. The data for each clique is validated by manually calculating the correlation values for each pair from a single clique.
The results of this co-expression analysis are set forth in Tables 16-18. TABLE A
Gene Sequence ID Official Symbol F Primer Seq SEQ ID NO: R Primer Seq SEQ ID NO: Probe Seq SEQ ID NO: Target Seq Length Amplicon Sequence SEQ ID NO:
A-Catenin NM_001903.1 CTNNAI 1 385 769 78 1153
AAMP NM_001087.3 AAMP 2 386 770 66 1154
ABCB1 NM_000927.2 ABCB1 3 387 771 77 1155
ABCC10 NM_033450.2 ABCC10 4 388 772 68 1156
ABCC5 NM_005688.1 ABCC5 5 389 773 76 1157
ABR NM_001092.3 ABR 6 390 774 67 1158
ACTR2 NM_005722.2 ACTR2 7 391 775 66 1159
ACVR2B NM_001106.2 ACVR2B 8 392 776 74 1160
AD024 NM_020675.3 SPC25 9 393 777 74 1161
ADAM12 NM_021641.2 ADAM12 10 394 778 66 1162
ADAM17 NM_003183.3 ADAM17 11 395 779 73 1163
ADAM23 NM_003812.1 ADAM23 12 396 780 62 1164
ADAMTS8 NM_007037.2 ADAMTS8 13 397 781 72 1165
ADM NM_001124.1 ADM 14 398 782 75 1166
AES NM_001130.4 AES 15 399 783 78 1167
AGR2 NM_006408.2 AGR2 16 400 784 70 1168
AK055699 NM_194317 LYPD6 17 401 785 78 1169
AKR7A3 NM_012067.2 AKR7A3 18 402 786 67 1170
AKT3 NM_005465.1 AKT3 19 403 787 75 1171
ALCAM NM_001627.1 ALCAM 20 404 788 66 1172
ALDH4 NM_003748.2 ALDH4A1 21 405 789 68 1173
ANGPT2 NM_001147.1 ANGPT2 22 406 790 69 1174
ANXA2 NM_004039.1 ANXA2 23 407 791 71 1175
AP-1 (JUN official) NM_002228.2 JUN 24 408 792 81 1176
APEX-1 NM_001641.2 APEX1 25 409 793 68 1177
APOD NM_001647.1 APOD 26 410 794 67 1178
ARF1 NM_001658.2 ARF1 27 411 795 64 1179
ARHI NM_004675.1 DIRAS3 28 412 796 67 1180
ARNT2 NM_014862.3 ARNT2 29 413 797 68 1181
ARSD NM_001669.1 ARSD 30 414 798 79 1182
AURKB NM_004217.1 AURKB 31 415 799 67 1183
B-actin NM_001101.2 ACTB 32 416 800 66 1184
B-Catenin NM_001904.1 CTNNB1 33 417 801 80 1185
BAD NM_032989.1 BAD 34 418 802 73 1186
BAG1 NM_004323.2 BAG1 35 419 803 81 1187
BAG4 NM_004874.2 BAG4 36 420 804 76 1188
BASE NM_173859.1 37 421 805 72 1189
Bax NM_004324.1 BAX 38 422 806 70 1190
BBC3 NM_014417.1 BBC3 39 423 807 83 1191
BCAR1 NM_014567.1 BCAR1 40 424 808 65 1192
BCAR3 NM_003567.1 BCAR3 41 425 809 75 1193
BCAS1 NM_003657.1 BCAS1 42 426 810 73 1194
Bcl2 NM_000633.1 BCL2 43 427 811 73 1195
BCL2L12 NM_138639.1 BCL2L12 44 428 812 73 1196
BGN NM_001711.3 BGN 45 429 813 66 1197
BIK NM_001197.3 BIK 46 430 814 70 1198
BNIP3 NM_004052.2 BNIP3 47 431 815 68 1199
BSG NM_001728.2 BSG 48 432 816 66 1200
BTRC NM_033637.2 BTRC 49 433 817 63 1201
BUB1 NM_004336.1 BUB1 50 434 818 68 1202
BUB1B NM_001211.3 BUB1B 51 435 819 82 1203
BUB3 NM_004725.1 BUB3 52 436 820 73 1204
c-kit NM_000222.1 KIT 53 437 821 75 1205
C10orf116 NM_006829.2 C10orf116 54 438 822 67 1206
C17orf37 NM_032339.3 C17orf37 55 439 823 67 1207
C20 orf1 NM_012112 TPX2 56 440 824 65 1208
C6orf66 NM_014165.1 NDUFAF4 57 441 825 70 1209
C8orf4 NM_020130.2 C8orf4 58 442 826 67 1210
CACNA2D 2 NM_006030.1 CACNA2D 2 59 443 827 67 1211
CAT NM_001752.1 CAT 60 444 828 78 1212
CAV1 NM_001753.3 CAV1 61 445 829 74 1213
CBX5 NM_012117.1 CBX5 62 446 830 78 1214
CCL19 NM_006274.2 CCL19 63 447 831 78 1215
CCL3 NM_002983.1 CCL3 64 448 832 77 1216
CCL5 NM_002985.2 CCL5 65 449 833 65 1217
CCNB1 NM_031966.1 CCNB1 66 450 834 84 1218
CCND3 NM_001760.2 CCND3 67 451 835 76 1219
CCNE2 variant 1 NM_057749var 1 CCNE2 68 452 836 85 1220
CCR5 NM_000579.1 CCR5 69 453 837 67 1221
CCR7 NM_001838.2 CCR7 70 454 838 64 1222
CD1A NM_001763.1 CD1A 71 455 839 78 1223
CD24 NM_013230.1 CD24 72 456 840 77 1224
CD4 NM_000616.2 CD4 73 457 841 67 1225
CD44E X55150 74 458 842 90 1226
CD44s M59040.1 75 459 843 78 1227
CD44v6 AJ251595v6 76 460 844 78 1228
CD68 NM_001251.1 CD68 77 461 845 74 1229
CD82 NM_002231.2 CD82 78 462 846 84 1230
CDC20 NM_001255.1 CDC20 79 463 847 68 1231
cdc25A NM_001789.1 CDC25A 80 464 848 71 1232
CDC25C NM_001790.2 CDC25C 81 465 49 67 1233
CDC4 NM_018315.2 FBXW7 82 466 850 77 1234
CDC42BP A NM_003607.2 CDC42BPA 83 467 851 67 1235
CDC42EP4 NM_012121.4 CDC42EP4 84 468 852 67 1236
CDH11 NM_001797.2 CDH11 85 469 853 70 1237
CDH3 NM_001793.3 CDH3 86 470 854 71 1238
CDK4 NM_000075.2 CDK4 87 471 855 66 1239
CDK5 NM_004935.2 CDK5 88 472 856 67 1240
CDKN3 NM_005192.2 CDKN3 89 473 857 70 1241
CEACAM1 NM_001712.2 CEACAM1 90 474 858 71 1242
CEBPA NM_004364.2 CEBPA 91 475 859 66 1243
CEGP1 NM_020974.1 SCUBE2 92 476 860 77 1244
CENPA NM_001809.2 CENPA 93 477 861 63 1245
CGA (CHGA official) NM_001275.2 CHGA 94 478 862 76 1246
CGalpha NM_000735.2 CGA 95 479 863 69 1247
CGB NM_000737.2 CGB 96 480 864 80 1248
CHAF1B NM_005441.1 CHAF1B 97 481 865 72 1249
CHFR NM_018223.1 CHFR 98 482 866 76 1250
CHI3L1 NM_001276.1 CHI3L1 99 483 867 66 1251
CKS2 NM_001827.1 CKS2 100 484 CTGCGCCCGCTCTTCGCG 868 62 1252
Claudin 4 NM_001305.2 CLDN4 101 485 869 72 1253
CLIC1 NM_001288.3 CLIC1 102 486 870 68 1254
CLU NM_001831.1 CLU 103 487 871 76 1255
CNOT2 NM_014515.3 CNOT2 104 488 872 67 1256
COL1A1 NM_000088.2 COL1A1 105 489 873 68 1257
COL1A2 NM_000089.2 COL1A2 106 490 874 80 1258
COMT NM_000754.2 COMT 107 491 875 67 1259
Contig 51037 NM_198477 CXCL17 108 492 876 81 1260
COPS3 NM_003653.2 COPS3 109 493 877 72 1261
CRYAB NM_001885.1 CRYAB 110 494 878 69 1262
CRYZ NM_001889.2 CRYZ 111 495 879 78 1263
CSF1 isoC NM_172211.1 CSF1 112 496 880 68 1264
CSF1 NM_000757.3 CSF1 113 497 881 74 1265
CSF1R NM_005211.1 CSF1R 114 498 882 80 1266
CSF2RA NM_006140.3 CSF2RA 115 499 883 67 1267
CSK (SRC) NM_004383.1 CSK 116 500 884 64 1268
CTGF NM_001901.1 CTGF 117 501 885 76 1269
CTHRC1 NM_138455.2 CTHRC1 118 502 886 67 1270
CTSD NM_001909.1 CTSD 119 503 887 80 1271
CTSL2 NM_001333.2 CTSL2 120 504 888 67 1272
CTSL2int2 NM_001333.2in t2 121 505 889 79 1273
CXCL10 NM_001565.1 CXCL10 122 506 890 68 1274
CXCL12 NM_000609.3 CXCL12 123 507 891 67 1275
CXCL14 NM_004887.3 CXCL14 124 508 892 74 1276
CXCR4 NM_003467.1 CXCR4 125 509 893 72 1277
CYP17A1 NM_000102.2 CYP17A1 126 510 894 76 1278
CYP19A1 NM_000103.2 CYP19A1 127 511 895 70 1279
CYP1B1 NM_000104.2 CYP1B1 128 512 896 71 1280
CYR61 NM_001554.3 CYR61 129 513 897 76 1281
DAB2 NM_001343.1 DAB2 130 514 898 67 1282
DCC NM_005215.1 DCC 131 515 899 75 1283
DCC_exons 18-23 X76132_18-23 132 516 900 66 1284
DCC_exons 6-7 X76132_6-7 133 517 901 74 1285
DCK NM_000788.1 DCK 134 518 902 110 1286
DICER1 NM_177438.1 DICER1 135 519 903 68 1287
DLC1 NM_006094.3 DLC1 136 520 904 68 1288
DLL4 NM_019074.2 DLL4 137 521 905 67 1289
DR5 NM_003842.2 TNFRSF10 B 138 522 906 84 1290
DSP NM_004415.1 DSP 139 523 907 73 1291
DTYMK NM_012145.1 DTYMK 140 524 908 78 1292
DUSP1 NM_004417.2 DUSP1 141 525 909 76 1293
DUSP4 NM_001394.4 DUSP4 142 526 910 68 1294
E2F1 NM_005225.1 E2F1 143 527 911 75 1295
EBRP AF243433.1 144 528 912 76 1296
EDN1 endothelin NM_001955.1 EDN1 145 529 913 73 1297
EDN2 NM_001956.2 EDN2 146 530 914 79 1298
EDNRA NM_001957.1 EDNRA 147 531 915 76 1299
EDNRB NM_000115.1 EDNRB 148 532 916 72 1300
EEF1A1 NM_001402.5 EEF1A1 149 533 917 67 1301
EEF1A2 NM_001958.2 EEF1A2 150 534 918 66 1302
EFP NM_005082.2 TRIM25 151 535 919 74 1303
EGR1 NM_001964.2 EGR1 152 536 920 76 1304
EGR3 NM_004430.2 EGR3 153 537 921 78 1305
EIF4EBP1 NM_004095.2 EIF4EBP1 154 538 922 66 1306
ELF3 NM_004433.2 ELF3 155 539 923 71 1307
EMP1 NM_001423.1 EMP1 156 540 924 75 1308
ENO1 NM_001428.2 ENO1 157 541 925 68 1309
EP300 NM_001429.1 EP300 158 542 926 75 1310
EpCAM NM_002354.1 EPCAM 159 543 927 75 1311
EPHA2 NM_004431.2 EPHA2 160 544 928 72 1312
EPHB2 NM_004442.4 EPHB2 161 545 929 66 1313
EPHB4 NM_004444.3 EPHB4 162 546 930 77 1314
ER2 NM_001437.1 ESR2 163 547 931 76 1315
ERBB4 NM_005235.1 ERBB4 164 548 932 86 1316
ERCC1 NM_001983.1 ERCC1 165 549 933 67 1317
ERG NM_004449.3 ERG 166 550 934 70 1318
ERRa NM_004451.3 ESRRA 167 551 935 67 1319
ESD NM_001984.1 ESD 168 552 936 66 1320
ESPL1 NM_012291.1 ESPL1 169 553 937 70 1321
ESRRG NM_001438.1 ESRRG 170 554 938 67 1322
EstR1 NM_000125.1 ESR1 171 555 939 68 1323
ETV5 NM_004454.1 ETV5 172 556 940 67 1324
EZH2 NM_004456.3 EZH2 173 557 941 78 1325
F3 NM_001993.2 F3 174 558 942 73 1326
FAP NM_004460.2 FAP 175 559 943 66 1327
FASN NM_004104.4 FASN 176 560 944 66 1328
FGFR2 isoform 1 NM_000141.2 FGFR2 177 561 945 80 1329
FGFR4 NM_002011.3 FGFR4 178 562 946 81 1330
FHIT NM_002012.1 FHIT 179 563 947 67 1331
FLOT2 NM_004475.1 FLOT2 180 564 948 66 1332
FN1 NM_002026.2 FN1 181 565 949 69 1333
FOS NM_005252.2 FOS 182 566 950 67 1334
FOXC2 NM_005251.1 FOXC2 183 567 951 66 1335
FOXO3A NM_001455.1 FOXO3 184 568 952 83 1336
FOXP1 NM_032682.3 FOXP1 185 569 953 70 1337
FOXP3 NM_014009.2 FOXP3 186 570 954 66 1338
FSCN1 NM_003088.1 FSCN1 187 571 955 74 1339
FUS NM_004960.1 FUS 188 572 956 80 1340
FYN NM_002037.3 FYN 189 573 957 69 1341
G-Catenin NM_002230.1 JUP 190 574 958 68 1342
GAB2 NM_012296.2 GAB2 191 575 959 74 1343
GADD45 NM_001924.2 GADD45A 192 576 960 73 1344
GADD45B NM_015675.1 GADD45B 193 577 961 70 1345
GAPDH NM_002046.2 GAPDH 194 578 962 74 1346
GATA3 NM_00205 1.1 GATA3 195 579 963 75 1347
GBP1 NM_002053.1 GBP1 196 580 964 73 1348
GBP2 NM_004120.2 GBP2 197 581 965 83 1349
GCLM NM_002061.1 GCLM 198 582 966 85 1350
GDF15 NM_004864.1 GDF15 199 583 967 72 1351
GH1 NM_000515.3 GH1 200 584 968 66 1352
GJA1 NM_000165.2 GJA1 201 585 969 68 1353
GJB2 NM_004004.3 GJB2 202 586 970 74 1354
GMNN NM_015895.3 GMNN 203 587 971 67 1355
GNAZ NM_002073.2 GNAZ 204 588 972 68 1356
GPR30 NM_001505.1 GPER 205 589 973 70 1357
GPS1 NM_004127.4 GPS1 206 590 974 66 1358
GPX1 NM_000581.2 GPX1 207 591 975 67 1359
GPX2 NM_002083.1 GPX2 208 592 976 75 1360
GPX4 NM_002085.1 GPX4 209 593 977 66 1361
GRB7 NM_005310.1 GRB7 210 594 978 67 1362
GREB1 variant a NM_014668.2 GREB1 211 595 979 71 1363
GREB1 variant b NM_033090.1 GREB1 212 596 980 73 1364
GREB1 variant c NM_148903.1 GREB1 213 597 981 64 1365
GRN NM_002087.1 GRN 214 598 982 72 1366
GSTM1 NM_000561.1 GSTM1 215 599 983 86 1367
GSTM2 gene NM_000848gen e 216 600 984 71 1368
GSTM2 NM_000848.2 GSTM2 217 601 985 68 1369
GSTM3 NM_000849.3 GSTM3 218 602 986 76 1370
GSTT1 NM_000853.1 GSTT1 219 603 987 66 1371
GUS NM_000181.1 GUSB 220 604 988 73 1372
H3F3A NM_002107.3 H3F3A 221 605 989 70 1373
HDAC1 NM_004964.2 HDAC1 222 606 990 74 1374
HDAC6 NM_006044.2 HDAC6 223 607 991 66 1375
HER2 NM_004448.1 ERBB2 224 608 992 70 1376
HES1 NM_005524.2 HES1 225 609 993 68 1377
HGFAC NM_001528.2 HGFAC 226 610 994 72 1378
HLA-DPB1 NM_002121.4 HLA-DPB1 227 611 995 73 1379
HMGB 1 NM_002128.3 HMGB 1 228 612 996 71 1380
HNF3A NM_004496.1 FOXA1 229 613 997 73 1381
HNRPAB NM_004499.3 HNRNPAB 230 614 998 84 1382
HNRPC NM_004500.3 HNRNPC 231 615 999 68 1383
HoxA1 NM_005522.3 HOXA1 232 616 1000 69 1384
HoxA5 NM_019102.2 HOXA5 233 617 1001 78 1385
HOXB13 NM_006361.2 HOXB13 234 618 1002 71 1386
HOXB7 NM_004502.2 HOXB7 235 619 1003 68 1387
HSD17B1 NM_000413.1 HSD17B1 236 620 1004 78 1388
HSD17B2 NM_002153.1 HSD17B2 237 621 1005 68 1389
HSHIN1 NM_017493.3 OTUD4 238 622 1006 77 1390
HSPA1A NM_005345.4 HSPA1A 239 623 1007 70 1391
HSPA1B NM_005346.3 HSPA1B 240 624 1008 63 1392
HSPA4 NM_002154.3 HSPA4 241 625 1009 72 1393
HSPA5 NM_005347.2 HSPA5 242 626 1010 84 1394
HSPA8 NM_006597.3 HSPA8 243 627 1011 73 1395
HSPB1 NM_001540.2 HSPB1 244 628 1012 84 1396
IBSP NM_004967.2 IBSP 245 629 1013 83 1397
ICAM1 NM_000201.1 ICAM1 246 630 1014 68 1398
ID1 NM_002165.1 ID1 247 631 1015 70 1399
ID4 NM_001546.2 ID4 248 632 1016 83 1400
IDH2 NM_002168.2 IDH2 249 633 1017 74 1401
IGF1R NM_000875.2 IGF1R 250 634 1018 83 1402
IGF2 NM_000612.2 IGF2 251 635 1019 72 1403
IGFBP6 NM_002178.1 IGFBP6 252 636 1020 77 1404
IGFBP7 NM_001553.1 IGFBP7 253 637 1021 68 1405
IKBKE NM_014002.2 IKBKE 254 638 1022 66 1406
IL-8 NM_000584.2 IL8 255 639 1023 70 1407
IL10 NM_000572.1 IL10 256 640 1024 79 1408
IL11 NM_000641.2 IL11 257 641 1025 66 1409
IL17RB NM_018725.2 IL17RB 258 642 1026 76 1410
IL6ST NM_002184.2 IL6ST 259 643 1027 74 1411
ING1 NM_005537.2 ING1 260 644 1028 66 1412
INHBA NM_002192.1 INHBA 261 645 1029 72 1413
IRF1 NM_002198.1 IRF1 262 646 1030 69 1414
IRS1 NM_005544.1 IRS1 263 647 1031 74 1415
ITGA3 NM_002204.1 ITGA3 264 648 1032 77 1416
ITGA4 NM_000885.2 ITGA4 265 649 1033 66 1417
ITGA5 NM_002205.1 ITGA5 266 650 1034 75 1418
ETGA6 NM_000210.1 ETGA6 267 651 1035 69 1419
ITGAV NM_002210.2 ITGAV 268 652 1036 79 1420
ITGB1 NM_002211.2 ITGB1 269 653 1037 74 1421
ITGB3 NM_000212.2 ITGB3 270 654 1038 78 1422
ITGB4 NM_000213.2 ITGB4 271 655 1039 66 1423
ITGB5 NM_002213.3 ITGB5 272 656 1040 71 1424
JAG1 NM_000214.1 JAG1 273 657 1041 69 1425
JUNB NM_002229.2 JUNB 274 658 1042 70 1426
Ki-67 NM_002417.1 MKI67 275 659 1043 80 1427
KIAA0555 NM_014790.3 JAKMIP2 276 660 1044 67 1428
KIAA1199 NM_018689.1 KIAA1199 277 661 1045 66 1429
KIF14 NM_014875.1 KIF14 278 662 1046 69 1430
KIF20A NM_005733.1 KIF20A 279 663 1047 67 1431
KIF2C NM_006845.2 KIF2C 280 664 1048 73 1432
KLK11 NM_006853.1 KLK11 281 665 1049 66 1433
KLK6 NM_002774.2 KLK6 282 666 1050 78 1434
KLRC1 NM_002259.3 KLRC1 283 667 1051 67 1435
KNSL2 BC000712.1 284 668 1052 77 1436
KNTC2 NM_006101.1 NDC80 285 669 1053 71 1437
KPNA2 NM_002266.1 KPNA2 286 670 1054 67 1438
L1CAM NM_000425.2 L1CAM 287 671 1055 66 1439
LAMA3 NM_000227.2 LAMA3 288 672 1056 73 1440
LAMA5 NM_005560.3 LAMA5 289 673 1057 67 1441
LAMB1 NM_002291.1 LAMB1 290 674 1058 66 1442
LAMB3 NM_000228.1 LAMB3 291 675 1059 67 1443
LAMC2 NM_005562.1 LAMC2 292 676 1060 80 1444
LAPTM4B NM_018407.4 LAPTM4B 293 677 1061 67 1445
LGALS3 NM_002306.1 LGALS3 294 678 1062 69 1446
LIMK1 NM_016735.1 295 679 1063 67 1447
LIMS 1 NM_004987.3 LIMS1 296 680 1064 71 1448
LMNB1 NM_005573.1 LMNB1 297 681 1065 66 1449
LOX NM_002317.3 LOX 298 682 1066 66 1450
LRIG1 NM_015541.1 299 683 1067 67 1451
LSM1 NM_014462.1 LSM1 300 684 1068 66 1452
LTBP1 NM_ 206943.1 LTBP1 301 685 1069 67 1453
LYRIC NM_178812.2 MTDH 302 686 1070 67 1454
MAD1L1 NM_003550.1 MAD1L1 303 687 1071 67 1455
MCM2 NM_004526.1 MCM2 304 688 1072 75 1456
MELK NM_014791.1 MELK 305 689 1073 70 1457
MGMT NM_002412.1 MGMT 306 690 1074 69 1458
mGST1 NM_020300.2 MGST1 307 691 1075 79 1459
MMP1 NM_002421.2 MMP1 308 692 1076 72 1460
MMP12 NM_002426.1 MMP12 309 693 1077 78 1461
MMP2 NM_004530.1 MMP2 310 694 1078 86 1462
MMP7 NM_002423.2 MMP7 311 695 1079 79 1463
MMP8 NM_002424.1 MMP8 312 696 1080 79 1464
MMTV-like env AF346816.1 313 697 1081 72 1465
MNAT1 NM_002431.1 MNAT1 314 698 1082 75 1466
MRP1 NM_004996.2 ABCC1 315 699 1083 79 1467
MRP3 NM_003786.2 ABCC3 316 700 1084 91 1468
MS4A1 NM_021950.2 MS4A1 317 701 1085 70 1469
MSH2 NM_00025 1.1 MSH2 318 702 1086 73 1470
MTA3 XM_038567 319 703 1087 69 1471
MX1 NM_002462.2 MX1 320 704 1088 78 1472
MYBL2 NM_002466.1 MYBL2 321 705 1089 74 1473
NAT1 NM_000662.4 NAT1 322 706 1090 75 1474
NAT2 NM_000015.1 NAT2 323 707 1091 73 1475
NRG1 NM_013957.1 NRG1 324 708 1092 83 1476
OPN, osteopontin NM_000582.1 SPP1 325 709 1093 80 1477
p16-INK4 L27211.1 326 710 1094 76 1478
PAI1 NM_000602.1 SERPINE1 327 711 1095 81 1479
PGF NM_002632.4 PGF 328 712 1096 71 1480
PR NM_000926.2 PGR 329 713 1097 85 1481
PRDX1 NM_002574.2 PRDX1 330 714 1098 67 1482
PTEN NM_000314.1 PTEN 331 715 1099 81 1483
PTP4A3 NM_007079.2 PTP4A3 332 716 1100 70 1484
RhoB NM_004040.2 RHOB 333 717 1101 67 1485
RPL13A NM_012423.2 RPL13A 334 718 1102 68 1486
RPL41 NM_021104.1 RPL41 335 719 1103 66 1487
RPLPO NM_001002.2 RPLP0 336 720 1104 75 1488
RPS23 NM_001025.1 RPS23 337 721 1105 67 1489
RPS27 NM_001030.3 RPS27 338 722 1106 80 1490
RRM1 NM_001033.1 RRM1 339 723 1107 66 1491
RRM2 NM_001034.1 RRM2 340 724 1108 71 1492
RUNX1 NM_001754.2 RUNX1 341 725 1109 69 1493
S100A10 NM_002966.1 S100A10 342 726 1110 77 1494
S100A2 NM_005978.2 S100A2 343 727 1111 73 1495
S100A4 NM_002961.2 S100A4 344 728 1112 70 1496
S100A7 NM_002963.2 S100A7 345 729 1113 75 1497
S100A8 NM_002964.3 S100A8 346 730 1114 76 1498
S100A9 NM_002965.3 S100A9 347 731 1115 67 1499
S100B NM_006272.1 S100B 348 732 1116 70 1500
S100G NM_004057.2 S100G 349 733 1117 67 1501
S100P NM_005980.2 S100P 350 734 1118 67 1502
SDHA NM_004168.1 SDHA 351 735 1119 67 1503
SEMA3F NM_004186.1 SEMA3F 352 736 1120 86 1504
SFRP2 NM_003013.2 SFRP2 353 737 1121 66 1505
SIR2 NM_012238.3 SIRT1 354 738 1122 72 1506
SKIL NM_005414.2 SKIL 355 739 1123 66 1507
SKP2 NM_005983.2 SKP2 356 740 1124 71 1508
SLPI NM_003064.2 SLPI 357 741 1125 74 1509
SNAI1 NM_005985.2 SNAI1 358 742 1126 69 1510
STK15 NM_003600.1 AURKA 359 743 1127 69 1511
STMN1 NM_005563.2 STMN1 360 744 1128 71 1512
STMY3 NM_005940.2 MMP11 361 745 1129 90 1513
SURV NM_001168.1 BIRC5 362 746 1130 80 1514
SYK NM_003177.1 SYK 363 747 1131 85 1515
TAGLN NM_003186.2 TAGLN 364 748 1132 73 1516
TCEA1 NM_201437.1 TCEA1 365 749 1133 72 1517
TFRC NM_003234.1 TFRC 366 750 1134 68 1518
TGFB2 NM_003238.1 TGFB2 367 751 1135 75 1519
TGFB3 NM_003239.1 TGFB3 368 752 1136 65 1520
TGFBR2 NM_003242.2 TGFBR2 369 753 1137 66 1521
TIMP3 NM_000362.2 TIMP3 370 754 1138 67 1522
TNFRSF11 A NM_003839.2 TNFRSF11 A 371 755 1139 67 1523
TNFRSF11 B NM_002546.2 TNFRSF11 B 372 756 1140 67 1524
TNFSF11 NM_003701.2 TNFSF11 373 757 1141 71 1525
TWIST1 NM_000474.2 TWIST1 374 758 1142 64 1526
UBB NM_018955.1 UBB 375 759 1143 522 1527
VCAM1 NM_001078.2 VCAM1 376 760 1144 89 1528
VIM NM_003380.1 VIM 377 761 1145 72 1529
VTN NM_000638.2 VTN 378 762 1146 67 1530
WAVE3 NM_006646.4 WASF3 379 763 1147 68 1531
WISP1 NM_003882.2 WISP1 380 764 1148 75 1532
Wnt-5a NM_003392.2 WNT5A 381 765 1149 75 1533
Wnt-5b NM_032642.2 WNT5B 382 766 1150 79 1534
WWOX NM_016373.1 WWOX 383 767 1151 74 1535
YWHAZ NM_003406.2 YWHAZ 384 768 1152 81 1536
Table 1: Cox proportional hazards for Prognostic Genes that are positively associated with good prognosis for breast cancer (Providence study)
GSTM2 -4.306 0.525 0.000
IL6ST -3.730 0.522 0.000
CEGP1 -3.712 0.756 0.000
Bcl2 -3.664 0.555 0.000
GSTM1 -3.573 0.679 0.000
ERBB4 -3.504 0.767 0.000
GADD45 -3.495 0.601 0.000
PR -3.474 0.759 0.001
GPR30 -3.348 0.660 0.001
CAV1 -3.344 0.649 0.001
C10orf116 -3.194 0.681 0.001
DR5 -3.102 0.543 0.002
DICER1 -3.097 0.296 0.002
EstR1 -2.983 0.825 0.003
BTRC -2.976 0.639 0.003
GSTM3 -2.931 0.722 0.003
GATA3 -2.874 0.745 0.004
DLC1 -2.858 0.564 0.004
CXCL14 -2.804 0.693 0.005
IL17RB -2.796 0.744 0.005
C8orf4 -2.786 0.699 0.005
FOXO3A -2.786 0.617 0.005
TNFRSF11B -2.690 0.739 0.007
BAG1 -2.675 0.451 0.008
SNAI1 -2.632 0.692 0.009
TGFB3 -2.617 0.623 0.009
NAT1 -2.576 0.820 0.010
FUS -2.543 0.376 0.011
F3 -2.527 0.705 0.012
GSTM2 gene -2.461 0.668 0.014
EPHB2 -2.451 0.708 0.014
LAMA3 -2.448 0.778 0.014
BAD -2.425 0.506 0.015
IGF1R -2.378 0.712 0.017
RUNX1 -2.356 0.511 0.018
ESRRG -2.289 0.825 0.022
HSHIN1 -2.275 0.371 0.023
CXCL12 -2.151 0.623 0.031
IGFBP7 -2.137 0.489 0.033
SKIL -2.121 0.593 0.034
PTEN -2.110 0.449 0.035
AKT3 -2.104 0.665 0.035
MGMT -2.060 0.571 0.039
LRIG1 -2.054 0.649 0.040
S100B -2.024 0.798 0.043
GREB1 variant a -1.996 0.833 0.046
CSF1 -1.976 0.624 0.048
ABR -1.973 0.575 0.048
AK055699 -1.972 0.790 0.049
Table 2: Cox proportional hazards for Prognostic Genes that are negatively associated with good prognosis for breast cancer (Providence study)
S100A7 1.965 1.100 0.049
MCM2 1.999 1.424 0.046
Contig 51037 2.063 1.185 0.039
S100P 2.066 1.170 0.039
ACTR2 2.119 2.553 0.034
MYBL2 2.158 1.295 0.031
DUSP1 2.166 1.330 0.030
HOXB13 2.192 1.206 0.028
SURV 2.216 1.329 0.027
MELK 2.234 1.336 0.026
HSPA8 2.240 2.651 0.025
cdc25A 2.314 1.478 0.021
C20_orf1 2.336 1.497 0.019
LMNB1 2.387 1.682 0.017
S100A9 2.412 1.185 0.016
CENPA 2.419 1.366 0.016
CDC25C 2.437 1.384 0.015
GAPDH 2.498 1.936 0.012
KNTC2 2.512 1.450 0.012
PRDX1 2.540 2.131 0.011
RRM2 2.547 1.439 0.011
ADM 2.590 1.445 0.010
ARF1 2.634 2.973 0.008
E2F1 2.716 1.486 0.007
TFRC 2.720 1.915 0.007
STK15 2.870 1.860 0.004
LAPTM4B 2.880 1.538 0.004
EpCAM 2.909 1.919 0.004
ENO1 2.958 2.232 0.003
CCNB1 3.003 1.738 0.003
BUB1 3.018 1.590 0.003
Claudin 4 3.034 2.151 0.002
CDC20 3.056 1.555 0.002
Ki-67 3.329 1.717 0.001
KPNA2 3.523 1.722 0.000
IDH2 3.994 1.638 0.000
Table 3: Cox proportional hazards for Prognostic Genes that are positively associated with good prognosis for ER-negative (ER0) breast cancer (Providence study)
SYK 0.185 -2.991 0.003
Wnt-5a 0.443 -2.842 0.005
WISP1 0.455 -2.659 0.008
CYR61 0.405 -2.484 0.013
GADD45 0.520 -2.474 0.013
TAGLN 0.364 -2.376 0.018
TGFB3 0.465 -2.356 0.018
INHBA 0.610 -2.255 0.024
CDH11 0.584 -2.253 0.024
CHAF1B 0.551 -2.113 0.035
ITGAV 0.192 -2.101 0.036
SNAI1 0.655 -2.077 0.038
IL11 0.624 -2.026 0.043
KIAA1199 0.692 -2.005 0.045
TNFRSF11B 0.659 -1.989 0.047
Table 4: Cox proportional hazards for Prognostic Genes that are negatively associated with good prognosis for ER-negative (ER0) breast cancer (Providence study)
RPL41 3.547 2.062 0.039
Claudin 4 2.883 2.117 0.034
LYRIC 4.029 2.364 0.018
TFRC 3.223 2.596 0.009
VTN 2.484 3.205 0.001
Table 5: Cox proportional hazards for Prognostic Genes that are positively associated with good prognosis for ER-positive (ER1) breast cancer (Providence study)
DR5 0.428 -3.478 0.001
GSTM2 0.526 -3.173 0.002
HSHIN1 0.175 -3.031 0.002
ESRRG 0.736 -3.028 0.003
VTN 0.622 -2.935 0.003
Bcl2 0.469 -2.833 0.005
ERBB4 0.705 -2.802 0.005
GPR30 0.625 -2.794 0.005
BAG1 0.339 -2.733 0.006
CAV1 0.635 -2.644 0.008
IL6ST 0.503 -2.551 0.011
C10orf116 0.679 -2.497 0.013
FOXO3A 0.607 -2.473 0.013
DICER1 0.311 -2.354 0.019
GADD45 0.645 -2.338 0.019
CSF1 0.500 -2.312 0.021
F3 0.677 -2.300 0.021
GBP2 0.604 -2.294 0.022
APEX-1 0.234 -2.253 0.024
FUS 0.322 -2.252 0.024
BBC3 0.581 -2.248 0.025
GSTM3 0.737 -2.203 0.028
ITGA4 0.620 -2.161 0.031
EPHB2 0.685 -2.128 0.033
IRF1 0.708 -2.105 0.035
CRYZ 0.593 -2.103 0.035
CCL19 0.773 -2.076 0.038
SKIL 0.540 -2.019 0.043
MRP1 0.515 -1.964 0.050
Table 6: Cox proportional hazards for Prognostic Genes that are negatively associated with good prognosis for ER-positive (ER1) breast cancer (Providence study)
CTHRC1 2.083 1.958 0.050
RRM2 1.450 1.978 0.048
BUB1 1.467 1.988 0.047
LMNB1 1.764 2.009 0.045
SURV 1.380 2.013 0.044
EpCAM 1.966 2.076 0.038
CDC20 1.504 2.081 0.037
GAPDH 2.405 2.126 0.033
STK15 1.796 2.178 0.029
HSPA8 3.095 2.215 0.027
LAPTM4B 1.503 2.278 0.023
MCM2 1.872 2.370 0.018
CDC25C 1.485 2.423 0.015
ADM 1.695 2.486 0.013
MMP1 1.365 2.522 0.012
CCNB1 1.893 2.646 0.008
Ki-67 1.697 2.649 0.008
E2F1 1.662 2.689 0.007
KPNA2 1.683 2.701 0.007
DUSP1 1.573 2.824 0.005
GDF15 1.440 2.896 0.004
Table 7: Cox proportional hazards for Prognostic Genes that are positively associated with good prognosis for breast cancer (Rush study)
GSTM2 -3.275 0.752 0.001
GSTM1 -2.946 0.772 0.003
C8orf4 -2.639 0.793 0.008
ELF3 -2.478 0.769 0.013
RUNX1 -2.388 0.609 0.017
IL6ST -2.350 0.738 0.019
AAMP -2.325 0.715 0.020
PR -2.266 0.887 0.023
FHIT -2.193 0.790 0.028
CD44v6 -2.191 0.754 0.028
GREB1 variant c -2.120 0.874 0.034
ADAM17 -2.101 0.686 0.036
EstR1 -2.084 0.919 0.037
NAT1 -2.081 0.878 0.037
TNFRSF11B -2.074 0.843 0.038
ITGB4 -2.006 0.740 0.045
CSF1 -1.963 0.750 0.050
Table 8: Cox proportional hazards for Prognostic Genes that are negatively associated with good prognosis for breast cancer (Rush study)
STK15 1.968 1.298 0.049
TFRC 2.049 1.399 0.040
ITGB1 2.071 1.812 0.038
ITGAV 2.081 1.922 0.037
MYBL2 2.089 1.205 0.037
MRP3 2.092 1.165 0.036
SKP2 2.143 1.379 0.032
LMNB1 2.155 1.357 0.031
ALCAM 2.234 1.282 0.025
COMT 2.271 1.412 0.023
CDC20 2.300 1.253 0.021
GAPDH 2.307 1.572 0.021
GRB7 2.340 1.205 0.019
S100A9 2.374 1.120 0.018
S100A7 2.374 1.092 0.018
HER2 2.425 1.210 0.015
ACTR2 2.499 1.788 0.012
S100A8 2.745 1.144 0.006
ENO1 2.752 1.687 0.006
MMP1 2.758 1.212 0.006
LAPTM4B 2.775 1.375 0.006
FGFR4 3.005 1.215 0.003
C17orf37 3.260 1.387 0.001
Table 9: Cox proportional hazards for Prognostic Genes that are positively associated with good prognosis for ER-negative (ER0) breast cancer (Rush study)
SEMA3F -2.465 0.503 0.014
LAMA3 -2.461 0.519 0.014
CD44E -2.418 0.719 0.016
AD024 -2.256 0.617 0.024
LAMB3 -2.237 0.690 0.025
Ki-67 -2.209 0.650 0.027
MMP7 -2.208 0.768 0.027
GREB1 variant c -2.019 0.693 0.044
ITGB4 -1.996 0.657 0.046
CRYZ -1.976 0.662 0.048
CD44s -1.967 0.650 0.049
Table 10: Cox proportional hazards for Prognostic Genes that are negatively associated with good prognosis for ER-negative (ER0) breast cancer (Rush study)
S100A8 1.972 1.212 0.049
EEF1A2 2.031 1.195 0.042
TAGLN 2.072 2.027 0.038
GRB7 2.086 1.231 0.037
HER2 2.124 1.232 0.034
ITGAV 2.217 3.258 0.027
CDH11 2.237 2.728 0.025
COL1A1 2.279 2.141 0.023
C17orf37 2.319 1.329 0.020
COL1A2 2.336 2.577 0.020
ITGB5 2.375 3.236 0.018
ITGA5 2.422 2.680 0.015
RPL41 2.428 6.665 0.015
ALCAM 2.470 1.414 0.013
CTHRC1 2.687 3.454 0.007
PTEN 2.692 8.706 0.007
FN1 2.833 2.206 0.005
Table 11: Cox proportional hazards for Prognostic Genes that are positively associated with good prognosis for ER-positive (ER1) breast cancer (Rush study)
GSTM1 -3.938 0.628 0.000
HNF3A -3.220 0.500 0.001
EstR1 -3.165 0.643 0.002
Bcl2 -2.964 0.583 0.003
GATA3 -2.641 0.624 0.008
ELF3 -2.579 0.741 0.010
C8orf4 -2.451 0.730 0.014
GSTM2 -2.416 0.774 0.016
PR -2.416 0.833 0.016
RUNX1 -2.355 0.537 0.019
CSF1 -2.261 0.662 0.024
IL6ST -2.239 0.627 0.025
AAMP -2.046 0.704 0.041
TNFRSF11B -2.028 0.806 0.043
NAT1 -2.025 0.833 0.043
ADAM17 -1.981 0.642 0.048
Table 12: Cox proportional hazards for Prognostic Genes that are negatively associated with good prognosis for ER-positive (ER1) breast cancer (Rush study)
HSPA1B 1.966 1.382 0.049
AD024 1.967 1.266 0.049
FGFR4 1.991 1.175 0.047
CDK4 2.014 1.576 0.044
ITGB1 2.021 2.163 0.043
EPHB2 2.121 1.342 0.034
LYRIC 2.139 1.583 0.032
MYBL2 2.174 1.273 0.030
PGF 2.176 1.439 0.030
EZH2 2.199 1.390 0.028
HSPA1A 2.209 1.452 0.027
RPLPO 2.273 2.824 0.023
LMNB1 2.322 1.529 0.020
IL-8 2.404 1.166 0.016
C6orf66 2.468 1.803 0.014
GAPDH 2.489 1.950 0.013
P16-INK4 2.490 1.541 0.013
CLIC1 2.557 2.745 0.011
ENO1 2.719 2.455 0.007
ACTR2 2.878 2.543 0.004
CDC20 2.931 1.452 0.003
SKP2 2.952 1.916 0.003
LAPTM4B 3.124 1.558 0.002
Table 14: Validation of Transferrin Receptor Group genes in SIB data sets.
TFRC ENO1 IDH2 ARF1 CLDN4 PRDX1 GBP1
EMC2∼Est NA NA NA NA NA NA NA
EMC2∼SE NA NA NA NA NA NA NA
EMC2∼t NA NA NA NA NA NA NA
JRH1∼Est -0.91825 NA -0.0525 0.839013 -0.54144 NA 0.137268
JRH1∼SE 0.636275 NA 0.232201 0.346692 0.470758 NA 0.159849
JRH1∼t -1.44317 NA -0.22611 2.420053 -1.15014 NA 0.858735
JRH2∼Est 0.162921 0.179739 0.151299 0.369609 0.33033 -0.41082 -0.07418
JRH2∼SE 0.352486 0.312848 0.327466 0.40789 0.351865 0.47383 0.198642
JRH2∼t 0.462206 0.574525 0.46203 0.906149 0.938798 -0.86703 -0.37345
MGH∼Est 0.029015 NA NA 2.03958 0.185116 NA 0.15434
MGH∼SE 0.193689 NA NA 0.804729 0.314723 NA 0.188083
MGH∼t 0.149803 NA NA 2.534493 0.588187 NA 0.820595
NCH∼Est 0.056174 -0.01727 0.265828 -0.15337 -0.23129 0.253047 0.095457
NCH∼SE 0.166875 0.097939 0.105592 0.204529 0.426627 0.182621 0.1323
NCH∼t 0.336622 -0.17629 2.517501 -0.74984 -0.54213 1.38564 0.721522
NKI∼Est 0.157216 0.3682 0.284862 0.944168 0.564756 0.231612 0.13712
NKI∼SE 0.10845 0.094778 0.089145 0.204641 0.210595 0.161791 0.075391
NKI∼t 1.449663 3.884888 3.195498 4.613777 2.681716 1.431551 1.818777
STNO∼Est 0.406546 NA 0.127942 0 0.40922 NA 0.298139
STNO∼SE 0.131339 NA 0.255302 0.107397 0.128817 NA 0.113901
STNO∼t 3.095394 NA 0.50114 0 3.176755 NA 2.617528
STOCK∼Est 0.178145 0.428884 0.574289 0.862387 1.20235 1.52553 0.068821
STOCK-SE 0.153331 0.194952 0.193387 0.279535 0.33711 0.420489 0.183692
STOCK∼t 1.161833 2.199947 2.969636 3.085077 3.56664 3.62799 0.374652
TRANSBIG∼Est -0.03263 NA NA NA 0.03236 NA NA
TRANSBIG∼SE 0.051129 NA NA NA 0.053171 NA NA
TRANSBIG∼t -0.63826 NA NA NA 0.608591 NA NA
UCSF∼Est -0.22576 0.899319 -0.009 0.304097 0 0.358079 -0.43879
UCSF∼SE 0.249301 0.369574 0.554612 0.58718 1.8541 0.32938 0.874728
UCSF∼t -0.90558 2.433394 -0.01623 0.517894 0 1.08713 -0.50163
UPP∼Est 0.545839 0.288434 0.659908 0.751279 0.08503 0.706059 0.119778
UPP∼SE 0.208978 0.179833 0.186426 0.361093 0.258939 0.303105 0.117879
UPP∼t 2.611945 1.603899 3.539785 2.080569 0.328378 2.32942 1.01611
Fe 0.062825 0.233559 0.303626 0.281544 0.125868 0.347764 0.139381
Sefe 0.038345 0.058687 0.056121 0.07587 0.045235 0.10081 0.044464
Table 15: Validation of Stromal Group genes in SIB data sets.
Gene CXCL14 TNFRSF11B CXCL12 C10orf116 RUNX1 GSTM2 TGFB3 BCAR3 CAV1 DLC1 TNFRSF10B F3 DICER1
EMC2∼Est NA NA NA NA NA NA NA NA NA NA NA NA NA
EMC2∼SE NA NA NA NA NA NA NA NA NA NA NA NA NA
EMC2∼t NA NA NA NA NA NA NA NA NA NA NA NA NA
JRH1∼Est -0.23692 NA -0.36476 -0.1418 -0.22834 NA -1.0219 NA -0.20701 0.13581 -0.09001 0.719395 NA
JRH1∼SE 0.333761 NA 0.372499 0.261554 0.318666 NA 0.358953 NA 0.254401 0.37927 0.619057 0.524742 NA
JRH1∼t -0.70985 NA -0.97921 -0.54216 -0.71656 NA -2.84689 NA -0.81372 0.358083 -0.1454 1.37095 NA
JRH2∼Est 0.361375 -0.10399 -0.4566 0.036378 0.302803 NA -0.39774 -0.29238 -0.19588 -0.4102 0.80742 -0.21237 -0.33943
JRH2∼SE 0.159544 0.440721 0.219587 0.182183 0.420043 NA 0.470041 0.522706 0.289251 0.387258 0.544479 0.363632 0.39364
JRH2∼t 2.265049 -0.23595 -2.07935 0.19968 0.720886 NA -0.84619 -0.55935 -0.67721 -1.05923 1.482922 -0.58402 -0.8623
MGH∼Est NA -1.15976 NA NA 0.277566 NA 0.046498 -0.41595 -0.06896 -0.09793 0.159018 -0.00167 0.038811
MGH∼SE NA 0.400921 NA NA 0.267511 NA 0.2296 0.216837 0.2269 0.247069 0.456205 0.448211 0.409835
MGH∼t NA -2.89274 NA NA 1.037587 NA 0.202518 -1.91825 -0.30391 -0.39638 0.348567 -0.00372 0.0947
NCH∼Est -0.06592 -0.2492 -0.08863 0.064337 0.124568 NA -0.30473 0.072246 0.078825 -0.03473 -0.19927 -0.13187 0.086141
NCH∼SE 0.093353 0.289075 0.138097 0.14087 0.088457 NA 0.247338 0.304443 0.340843 0.238947 0.160381 0.134218 0.143687
NCH∼t -0.70609 -0.86207 -0.64183 0.456713 1.408231 NA -1.23202 0.237306 0.231265 -0.14533 -1.24248 -0.98248 0.599504
NKI∼Est -0.16877 -0.22072 -0.36944 -0.22589 -0.18878 -0.15655 -0.36531 -0.26067 -0.30885 -0.35001 0.053214 -0.29217 -0.46887
NKI∼SE 0.054117 0.10171 0.138735 0.082836 0.138365 0.118111 0.09592 0.114992 0.133788 0.130472 0.164091 0.093753 0.150367
NKI∼t -3.11866 -2.17005 -2.66293 -2.72696 -1.36435 -1.32547 -3.80851 -2.26685 -2.30848 -2.68262 0.324294 -3.11637 -3.11814
STNO∼Est -0.20969 0 0.066487 -0.09621 -0.17832 NA -0.07166 NA 0.135002 0.519601 -0.03773 NA NA
STNO∼SE 0.073458 0.08306 0.189775 0.085948 0.165636 NA 0.134442 NA 0.093948 0.221066 0.174479 NA NA
STNO∼t -2.8546 0 0.350348 -1.11936 -1.07657 NA -0.53298 NA 1.436991 2.350434 -0.21623 NA NA
STOCK∼Est -0.14079 -0.10987 -0.65036 -0.34745 -0.39722 NA -1.08462 -0.49692 -0.65852 -0.66099 -0.03558 -0.3284 -1.06544
STOCK∼SE 0.096118 0.128194 0.168426 0.112777 0.244634 NA 0.322799 0.265837 0.275751 0.298518 0.198203 0.132658 0.322204
STOCK∼t -1.46476 -0.85708 -3.86137 -3.08087 -1.62372 NA -3.36005 -1.86927 -2.38811 -2.21425 -0.1795 -2.47552 -3.30672
Table 15: Validation of Stromal Group genes in SIB data sets.
Gene CXXL14 TNFRSF11B CXCL12 C10orf116 RUNX1 GSTM2 TGFB3 BCAR3 CAV1 DLC1 TNFRSF10B F3 DICER1
TRANSBIG∼Est NA NA NA NA NA NA 0.013681 NA NA NA NA NA N/A
TRANSBIG∼SE NA NA NA NA NA NA 0.046103 NA NA NA NA NA N/A
TRANSBIG∼t NA NA NA NA NA NA 0.296755 NA NA NA NA NA N/A
UCSF∼Est NA NA -0.05795 0.013111 -0.58909 -0.12675 -0.25719 NA -0.54391 -0.31503 0.932141 -0.08026 0
UCSF-SE NA NA 0.270065 156.117 0.385997 0.336406 0.253264 NA 0.428883 0.345828 0.524911 0.491948 0.311799
UCSF∼t NA NA -0.21456 8.40E-05 -1.52616 -0.37676 -1.01551 NA -1.2682 -0.91094 1.775808 -0.16315 0
UPP∼Est -0.1861 -0.03866 -0.35344 -0.00923 -0.2142 NA -0.49773 -0.29435 -0.31503 -0.404 0.127348 -0.20405 0.208326
UPP∼SE 0.08384 0.087545 0.150278 0.100902 0.105479 NA 0.225603 0.182614 0.150431 0.200673 0.157658 0.109227 0.307144
UPP∼t -2.21976 -0.44163 -2.35189 -0.09148 -2.03071 NA -2.20621 -1.61186 -2.09415 -2.01324 0.807748 -1.86809 0.678268
Fe -0.14219 -0.09599 -0.28998 -0.13 -0.07498 -0.15328 -0.10353 -0.28755 -0.11726 -0.19876 0.02034 -0.22911 -0.19602
Sefe 0.032611 0.046815 0.062826 0.042521 0.052758 0.111442 0.03709 0.080198 0.058989 0.076441 0.072745 0.055029 0.085879
Table 16: Genes that co-express with Prognostic genes in ER+ breast cancer tumors (Spearman corr. coef. ≥ 0.7)
INHBA AEBP1 CDH11 COL10A1 COL11A1 COL1A2
COL5A1 COL5A2 COL8A2 ENTPD4 LOXL2
LRRC15 MMP11 NOX4 PLAU THBS2
THY1 VCAN
CAV1 ANK2 ANXA1 AQP1 C10orf56 CAV2
CFH COL14A1 CRYAB CXCL12 DAB2
DCN ECM2 FHL1 FLRT2 GNG11
GSN IGF1 JAM2 LDB2 NDN
NRN1 PCSK5 PLSCR4 PROS1 TGFBR2
NAT1 PSD3
GSTM1 GSTM2
GSTM2 GSTM1
ITGA4 ARHGAP15 ARHGAP25 CCL5 CD3D CD48
CD53 CORO1A EVI2B FGL2 GIMAP4
IRF8 LCK PTPRC TFEC TRAC
TRAF3IP3 TRBC1 EVI2A FLI1 GPR65
IL2RB LCP2 LOC100133233 MNDA PLAC8
PLEK TNFAIP8
CCL19 ARHGAP15 ARHGAP25 CCL5 CCR2 CCR7
CD2 CD247 CD3D CD3E CD48
CD53 FLJ78302 GPR171 IL10RA IL7R
IRF8 LAMP3 LCK LTB PLAC8
PRKCB1 PTPRC PTPRCAP SASH3 SPOCK2
TRA@ TRBC1 TRD@ PPP1R16B TRAC
CDH11 TAGLN ADAM12 AEBP1 ANGPTL2 ASPN
BGN BICC1 C10orf56 C1R C1S
C20orf39 CALD1 COL10A1 COL11A1 COL1A1
COL1A2 COL3A1 COL5A1 COL5A2 COL6A1
COL6A2 COL6A3 COL8A2 COMP COPZ2
CRISPLD2 CTSK DACT1 DCN DPYSL3
ECM2 EFEMP2 ENTPD4 FAP FBLN1
FBLN2 FBN1 FERMT2 FLRT2 FN1
FSTL1 GAS1 GLT8D2 HEPH HTRA1
ISLR ITGBL1 JAM3 KDELC1 LAMA4
LAMB1 LOC100133502 LOX LOXL2 LRRC15
LRRC17 LUM MFAP2 MFAP5 MMP2
MRC2 MXRA5 MXRA8 MYL9 NDN
NID1 NID2 NINJ2 NOX4 OLFML2B
OMD PALLD PCOLCE PDGFRA PDGFRB
PDGFRL POSTN PRKCDBP PRKD1 PTRF
RARRES2 RCN3 SERPINF1 SERPINH1 SFRP4
SNAI2 SPARC SPOCK1 SPON1 SRPX2
SSPN TCF4 THBS2 THY1 TNFAIP6
VCAN WWTR1 ZEB1 ZFPM2 INHBA
PLS3 SEC23A WISP1
TAGLN CDH11 ADAM12 AEBP1 ANGPTL2 ASPN
BGN BICC1 C10orf56 C1R C1S
C20orf39 CALD1 COL10A1 COL11A1 COL1A1
COL1A2 COL3A1 COL5A1 COL5A2 COL6A1
COL6A2 COL6A3 COL8A2 COMP COPZ2
CRISPLD2 CTSK DACT1 DCN DPYSL3
ECM2 EFEMP2 ENTPD4 FAP FBLN1
FBLN2 FBN1 FERMT2 FLRT2 FN1
FSTL1 GAS1 GLT8D2 HEPH HTRA1
ISLR ITGBL1 JAM3 KDELC1 LAMA4
LAMB1 LOC100133502 LOX LOXL2 LRRC15
LRRC17 LUM MFAP2 MFAP5 MMP2
MRC2 MXRA5 MXRA8 MYL9 NDN
NID1 NID2 NINJ2 NOX4 OLFML2B
OMD PALLD PCOLCE PDGFRA PDGFRB
PDGFRL POSTN PRKCDBP PRKD1 PTRF
RARRES2 RCN3 SERPINF1 SERPINH1 SFRP4
SNAI2 SPARC SPOCK1 SPON1 SRPX2
SSPN TCF4 THBS2 THY1 TNFAIP6
VCAN WWTR1 ZEB1 ZFPM2 ACTA2
CNN1 DZIP1 EMILIN1
ENO1 ATP5J2 C10orf10 CLDN15 CNGB1 DET1
EIF3CL HS2ST1 IGHG4 KIAA0195 KIR2DS5
PARP6 PRH1 RAD1 RIN3 RPL10
SGCG SLC16A2 SLC9A3R1 SYNPO2L THBS1
ZNF230
IDH2 AEBP1 HIST1H2BN PCDHAC1
ARF1 CRIM1
DICER1 ADM LOC100133583
AKT3 AKAP12 ECM2 FERMT2 FLRT2 JAM3
LOC100133502 PROS1 TCF4 WWTR1 ZEB1
CXCL12 ANXA1 C1R C1S CAV1 DCN
FLRT2 SRPX
CYR61 CTGF
IGFBP7 VIM
KIAA1199 COL11A1 PLAU
SPC25 ASPM BUB1 BUB1B CCNA2 CCNE2
CDC2 CDC25C CENPA CEP55 FANCI
GINS1 HJURP KIAA0101 KIF11 KIF14
KIF15 KIF18A KIF20A KIF4A MAD2L1
MELK NCAPG NEK2 NUSAP1 PRC1
STIL ZWINT
WISP1 CDH11 COL5A2
Table 17: Genes that co-express with Prognostic Genes in ER- breast cancer tumors (Spearman corr. coef. ≥ 0.7)
IRF1 APOL6 CXCL10 GABBR1 GBP1 HCP5
HLA-E HLA-F HLA-G HLA-J INDO
PSMB8 PSMB9 STAT1 TAP1 UBD
UBE2L6 WARS APOBEC3F APOBEC3G APOL1
APOL3 ARHGAP25 BTN3A1 BTN3A2 BTN3A3
C1QB CCL5 CD2 CD38 CD40
CD53 CD74 CD86 CSF2RB CTSS
CYBB FGL2 GIMAP5 GZMA hCG_1998957
HCLS1 HLA-C HLA-DMA HLA-DMB HLA-DPA1
HLA-DQB1 HLA-DQB2 HLA-DRA HLA-DRB1 HLA-DRB2
HLA-DRB3 HLA-DRB4 HLA-DRB5 HLA-DRB6 IL10RA
IL2RB LAP3 LAPTM5 LOC100133484 LOC100133583
LOC100133661 LOC100133811 LOC730415 NKG7 PLEK
PSMB10 PTPRC RNASE2 SLAMF8 TFEC
TNFRSF1B TRA@ TRAC TRAJ17 TRAV20
ZNF749
CDH11 ADAM12 AEBP1 ANGPTL2 ASPN CFH
CFHR1 COL10A1 COL11A1 COL1A1 COL1A2
COL3A1 COL5A1 COL5A2 COL6A3 CRISPLD2
CTSK DACT1 DCN FAP FBN1
FN1 HTRA1 LOX LRRC15 LUM
NID2 PCOLCE PDGFRB POSTN SERPINF1
SPARC THBS2 THY1 VCAN DAB2
GLT8D2 ITGB5 JAM3 LOC100133502 MMP2
PRSS23 TIMP3 ZEB1
CCL19 ITGA4 ADAM28 AIF1 APOBEC3F APOBEC3G
APOL3 ARHGAP15 ARHGAP25 CASP1 CCDC69
CCR2 CCR7 CD2 CD247 CD27
CD37 CD3D CD3G CD48 CD52
CD53 CD74 CD86 CD8A CLEC4A
CORO1A CTSS CXCL13 DOCK10 EVI2A
EVI2B FGL2 FLJ78302 (CCR2) FYB GIMAP4
GIMAP5 GIMAP6 GMFG GPR171 GPR18
GPR65 GZMA GZMB GZMK hCG_1998957
HCLS1 HLA-DMA HLA-DMB HLA-DPA1 HLA-DQA1
HLA-DQA2 HLA-DQB1 HLA-DQB2 HLA-DRB1 HLA-DRB2
HLA-DRB3 HLA-DRB4 HLA-DRB5 HLA-E IGHM
IGSF6 IL10RA IL2RG IL7R IRF8
KLRB1 KLRK1 LAPTM5 LAT2 LCK
LCP2 LOC100133484 LOC100133583 LOC100133661 LOC100133811
LOC730415 LPXN LRMP LST1 LTB
LY96 LYZ MFNG MNDA MS4A4A
NCKAP1L PLAC8 PLEK PRKCB1 PSCDBP
PTPRC PTPRCAP RAC2 RNASE2 RNASE6
SAMHD1 SAMSN1 SASH3 SELL SELPLG
SLA SLAMF1 SLC7A7 SP140 SRGN
TCL1A TFEC TNFAIP8 TNFRSF1B TRA@
TRAC TRAJ17 TRAT1 TRAV20 TRBC1
TYROBP ZNF749 ITM2A LTB P2RY13
PRKCB1 PTPRCAP SELL TRBC1
ITGA4 CCL19 ADAM28 AIF1 APOBEC3F APOBEC3G
APOL3 ARHGAP15 ARHGAP25 CASP1 CCDC69
CCR2 CCR7 CD2 CD247 CD27
CD37 CD3D CD3G CD48 CD52
CD53 CD74 CD86 CD8A CLEC4A
CORO1A CTSS CXCL13 DOCK10 EVI2A
EVI2B FGL2 FLJ78302 (CCR2) FYB GIMAP4
GIMAP5 GIMAP6 GMFG GPR171 GPR18
GPR65 GZMA GZMB GZMK hCG_1998957
HCLS1 HLA-DMA HLA-DMB HLA-DPA1 HLA-DQA1
HLA-DQA2 HLA-DQB1 HLA-DQB2 HLA-DRB1 HLA-DRB2
HLA-DRB3 HLA-DRB4 HLA-DRB5 HLA-E IGHM
IGSF6 IL10RA IL2RG IL7R IRF8
KLRB1 KLRK1 LAPTM5 LAT2 LCK
LCP2 LOC100133484 LOC100133583 LOC100133661 LOC100133811
LOC730415 LPXN LRMP LST1 LTB
LY96 LYZ MFNG MNDA MS4A4A
NCKAP1L PLAC8 PLEK PRKCB1 PSCDBP
PTPRC PTPRCAP RAC2 RNASE2 RNASE6
SAMHD1 SAMSN1 SASH3 SELL SELPLG
SLA SLAMF1 SLC7A7 SP140 SRGN
TCL1A TFEC TNFAIP8 TNFRSF1B TRA@
TRAC TRAJ17 TRAT1 TRAV20 TRBC1
TYROBP ZNF749 MARCH1 C17orf60 CSF1R
FLI1 FLJ78302 FYN IKZF1 INPP5D
NCF4 NR3C1 P2RY13 PLXNC1 PSCD4
PTPN22 SERPINB9 SLCO2B1 VAMP3 WIPF1
IDH2 AEBP1 DSG3 HIST1H2BN PCDHAC1
ARF1 FABP5L2 FLNB IL1RN PAX6
DICER1 ARS2 IGHA1 VDAC3
TFRC RGS20
ADAM17 TFDP3 GPR107
CAV1 CAV2 CXCL12 IGF1
CYR61 CTGF
ESR1 CBLN1 SLC45A2
GSTM1 GSTM2
GSTM2 GSTM1
IL11 FAM135A
IL6ST P2RY5
IGFBP7 SPARCL1 TMEM204
INHBA COL10A1 FN1 SULF1
SPC25 KIF4A KIF20A NCAPG
TAGLN ACTA2 MYL9 NNMT PTRF
TGFB3 GALNT10 HTRA1 LIMA1
TNFRSF10B BIN3
FOXA1 CLCA2 TFAP2B AGR2 MLPH SPDEF
CXCL12 DCN CAV1 IGF1 CFH
GBP2 APOL1 APOL3 CD2 CTSS CXCL9
CXCR6 GBP1 GZMA HLA-DMA HLA-DMB
IL2RB PTPRC TRBC1
Table 18: Genes that co-express with Prognostic Genes in all breast cancer tumors (Spearman corr. coef. ≥ 0.7)
S100A8 S100A9
S100A9 S100A8
MKI67 BIRC5 KIF20A MCM10
MTDH ARMC1 AZIN1 ENY2 MTERFD1 POLR2K
PTDSS1 RAD54B SLC25A32 TMEM70 UBE2V2
GSTM1 GSTM2
GSTM2 GSTM1
CXCL12 AKAP12 DCN F13A1
TGFB3 C10orf56 JAM3
TAGLN ACTA2 CALD1 COPZ2 FERMT2 HEPH
MYL9 NNMT PTRF TPM2
PGF ALMS1 ATP8B1 CEP27 DBT FAM128B
FBXW12 FGFR1 FLJ12151 FLJ42627 GTF2H3
HCG2P7 KIAA0894 KLHL24 LOC152719 PDE4C
PODNL1 POLR1B PRDX2 PRR11 RIOK3
RP5-886K2.1 SLC35E1 SPN USP34 ZC3H7B
ZNF160 ZNF611
CCL19 ARHGAP15 ARHGAP25 CCL5 CCR2 CCR7
CD2 CD37 CD3D CD48 CD52
CSF2RB FLJ78302 GIMAP5 GIMAP6 GPR171
GZMK IGHM IRF8 LCK LTB
PLAC8 PRKCB1 PTGDS PTPRC PTPRCAP
SASH3 TNFRSF1B TRA@ TRAC TRAJ17
TRAV20 TRBC1
IRF1 ITGA4 MARCH1 AIF1 APOBEC3F APOBEC3G
APOL1 APOL3 ARHGAP15 ARHGAP25 BTN3A2
BTN3A3 CASP1 CCL4 CCL5 CD2
CD37 CD3D CD48 CD53 CD69
CD8A CORO1A CSF2RB CST7 CYBB
EVI2A EVI2B FGL2 FLI1 GBP1
GIMAP4 GIMAP5 GIMAP6 GMFG GPR65
GZMA GZMK hCG_1998957 HCLS1 HLA-DMA
HLA-DMB HLA-DPA1 HLA-DQB1 HLA-DQB2 HLA-DRA
HLA-DRB1 HLA-DRB2 HLA-DRB3 HLA-DRB4 HLA-DRB5
HLA-E HLA-F IGSF6 IL10RA IL2RB
IRF8 KLRK1 LCK LCP2 LOC100133583
LOC100133661 LOC100133811 LST1 LTB LY86
MFNG MNDA NKG7 PLEK PRKCB1
PSCDBP PSMB10 PSMB8 PSMB9 PTPRC
PTPRCAP RAC2 RNASE2 RNASE6 SAMSN1
SLA SRGN TAP1 TFEC TNFAIP3
TNFRSF1B TRA@ TRAC TRAJ17 TRAV20
TRBC1 TRIM22 ZNF749
ITGA4 IRF1 MARCH1 AIF1 APOBEC3F APOBEC3G
APOL1 APOL3 ARHGAP15 ARHGAP25 BTN3A2
BTN3A3 CASP1 CCL4 CCL5 CD2
CD37 CD3D CD48 CD53 CD69
CD8A CORO1A CSF2RB CST7 CYBB
EVI2A EVI2B FGL2 FLI1 GBP1
GIMAP4 GIMAP5 GIMAP6 GMFG GPR65
GZMA GZMK hCG_1998957 HCLS1 HLA-DMA
HLA-DMB HLA-DPA1 HLA-DQB1 HLA-DQB2 HLA-DRA
HLA-DRB1 HLA-DRB2 HLA-DRB3 HLA-DRB4 HLA-DRB5
HLA-E HLA-F IGSF6 IL10RA IL2RB
IRF8 KLRK1 LCK LCP2 LOC100133583
LOC100133661 LOC100133811 LST1 LTB LY86
MFNG MNDA NKG7 PLEK PRKCB1
PSCDBP PSMB10 PSMB8 PSMB9 PTPRC
PTPRCAP RAC2 RNASE2 RNASE6 SAMSN1
SLA SRGN TAP1 TFEC TNFAIP3
TNFRSF1B TRA@ TRAC TRAJ17 TRAV20
TRBC1 TRIM22 ZNF749 CTSS
SPC25 ASPM ATAD2 AURKB BUB1B C12orf48
CCNA2 CCNE1 CCNE2 CDC2 CDC45L
CDC6 CDCA3 CDCA8 CDKN3 CENPE
CENPF CENPN CEP55 CHEK1 CKS1B
CKS2 DBF4 DEPDC1 DLG7 DNAJC9
DONSON E2F8 ECT2 ERCC6L FAM64A
FBXO5 FEN1 FOXM1 GINS1 GTSE1
H2AFZ HJURP HMMR KIF11 KIF14
KIF15 KIF18A KIF20A KIF23 KIF2C
KIF4A KIFC1 MAD2L1 MCM10 MCM6
NCAPG NEK2 NUSAP1 OIP5 PBK
PLK4 PRC1 PTTG1 RACGAP1 RAD51AP1
RFC4 SMC2 STIL STMN1 TACC3
top2A TRIP 13 TTK TYMS UBE2C
UBE2S AURKA BIRC5 BUB1 CCNB1
CENPA KPNA2 LMNB1 MCM2 MELK
NDC80 TPX2
AURKA ASPM ATAD2 AURKB BUB1B C12orf48
CCNA2 CCNE1 CCNE2 CDC2 CDC45L
CDC6 CDCA3 CDCA8 CDKN3 CENPE
CENPF CENPN CEP55 CHEK1 CKS1B
CKS2 DBF4 DEPDC1 DLG7 DNAJC9
DONSON E2F8 ECT2 ERCC6L FAM64A
FBXO5 FEN1 FOXM1 GINS1 GTSE1
H2AFZ HJURP HMMR KIF11 KIF14
KIF15 KIF18A KIF20A KIF23 KIF2C
KIF4A KIFC1 MAD2L1 MCM10 MCM6
NCAPG NEK2 NUSAP1 OIP5 PBK
PLK4 PRC1 PTTG1 RACGAP1 RAD51AP1
RFC4 SMC2 STIL STMN1 TACC3
top2A TRIP 13 TTK TYMS UBE2C
UBE2S SPC25 BIRC5 BUB1 CCNB1
CENPA KPNA2 LMNB1 MCM2 MELK
NDC80 TPX2 PSMA7 CSE1L
BIRC5 ASPM ATAD2 AURKB BUB1B C12orf48
CCNA2 CCNE1 CCNE2 CDC2 CDC45L
CDC6 CDCA3 CDCA8 CDKN3 CENPE
CENPF CENPN CEP55 CHEK1 CKS1B
CKS2 DBF4 DEPDC1 DLG7 DNAJC9
DONSON E2F8 ECT2 ERCC6L FAM64A
FBXO5 FEN1 FOXM1 GINS1 GTSE1
H2AFZ HJURP HMMR KIF11 KIF14
KIF15 KIF18A KIF20A KIF23 KIF2C
KIF4A KIFC1 MAD2L1 MCM10 MCM6
NCAPG NEK2 NUSAP1 OIP5 PBK
PLK4 PRC1 PTTG1 RACGAP1 RAD51AP1
RFC4 SMC2 STIL STMN1 TACC3
top2A TRIP 13 TTK TYMS UBE2C
UBE2S AURKA SPC25 BUB1 CCNB1
CENPA KPNA2 LMNB1 MCM2 MELK
NDC80 TPX2 MKI67
BUB1 ASPM ATAD2 AURKB BUB1B C12orf48
CCNA2 CCNE1 CCNE2 CDC2 CDC45L
CDC6 CDCA3 CDCA8 CDKN3 CENPE
CENPF CENPN CEP55 CHEK1 CKS1B
CKS2 DBF4 DEPDC1 DLG7 DNAJC9
DONSON E2F8 ECT2 ERCC6L FAM64A
FBXO5 FEN1 FOXM1 GINS1 GTSE1
H2AFZ HJURP HMMR KIF11 KIF14
KIF15 KIF18A KIF20A KIF23 KIF2C
KIF4A KIFC1 MAD2L1 MCM10 MCM6
NCAPG NEK2 NUSAP1 OIP5 PBK
PLK4 PRC1 PTTG1 RACGAP1 RAD51AP1
RFC4 SMC2 STIL STMN1 TACC3
top2A TRIP 13 TTK TYMS UBE2C
UBE2S AURKA BIRC5 SPC25 CCNB1
CENPA KPNA2 LMNB1 MCM2 MELK
NDC80 TPX2
CCNB1 ASPM ATAD2 AURKB BUB1B C12orf48
CCNA2 CCNE1 CCNE2 CDC2 CDC45L
CDC6 CDCA3 CDCA8 CDKN3 CENPE
CENPF CENPN CEP55 CHEK1 CKS1B
CKS2 DBF4 DEPDC1 DLG7 DNAJC9
DONSON E2F8 ECT2 ERCC6L FAM64A
FBXO5 FEN1 FOXM1 GINS1 GTSE1
H2AFZ HJURP HMMR KIF11 KIF14
KIF15 KIF18A KIF20A KIF23 KIF2C
KIF4A KIFC1 MAD2L1 MCM10 MCM6
NCAPG NEK2 NUSAP1 OIP5 PBK
PLK4 PRC1 PTTG1 RACGAP1 RAD51AP1
RFC4 SMC2 STIL STMN1 TACC3
top2A TRIP 13 TTK TYMS UBE2C
UBE2S AURKA BIRC5 BUB1 SPC25
CENPA KPNA2 LMNB1 MCM2 MELK
NDC80 TPX2
CENPA ASPM ATAD2 AURKB BUB1B C12orf48
CCNA2 CCNE1 CCNE2 CDC2 CDC45L
CDC6 CDCA3 CDCA8 CDKN3 CENPE
CENPF CENPN CEP55 CHEK1 CKS1B
CKS2 DBF4 DEPDC1 DLG7 DNAJC9
DONSON E2F8 ECT2 ERCC6L FAM64A
FBXO5 FEN1 FOXM1 GINS1 GTSE1
H2AFZ HJURP HMMR KIF11 KIF14
KIF15 KIF18A KIF20A KIF23 KIF2C
KIF4A KIFC1 MAD2L1 MCM10 MCM6
NCAPG NEK2 NUSAP1 OIP5 PBK
PLK4 PRC1 PTTG1 RACGAP1 RAD51AP1
RFC4 SMC2 STIL STMN1 TACC3
top2A TRIP 13 TTK TYMS UBE2C
UBE2S AURKA BIRC5 BUB1 CCNB1
SPC25 KPNA2 LMNB1 MCM2 MELK
NDC80 TPX2
KPNA2 ASPM ATAD2 AURKB BUB1B C12orf48
CCNA2 CCNE1 CCNE2 CDC2 CDC45L
CDC6 CDCA3 CDCA8 CDKN3 CENPE
CENPF CENPN CEP55 CHEK1 CKS1B
CKS2 DBF4 DEPDC1 DLG7 DNAJC9
DONSON E2F8 ECT2 ERCC6L FAM64A
FBXO5 FEN1 FOXM1 GINS1 GTSE1
H2AFZ HJURP HMMR KIF11 KIF14
KIF15 KIF18A KIF20A KIF23 KIF2C
KIF4A KIFC1 MAD2L1 MCM10 MCM6
NCAPG NEK2 NUSAP1 OIP5 PBK
PLK4 PRC1 PTTG1 RACGAP1 RAD51AP1
RFC4 SMC2 STIL STMN1 TACC3
top2A TRIP 13 TTK TYMS UBE2C
UBE2S AURKA BIRC5 BUB1 CCNB1
CENPA SPC25 LMNB1 MCM2 MELK
NDC80 TPX2 NOL11 PSMD12
LMNB1 ASPM ATAD2 AURKB BUB1B C12orf48
CCNA2 CCNE1 CCNE2 CDC2 CDC45L
CDC6 CDCA3 CDCA8 CDKN3 CENPE
CENPF CENPN CEP55 CHEK1 CKS1B
CKS2 DBF4 DEPDC1 DLG7 DNAJC9
DONSON E2F8 ECT2 ERCC6L FAM64A
FBXO5 FEN1 FOXM1 GINS1 GTSE1
H2AFZ HJURP HMMR KIF11 KIF14
KIF15 KIF18A KIF20A KIF23 KIF2C
KIF4A KIFC1 MAD2L1 MCM10 MCM6
NCAPG NEK2 NUSAP1 OIP5 PBK
PLK4 PRC1 PTTG1 RACGAP1 RAD51AP1
RFC4 SMC2 STIL STMN1 TACC3
top2A TRIP 13 TTK TYMS UBE2C
UBE2S AURKA BIRC5 BUB1 CCNB1
CENPA KPNA2 SPC25 MCM2 MELK
NDC80 TPX2
MCM2 ASPM ATAD2 AURKB BUB1B C12orf48
CCNA2 CCNE1 CCNE2 CDC2 CDC45L
CDC6 CDCA3 CDCA8 CDKN3 CENPE
CENPF CENPN CEP55 CHEK1 CKS1B
CKS2 DBF4 DEPDC1 DLG7 DNAJC9
DONSON E2F8 ECT2 ERCC6L FAM64A
FBXO5 FEN1 FOXM1 GINS1 GTSE1
H2AFZ HJURP HMMR KIF11 KIF14
KIF15 KIF18A KIF20A KIF23 KIF2C
KIF4A KIFC1 MAD2L1 MCM10 MCM6
NCAPG NEK2 NUSAP1 OIP5 PBK
PLK4 PRC1 PTTG1 RACGAP1 RAD51AP1
RFC4 SMC2 STIL STMN1 TACC3
top2A TRIP 13 TTK TYMS UBE2C
UBE2S AURKA BIRC5 BUB1 CCNB1
CENPA KPNA2 LMNB1 SPC25 MELK
NDC80 TPX2
MELK ASPM ATAD2 AURKB BUB1B C12orf48
CCNA2 CCNE1 CCNE2 CDC2 CDC45L
CDC6 CDCA3 CDCA8 CDKN3 CENPE
CENPF CENPN CEP55 CHEK1 CKS1B
CKS2 DBF4 DEPDC1 DLG7 DNAJC9
DONSON E2F8 ECT2 ERCC6L FAM64A
FBXO5 FEN1 FOXM1 GINS1 GTSE1
H2AFZ HJURP HMMR KIF11 KIF14
KIF15 KIF18A KIF20A KIF23 KIF2C
KIF4A KIFC1 MAD2L1 MCM10 MCM6
NCAPG NEK2 NUSAP1 OIP5 PBK
PLK4 PRC1 PTTG1 RACGAP1 RAD51AP1
RFC4 SMC2 STIL STMN1 TACC3
top2A TRIP 13 TTK TYMS UBE2C
UBE2S AURKA BIRC5 BUB1 CCNB1
CENPA KPNA2 LMNB1 MCM2 SPC25
NDC80 TPX2
NDC80 ASPM ATAD2 AURKB BUB1B C12orf48
CCNA2 CCNE1 CCNE2 CDC2 CDC45L
CDC6 CDCA3 CDCA8 CDKN3 CENPE
CENPF CENPN CEP55 CHEK1 CKS1B
CKS2 DBF4 DEPDC1 DLG7 DNAJC9
DONSON E2F8 ECT2 ERCC6L FAM64A
FBXO5 FEN1 FOXM1 GINS1 GTSE1
H2AFZ HJURP HMMR KIF11 KIF14
KIF15 KIF18A KIF20A KIF23 KIF2C
KIF4A KIFC1 MAD2L1 MCM10 MCM6
NCAPG NEK2 NUSAP1 OIP5 PBK
PLK4 PRC1 PTTG1 RACGAP1 RAD51AP1
RFC4 SMC2 STIL STMN1 TACC3
top2A TRIP 13 TTK TYMS UBE2C
UBE2S AURKA BIRC5 BUB1 CCNB1
CENPA KPNA2 LMNB1 MCM2 MELK
SPC25 TPX2
TPX2 ASPM ATAD2 AURKB BUB1B C12orf48
CCNA2 CCNE1 CCNE2 CDC2 CDC45L
CDC6 CDCA3 CDCA8 CDKN3 CENPE
CENPF CENPN CEP55 CHEK1 CKS1B
CKS2 DBF4 DEPDC1 DLG7 DNAJC9
DONSON E2F8 ECT2 ERCC6L FAM64A
FBXO5 FEN1 FOXM1 GINS1 GTSE1
H2AFZ HJURP HMMR KIF11 KIF14
KIF15 KIF18A KIF20A KIF23 KIF2C
KIF4A KIFC1 MAD2L1 MCM10 MCM6
NCAPG NEK2 NUSAP1 OIP5 PBK
PLK4 PRC1 PTTG1 RACGAP1 RAD51AP1
RFC4 SMC2 STIL STMN1 TACC3
top2A TRIP 13 TTK TYMS UBE2C
UBE2S AURKA BIRC5 BUB1 CCNB1
CENPA KPNA2 LMNB1 MCM2 MELK
NDC80 SPC25
CDH11 INHBA WISP1 COL1A1 COL1A2 FN1
ADAM12 AEBP1 ANGPTL2 ASPN BGN
BNC2 C1QTNF3 COL10A1 COL11A1 COL3A1
COL5A1 COL5A2 COL5A3 COL6A3 COMP
CRISPLD2 CTSK DACT1 DCN DKK3
DPYSL3 EFEMP2 EMILIN1 FAP FBN1
FSTL1 GLT8D2 HEG1 HTRA1 ITGBL1
JAM3 KIAA1462 LAMA4 LOX LOXL1
LRP1 LRRC15 LRRC17 LRRC32 LUM
MFAP5 MICAL2 MMP11 MMP2 MXRA5
MXRA8 NID2 NOX4 OLFML2B PCOLCE
PDGFRB PLAU POSTN SERPINF1 SPARC
SPOCK1 SPON1 SRPX2 SULF1 TCF4
THBS2 THY1 VCAN ZEB1
INHBA CDH11 WISP1 COL1A1 COL1A2 FN1
ADAM12 AEBP1 ANGPTL2 ASPN BGN
BNC2 C1QTNF3 COL10A1 COL11A1 COL3A1
COL5A1 COL5A2 COL5A3 COL6A3 COMP
CRISPLD2 CTSK DACT1 DCN DKK3
DPYSL3 EFEMP2 EMILIN1 FAP FBN1
FSTL1 GLT8D2 HEG1 HTRA1 ITGBL1
JAM3 KIAA1462 LAMA4 LOX LOXL1
LRP1 LRRC15 LRRC17 LRRC32 LUM
MFAP5 MICAL2 MMP11 MMP2 MXRA5
MXRA8 NID2 NOX4 OLFML2B PCOLCE
PDGFRB PLAU POSTN SERPINF1 SPARC
SPOCK1 SPON1 SRPX2 SULF1 TCF4
THBS2 THY1 VCAN ZEB1
WISP1 INHBA CDH11 COL1A1 COL1A2 FN1
ADAM12 AEBP1 ANGPTL2 ASPN BGN
BNC2 C1QTNF3 COL10A1 COL11A1 COL3A1
COL5A1 COL5A2 COL5A3 COL6A3 COMP
CRISPLD2 CTSK DACT1 DCN DKK3
DPYSL3 EFEMP2 EMILIN1 FAP FBN1
FSTL1 GLT8D2 HEG1 HTRA1 ITGBL1
JAM3 KIAA1462 LAMA4 LOX LOXL1
LRP1 LRRC15 LRRC17 LRRC32 LUM
MFAP5 MICAL2 MMP11 MMP2 MXRA5
MXRA8 NID2 NOX4 OLFML2B PCOLCE
PDGFRB PLAU POSTN SERPINF1 SPARC
SPOCK1 SPON1 SRPX2 SULF1 TCF4
THBS2 THY1 VCAN ZEB1
COL1A1 INHBA WISP1 CDH11 COL1A2 FN1
ADAM12 AEBP1 ANGPTL2 ASPN BGN
BNC2 C1QTNF3 COL10A1 COL11A1 COL3A1
COL5A1 COL5A2 COL5A3 COL6A3 COMP
CRISPLD2 CTSK DACT1 DCN DKK3
DPYSL3 EFEMP2 EMILIN1 FAP FBN1
FSTL1 GLT8D2 HEG1 HTRA1 ITGBL1
JAM3 KIAA1462 LAMA4 LOX LOXL1
LRP1 LRRC15 LRRC17 LRRC32 LUM
MFAP5 MICAL2 MMP11 MMP2 MXRA5
MXRA8 NID2 NOX4 OLFML2B PCOLCE
PDGFRB PLAU POSTN SERPINF1 SPARC
SPOCK1 SPON1 SRPX2 SULF1 TCF4
THBS2 THY1 VCAN ZEB1
COL1A2 INHBA WISP1 COL1A1 CDH11 FN1
ADAM12 AEBP1 ANGPTL2 ASPN BGN
BNC2 C1QTNF3 COL10A1 COL11A1 COL3A1
COL5A1 COL5A2 COL5A3 COL6A3 COMP
CRISPLD2 CTSK DACT1 DCN DKK3
DPYSL3 EFEMP2 EMILIN1 FAP FBN1
FSTL1 GLT8D2 HEG1 HTRA1 ITGBL1
JAM3 KIAA1462 LAMA4 LOX LOXL1
LRP1 LRRC15 LRRC17 LRRC32 LUM
MFAP5 MICAL2 MMP11 MMP2 MXRA5
MXRA8 NID2 NOX4 OLFML2B PCOLCE
PDGFRB PLAU POSTN SERPINF1 SPARC
SPOCK1 SPON1 SRPX2 SULF1 TCF4
THBS2 THY1 VCAN ZEB1
FN1 INHBA WISP1 COL1A1 COL1A2 CDH11
ADAM12 AEBP1 ANGPTL2 ASPN BGN
BNC2 C1QTNF3 COL10A1 COL11A1 COL3A1
COL5A1 COL5A2 COL5A3 COL6A3 COMP
CRISPLD2 CTSK DACT1 DCN DKK3
DPYSL3 EFEMP2 EMILIN1 FAP FBN1
FSTL1 GLT8D2 HEG1 HTRA1 ITGBL1
JAM3 KIAA1462 LAMA4 LOX LOXL1
LRP1 LRRC15 LRRC17 LRRC32 LUM
MFAP5 MICAL2 MMP11 MMP2 MXRA5
MXRA8 NID2 NOX4 OLFML2B PCOLCE
PDGFRB PLAU POSTN SERPINF1 SPARC
SPOCK1 SPON1 SRPX2 SULF1 TCF4
THBS2 THY1 VCAN ZEB1
SEQUENCE LISTING
  • <110> Genomic Health, Inc. BAKER, JOFFRE B. Cronin, Maureen T. Collin, Francois Liu, Mei-Lan
  • <120> Methods To Predict Clinical Outcome Of Cancer
  • <130> GHDX-040WO
  • <150> US 61/263,763 <151> 2009-11-23
  • <160> 1536
  • <170> FastSEQ for Windows Version 4.0
  • <210> 1 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 1 cgttccgatc ctctatactg cat   23
  • <210> 2 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 2 gtgtggcagg tggacactaa   20
  • <210> 3 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 3 aaacaccact ggagcattga   20
  • <210> 4 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 4 accagtgcca caatgcag   18
  • <210> 5 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 5 tgcagactgt accatgctga   20
  • <210> 6 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 6 acacgtctgt caccatggaa   20
  • <210> 7 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 7 atccgcattg aagaccca   18
  • <210> 8 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 8 gactgtctcg tttccctggt   20
  • <210> 9 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 9 tcaaaagtac ggacacctcc t   21
  • <210> 10 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 10 gagcatgcgt ctactgcct   19
  • <210> 11 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 11 gaagtgccag gaggcgatta   20
  • <210> 12 <211> 19
  • <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 12 caaggcccca tctgaatca   19
  • <210> 13 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 13 gcgagttcaa agtgttcgag   20
  • <210> 14 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 14 taagccacaa gcacacgg   18
  • <210> 15 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 15 acgagatgtc ctacggcttg a   21
  • <210> 16 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 16 agccaacatg tgactaattg ga   22
  • <210> 17 <211> 27 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 17 ctgcatgtga ttgaataaga aacaaga   27
  • <210> 18 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 18 gtggaaacgg agctcttcc   19
  • <210> 19 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 19 ttgtctctgc cttggactat ctaca   25
  • <210> 20 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 20 gaggaatatg gaatccaagg g   21
  • <210> 21 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 21 ggacagggta agaccgtgat   20
  • <210> 22 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 22 ccgtgaaagc tgctctgtaa   20
  • <210> 23 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 23 caagacacta agggcgacta cca   23
  • <210> 24 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 24 gactgcaaag atggaaacga   20
  • <210> 25 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 25 gatgaagcct ttcgcaagtt   20
  • <210> 26 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 26 gtttatgcca tcggcacc   18
  • <210> 27 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 27 cagtagagat ccccgcaact   20
  • <210> 28 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 28 atcagagatt accgcgtcgt   20
  • <210> 29 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 29 gactgggtca gtgatggca   19
  • <210> 30 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 30 tccctgagaa cgaaaccact   20
  • <210> 31 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 31 agctgcagaa gagctgcaca t   21
  • <210> 32 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 32 cagcagatgt ggatcagcaa g   21
  • <210> 33 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 33 ggctcttgtg cgtactgtcc tt   22
  • <210> 34 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 34 gggtcaggtg cctcgagat   19
  • <210> 35 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 35 cgttgtcagc acttggaata caa   23
  • <210> 36 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 36 cctacggccg ctactacg   18
  • <210> 37 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 37 gactcctcag ggcagacttt ctt   23
  • <210> 38 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 38 ccgccgtgga cacagact   18
  • <210> 39 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 39 cctggagggt cctgtacaat   20
  • <210> 40 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 40 actgacaaga ccagcagcat   20
  • <210> 41 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 41 tgacttccta gttcgtgact ctctgt   26
  • <210> 42 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 42 ccccgagaca acggagataa   20
  • <210> 43 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 43 cagatggacc tagtacccac tgaga   25
  • <210> 44 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 44 aacccacccc tgtcttgg   18
  • <210> 45 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 45 gagctccgca aggatgac   18
  • <210> 46 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 46 attcctatgg ctctgcaatt gtc   23
  • <210> 47 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 47 ctggacggag tagctccaag   20
  • <210> 48 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 48 aattttatga gggccacgg   19
  • <210> 49 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 49 gttgggacac agttggtctg   20
  • <210> 50 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 50 ccgaggttaa tccagcacgt a   21
  • <210> 51 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 51 tcaacagaag gctgaaccac taga   24
  • <210> 52 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 52 ctgaagcaga tggttcatca tt   22
  • <210> 53 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 53 gaggcaactg cttatggctt aatta   25
  • <210> 54 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 54 caagagcaga gccaccgt   18
  • <210> 55 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 55 gtgactgcac aggactctgg   20
  • <210> 56 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 56 tcagctgtga gctgcggata   20
  • <210> 57 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 57 gcggtatcag gaatttcaac ct   22
  • <210> 58 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 58 ctacgagtca gcccatccat   20
  • <210> 59 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 59 tgatgctgca gagaacttcc   20
  • <210> 60 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 60 atccattcga tctcaccaag gt   22
  • <210> 61 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 61 gtggctcaac attgtgttcc   20
  • <210> 62 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 62 aggggatggt ctctgtcatt   20
  • <210> 63 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 63 gaacgcatca tccagagact g   21
  • <210> 64 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 64 agcagacagt ggtcagtcct t   21
  • <210> 65 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 65 aggttctgag ctctggcttt   20
  • <210> 66 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 66 ttcaggttgt tgcaggagac   20
  • <210> 67 <211> 27 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 67 cctctgtgct acagattata cctttgc   27
  • <210> 68 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 68 ggtcaccaag aaacatcagt atgaa   25
  • <210> 69 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 69 cagactgaat gggggtgg   18
  • <210> 70 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 70 ggatgacatg cactcagctc   20
  • <210> 71 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 71 ggagtggaag gaactggaaa   20
  • <210> 72 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 72 tccaactaat gccaccacca a   21
  • <210> 73 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 73 gtgctggagt cgggactaac   20
  • <210> 74 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 74 atcaccgaca gcacagaca   19
  • <210> 75 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 75 gacgaagaca gtccctggat   20
  • <210> 76 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 76 ctcataccag ccatccaatg   20
  • <210> 77 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 77 tggttcccag ccctgtgt   18
  • <210> 78 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 78 gtgcaggctc aggtgaagtg   20
  • <210> 79 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 79 tggattggag ttctgggaat g   21
  • <210> 80 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 80 tcttgctggc tacgcctctt   20
  • <210> 81 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 81 ggtgagcaga agtggcctat   20
  • <210> 82 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 82 gcagtccgct gtgttcaa   18
  • <210> 83 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 83 gagctgaaag acgcacactg   20
  • <210> 84 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 84 cggagaaggg caccagta   18
  • <210> 85 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 85 gtcggcagaa gcaggact   18
  • <210> 86 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 86 acccatgtac cgtcctcg   18
  • <210> 87 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 87 ccttcccatc agcacagttc   20
  • <210> 88 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 88 aagccctatc cgatgtaccc   20
  • <210> 89 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 89 tggatctcta ccagcaatgt g   21
  • <210> 90 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 90 acttgcctgt tcagagcact ca   22
  • <210> 91 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 91 ttggttttgc tcggatactt g   21
  • <210> 92 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 92 tgacaatcag cacacctgca t   21
  • <210> 93 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 93 taaattcact cgtggtgtgg a   21
  • <210> 94 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 94 ctgaaggagc tccaagacct   20
  • <210> 95 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 95 ccagaatgca cgctacagga a   21
  • <210> 96 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 96 ccaccatagg cagaggca   18
  • <210> 97 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 97 gaggccagtg gtggaaacag   20
  • <210> 98 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 98 aaggaagtgg tccctctgtg   20
  • <210> 99 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 99 agaatgggtg tgaaggcg   18
  • <210> 100 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 100 ggctggacgt ggttttgtct   20
  • <210> 101 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 101 ggctgctttg ctgcaactg   19
  • <210> 102 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 102 cggtacttga gcaatgccta   20
  • <210> 103 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 103 ccccaggata cctaccacta cct   23
  • <210> 104 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 104 aaatcgcagc ttatcacaag g   21
  • <210> 105 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 105 gtggccatcc agctgacc   18
  • <210> 106 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 106 cagccaagaa ctggtatagg agct   24
  • <210> 107 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 107 ccttatcggc tggaacgagt t   21
  • <210> 108 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 108 cgacagttgc gatgaaagtt ctaa   24
  • <210> 109 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 109 atgcccagtg ttcctgactt   20
  • <210> 110 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 110 gatgtgattg aggtgcatgg   20
  • <210> 111 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 111 aagtcctgaa attgcgatca   20
  • <210> 112 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 112 cagcaagaac tgcaacaaca   20
  • <210> 113 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 113 tgcagcggct gattgaca   18
  • <210> 114 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 114 gagcacaacc aaacctacga   20
  • <210> 115 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 115 taccacaccc agcattcctc   20
  • <210> 116 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 116 cctgaacatg aaggagctga   20
  • <210> 117 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 117 gagttcaagt gccctgacg   19
  • <210> 118 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 118 gctcacttcg gctaaaatgc   20
  • <210> 119 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 119 gtacatgatc ccctgtgaga aggt   24
  • <210> 120 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 120 tgtctcactg agcgagcaga a   21
  • <210> 121 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 121 accaggcaat aacctaacag c   21
  • <210> 122 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 122 ggagcaaaat cgatgcagt   19
  • <210> 123 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 123 gagctacaga tgcccatgc   19
  • <210> 124 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 124 tgcgcccttt cctctgta   18
  • <210> 125 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 125 tgaccgcttc taccccaatg   20
  • <210> 126 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 126 ccggagtgac tctatcacca   20
  • <210> 127 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 127 tccttatagg tactttcagc catttg   26
  • <210> 128 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 128 ccagctttgt gcctgtcact at   22
  • <210> 129 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 129 tgctcattct tgaggagcat   20
  • <210> 130 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 130 tggtgggtct aggtggtgta   20
  • <210> 131 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 131 aaatgtcctc ctcgactgct   20
  • <210> 132 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 132 ggtcaccgtt ggtgtcatca   20
  • <210> 133 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 133 atggagatgt ggtcattcct agtg   24
  • <210> 134 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 134 gccgccacaa gactaaggaa t   21
  • <210> 135 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 135 tccaattcca gcatcactgt   20
  • <210> 136 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 136 gattcagacg aggatgagcc   20
  • <210> 137 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 137 cacggaggta taaggcagga g   21
  • <210> 138 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 138 ctctgagaca gtgcttcgat gact   24
  • <210> 139 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 139 tggcactact gcatgattga ca   22
  • <210> 140 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 140 aaatcgctgg gaacaagtg   19
  • <210> 141 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 141 agacatcagc tcctggttca   20
  • <210> 142 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 142 tggtgacgat ggaggagc   18
  • <210> 143 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 143 actccctcta cccttgagca   20
  • <210> 144 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 144 ctgctggatg accttcctc   19
  • <210> 145 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 145 tgccacctgg acatcatttg   20
  • <210> 146 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 146 cgacaaggag tgcgtctact tct   23
  • <210> 147 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 147 tttcctcaaa tttgcctcaa g   21
  • <210> 148 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 148 actgtgaact gcctggtgc   19
  • <210> 149 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 149 cgagtggaga ctggtgttct c   21
  • <210> 150 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 150 atggactcca cagagccg   18
  • <210> 151 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 151 ttgaacagag cctgaccaag   20
  • <210> 152 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 152 gtccccgctg cagatctct   19
  • <210> 153 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 153 ccatgtggat gaatgaggtg   20
  • <210> 154 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 154 ggcggtgaag agtcacagt   19
  • <210> 155 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 155 tcgagggcaa gaagagcaa   19
  • <210> 156 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 156 gctagtactt tgatgctccc ttgat   25
  • <210> 157 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 157 caaggccgtg aacgagaagt   20
  • <210> 158 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 158 agccccagca actacagtct   20
  • <210> 159 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 159 gggccctcca gaacaatgat   20
  • <210> 160 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 160 cgcctgttca ccaagattga c   21
  • <210> 161 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 161 caaccaggca gctccatc   18
  • <210> 162 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 162 tgaacggggt atcctcctta   20
  • <210> 163 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 163 tggtccatcg ccagttatca   20
  • <210> 164 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 164 tggctcttaa tcagtttcgt tacct   25
  • <210> 165 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 165 gtccaggtgg atgtgaaaga   20
  • <210> 166 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 166 ccaacactag gctcccca   18
  • <210> 167 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 167 ggcattgagc ctctctacat ca   22
  • <210> 168 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 168 gtcactccgc caccgtag   18
  • <210> 169 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 169 acccccagac cggatcag   18
  • <210> 170 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 170 ccagcaccat tgttgaagat   20
  • <210> 171 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 171 cgtggtgccc ctctatgac   19
  • <210> 172 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 172 accatgtatc gagaggggc   19
  • <210> 173 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 173 tggaaacagc gaaggataca   20
  • <210> 174 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 174 gtgaaggatg tgaagcagac gta   23
  • <210> 175 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 175 ctgaccagaa ccacggct   18
  • <210> 176 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 176 gcctcttcct gttcgacg   18
  • <210> 177 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 177 gagggactgt tggcatgca   19
  • <210> 178 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 178 ctggcttaag gatggacagg   20
  • <210> 179 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 179 ccagtggagc gcttccat   18
  • <210> 180 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 180 gacatctgcg ctccatcc   18
  • <210> 181 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 181 ggaagtgaca gacgtgaagg t   21
  • <210> 182 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 182 cgagcccttt gatgacttcc t   21
  • <210> 183 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 183 gagaacaagc agggctgg   18
  • <210> 184 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 184 tgaagtccag gacgatgatg   20
  • <210> 185 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 185 cgacagagct tgtgcacct   19
  • <210> 186 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 186 ctgtttgctg tccggagg   18
  • <210> 187 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 187 ccagctgcta ctttgacatc ga   22
  • <210> 188 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 188 ggataattca gacaacaaca ccatct   26
  • <210> 189 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 189 gaagcgcaga tcatgaagaa   20
  • <210> 190 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 190 tcagcagcaa gggcatcat   19
  • <210> 191 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 191 tgtttggagg gaagggct   18
  • <210> 192 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 192 gtgctggtga cgaatcca   18
  • <210> 193 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 193 accctcgaca agaccacact   20
  • <210> 194 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 194 attccaccca tggcaaattc   20
  • <210> 195 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 195 caaaggagct cactgtggtg tct   23
  • <210> 196 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 196 ttgggaaata tttgggcatt   20
  • <210> 197 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 197 gcatgggaac catcaacca   19
  • <210> 198 <211> 30 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 198 tgtagaatca aactcttcat catcaactag   30
  • <210> 199 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 199 cgctccagac ctatgatgac t   21
  • <210> 200 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 200 gatcccaagg cccaactc   18
  • <210> 201 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 201 gttcactggg ggtgtatgg   19
  • <210> 202 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 202 tgtcatgtac gacggcttct   20
  • <210> 203 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 203 gttcgctacg aggattgagc   20
  • <210> 204 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 204 ttctggacct gggaccttag   20
  • <210> 205 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 205 cgtgcctcta caccatcttc   20
  • <210> 206 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 206 agtacaagca ggctgccaag   20
  • <210> 207 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 207 gcttatgacc gaccccaa   18
  • <210> 208 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 208 cacacagatc tcctactcca tcca   24
  • <210> 209 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 209 ctgagtgtgg tttgcggat   19
  • <210> 210 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 210 ccatctgcat ccatcttgtt   20
  • <210> 211 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 211 cagatgacaa tggccacaat   20
  • <210> 212 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 212 tgcttaggtg cggtaaaacc a   21
  • <210> 213 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 213 ccccaggcac cagcttta   18
  • <210> 214 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 214 tgcccccaag acactgtgt   19
  • <210> 215 <211> 27 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 215 aagctatgag gaaaagaagt acacgat   27
  • <210> 216 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 216 ctgggctgtg aggctgaga   19
  • <210> 217 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 217 ctgcaggcac tccctgaaat   20
  • <210> 218 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 218 caatgccatc ttgcgctaca t   21
  • <210> 219 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 219 caccatcccc accctgtct   19
  • <210> 220 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 220 cccactcagt agccaagtca   20
  • <210> 221 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 221 ccaaacgtgt aacaattatg cc   22
  • <210> 222 <211> 27 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 222 caagtaccac agcgatgact acattaa   27
  • <210> 223 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 223 tcctgtgctc tggaagcc   18
  • <210> 224 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 224 cggtgtgaga agtgcagcaa   20
  • <210> 225 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 225 gaaagatagc tcgcggca   18
  • <210> 226 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 226 caggacacaa gtgccagatt   20
  • <210> 227 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 227 tccatgatgg ttctgcaggt t   21
  • <210> 228 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 228 tggcctgtcc attggtgat   19
  • <210> 229 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 229 tccaggatgt taggaactgt gaag   24
  • <210> 230 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 230 agcaggagcg accaactga   19
  • <210> 231 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 231 gcagcagtcg gcttctct   18
  • <210> 232 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 232 agtgacagat ggacaatgca aga   23
  • <210> 233 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 233 tcccttgtgt tccttctgtg aa   22
  • <210> 234 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 234 cgtgccttat ggttactttg g   21
  • <210> 235 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 235 cagcctcaag ttcggttttc   20
  • <210> 236 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 236 ctggaccgca cggacatc   18
  • <210> 237 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 237 gctttccaag tggggaatta   20
  • <210> 238 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 238 cagtctcgcc atgttgaagt   20
  • <210> 239 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 239 ctgctgcgac agtccacta   19
  • <210> 240 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 240 ggtccgcttc gtctttcga   19
  • <210> 241 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 241 ttcagtgtgt ccagtgcatc   20
  • <210> 242 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 242 ggctagtaga actggatccc aaca   24
  • <210> 243 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 243 cctccctctg gtggtgctt   19
  • <210> 244 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 244 ccgactggag gagcataaa   19
  • <210> 245 <211> 27 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 245 gaataccaca ctttctgcta caacact   27
  • <210> 246 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 246 gcagacagtg accatctaca gctt   24
  • <210> 247 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 247 agaaccgcaa ggtgagcaa   19
  • <210> 248 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 248 tggcctggct cttaatttg   19
  • <210> 249 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 249 ggtggagagt ggagccatga   20
  • <210> 250 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 250 gcatggtagc cgaagatttc a   21
  • <210> 251 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 251 ccgtgcttcc ggacaactt   19
  • <210> 252 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 252 tgaaccgcag agaccaacag   20
  • <210> 253 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 253 gggtcactat ggagttcaaa gga   23
  • <210> 254 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 254 gcctcccata gctccttacc   20
  • <210> 255 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 255 aaggaaccat ctcactgtgt gtaaac   26
  • <210> 256 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 256 ggcgctgtca tcgatttctt   20
  • <210> 257 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 257 tggaaggttc cacaagtcac   20
  • <210> 258 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 258 accctctggt ggtaaatgga   20
  • <210> 259 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 259 ggcctaatgt tccagatcct   20
  • <210> 260 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 260 actttcctgc gaggtcagtc   20
  • <210> 261 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 261 gtgcccgagc catatagca   19
  • <210> 262 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 262 agtccagccg agatgctaag   20
  • <210> 263 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 263 ccacagctca ccttctgtca   20
  • <210> 264 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 264 ccatgatcct cactctgctg   20
  • <210> 265 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 265 caacgcttca gtgatcaatc c   21
  • <210> 266 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 266 aggccagccc tacattatca   20
  • <210> 267 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 267 cagtgacaaa cagcccttcc   20
  • <210> 268 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 268 actcggactg cacaagctat t   21
  • <210> 269 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 269 tcagaattgg atttggctca   20
  • <210> 270 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 270 accggggagc cctacatga   19
  • <210> 271 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 271 caaggtgccc tcagtgga   18
  • <210> 272 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 272 tcgtgaaaga tgaccaggag   20
  • <210> 273 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 273 tggcttacac tggcaatgg   19
  • <210> 274 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 274 ctgtcagctg ctgcttgg   18
  • <210> 275 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 275 cggactttgg gtgcgactt   19
  • <210> 276 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 276 aagcccgagg cactcatt   18
  • <210> 277 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 277 gctgggaggc aggacttc   18
  • <210> 278 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 278 gagctccatg gctcatcc   18
  • <210> 279 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 279 tctcttgcag gaagccaga   19
  • <210> 280 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 280 aattcctgct ccaaaagaaa gtctt   25
  • <210> 281 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 281 caccccggct tcaacaac   18
  • <210> 282 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 282 gacgtgaggg tcctgattct   20
  • <210> 283 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 283 catcctcatg gattggtgtg   20
  • <210> 284 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 284 ccacctcgcc atgatttttc   20
  • <210> 285 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 285 atgtgccagt gagcttgagt   20
  • <210> 286 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 286 tgatggtcca aatgaacgaa   20
  • <210> 287 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 287 cttgctggcc aatgccta   18
  • <210> 288 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 288 cagatgaggc acatggagac   20
  • <210> 289 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 289 ctcctggcca acagcact   18
  • <210> 290 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 290 caaggagact gggaggtgtc   20
  • <210> 291 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 291 actgaccaag cctgagacct   20
  • <210> 292 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 292 actcaagcgg aaattgaagc a   21
  • <210> 293 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 293 agcgatgaag atggtcgc   18
  • <210> 294 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 294 agcggaaaat ggcagacaat   20
  • <210> 295 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 295 gcttcaggtg ttgtgactgc   20
  • <210> 296 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 296 tgaacagtaa tggggagctg   20
  • <210> 297 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 297 tgcaaacgct ggtgtcaca   19
  • <210> 298 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 298 ccaatgggag aacaacgg   18
  • <210> 299 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 299 ctgcaacacc gaagtggac   19
  • <210> 300 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 300 agaccaagct ggaagcagag   20
  • <210> 301 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 301 acatccaggg ctctgtgg   18
  • <210> 302 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 302 gacctggcct tgctgaag   18
  • <210> 303 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 303 agaagctgtc cctgcaagag   20
  • <210> 304 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 304 gacttttgcc cgctaccttt c   21
  • <210> 305 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 305 aggatcgcct gtcagaagag   20
  • <210> 306 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 306 gtgaaatgaa acgcaccaca   20
  • <210> 307 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 307 acggatctac cacaccattg c   21
  • <210> 308 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 308 gggagatcat cgggacaact c   21
  • <210> 309 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 309 ccaacgcttg ccaaatcct   19
  • <210> 310 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 310 ccatgatgga gaggcagaca   20
  • <210> 311 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 311 ggatggtagc agtctaggga ttaact   26
  • <210> 312 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 312 tcacctctca tcttcaccag gat   23
  • <210> 313 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 313 ccatacgtgc tgctacctgt   20
  • <210> 314 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 314 cgagagtctg taggagggaa acc   23
  • <210> 315 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 315 tcatggtgcc cgtcaatg   18
  • <210> 316 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 316 tcatcctggc gatctacttc ct   22
  • <210> 317 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 317 tgagaaacaa actgcaccca   20
  • <210> 318 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 318 gatgcagaat tgaggcagac   20
  • <210> 319 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 319 gctcgtggtt ctgtagtcca   20
  • <210> 320 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 320 gaaggaatgg gaatcagtca tga   23
  • <210> 321 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 321 gccgagatcg ccaagatg   18
  • <210> 322 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 322 tggttttgag accacgatgt   20
  • <210> 323 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 323 taactgacat tcttgagcac cagat   25
  • <210> 324 <211> 27 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 324 cgagactctc ctcatagtga aaggtat   27
  • <210> 325 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 325 caaccgaagt tttcactcca gtt   23
  • <210> 326 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 326 gcggaaggtc cctcagaca   19
  • <210> 327 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 327 ccgcaacgtg gttttctca   19
  • <210> 328 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 328 gtggttttcc ctcggagc   18
  • <210> 329 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 329 gcatcaggct gtcattatgg   20
  • <210> 330 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 330 aggactggga cccatgaac   19
  • <210> 331 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 331 tggctaagtg aagatgacaa tcatg   25
  • <210> 332 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 332 aatatttgtg cggggtatgg   20
  • <210> 333 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 333 aagcatgaac aggacttgac c   21
  • <210> 334 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 334 gcaaggaaag ggtcttagtc ac   22
  • <210> 335 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 335 gaaacctctg cgccatga   18
  • <210> 336 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 336 ccattctatc atcaacgggt acaa   24
  • <210> 337 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 337 gttctggttg ctggatttgg   20
  • <210> 338 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 338 tcaccacggt ctttagcca   19
  • <210> 339 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 339 gggctactgg cagctacatt   20
  • <210> 340 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 340 cagcgggatt aaacagtcct   20
  • <210> 341 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 341 aacagagaca ttgccaacca   20
  • <210> 342 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 342 acaccaaaat gccatctcaa   20
  • <210> 343 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 343 tggctgtgct ggtcactacc t   21
  • <210> 344 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 344 gactgctgtc atggcgtg   18
  • <210> 345 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 345 cctgctgacg atgatgaagg a   21
  • <210> 346 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 346 actccctgat aaaggggaat tt   22
  • <210> 347 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 347 caccctgcct ctacccaac   19
  • <210> 348 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 348 catggccgtg tagaccctaa   20
  • <210> 349 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 349 accctgagca ctggaggaa   19
  • <210> 350 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 350 agacaaggat gccgtggata a   21
  • <210> 351 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 351 gcagaactga agatgggaag at   22
  • <210> 352 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 352 cgcgagcccc tcattataca   20
  • <210> 353 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 353 caagctgaac ggtgtgtcc   19
  • <210> 354 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 354 agctggggtg tctgtttcat   20
  • <210> 355 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 355 agaggctgaa tatgcaggac a   21
  • <210> 356 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 356 agttgcagaa tctaagcctg gaa   23
  • <210> 357 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 357 atggccaatg tttgatgct   19
  • <210> 358 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 358 cccaatcgga agcctaacta   20
  • <210> 359 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 359 catcttccag gaggaccact   20
  • <210> 360 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 360 aatacccaac gcacaaatga   20
  • <210> 361 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 361 cctggaggct gcaacatacc   20
  • <210> 362 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 362 tgttttgatt cccgggctta   20
  • <210> 363 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 363 tctccagcaa aagcgatgtc t   21
  • <210> 364 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 364 gatggagcag gtggctcagt   20
  • <210> 365 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 365 cagccctgag gcaagaga   18
  • <210> 366 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 366 gccaactgct ttcatttgtg   20
  • <210> 367 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 367 accagtcccc cagaagacta   20
  • <210> 368 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 368 ggatcgagct cttccagatc ct   22
  • <210> 369 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 369 aacaccaatg ggttccatct   20
  • <210> 370 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 370 ctacctgcct tgctttgtga   20
  • <210> 371 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 371 ccagcccaca gaccagtta   19
  • <210> 372 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 372 tggcgaccaa gacacctt   18
  • <210> 373 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 373 catatcgttg gatcacagca c   21
  • <210> 374 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 374 gcgctgcgga agatcatc   18
  • <210> 375 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 375 gagtcgaccc tgcacctg   18
  • <210> 376 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 376 tggcttcagg agctgaatac c   21
  • <210> 377 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 377 tgcccttaaa ggaaccaatg a   21
  • <210> 378 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 378 agtcaatctt cgcacacgg   19
  • <210> 379 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 379 ctctccagtg tgggcacc   18
  • <210> 380 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 380 agaggcatcc atgaacttca ca   22
  • <210> 381 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 381 gtatcaggac cacatgcagt acatc   25
  • <210> 382 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 382 tgtcttcagg gtcttgtcca   20
  • <210> 383 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 383 atcgcagctg gtgggtgtac   20
  • <210> 384 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic primer
  • <400> 384 gtggacatcg gatacccaag   20
  • <210> 385 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 385 aggtccctgt tggccttata gg   22
  • <210> 386 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 386 ctccatccac tccaggtctc   20
  • <210> 387 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 387 caagcctgga acctatagcc   20
  • <210> 388 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 388 atagcgctga ccactgcc   18
  • <210> 389 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 389 ggccagcacc ataatcctat   20
  • <210> 390 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 390 actagggtgc tccgagtgac   20
  • <210> 391 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 391 atccgctaga actgcaccac   20
  • <210> 392 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 392 tgggcttaga tgcttgactc   20
  • <210> 393 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 393 tgcaaatgct ttgatggaat   20
  • <210> 394 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 394 ctggtcacgg tctccatgt   19
  • <210> 395 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 395 cgggcactca ctgctattac c   21
  • <210> 396 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 396 acccagaatc caacagtgca a   21
  • <210> 397 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 397 cacagatggc cagtgtttct   20
  • <210> 398 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 398 tgggcgccta aatcctaa   18
  • <210> 399 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 399 gggcacaaat cccgttcag   19
  • <210> 400 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 400 tctgatctcc atctgcctca   20
  • <210> 401 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 401 tgtggacctg atccctgtac ac   22
  • <210> 402 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 402 ccagagggtt gaaggcatag   20
  • <210> 403 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 403 ccagcattag attctccaac ttga   24
  • <210> 404 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 404 gtggcggaga tcaagagg   18
  • <210> 405 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 405 aaccggaaga agtcgatgag   20
  • <210> 406 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 406 ttgcagtggg aagaacagtc   20
  • <210> 407 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 407 cgtgtcgggc ttcagtcat   19
  • <210> 408 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 408 tagccataag gtccgctctc   20
  • <210> 409 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 409 aggtctccac acagcacaag   20
  • <210> 410 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 410 ggaatacacg agggcatagt tc   22
  • <210> 411 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 411 acaagcacat ggctatggaa   20
  • <210> 412 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 412 acttgtgcag cagcgtactt   20
  • <210> 413 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 413 ggagtgacgc atggacaga   19
  • <210> 414 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 414 tggtgccatt ttcctatgag   20
  • <210> 415 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 415 gcatctgcca actcctccat   20
  • <210> 416 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 416 gcatttgcgg tggacgat   18
  • <210> 417 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 417 tcagatgacg aagagcacag atg   23
  • <210> 418 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 418 ctgctcactc ggctcaaact c   21
  • <210> 419 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 419 gttcaacctc ttcctgtgga ctgt   24
  • <210> 420 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 420 gggcgaagag gatataaggg   20
  • <210> 421 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 421 cgaaggcact actcaatggt ttc   23
  • <210> 422 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 422 ttgccgtcag aaaacatgtc a   21
  • <210> 423 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 423 ctaattgggc tccatctcg   19
  • <210> 424 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 424 tcctgggagg tgaacttagg   20
  • <210> 425 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 425 tgagcgaggt tcttccactg a   21
  • <210> 426 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 426 ctcgggtttg gcctctttc   19
  • <210> 427 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 427 cctatgattt aagggcattt ttcc   24
  • <210> 428 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 428 ctcagctgac gggaaagg   18
  • <210> 429 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 429 cttgttgttc accaggacga   20
  • <210> 430 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 430 ggcaggagtg aatggctctt c   21
  • <210> 431 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 431 ggtatcttgt ggtgtctgcg   20
  • <210> 432 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 432 gtggccaaga ggtcagagtc   20
  • <210> 433 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 433 tgaagcagtc agttgtgctg   20
  • <210> 434 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 434 aagacatggc gctctcagtt c   21
  • <210> 435 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 435 caacagagtt tgccgagaca ct   22
  • <210> 436 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 436 gctgattccc aagagtctaa cc   22
  • <210> 437 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 437 ggcactcggc ttgagcat   18
  • <210> 438 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 438 tgagaccgtt ggattggatt   20
  • <210> 439 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 439 aggaccaaag ggagaccaa   19
  • <210> 440 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 440 acggtcctag gtttgaggtt aaga   24
  • <210> 441 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 441 gcgacagagg gcttcatctt   20
  • <210> 442 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 442 tgcccacggc tttcttac   18
  • <210> 443 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 443 cacgatgtct tcctccttga   20
  • <210> 444 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 444 tccggtttaa gaccagttta cca   23
  • <210> 445 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 445 caatggcctc cattttacag   20
  • <210> 446 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 446 aaaggggtgg gtagaaagga   20
  • <210> 447 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 447 cctctgcacg gtcataggtt   20
  • <210> 448 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 448 ctgcatgatt ctgagcaggt   20
  • <210> 449 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 449 atgctgactt ccttcctggt   20
  • <210> 450 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 450 catcttcttg ggcacacaat   20
  • <210> 451 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 451 cactgcagcc ccaatgct   18
  • <210> 452 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 452 ttcaatgata atgcaaggac tgatc   25
  • <210> 453 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 453 ctggtttgtc tggagaaggc   20
  • <210> 454 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 454 cctgacattt cccttgtcct   20
  • <210> 455 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 455 tcatgggcgt atctacgaat   20
  • <210> 456 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 456 gagagagtga gaccacgaag agact   25
  • <210> 457 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 457 tccctgcatt caagaggc   18
  • <210> 458 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 458 acctgtgttt ggatttgcag   20
  • <210> 459 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 459 actggggtgg aatgtgtctt   20
  • <210> 460 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 460 ttgggttgaa gaaatcagtc c   21
  • <210> 461 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 461 ctcctccacc ctgggttgt   19
  • <210> 462 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 462 gacctcaggg cgattcatga   20
  • <210> 463 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 463 gcttgcactc cacaggtaca ca   22
  • <210> 464 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 464 ctgcattgtg gcacagttct g   21
  • <210> 465 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 465 cttcagtctt ggcctgttca   20
  • <210> 466 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 466 ggatcccaca cctttaccat aa   22
  • <210> 467 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 467 gccgctcatt gatctcca   18
  • <210> 468 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 468 ccgtcattgg ccttcttc   18
  • <210> 469 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 469 ctactcatgg gcgggatg   18
  • <210> 470 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 470 ccgccttcag gttctcaat   19
  • <210> 471 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 471 ttgggatgct caaaagcc   18
  • <210> 472 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 472 ctgtggcatt gagtttggg   19
  • <210> 473 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 473 atgtcaggag tccctccatc   20
  • <210> 474 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 474 tggcaaatcc gaattagagt ga   22
  • <210> 475 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 475 gtctcagacc cttccccc   18
  • <210> 476 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 476 tgtgactaca gccgtgatcc tta   23
  • <210> 477 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 477 gcctcttgta gggccaatag   20
  • <210> 478 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 478 caaaaccgct gtgtttcttc   20
  • <210> 479 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 479 gcccatgcac tgaagtattg g   21
  • <210> 480 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 480 agtcgtcgag tgctagggac   20
  • <210> 481 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 481 tccgaggcca cagcaaac   18
  • <210> 482 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 482 gacgcagtct ttctgtctgg   20
  • <210> 483 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 483 tgcagagcag cactggag   18
  • <210> 484 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 484 cgctgcagaa aatgaaacga   20
  • <210> 485 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 485 cagagcgggc agcagaata   19
  • <210> 486 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 486 tcgatctcct catcatctgg   20
  • <210> 487 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 487 tgcgggactt gggaaaga   18
  • <210> 488 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 488 tgttggtacc cctgttgttg   20
  • <210> 489 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 489 cagtggtagg tgatgttctg gga   23
  • <210> 490 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 490 aaactggctg ccagcattg   19
  • <210> 491 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 491 ctccttggtg tcacccatga g   21
  • <210> 492 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 492 ggctgctaga gaccatggac at   22
  • <210> 493 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 493 ctccccatta caagtgctga   20
  • <210> 494 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 494 gaactccctg gagatgaaac c   21
  • <210> 495 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 495 cacatgcatg gaccttgatt   20
  • <210> 496 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 496 atccctcgga ctgcctct   18
  • <210> 497 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 497 caactgttcc tggtctacaa actca   25
  • <210> 498 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 498 cctgcagaga tgggtatgaa   20
  • <210> 499 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 499 ctagaggctg gtgccactgt   20
  • <210> 500 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 500 catcacgtct ccgaactcc   19
  • <210> 501 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 501 agttgtaatg gcaggcacag   20
  • <210> 502 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 502 tcagctccat tgaatgtgaa a   21
  • <210> 503 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 503 gggacagctt gtagcctttg c   21
  • <210> 504 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 504 accattgcag ccctgattg   19
  • <210> 505 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 505 ctgttctcca agccaagaca   20
  • <210> 506 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 506 tagggaagtg atgggagagg   20
  • <210> 507 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 507 tttgagatgc ttgacgttgg   20
  • <210> 508 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 508 caatgcggca tatactggg   19
  • <210> 509 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 509 aggataaggc caaccatgat gt   22
  • <210> 510 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 510 gccagcattg ccattatct   19
  • <210> 511 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 511 caccatggcg atgtactttc c   21
  • <210> 512 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 512 gggaatgtgg tagcccaaga   20
  • <210> 513 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 513 gtggctgcat tagtgtccat   20
  • <210> 514 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 514 accaaagatg ctgtgttcca   20
  • <210> 515 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 515 tgaatgccat ctttcttcca   20
  • <210> 516 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 516 gagcgtcggg tgcaaatc   18
  • <210> 517 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 517 caccacccca agtatccgta ag   22
  • <210> 518 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 518 cgatgttccc ttcgatggag   20
  • <210> 519 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 519 ggcagtgaag gcgataaagt   20
  • <210> 520 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 520 cacctcttgc tgtccctttg   20
  • <210> 521 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 521 agaaggaagg tccagccg   18
  • <210> 522 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 522 ccatgaggcc caacttcct   19
  • <210> 523 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 523 cctgccgcat tgttttcag   19
  • <210> 524 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 524 aatgcgtatc tgtccacgac   20
  • <210> 525 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 525 gacaaacacc cttcctccag   20
  • <210> 526 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 526 ctcgtcccgg ttcatcag   18
  • <210> 527 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 527 caggcctcag ttccttcagt   20
  • <210> 528 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 528 ccaacagtac agccagttgc   20
  • <210> 529 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 529 tggacctagg gcttccaagt c   21
  • <210> 530 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 530 caggccgtaa ggagctgtct   20
  • <210> 531 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 531 ttacacatcc aaccagtgcc   20
  • <210> 532 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 532 accacagcat gggtgagag   19
  • <210> 533 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 533 ccgttgtaac gttgactgga   20
  • <210> 534 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 534 ggcgctgact tccttgac   18
  • <210> 535 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 535 tgttgagatt cctcgcagtt   20
  • <210> 536 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 536 ctccagctta gggtagttgt ccat   24
  • <210> 537 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 537 tgcctgagaa gaggtgaggt   20
  • <210> 538 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 538 ttggtagtgc tccacacgat   20
  • <210> 539 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 539 gatgaggatg tcccggatga   20
  • <210> 540 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 540 gaacagctgg aggccaagtc   20
  • <210> 541 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 541 cggtcacgga gccaatct   18
  • <210> 542 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 542 tgttcaaagg ttgaccatgc   20
  • <210> 543 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 543 tgcactgctt ggccttaaag a   21
  • <210> 544 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 544 gtggcgtgcc tcgaagtc   18
  • <210> 545 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 545 gtaatgctgt ccacggtgc   19
  • <210> 546 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 546 aggtacctct cggtcagtgg   20
  • <210> 547 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 547 tgttctagcg atcttgcttc aca   23
  • <210> 548 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 548 caaggcatat cgatcctcat aaagt   25
  • <210> 549 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 549 cggccaggat acacatctta   20
  • <210> 550 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 550 cctccgccag gtctttagt   19
  • <210> 551 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 551 tctccgagga accctttgg   19
  • <210> 552 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 552 ctgtccaatt gctgattgct t   21
  • <210> 553 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 553 tgtagggcag acttcctcaa aca   23
  • <210> 554 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 554 agtctcttgg gcatcgagtt   20
  • <210> 555 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 555 ggctagtggg cgcatgtag   19
  • <210> 556 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 556 tgaccaggaa ctgccacag   19
  • <210> 557 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 557 caccgaacac tccctagtcc   20
  • <210> 558 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 558 aaccggtgct ctccacattc   20
  • <210> 559 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 559 ggaagtgggt catgtggg   18
  • <210> 560 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 560 gctttgcccg gtagctct   18
  • <210> 561 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 561 gagtgagaat tcgatccaag tcttc   25
  • <210> 562 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 562 acgagactcc agtgctgatg   20
  • <210> 563 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 563 ctctctgggt cgtctgaaac aa   22
  • <210> 564 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 564 caaactggtc ccggtcct   18
  • <210> 565 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 565 acacggtagc cggtcact   18
  • <210> 566 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 566 ggagcgggct gtctcaga   18
  • <210> 567 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 567 cttgacgaag cactcgttga   20
  • <210> 568 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 568 acggcttgct tactgaaggt   20
  • <210> 569 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 569 ggtcgtccat tggaatcct   19
  • <210> 570 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 570 gtggaggaac tctgggaatg   20
  • <210> 571 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 571 ggtcacaaac ttgccattgg a   21
  • <210> 572 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 572 tgaagtaatc agccacagac tcaat   25
  • <210> 573 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 573 ctcctcagac accactgcat   20
  • <210> 574 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 574 ggtggttttc ttgagcgtgt act   23
  • <210> 575 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 575 gaagatagct gagggctgtg ac   22
  • <210> 576 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 576 cccggcaaaa acaaataagt   20
  • <210> 577 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 577 tgggagttca tgggtacaga   20
  • <210> 578 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 578 gatgggattt ccattgatga ca   22
  • <210> 579 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 579 gagtcagaat ggcttattca cagatg   26
  • <210> 580 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 580 agaagctagg gtggttgtcc   20
  • <210> 581 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 581 tgaggagttt gccttgattc g   21
  • <210> 582 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 582 cacagaatcc agctgtgcaa ct   22
  • <210> 583 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 583 acagtggaag gaccaggact   20
  • <210> 584 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 584 agccattgca gctaggtgag   20
  • <210> 585 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 585 aaataccaac atgcacctct ctt   23
  • <210> 586 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 586 agtccacagt gttgggacaa   20
  • <210> 587 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 587 tgcgtaccca cttcctgc   18
  • <210> 588 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 588 aaagagctgt gagtggctgg   20
  • <210> 589 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 589 atgttcacca ccaggatcag   20
  • <210> 590 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 590 gcagctcagg gaagtcaca   19
  • <210> 591 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 591 aaagttccag gcaacatcgt   20
  • <210> 592 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 592 ggtccagcag tgtctcctga a   21
  • <210> 593 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 593 tactccctgg ctcctgctt   19
  • <210> 594 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 594 ggccaccagg gtattatctg   20
  • <210> 595 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 595 gaagcctttc tttccacagc   20
  • <210> 596 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 596 caagagcctg aatgcgtcag t   21
  • <210> 597 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 597 acttcggctg tgtgttatat gca   23
  • <210> 598 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 598 gaggtccgtg gtagcgttct c   21
  • <210> 599 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 599 ggcccagctt gaatttttca   20
  • <210> 600 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 600 gcgaatctgc tccttttctg a   21
  • <210> 601 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 601 ccaagaaacc atggctgctt   20
  • <210> 602 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 602 gtccactcga atcttttctt cttca   25
  • <210> 603 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 603 ggcctcagtg tgcatcattc t   21
  • <210> 604 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 604 cacgcaggtg gtatcagtct   20
  • <210> 605 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 605 tcttaagcac gttctccacg   20
  • <210> 606 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 606 gcttgctgta ctccgacatg tt   22
  • <210> 607 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 607 ctccacggtc tcagttgatc t   21
  • <210> 608 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 608 cctctcgcaa gtgctccat   19
  • <210> 609 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 609 ggaggtgctt cactgtcatt t   21
  • <210> 610 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 610 gcagggagct ggagtagc   18
  • <210> 611 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 611 tgagcagcac catcagtaac g   21
  • <210> 612 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 612 gcttgtcatc tgcagcagtg tt   22
  • <210> 613 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 613 gcgtgtctgc gtagtagctg tt   22
  • <210> 614 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 614 gtttgccaag ttaaatttgg tacataat   28
  • <210> 615 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 615 gggagggaga agagattcga t   21
  • <210> 616 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 616 ccgagtcgcc actgctaagt   20
  • <210> 617 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 617 ggcaataaac aggctcatga ttaa   24
  • <210> 618 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 618 cacagggttt cagcgagc   18
  • <210> 619 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 619 gttggaagca aacgcaca   18
  • <210> 620 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 620 cgcctcgcga aagacttg   18
  • <210> 621 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 621 tgcctgcgat atttgttagg   20
  • <210> 622 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 622 ataaacgctt caaatttctc tctg   24
  • <210> 623 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 623 caggttcgct ctgggaag   18
  • <210> 624 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 624 gcacaggttc gctctggaa   19
  • <210> 625 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 625 atctgtttcc attggctcct   20
  • <210> 626 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 626 ggtctgccca aatgcttttc   20
  • <210> 627 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 627 gctacatcta cacttggttg gcttaa   26
  • <210> 628 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 628 atgctggctg actctgctc   19
  • <210> 629 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 629 ggattgcagc taaccctgta tacc   24
  • <210> 630 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 630 cttctgagac ctctggcttc gt   22
  • <210> 631 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 631 tccaactgaa ggtccctgat g   21
  • <210> 632 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 632 tgcaatcatg caagaccac   19
  • <210> 633 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 633 gctcgttcag cttcacattg c   21
  • <210> 634 <211> 30 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 634 tttccggtaa tagtctgtct catagatatc   30
  • <210> 635 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 635 tggactgctt ccaggtgtca   20
  • <210> 636 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 636 gtcttggaca cccgcagaat   20
  • <210> 637 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 637 gggtctgaat ggccaggtt   19
  • <210> 638 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 638 cagagctctt gcatgtggag   20
  • <210> 639 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 639 atcaggaagg ctgccaagag   20
  • <210> 640 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 640 tggagcttat taaaggcatt cttca   25
  • <210> 641 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 641 tcttgacctt gcagctttgt   20
  • <210> 642 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 642 ggccccaatg aaatagactg   20
  • <210> 643 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 643 aaaattgtgc cttggaggag   20
  • <210> 644 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 644 aactccgagt ggtgatcca   19
  • <210> 645 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 645 cggtagtggt tgatgactgt tga   23
  • <210> 646 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 646 agaaggtatc agggctggaa   20
  • <210> 647 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 647 cctcagtgcc agtctcttcc   20
  • <210> 648 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 648 gaagctttgt agccggtgat   20
  • <210> 649 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 649 gtctggccgg gattcttt   18
  • <210> 650 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 650 gtcttctcca cagtccagca   20
  • <210> 651 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 651 gtttagcctc atgggcgtc   19
  • <210> 652 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 652 tgccatcacc attgaaatct   20
  • <210> 653 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 653 cctgagctta gctggtgttg   20
  • <210> 654 <211> 27 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 654 ccttaagctc tttcactgac tcaatct   27
  • <210> 655 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 655 gcgcacacct tcatctcat   19
  • <210> 656 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 656 ggtgaacatc atgacgcagt   20
  • <210> 657 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 657 gcatagctgt gagatgcgg   19
  • <210> 658 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 658 agggggtgtc cgtaaagg   18
  • <210> 659 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 659 ttacaactct tccactggga cgat   24
  • <210> 660 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 660 tgtctgtgag cttggtcctg   20
  • <210> 661 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 661 gaagcaggtc agagtgagcc   20
  • <210> 662 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 662 tcacacccac tgaatcctac tg   22
  • <210> 663 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 663 ccgtagggcc aattcagac   19
  • <210> 664 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 664 cgtgatgcga agctctgaga   20
  • <210> 665 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 665 catcttcacc agcatgatgt ca   22
  • <210> 666 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 666 tcctcactca tcacgtcctc   20
  • <210> 667 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 667 gccaaaccat tcattgtcac   20
  • <210> 668 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 668 gcaatctctt caaacacttc atcct   25
  • <210> 669 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 669 tgagcccctg gttaacagta   20
  • <210> 670 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 670 aagcttcaca agttggggc   19
  • <210> 671 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 671 tgattgtccg cagtcagg   18
  • <210> 672 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 672 ttgaaatggc agaacggtag   20
  • <210> 673 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 673 acacaaggcc cagcctct   18
  • <210> 674 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 674 cggcagaact gacagtgttc   20
  • <210> 675 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 675 gtcacacttg cagcatttca   20
  • <210> 676 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 676 actccctgaa gccgagacac t   21
  • <210> 677 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 677 gacatggcag cacaagca   18
  • <210> 678 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 678 cttgagggtt tgggtttcca   20
  • <210> 679 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 679 aagagctgcc catccttctc   20
  • <210> 680 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 680 ttctgggaac tgctggaag   19
  • <210> 681 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 681 ccccacgagt tctggttctt c   21
  • <210> 682 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 682 cgctgaggct ggtactgtg   19
  • <210> 683 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 683 gtctctggac acaggctgg   19
  • <210> 684 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 684 gaggaatgga aagacctcgg   20
  • <210> 685 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 685 gcagacacaa tggaaagaac c   21
  • <210> 686 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 686 cggacagttt cttccggtt   19
  • <210> 687 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 687 agccgtacca gctcagactt   20
  • <210> 688 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 688 gccactaact gcttcagtat gaagag   26
  • <210> 689 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 689 tgcacataag caacagcaga   20
  • <210> 690 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 690 gaccctgctc acaaccagac   20
  • <210> 691 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 691 tccatatcca acaaaaaaac tcaaag   26
  • <210> 692 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 692 gggcctggtt gaaaagcat   19
  • <210> 693 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 693 acggtagtga cagcatcaaa actc   24
  • <210> 694 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 694 ggagtccgtc cttaccgtca a   21
  • <210> 695 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 695 ggaatgtccc atacccaaag aa   22
  • <210> 696 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 696 tgtcaccgtg atctctttgg taa   23
  • <210> 697 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 697 cctaaaggtt tgaatggcag a   21
  • <210> 698 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 698 ggttccgata tttggtggtc ttac   24
  • <210> 699 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 699 cgattgtctt tgctcttcat gtg   23
  • <210> 700 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 700 ccgttgagtg gaatcagcaa   20
  • <210> 701 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 701 caaggcctca aatctcaagg   20
  • <210> 702 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 702 tcttggcaag tcggttaaga   20
  • <210> 703 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 703 acaaagggag agcgtgaagt   20
  • <210> 704 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 704 gtctattaga gtcagatccg ggacat   26
  • <210> 705 <211> 27 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 705 cttttgatgg tagagttcca gtgattc   27
  • <210> 706 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 706 tgaatcatgc cagtgctgta   20
  • <210> 707 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 707 atggcttgcc cacaatgc   18
  • <210> 708 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 708 cttggcgtgt ggaaatctac ag   22
  • <210> 709 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 709 cctcagtcca taaaccacac tatca   25
  • <210> 710 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 710 tgatgatcta agtttcccga ggtt   24
  • <210> 711 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 711 tgctgggttt ctcctcctgt t   21
  • <210> 712 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 712 agcaagggaa cagcctcat   19
  • <210> 713 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 713 agtagttgtg ctgcccttcc   20
  • <210> 714 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 714 cccataatcc tgagcaatgg   20
  • <210> 715 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 715 tgcacatatc attacaccag ttcgt   25
  • <210> 716 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 716 aacgagatcc ctgtgcttgt   20
  • <210> 717 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 717 cctccccaag tcagttgc   18
  • <210> 718 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 718 acacctgcac aattctccg   19
  • <210> 719 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 719 ttcttttgcg cttcagcc   18
  • <210> 720 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 720 tcagcaagtg ggaaggtgta atc   23
  • <210> 721 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 721 ccttaaagcg gactccagg   19
  • <210> 722 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 722 tcctcctgta ggctggca   18
  • <210> 723 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 723 ctctcagcat cggtacaagg   20
  • <210> 724 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 724 atctgcgttg aagcagtgag   20
  • <210> 725 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 725 gtgatttgcc caggaaagtt t   21
  • <210> 726 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 726 tttatcccca gcgaatttgt   20
  • <210> 727 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 727 tcccccttac tcagcttgaa ct   22
  • <210> 728 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 728 cgagtacttg tggaaggtgg ac   22
  • <210> 729 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 729 gcgaggtaat ttgtgccctt t   21
  • <210> 730 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 730 tgaggacact cggtctctag c   21
  • <210> 731 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 731 ctagccccac agccaaga   18
  • <210> 732 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 732 agttttaagg gtgccccg   18
  • <210> 733 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 733 gagactttgg gggattcca   19
  • <210> 734 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 734 gaagtccacc tgggcatctc   20
  • <210> 735 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 735 ccctttccaa acttgaggc   19
  • <210> 736 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 736 cactcgccgt tgacatcct   19
  • <210> 737 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 737 tgcaagctgt ctttgagcc   19
  • <210> 738 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 738 acagcaaggc gagcataaat   20
  • <210> 739 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 739 ctatcggcct cagcatgg   18
  • <210> 740 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 740 tgagtttttt gcgagagtat tgaca   25
  • <210> 741 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 741 acacttcaag tcacgcttgc   20
  • <210> 742 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 742 gtagggctgc tggaaggtaa   20
  • <210> 743 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 743 tccgaccttc aatcatttca   20
  • <210> 744 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 744 ggagacaatg caaaccacac   20
  • <210> 745 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 745 tacaatggct ttggaggata gca   23
  • <210> 746 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 746 caaagctgtc agctctagca aaag   24
  • <210> 747 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 747 ttcatccctc gatatggctt ct   22
  • <210> 748 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 748 agtctggaac atgtcagtct tgatg   25
  • <210> 749 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 749 cgagcatttg tctcatcctt t   21
  • <210> 750 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 750 actcaggccc atttccttta   20
  • <210> 751 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 751 cctggtgctg ttgtagatgg   20
  • <210> 752 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 752 gccaccgata tagcgctgtt   20
  • <210> 753 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 753 cctcttcatc aggccaaact   20
  • <210> 754 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 754 accgaaattg gagagcatgt   20
  • <210> 755 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 755 ttcagagaaa ggaggtgtgg a   21
  • <210> 756 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 756 gggaaagtgg tacgtctttg ag   22
  • <210> 757 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 757 ttggccagat ctaaccatga   20
  • <210> 758 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 758 gcttgagggt ctgaatcttg ct   22
  • <210> 759 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 759 gcgaatgcca tgactgaa   18
  • <210> 760 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 760 tgctgtcgtg atgagaaaat agtg   24
  • <210> 761 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 761 gcttcaacgg caaagttctc tt   22
  • <210> 762 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 762 gtactgagcg atggagcgt   19
  • <210> 763 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 763 gcggtgtagc tcccagagt   19
  • <210> 764 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 764 caaactccac agtacttggg ttga   24
  • <210> 765 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 765 tgtcggaatt gatactggca tt   22
  • <210> 766 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 766 gtgcacgtgg atgaaagagt   20
  • <210> 767 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 767 agctccctgt tgcatggact t   21
  • <210> 768 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic reverse primer
  • <400> 768 gcagacaaaa gttggaaggc   20
  • <210> 769 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 769 atgcctacag caccctgatg tcgca   25
  • <210> 770 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 770 cgcttcaaag gaccagacct cctc   24
  • <210> 771 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 771 ctcgccaatg atgctgctca agtt   24
  • <210> 772 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 772 ccatgagctg tagccgaatg tcca   24
  • <210> 773 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 773 ctgcacacgg ttctaggctc cg   22
  • <210> 774 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 774 tctgctctac aagcccattg accg   24
  • <210> 775 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 775 cccgcagaaa gcacatggta ttcc   24
  • <210> 776 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 776 ctctgtcacc aatgtggacc tgcc   24
  • <210> 777 <211> 29 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 777 tgtaggtatc tcttagtccc gccatctga   29
  • <210> 778 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 778 ctgacactca tctgagccct ccca   24
  • <210> 779 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 779 tgctacttgc aaaggcgtgt cctactgc   28
  • <210> 780 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 780 ctgcgctgga tggacaccgc   20
  • <210> 781 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 781 cacacagggt gccatcaatc acct   24
  • <210> 782 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 782 cgagtggaag tgctccccac tttc   24
  • <210> 783 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 783 cgatctcagc ctgtttgtgc atctcgat   28
  • <210> 784 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 784 caacacgtca ccaccctttg ctct   24
  • <210> 785 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 785 tgaccacacc aaagcctccc tgg   23
  • <210> 786 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 786 acctcagtcc aaagtgcctg aggc   24
  • <210> 787 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 787 tcacggtaca caatctttcc gga   23
  • <210> 788 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 788 ccagttcctg ccgtctgctc ttct   24
  • <210> 789 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 789 ctgcagcgtc aatctccgct tg   22
  • <210> 790 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 790 aagctgacac agccctccca agtg   24
  • <210> 791 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 791 ccaccacaca ggtacagcag cgct   24
  • <210> 792 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 792 ctatgacgat gccctcaacg cctc   24
  • <210> 793 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 793 ctttcgggaa gccaggccct t   21
  • <210> 794 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 794 actggatcct ggccaccgac tatg   24
  • <210> 795 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 795 cttgtccttg ggtcaccctg ca   22
  • <210> 796 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 796 acaccagcgg tgccgactac c   21
  • <210> 797 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 797 ctagagccat ccttggccat cctg   24
  • <210> 798 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 798 caagaatctt gcagcagcat ggct   24
  • <210> 799 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 799 tgacgagcag cgaacagcca cg   22
  • <210> 800 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 800 aggagtatga cgagtccggc ccc   23
  • <210> 801 <211> 29 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 801 aggctcagtg atgtcttccc tgtcaccag   29
  • <210> 802 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 802 tgggcccaga gcatgttcca gate   24
  • <210> 803 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 803 cccaattaac atgacccggc aaccat   26
  • <210> 804 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 804 agatgtgccg gtacacccac ctc   23
  • <210> 805 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 805 ccagcctgca gacaactggc ctc   23
  • <210> 806 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 806 tgccactcgg aaaaagacct ctcgg   25
  • <210> 807 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 807 catcatggga ctcctgccct tacc   24
  • <210> 808 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 808 agtcacgacc cctgccctca c   21
  • <210> 809 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 809 cagccctggg aactttgtcc tgacc   25
  • <210> 810 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 810 ctttccgttg gcatccgcaa cag   23
  • <210> 811 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 811 ttccacgccg aaggacagcg at   22
  • <210> 812 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 812 tccgggtagc tctcaaactc gagg   24
  • <210> 813 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 813 caagggtctc cagcacctct acgc   24
  • <210> 814 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 814 ccggttaact gtggcctgtg ccc   23
  • <210> 815 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 815 ctctcactgt gacagcccac ctcg   24
  • <210> 816 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 816 ctgtgttcga ctcagcctca ggga   24
  • <210> 817 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 817 cagtcggccc aggacggtct act   23
  • <210> 818 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 818 tgctgggagc ctacacttgg ccc   23
  • <210> 819 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 819 tacagtccca gcaccgacaa ttcc   24
  • <210> 820 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 820 cctcgctttg tttaacagcc cagg   24
  • <210> 821 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 821 ttacagcgac agtcatggcc gcat   24
  • <210> 822 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 822 ccggagtcct agcctcccaa attc   24
  • <210> 823 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 823 cctgctctgt tctggggtcc aaac   24
  • <210> 824 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 824 caggtcccat tgccgggcg   19
  • <210> 825 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 825 tgatttcccg ttccgctcgg ttct   24
  • <210> 826 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 826 catggctacc acttcgacac agcc   24
  • <210> 827 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 827 aaagcacacc gctggcagga c   21
  • <210> 828 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 828 tggcctcaca aggactaccc tctcatcc   28
  • <210> 829 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 829 atttcagctg atcagtgggc ctcc   24
  • <210> 830 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 830 cataatacat tcacctccct gcctcctc   28
  • <210> 831 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 831 cgcttcatct tggctgaggt cctc   24
  • <210> 832 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 832 ctctgctgac actcgagccc acat   24
  • <210> 833 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 833 acagagccct ggcaaagcca ag   22
  • <210> 834 <211> 27 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 834 tgtctccatt attgatcggt tcatgca   27
  • <210> 835 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 835 tacccgccat ccatgatcgc ca   22
  • <210> 836 <211> 30 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 836 cccagataat acaggtggcc aacaattcct   30
  • <210> 837 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 837 tggaataagt acctaaggcg ccccc   25
  • <210> 838 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 838 ctcccatccc agtggagcca a   21
  • <210> 839 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 839 cgcaccattc ggtcatttga gg   22
  • <210> 840 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 840 ctgttgactg cagggcacca cca   23
  • <210> 841 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 841 caggtccctt gtcccaagtt ccac   24
  • <210> 842 <211> 27 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 842 ccctgctacc aatatggact ccagtca   27
  • <210> 843 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 843 caccgacagc acagacagaa tccc   24
  • <210> 844 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 844 caccaagccc agaggacagt tcct   24
  • <210> 845 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 845 ctccaagccc agattcagat tcgagtca   28
  • <210> 846 <211> 30 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 846 tcagcttcta caactggaca gacaacgctg   30
  • <210> 847 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 847 actggccgtg gcactggaca aca   23
  • <210> 848 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 848 tgtccctgtt agacgtcctc cgtccata   28
  • <210> 849 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 849 ctccccgtcg atgccagaga act   23
  • <210> 850 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 850 tgctccacta acaaccctcc tgcc   24
  • <210> 851 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 851 aattcctgca tggccagttt cctc   24
  • <210> 852 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 852 ctgcccaaga gcctgtcatc cag   23
  • <210> 853 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 853 ccttctgccc atagtgatca gcga   24
  • <210> 854 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 854 ccaacccaga tgaaatcggc aact   24
  • <210> 855 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 855 ccagtcgcct cagtaaagcc acct   24
  • <210> 856 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 856 cacaacatcc ctggtgaacg tcgt   24
  • <210> 857 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 857 atcacccatc atcatccaat cgca   24
  • <210> 858 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 858 tccttcccac ccccagtcct gtc   23
  • <210> 859 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 859 aaaatgagac tctccgtcgg cagc   24
  • <210> 860 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 860 caggccctct tccgagcggt   20
  • <210> 861 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 861 cttcaattgg caagcccagg c   21
  • <210> 862 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 862 tgctgatgtg ccctctcctt gg   22
  • <210> 863 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 863 acccattctt ctcccagccg gg   22
  • <210> 864 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 864 acaccctact ccctgtgcct ccag   24
  • <210> 865 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 865 agctgatgag tctgccctac cgcctg   26
  • <210> 866 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 866 tgaagtctcc agctttgcct cagc   24
  • <210> 867 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 867 caccaggacc acaaagcctg tttg   24
  • <210> 868 <211> 18 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 868 ctgcgcccgc tcttcgcg   18
  • <210> 869 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 869 cgcacagaca agccttactc cgcc   24
  • <210> 870 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 870 cgggaagaat tcgcttccac ctg   23
  • <210> 871 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 871 cccttcagcc tgccccaccg   20
  • <210> 872 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 872 actcagttac cgagccacgt cacg   24
  • <210> 873 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 873 tcctgcgcct gatgtccacc g   21
  • <210> 874 <211> 30 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 874 tctcctagcc agacgtgttt cttgtccttg   30
  • <210> 875 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 875 cctgcagccc atccacaacc t   21
  • <210> 876 <211> 27 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 876 cctcctcctg ttgctgccac taatgct   27
  • <210> 877 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 877 cgaaacgcta ttctcacagg ttcagc   26
  • <210> 878 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 878 tgttcatcct ggcgctcttc atgt   24
  • <210> 879 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 879 ccgattccaa aagaccatca ggttct   26
  • <210> 880 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 880 tttgctgaat gctccagcca agg   23
  • <210> 881 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 881 tcagatggag acctcgtgcc aaattaca   28
  • <210> 882 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 882 agccactccc cacgctgttg t   21
  • <210> 883 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 883 cgcagatccg atttctctgg gatc   24
  • <210> 884 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 884 tcccgatggt ctgcagcagc t   21
  • <210> 885 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 885 aacatcatgt tcttcttcat gacctcgc   28
  • <210> 886 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 886 accaacgctg acagcatgca tttc   24
  • <210> 887 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 887 accctgcccg cgatcacact ga   22
  • <210> 888 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 888 cttgaggacg cgaacagtcc acca   24
  • <210> 889 <211> 29 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 889 aggtgcaata tgggcatata tctccattg   29
  • <210> 890 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 890 tctgtgtggt ccatccttgg aagc   4
  • <210> 891 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 891 ttcttcgaaa gccatgttgc caga   24
  • <210> 892 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 892 tacccttaag aacgccccct ccac   24
  • <210> 893 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 893 ctgaaactgg aacacaacca cccacaag   28
  • <210> 894 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 894 tggacacact gatgcaagcc aaga   24
  • <210> 895 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 895 cacagccacg gggcccaaa   19
  • <210> 896 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 896 ctcatgccac cactgccaac acctc   25
  • <210> 897 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 897 cagcaccctt ggcagtttcg aaat   24
  • <210> 898 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 898 ctgtcacact ccctcaggca ggac   24
  • <210> 899 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 899 atcactggaa ctcctcggtc ggac   24
  • <210> 900 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 900 cagccacgat gaccactacc agcact   26
  • <210> 901 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 901 tgcttcctcc cactatctga aaataa   26
  • <210> 902 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 902 agctgcccgt ctttctcagc cagc   24
  • <210> 903 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 903 agaaaagctg tttgtctccc cagca   25
  • <210> 904 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 904 aaagtccatt tgccactgat ggca   24
  • <210> 905 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 905 ctacctggac atccctgctc agcc   24
  • <210> 906 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 906 cagacttggt gccctttgac tcc   23
  • <210> 907 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 907 cagggccatg acaatcgcca a   21
  • <210> 908 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 908 cgccctggct caacttttcc ttaa   24
  • <210> 909 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 909 cgaggccatt gacttcatag actcca   26
  • <210> 910 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 910 ttgagcacac tgcagtccat ctcc   24
  • <210> 911 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 911 cagaagaaca gctcagggac ccct   24
  • <210> 912 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 912 ctcaccagaa gccccaacct caac   24
  • <210> 913 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 913 cactcccgag cacgttgttc cgt   23
  • <210> 914 <211> 29 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 914 ccacttggac atcatctggg tgaacactc   29
  • <210> 915 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 915 cctttgcctc agggcatcct ttt   23
  • <210> 916 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 916 tgctacctgc ccctttgtca tgtg   24
  • <210> 917 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 917 caaaggtgac caccataccg ggtt   24
  • <210> 918 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 918 ctcgtcgtag cgcttctcgc tgta   24
  • <210> 919 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 919 tgatgctttc tccagaaact cgaactca   28
  • <210> 920 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 920 cggatccttt cctcactcgc cca   23
  • <210> 921 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 921 acccagtctc accttctccc cacc   24
  • <210> 922 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 922 tgagatggac atttaaagca ccagcc   26
  • <210> 923 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 923 cgcccagagg cacccacctg   20
  • <210> 924 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 924 ccagagagcc tccctgcagc ca   22
  • <210> 925 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 925 ctgcaactgc ctcctgctca aagtca   26
  • <210> 926 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 926 cactgacatc atggctggcc ttg   23
  • <210> 927 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 927 ccgctctcat cgcagtcagg atcat   25
  • <210> 928 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 928 tgcgcccgat gagatcaccg   20
  • <210> 929 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 929 cacctgatgc atgatggaca ctgc   24
  • <210> 930 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 930 cgtcccattt gagcctgtca atgt   24
  • <210> 931 <211> 30 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 931 atctgtatgc ggaacctcaa aagagtccct   30
  • <210> 932 <211> 30 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 932 tgtcccacga ataatgcgta aattctccag   30
  • <210> 933 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 933 cagcaggccc tcaaggagct g   21
  • <210> 934 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 934 agccatatgc cttctcatct gggc   24
  • <210> 935 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 935 agagccggcc agccctgaca g   21
  • <210> 936 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 936 tcgcctacca tttggtgcaa gcaa   24
  • <210> 937 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 937 ctggccctca tgtccccttc acg   23
  • <210> 938 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 938 ccccagacca agtgtgaata catgct   26
  • <210> 939 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 939 ctggagatgc tggacgccc   19
  • <210> 940 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 940 ttaccagagg cgaggttccc ttca   24
  • <210> 941 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 941 tcctgacttc tgtgagctca ttgcg   25
  • <210> 942 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 942 tggcacgggt cttctcctac c   21
  • <210> 943 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 943 cggcctgtcc acgaaccact tata   24
  • <210> 944 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 944 tcgcccacct acgtactggc ctac   24
  • <210> 945 <211> 27 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 945 tcccagagac caacgttcaa gcagttg   27
  • <210> 946 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 946 cctttcatgg ggagaaccgc att   23
  • <210> 947 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 947 tcggccactt catcaggacg cag   23
  • <210> 948 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 948 aatctgctcc actgtcaggg tccc   24
  • <210> 949 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 949 actctcaggc ggtgtccaca tgat   24
  • <210> 950 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 950 tcccagcatc atccaggccc ag   22
  • <210> 951 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 951 agaacagcat ccgccacaac ctct   24
  • <210> 952 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 952 ctctacagca gctcagccag cctg   24
  • <210> 953 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 953 cagaccaagc ctttgcccag aatt   24
  • <210> 954 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 954 tgtttccatg gctaccccac aggt   24
  • <210> 955 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 955 tgaccggcgc atcacactga gg   22
  • <210> 956 <211> 29 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 956 tcaattgtaa cattctcacc caggccttg   29
  • <210> 957 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 957 ctgaagcacg acaagctggt ccag   24
  • <210> 958 <211> 19 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 958 cgcccgcagg cctcatcct   19
  • <210> 959 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 959 tgagccagat tccacacctc acgt   24
  • <210> 960 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 960 ttcatctcaa tggaaggatc ctgcc   25
  • <210> 961 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 961 aacttcagcc ccagctccca agtc   24
  • <210> 962 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 962 ccgttctcag ccttgacggt gc 22
  • <210> 963 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 963 tgttccaacc actgaatctg gacc 24
  • <210> 964 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 964 ttgggacatt gtagacttgg ccagac 26
  • <210> 965 <211> 30 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 965 ccatggacca acttcactat gtgacagagc 30
  • <210> 966 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 966 tgcagttgac atggcctgtt cagtcc 26
  • <210> 967 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 967 tgttagccaa agactgccac tgca   24
  • <210> 968 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 968 tgtccacagg accctgagtg gttc   24
  • <210> 969 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 969 atcccctccc tctccaccca tcta   24
  • <210> 970 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 970 aggcgttgca cttcaccagc c   21
  • <210> 971 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 971 cctcttgccc acttactggg tgga   24
  • <210> 972 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 972 ccgggtgaca gcactaacca gacc   24
  • <210> 973 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 973 ctcttcccca tcggctttgt gg   22
  • <210> 974 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 974 cctcctgctg gcttcctttg atca   24
  • <210> 975 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 975 ctcatcacct ggtctccggt gtgt   24
  • <210> 976 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 976 catgctgcat cctaaggctc ctcagg   26
  • <210> 977 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 977 ctggccttcc cgtgtaacca gttc   24
  • <210> 978 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 978 ctccccaccc ttgagaagtg cct   23
  • <210> 979 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 979 cacaattccc agagaaacca agaagagc   28
  • <210> 980 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 980 accacgcgaa cggtgcatcg   20
  • <210> 981 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 981 tccccgagcc cagcaggaca   20
  • <210> 982 <211> 29 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 982 tgacctgatc cagagtaagt gcctctcca   29
  • <210> 983 <211> 30 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 983 tcagccactg gcttctgtca taatcaggag   30
  • <210> 984 <211> 27 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 984 cccgcctacc ctcgtaaagc agattca   27
  • <210> 985 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 985 ctgaagctct actcacagtt tctggg   26
  • <210> 986 <211> 27 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 986 ctcgcaagca caacatgtgt ggtgaga   27
  • <210> 987 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 987 cacagccgcc tgaaagccac aat   23
  • <210> 988 <211> 27 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 988 tcaagtaaac gggctgtttt ccaaaca   27
  • <210> 989 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 989 aaagacatcc agctagcacg ccg   23
  • <210> 990 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 990 ttcttgcgct ccatccgtcc aga   23
  • <210> 991 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 991 caagaacctc ccagaagggc tcaa   24
  • <210> 992 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 992 ccagaccata gcacactcgg gcac   24
  • <210> 993 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 993 cagaatgtcc gccttctcca gctt   24
  • <210> 994 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 994 cgctcacgtt ctcatccaag tgg   23
  • <210> 995 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 995 ccccggacag tggctctgac g   21
  • <210> 996 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 996 ttccacatct ctcccagttt cttcgcaa   28
  • <210> 997 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 997 agtcgctggt ttcatgccct tcca   24
  • <210> 998 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 998 ctccatatcc aaacaaagca tgtgtgcg   28
  • <210> 999 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 999 agtctcctac tcccgggttc tgcg   24
  • <210> 1000 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1000 tgaactcctt cctggaatac ccca   24
  • <210> 1001 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1001 agccctgttc tcgttgccct aattcatc   28
  • <210> 1002 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1002 acactcggca ggagtagtac ccgc   24
  • <210> 1003 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1003 accggagcct tcccagaaca aact   24
  • <210> 1004 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1004 accgcttcta ccaatacctc gccca   25
  • <210> 1005 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1005 agttgcttcc atccaacctg gagg   24
  • <210> 1006 <211> 30 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1006 cagaatggcc tgtattcact atcttcgaga   30
  • <210> 1007 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1007 agagtgactc ccgttgtccc aagg   24
  • <210> 1008 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1008 tgactcccgc ggtcccaagg   20
  • <210> 1009 <211> 29 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1009 cattttcctc agacttgtga acctccact   29
  • <210> 1010 <211> 30 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1010 taattagacc taggcctcag ctgcactgcc   30
  • <210> 1011 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1011 ctcagggccc accattgaag aggttg   26
  • <210> 1012 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1012 cgcacttttc tgagcagacg tcca   24
  • <210> 1013 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1013 ccaggcgtgg cgtcctctcc ata   23
  • <210> 1014 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1014 ccggcgccca acgtgattct   20
  • <210> 1015 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1015 tggagattct ccagcacgtc atcgac   26
  • <210> 1016 <211> 30 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1016 cttttgtttt gcccagtata gactcggaag   30
  • <210> 1017 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1017 ccgtgaatgc agcccgccag   20
  • <210> 1018 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1018 cgcgtcatac caaaatctcc gattttga   28
  • <210> 1019 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1019 taccccgtgg gcaagttctt ccaa   24
  • <210> 1020 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1020 atccaggcac ctctaccacg ccctc   25
  • <210> 1021 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1021 cccggtcacc aggcaggagt tct   23
  • <210> 1022 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1022 cagccctaca cgaaaggacc tgct   24
  • <210> 1023 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1023 tgacttccaa gctggccgtg gc   22
  • <210> 1024 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1024 ctgctccacg gccttgctct tg   22
  • <210> 1025 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1025 cctgtgatca acagtacccg tatggg   26
  • <210> 1026 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1026 tcggcttccc tgtagagctg aaca   24
  • <210> 1027 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1027 catattgccc agtggtcacc tcaca   25
  • <210> 1028 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1028 attcaaaaca gagcccccaa agcc   24
  • <210> 1029 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1029 acgtccgggt cctcactgtc cttcc   25
  • <210> 1030 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1030 cccacatgac ttcctcttgg cctt   24
  • <210> 1031 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1031 tccatcccag ctccagccag   20
  • <210> 1032 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1032 cactccagac ctcgcttagc atgg   24
  • <210> 1033 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1033 cgatcctgca tctgtaaatc gccc   24
  • <210> 1034 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1034 tctgagcctt gtcctctatc cggc   24
  • <210> 1035 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1035 tcgccatctt ttgtgggatt cctt   24
  • <210> 1036 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1036 ccgacagcca cagaataacc caaa   24
  • <210> 1037 <211> 30 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1037 tgctaatgta aggcatcaca gtcttttcca   30
  • <210> 1038 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1038 aaatacctgc aaccgttact gccgtgac   28
  • <210> 1039 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1039 caccaacctg tacccgtatt gcga   24
  • <210> 1040 <211> 27 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1040 tgctatgttt ctacaaaacc gccaagg   27
  • <210> 1041 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1041 actcgatttc ccagccaacc acag   24
  • <210> 1042 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1042 caagggacac gccttctgaa cgt   23
  • <210> 1043 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1043 ccacttgtcg aaccaccgct cgt   23
  • <210> 1044 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1044 cccttcaagc tgccaatgaa gacc   24
  • <210> 1045 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1045 cttcaaggcc atgctgacca tcag   24
  • <210> 1046 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1046 tgcattcctc tgagctcact gctg   24
  • <210> 1047 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1047 agtcagtggc ccatcagcaa tcag   24
  • <210> 1048 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1048 aagccgctcc actcgcatgt cc   22
  • <210> 1049 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1049 cctccccaac aaagaccacc gca   23
  • <210> 1050 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1050 ttaccccagc tccatccttg catc   24
  • <210> 1051 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1051 ttcgtaacag cagtcatcat ccatgg   26
  • <210> 1052 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1052 tttgaccggg tattcccacc aggaa   25
  • <210> 1053 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1053 ccttggagaa acacaagcac ctgc   24
  • <210> 1054 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1054 actcctgttt tcaccaccat gcca   24
  • <210> 1055 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1055 atctacgttg tccagctgcc agcc   24
  • <210> 1056 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1056 ctgattcctc aggtccttgg cctg   24
  • <210> 1057 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1057 ctgttcctgg agcatggcct cttc   24
  • <210> 1058 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1058 caagtgcctg taccacacgg aagg   24
  • <210> 1059 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1059 ccactcgcca tactgggtgc agt   23
  • <210> 1060 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1060 aggtcttatc agcacagtct ccgcctcc   28
  • <210> 1061 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1061 ctggacgcgg ttctactcca acag   24
  • <210> 1062 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1062 acccagataa cgcatcatgg agcga   25
  • <210> 1063 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1063 tgcctccctg tcgcaccagt acta   24
  • <210> 1064 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1064 actgagcgca cacgaaacac tgct   24
  • <210> 1065 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1065 cagcccccca actgacctca tc   22
  • <210> 1066 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1066 caggctcagc aagctgaaca cctg   24
  • <210> 1067 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1067 ttactccagg ggacaagcct tcca   24
  • <210> 1068 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1068 ccttcagggc ctgcactttc aact   24
  • <210> 1069 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1069 ctgtgtttag gcactcccct tgcg   24
  • <210> 1070 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1070 ttcttcttct gttcctcgct ccgg   24
  • <210> 1071 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1071 catgttcttc acaatcgctg catcc   25
  • <210> 1072 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1072 acagctcatt gttgtcacgc cgga   24
  • <210> 1073 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1073 cccgggttgt cttccgtcag atag   24
  • <210> 1074 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1074 cagccctttg gggaagctgg   20
  • <210> 1075 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1075 tttgacaccc cttccccagc ca   22
  • <210> 1076 <211> 30 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1076 agcaagattt cctccaggtc catcaaaagg   30
  • <210> 1077 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1077 aaccagctct ctgtgacccc aatt   24
  • <210> 1078 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1078 ctgggagcat ggcgatggat accc   24
  • <210> 1079 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1079 cctgtatgct gcaactcatg aacttggc   28
  • <210> 1080 <211> 30 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1080 aagcaatgtt gatatctgcc tctccctgtg   30
  • <210> 1081 <211> 29 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1081 tcatcaaacc atggttcatc accaatatc   29
  • <210> 1082 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1082 cgagggcaac cctgatcgtc ca   22
  • <210> 1083 <211> 29 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1083 acctgatacg tcttggtctt catcgccat   29
  • <210> 1084 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1084 tctgtcctgg ctggagtcgc tttcat   26
  • <210> 1085 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1085 tgaactccgc agctagcatc caaa   24
  • <210> 1086 <211> 29 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1086 caagaagatt tacttcgtcg attcccaga   29
  • <210> 1087 <211> 27 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1087 tcagtcaaca tcaccctcct aggatga 27
  • <210> 1088 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1088 tcaccctgga gatcagctcc cga   23
  • <210> 1089 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1089 cagcattgtc tgtcctccct ggca   24
  • <210> 1090 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1090 tggagtgctg taaacatacc ctccca   26
  • <210> 1091 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1091 cgggctgttc cctttgagaa ccttaaca   28
  • <210> 1092 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1092 atgaccaccc cggctcgtat gtca   24
  • <210> 1093 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1093 tccccacagt agacacatat gatggccg   28
  • <210> 1094 <211> 29 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1094 ctcagagcct ctctggttct ttcaatcgg   29
  • <210> 1095 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1095 ctcggtgttg gccatgctcc ag   22
  • <210> 1096 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1096 atcttctcag acgtcccgag ccag   24
  • <210> 1097 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1097 tgtccttacc tgtgggagct gtaaggtc   28
  • <210> 1098 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1098 tcctttggta tcagacccga agcg   24
  • <210> 1099 <211> 29 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1099 cctttccagc tttacagtga attgctgca   29
  • <210> 1100 <211> 29 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1100 ccaagagaaa cgagatttaa aaacccacc   29
  • <210> 1101 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1101 ctttccaacc cctggggaag acat   24
  • <210> 1102 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1102 cctcccgaag ttgcttgaaa gcac   24
  • <210> 1103 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1103 cattcgcttc ttcctccact tggc   24
  • <210> 1104 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1104 tctccacaga caaggccagg actcg   25
  • <210> 1105 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1105 atcaccaaca gcatgacctt tgcg   24
  • <210> 1106 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1106 aggacagtgg agcagccaac acac   24
  • <210> 1107 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1107 cattggaatt gccattagtc ccagc   25
  • <210> 1108 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1108 ccagcacagc cagttaaaag atgca   25
  • <210> 1109 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1109 ttggatctgc ttgctgtcca aacc   24
  • <210> 1110 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1110 cacgccatgg aaaccatgat gttt   24
  • <210> 1111 <211> 27 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1111 cacaagtact cctgccaaga gggcgac   27
  • <210> 1112 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1112 atcacatcca gggccttctc caga   24
  • <210> 1113 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1113 ttccccaact tccttagtgc ctgtgaca   28
  • <210> 1114 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1114 catgccgtct acagggatga cctg   24
  • <210> 1115 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1115 cccggggcct gttatgtcaa act   23
  • <210> 1116 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1116 ccggagggaa ccctgactac agaa   24
  • <210> 1117 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1117 aggataagac cacagcacag gcgc   24
  • <210> 1118 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1118 ttgctcaagg acctggacgc caa   23
  • <210> 1119 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1119 ctgtccacca aatgcacgct gata   24
  • <210> 1120 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1120 ctccccacag cgcatcgagg aa   22
  • <210> 1121 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1121 cagcaccgat ttcttcaggt ccct   24
  • <210> 1122 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1122 cctgacttca ggtcaaggga tgg   23
  • <210> 1123 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1123 ccaatctctg cctcagttct gcca   24
  • <210> 1124 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1124 cctgcggctt tcggatccca   20
  • <210> 1125 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1125 tggccatcca tctcacagaa attgg   25
  • <210> 1126 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1126 tctggattag agtcctgcag ctcgc   25
  • <210> 1127 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1127 ctctgtggca ccctggacta cctg   24
  • <210> 1128 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1128 cacgttctct gccccgtttc ttg   23
  • <210> 1129 <211> 25 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1129 atcctcctga agcccttttc gcagc   25
  • <210> 1130 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1130 tgccttcttc ctccctcact tctcacct   28
  • <210> 1131 <211> 30 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1131 ccataggaga atgcttccca catcaacact   30
  • <210> 1132 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1132 cccatagtcc tcagccgcct tcag   24
  • <210> 1133 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1133 cttccagcgg caatgtaagc aaca   24
  • <210> 1134 <211> 28 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1134 agggatctga accaatacag agcagaca   28
  • <210> 1135 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1135 tcctgagccc gaggaagtcc c   21
  • <210> 1136 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1136 cggccagatg agcacattgc c   21
  • <210> 1137 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1137 ttctgggctc ctgattgctc aagc   24
  • <210> 1138 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1138 ccaagaacga gtgtctctgg accg   24
  • <210> 1139 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1139 tgttcctcac tgagcctgga agca   24
  • <210> 1140 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1140 agggcctaat gcacgcacta aagc   24
  • <210> 1141 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1141 tccaccatcg ctttctctgc tctg   24
  • <210> 1142 <211> 21 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1142 ccacgctgcc ctcggacaag c   21
  • <210> 1143 <211> 23 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1143 aattaacagc cacccctcag gcg   23
  • <210> 1144 <211> 26 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1144 caggcacaca caggtgggac acaaat   26
  • <210> 1145 <211> 22 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1145 atttcacgca tctggcgttc ca   22
  • <210> 1146 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1146 tggacactgt ggaccctccc tacc   24
  • <210> 1147 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1147 ccagaacaga tgcgagcagt ccat   24
  • <210> 1148 <211> 20 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1148 cgggctgcat cagcacacgc   20
  • <210> 1149 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1149 ttgatgcctg tcttcgcgcc ttct   24
  • <210> 1150 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1150 ttccgtaaga ggcctggtgc tctc   24
  • <210> 1151 <211> 27 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1151 ctgctgttta ccttggcgag gcctttc   27
  • <210> 1152 <211> 24 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic probe
  • <400> 1152 cccctccttc tcctgcttca gctt   24
  • <210> 1153 <211> 78 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1153
  • <210> 1154 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1154
  • <210> 1155 <211> 77 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1155
  • <210> 1156 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1156
  • <210> 1157 <211> 76 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1157
  • <210> 1158 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1158
  • <210> 1159 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1159
  • <210> 1160 <211> 74 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1160
  • <210> 1161 <211> 74 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1161
  • <210> 1162 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1162
  • <210> 1163 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1163
  • <210> 1164 <211> 62 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1164
  • <210> 1165 <211> 72 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1165
  • <210> 1166 <211> 75 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1166
  • <210> 1167 <211> 78 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1167
  • <210> 1168 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1168
  • <210> 1169 <211> 78 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1169
  • <210> 1170 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1170
  • <210> 1171 <211> 75 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1171
  • <210> 1172 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1172
  • <210> 1173 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1173
  • <210> 1174 <211> 69 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1174
  • <210> 1175 <211> 71 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1175
  • <210> 1176 <211> 81 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1176
  • <210> 1177 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1177
  • <210> 1178 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1178
  • <210> 1179 <211> 64 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1179
  • <210> 1180 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1180
  • <210> 1181 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1181
  • <210> 1182 <211> 79 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1182
  • <210> 1183 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1183
  • <210> 1184 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1184
  • <210> 1185 <211> 80 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1185
  • <210> 1186 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1186
  • <210> 1187 <211> 81 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1187
  • <210> 1188 <211> 76 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1188
  • <210> 1189 <211> 72 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1189
  • <210> 1190 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1190
  • <210> 1191 <211> 83 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1191
  • <210> 1192 <211> 65 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1192
  • <210> 1193 <211> 75 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1193
  • <210> 1194 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1194
  • <210> 1195 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1195
  • <210> 1196 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1196
  • <210> 1197 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1197
  • <210> 1198 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1198
  • <210> 1199 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1199
  • <210> 1200 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1200
  • <210> 1201 <211> 63 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1201
  • <210> 1202 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1202
  • <210> 1203 <211> 82 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1203
  • <210> 1204 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1204
  • <210> 1205 <211> 75 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1205
  • <210> 1206 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1206
  • <210> 1207 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1207
  • <210> 1208 <211> 65 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1208
  • <210> 1209 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1209
  • <210> 1210 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1210
  • <210> 1211 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1211
  • <210> 1212 <211> 78 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1212
  • <210> 1213 <211> 74 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1213
  • <210> 1214 <211> 78 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1214
  • <210> 1215 <211> 78 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1215
  • <210> 1216 <211> 77 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1216
  • <210> 1217 <211> 65 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1217
  • <210> 1218 <211> 84 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1218
  • <210> 1219 <211> 76 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1219
  • <210> 1220 <211> 85 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1220
  • <210> 1221 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1221
  • <210> 1222 <211> 64 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1222
  • <210> 1223 <211> 78 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1223
  • <210> 1224 <211> 77 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1224
  • <210> 1225 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1225
  • <210> 1226 <211> 90 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1226
  • <210> 1227 <211> 78 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1227
  • <210> 1228 <211> 78 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1228
  • <210> 1229 <211> 74 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1229
  • <210> 1230 <211> 84 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1230
  • <210> 1231 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1231
  • <210> 1232 <211> 71 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1232
  • <210> 1233 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1233
  • <210> 1234 <211> 77 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1234
  • <210> 1235 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1235
  • <210> 1236 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1236
  • <210> 1237 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1237
  • <210> 1238 <211> 71 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1238
  • <210> 1239 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1239
  • <210> 1240 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1240
  • <210> 1241 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1241
  • <210> 1242 <211> 71 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1242
  • <210> 1243 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1243
  • <210> 1244 <211> 77 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1244
  • <210> 1245 <211> 63 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1245
  • <210> 1246 <211> 76 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1246
  • <210> 1247 <211> 69 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1247
  • <210> 1248 <211> 80 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1248
  • <210> 1249 <211> 72 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1249
  • <210> 1250 <211> 76 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1250
  • <210> 1251 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1251
  • <210> 1252 <211> 62 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1252
  • <210> 1253 <211> 72 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1253
  • <210> 1254 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1254
  • <210> 1255 <211> 76 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1255
  • <210> 1256 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1256
  • <210> 1257 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1257
  • <210> 1258 <211> 80 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1258
  • <210> 1259 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1259
  • <210> 1260 <211> 81 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1260
  • <210> 1261 <211> 72 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1261
  • <210> 1262 <211> 69 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1262
  • <210> 1263 <211> 78 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1263
  • <210> 1264 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1264
  • <210> 1265 <211> 74 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1265
  • <210> 1266 <211> 80 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1266
  • <210> 1267 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1267
  • <210> 1268 <211> 64 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1268
  • <210> 1269 <211> 76 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1269
  • <210> 1270 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1270
  • <210> 1271 <211> 80 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1271
  • <210> 1272 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1272
  • <210> 1273 <211> 79 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1273
  • <210> 1274 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1274
  • <210> 1275 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1275
  • <210> 1276 <211> 74 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1276
  • <210> 1277 <211> 72 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1277
  • <210> 1278 <211> 76 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1278
  • <210> 1279 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1279
  • <210> 1280 <211> 71 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1280
  • <210> 1281 <211> 76 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1281
  • <210> 1282 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1282
  • <210> 1283 <211> 75 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1283
  • <210> 1284 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1284
  • <210> 1285 <211> 74 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1285
  • <210> 1286 <211> 110 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1286
  • <210> 1287 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1287
  • <210> 1288 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1288
  • <210> 1289 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1289
  • <210> 1290 <211> 84 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1290
  • <210> 1291 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1291
  • <210> 1292 <211> 78 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1292
  • <210> 1293 <211> 76 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1293
  • <210> 1294 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1294
  • <210> 1295 <211> 75 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1295
  • <210> 1296 <211> 76 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1296
  • <210> 1297 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1297
  • <210> 1298 <211> 79 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1298
  • <210> 1299 <211> 76 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1299
  • <210> 1300 <211> 72 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1300
  • <210> 1301 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1301
  • <210> 1302 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1302
  • <210> 1303 <211> 74 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1303
  • <210> 1304 <211> 76 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1304
  • <210> 1305 <211> 78 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1305
  • <210> 1306 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1306
  • <210> 1307 <211> 71 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1307
  • <210> 1308 <211> 75 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1308
  • <210> 1309 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1309
  • <210> 1310 <211> 75 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1310
  • <210> 1311 <211> 75 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1311
  • <210> 1312 <211> 72 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1312
  • <210> 1313 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1313
  • <210> 1314 <211> 77 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1314
  • <210> 1315 <211> 76 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1315
  • <210> 1316 <211> 86 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1316
  • <210> 1317 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1317
  • <210> 1318 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1318
  • <210> 1319 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1319
  • <210> 1320 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1320
  • <210> 1321 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1321
  • <210> 1322 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1322
  • <210> 1323 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1323
  • <210> 1324 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1324
  • <210> 1325 <211> 78 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1325
  • <210> 1326 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1326
  • <210> 1327 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1327
  • <210> 1328 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1328
  • <210> 1329 <211> 80 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1329
  • <210> 1330 <211> 81 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1330
  • <210> 1331 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1331
  • <210> 1332 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1332
  • <210> 1333 <211> 69 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1333
  • <210> 1334 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1334
  • <210> 1335 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1335
  • <210> 1336 <211> 83 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1336
  • <210> 1337 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1337
  • <210> 1338 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1338
  • <210> 1339 <211> 74 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1339
  • <210> 1340 <211> 80 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1340
  • <210> 1341 <211> 69 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1341
  • <210> 1342 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1342
  • <210> 1343 <211> 74 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1343
  • <210> 1344 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1344
  • <210> 1345 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1345
  • <210> 1346 <211> 74 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1346
  • <210> 1347 <211> 75 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1347
  • <210> 1348 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1348
  • <210> 1349 <211> 83 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1349
  • <210> 1350 <211> 85 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1350
  • <210> 1351 <211> 72 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1351
  • <210> 1352 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1352
  • <210> 1353 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1353
  • <210> 1354 <211> 74 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1354
  • <210> 1355 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1355
  • <210> 1356 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1356
  • <210> 1357 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1357
  • <210> 1358 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1358
  • <210> 1359 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1359
  • <210> 1360 <211> 75 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1360
  • <210> 1361 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1361
  • <210> 1362 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1362
  • <210> 1363 <211> 71 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1363
  • <210> 1364 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1364
  • <210> 1365 <211> 64 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1365
  • <210> 1366 <211> 72 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1366
  • <210> 1367 <211> 86 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1367
  • <210> 1368 <211> 71 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1368
  • <210> 1369 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1369
  • <210> 1370 <211> 76 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1370
  • <210> 1371 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1371
  • <210> 1372 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1372
  • <210> 1373 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1373
  • <210> 1374 <211> 74 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1374
  • <210> 1375 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1375
  • <210> 1376 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1376
  • <210> 1377 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1377
  • <210> 1378 <211> 72 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1378
  • <210> 1379 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1379
  • <210> 1380 <211> 71 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1380
  • <210> 1381 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1381
  • <210> 1382 <211> 84 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1382
  • <210> 1383 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1383
  • <210> 1384 <211> 69 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1384
  • <210> 1385 <211> 78 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1385
  • <210> 1386 <211> 71 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1386
  • <210> 1387 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1387
  • <210> 1388 <211> 78 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1388
  • <210> 1389 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1389
  • <210> 1390 <211> 77 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1390
  • <210> 1391 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1391
  • <210> 1392 <211> 63 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1392
  • <210> 1393 <211> 72 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1393
  • <210> 1394 <211> 84 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1394
  • <210> 1395 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1395
  • <210> 1396 <211> 84 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1396
  • <210> 1397 <211> 83 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1397
  • <210> 1398 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1398
  • <210> 1399 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1399
  • <210> 1400 <211> 83 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1400
  • <210> 1401 <211> 74 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1401
  • <210> 1402 <211> 83 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1402
  • <210> 1403 <211> 72 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1403
  • <210> 1404 <211> 77 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1404
  • <210> 1405 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1405
  • <210> 1406 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1406
  • <210> 1407 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1407
  • <210> 1408 <211> 79 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1408
  • <210> 1409 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1409
  • <210> 1410 <211> 76 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1410
  • <210> 1411 <211> 74 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1411
  • <210> 1412 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1412
  • <210> 1413 <211> 72 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1413
  • <210> 1414 <211> 69 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1414
  • <210> 1415 <211> 74 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1415
  • <210> 1416 <211> 77 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1416
  • <210> 1417 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1417
  • <210> 1418 <211> 75 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1418
  • <210> 1419 <211> 69 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1419
  • <210> 1420 <211> 79 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1420
  • <210> 1421 <211> 74 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1421
  • <210> 1422 <211> 78 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1422
  • <210> 1423 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1423
  • <210> 1424 <211> 71 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1424
  • <210> 1425 <211> 69 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1425
  • <210> 1426 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1426
  • <210> 1427 <211> 80 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1427
  • <210> 1428 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1428
  • <210> 1429 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1429
  • <210> 1430 <211> 69 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1430
  • <210> 1431 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1431
  • <210> 1432 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1432
  • <210> 1433 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1433
  • <210> 1434 <211> 78 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1434
  • <210> 1435 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1435
  • <210> 1436 <211> 77 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1436
  • <210> 1437 <211> 71 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1437
  • <210> 1438 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1438
  • <210> 1439 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1439
  • <210> 1440 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1440
  • <210> 1441 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1441
  • <210> 1442 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1442
  • <210> 1443 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1443
  • <210> 1444 <211> 80 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1444
  • <210> 1445 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1445
  • <210> 1446 <211> 69 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1446
  • <210> 1447 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1447
  • <210> 1448 <211> 71 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1448
  • <210> 1449 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1449
  • <210> 1450 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1450
  • <210> 1451 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1451
  • <210> 1452 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1452
  • <210> 1453 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1453
  • <210> 1454 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1454
  • <210> 1455 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1455
  • <210> 1456 <211> 75 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1456
  • <210> 1457 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1457
  • <210> 1458 <211> 69 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1458
  • <210> 1459 <211> 79 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1459
  • <210> 1460 <211> 72 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1460
  • <210> 1461 <211> 78 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1461
  • <210> 1462 <211> 86 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1462
  • <210> 1463 <211> 79 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1463
  • <210> 1464 <211> 79 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1464
  • <210> 1465 <211> 72 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1465
  • <210> 1466 <211> 75 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1466
  • <210> 1467 <211> 79 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1467
  • <210> 1468 <211> 91 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1468
  • <210> 1469 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1469
  • <210> 1470 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1470
  • <210> 1471 <211> 69 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1471
  • <210> 1472 <211> 78 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1472
  • <210> 1473 <211> 74 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1473
  • <210> 1474 <211> 75 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1474
  • <210> 1475 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1475
  • <210> 1476 <211> 83 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1476
  • <210> 1477 <211> 80 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1477
  • <210> 1478 <211> 76 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1478
  • <210> 1479 <211> 81 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1479
  • <210> 1480 <211> 71 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1480
  • <210> 1481 <211> 85 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1481
  • <210> 1482 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1482
  • <210> 1483 <211> 81 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1483
  • <210> 1484 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1484
  • <210> 1485 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1485
  • <210> 1486 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1486
  • <210> 1487 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1487
  • <210> 1488 <211> 75 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1488
  • <210> 1489 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1489
  • <210> 1490 <211> 80 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1490
  • <210> 1491 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1491
  • <210> 1492 <211> 71 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1492
  • <210> 1493 <211> 69 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1493
  • <210> 1494 <211> 77 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1494
  • <210> 1495 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1495
  • <210> 1496 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1496
  • <210> 1497 <211> 75 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1497
  • <210> 1498 <211> 76 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1498
  • <210> 1499 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1499
  • <210> 1500 <211> 70 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1500
  • <210> 1501 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1501
  • <210> 1502 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1502
  • <210> 1503 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1503
  • <210> 1504 <211> 86 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1504
  • <210> 1505 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1505
  • <210> 1506 <211> 72 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1506
  • <210> 1507 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1507
  • <210> 1508 <211> 71 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1508
  • <210> 1509 <211> 74 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1509
  • <210> 1510 <211> 69 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1510
  • <210> 1511 <211> 69 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1511
  • <210> 1512 <211> 71 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1512
  • <210> 1513 <211> 90 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1513
  • <210> 1514 <211> 80 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1514
  • <210> 1515 <211> 85 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1515
  • <210> 1516 <211> 73 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1516
  • <210> 1517 <211> 72 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1517
  • <210> 1518 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1518
  • <210> 1519 <211> 75 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1519
  • <210> 1520 <211> 65 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1520
  • <210> 1521 <211> 66 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1521
  • <210> 1522 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1522
  • <210> 1523 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1523
  • <210> 1524 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1524
  • <210> 1525 <211> 71 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1525
  • <210> 1526 <211> 64 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1526
  • <210> 1527 <211> 522 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1527
  • <210> 1528 <211> 89 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1528
  • <210> 1529 <211> 72 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1529
  • <210> 1530 <211> 67 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1530
  • <210> 1531 <211> 68 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1531
  • <210> 1532 <211> 75 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1532
  • <210> 1533 <211> 75 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1533
  • <210> 1534 <211> 79 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1534
  • <210> 1535 <211> 74 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1535
  • <210> 1536 <211> 81 <212> DNA <213> Artificial Sequence
  • <220> <223> Synthetic oligonucleotide
  • <400> 1536

Claims (12)

  1. A method for predicting the clinical outcome of a patient diagnosed with cancer comprising:
    (a) obtaining an expression level of an expression product of at least one prognostic gene from a tissue sample obtained from a tumour of the patient, wherein the at least one prognostic gene is IL6ST;
    (b) normalizing the expression level of the expression product of the at least one prognostics gene to obtain a normalized expression level;
    (c) expressing the normalized expression level as an expression value compared to an expression level from a tumour reference set; and
    (d) calculating a risk score based on the normalized expression value, wherein increased expression of IL6ST is positively correlated with good prognosis.
  2. A method as claimed in claim 1, further comprising: generating a report based on the risk score.
  3. A method as claimed in claim 1, wherein the patient is a human patient.
  4. A method as claimed in claim 1, wherein the tumour is a breast cancer tumour.
  5. A method as claimed in claim 1, wherein the tissue sample is a fixed paraffin-embedded tissue.
  6. A method as claimed in claim 1, wherein the expression level is obtained using a PCR-based method.
  7. A method as claimed in claim 1, wherein an expression level is obtained from at least two genes in any of the stromal, metabolic, immune, proliferation, or metabolic groups, or their gene products.
  8. A method as claimed in claim 1, wherein an expression level is obtained from at least four genes in any two of the stromal, metabolic, immune, proliferation, or metabolic groups, or their gene products.
  9. A method as claimed in claim 1, further comprising obtaining an expression level of at least one co-expressed gene from those listed in Table 18.
  10. A method for classifying a cancer patient according to prognosis, comprising the steps of:
    (a) receiving a first data structure comprising the respective levels of an expression product of each of at least three different prognostic genes listed in any of Tables 1-12 in a tissue sample obtained from tumour in the patient, wherein one of the prognostic genes is IL6ST;
    (b) normalizing the at least three expression values to obtain normalized expression values;
    (c) determining the similarity of the normalized expression values of each of the at least three prognostic genes to respective control levels of expression of the at least three prognostic genes obtained from a second data structure to obtain a patient similarity value, wherein the second data structure is based on levels of expression from a plurality of cancer tumours;
    (d) comparing the patient similarity value to a selected threshold value of similarity of the respective normalized expression values of each of the at least three prognostic genes to the respective control levels of expression of the at least three prognostic genes; and
    (e) classifying the patient as having a first prognosis if the patient similarity value exceeds the threshold similarity value, and a second prognosis if the patient similarity value does not exceed the threshold similarity value.
  11. A computer program comprising computer code means for performing steps (b) to (d) of a method as claimed in any of claims 1 to 10, wherein the expression level of an expression product of at least one prognostic gene has been obtained from a tissue sample obtained from a tumour of the patient, wherein the at least one prognostic gene is IL6ST wherein said program is run on a computer.
  12. A computer program as claimed in claim 11 embodied on a computer-readable medium.
HK13103055.1A 2009-11-23 2010-11-19 Methods to predict clinical outcome of cancer HK1175820B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US61/263,763 2009-11-23

Publications (2)

Publication Number Publication Date
HK1175820A true HK1175820A (en) 2013-07-12
HK1175820B HK1175820B (en) 2020-01-31

Family

ID=

Similar Documents

Publication Publication Date Title
EP2504451B1 (en) Methods to predict clinical outcome of cancer
US20220396842A1 (en) Method for using gene expression to determine prognosis of prostate cancer
AU2020201779B2 (en) Method for using gene expression to determine prognosis of prostate cancer
HK40043378A (en) Methods to predict clinical outcome of cancer
HK1175820A (en) Methods to predict clinical outcome of cancer
HK1175820B (en) Methods to predict clinical outcome of cancer
HK40014990A (en) Methods to predict clinical outcome of cancer
HK40014991B (en) Method for using gene expression to determine prognosis of prostate cancer
HK40014991A (en) Method for using gene expression to determine prognosis of prostate cancer
HK1235085A1 (en) Method for using gene expression to determine prognosis of prostate cancer
HK1235085B (en) Method for using gene expression to determine prognosis of prostate cancer
HK1212395B (en) Method for using gene expression to determine prognosis of prostate cancer
KR20070022694A (en) Gene Expression Markers to Predict Chemotherapy Response