HK1224816B - Image sensor with enhanced quantum efficiency - Google Patents
Image sensor with enhanced quantum efficiency Download PDFInfo
- Publication number
- HK1224816B HK1224816B HK16112730.2A HK16112730A HK1224816B HK 1224816 B HK1224816 B HK 1224816B HK 16112730 A HK16112730 A HK 16112730A HK 1224816 B HK1224816 B HK 1224816B
- Authority
- HK
- Hong Kong
- Prior art keywords
- doped region
- semiconductor material
- image sensor
- light
- pixel array
- Prior art date
Links
Description
技术领域Technical Field
本发明大体来说涉及半导体装置。更特定来说,本发明的实例涉及具有经增强量子效率的图像传感器。The present invention relates generally to semiconductor devices. More particularly, examples of the present invention relate to image sensors with enhanced quantum efficiency.
背景技术Background Art
图像传感器已变得无所存在。其广泛用于数码静态相机、蜂窝式电话、安全相机以及医学、汽车及其它应用中。用于制造图像传感器的技术继续快步地进展。举例来说,对较高分辨率及较低功率消耗的需求已促进了这些装置的进一步小型化及集成。Image sensors have become ubiquitous. They are widely used in digital still cameras, cellular phones, security cameras, and in medical, automotive, and other applications. The technology used to manufacture image sensors continues to advance at a rapid pace. For example, the demand for higher resolution and lower power consumption has driven the further miniaturization and integration of these devices.
一种类型的图像传感器,即互补金属氧化物半导体(CMOS)图像传感器在商业电子器件中很受欢迎。然而,随着这些半导体装置已按比例缩小,光电二极管区域也已减小,从而在每一光电二极管上产生较低入射光子计数。经按比例缩小的CMOS图像传感器的数种挑战是维持低光敏感性及减少图像噪声—这两个问题因低入射光子计数而加剧。One type of image sensor, the complementary metal oxide semiconductor (CMOS) image sensor, is popular in commercial electronics. However, as these semiconductor devices have been scaled down, the photodiode area has also been reduced, resulting in lower incident photon counts on each photodiode. Several challenges with scaled-down CMOS image sensors are maintaining low light sensitivity and reducing image noise—two issues exacerbated by low incident photon counts.
对布置成已知图案(例如拜耳图案等)的常规滤光器阵列(例如,红色、绿色及蓝色阵列)的使用可导致图像传感器的光吸收降低。这是每一滤光器仅准许小范围的可见光谱通过的结果。举例来说,红色滤光器可准许750nm到650nm的光子通过,但会阻挡住可见光谱的剩余部分。类似地,绿色滤光器可准许500nm到600nm的光子通过,但会阻挡住可见光谱的剩余部分。如此,常规滤光器阵列的使用可提供对入射在图像传感器上的可见光子的相对低效吸收。The use of conventional optical filter arrays (e.g., red, green, and blue arrays) arranged in a known pattern (e.g., a Bayer pattern) can result in reduced light absorption by the image sensor. This is a result of each filter only allowing a small range of the visible light spectrum to pass through. For example, a red filter may allow photons from 750 nm to 650 nm to pass through, but block the remainder of the visible light spectrum. Similarly, a green filter may allow photons from 500 nm to 600 nm to pass through, but block the remainder of the visible light spectrum. Thus, the use of conventional optical filter arrays can provide relatively inefficient absorption of visible light photons incident on the image sensor.
发明内容Summary of the Invention
在一个方面中,本申请案针对于一种背侧照明式图像传感器。所述背侧照明式图像传感器包括:像素阵列,其包含具有前侧及背侧的半导体材料;图像传感器电路,其安置于所述半导体材料的所述前侧上,以控制所述像素阵列的操作并从所述像素阵列读出图像电荷;所述像素阵列中的第一像素包含第一经掺杂区域,其中所述第一经掺杂区域在所述半导体材料中接近所述背侧安置且向所述半导体材料中延伸第一深度以到达所述图像传感器电路;且所述像素阵列中的第二像素包含:第二经掺杂区域,其中所述第二经掺杂区域接近所述半导体材料的所述背侧安置且向所述半导体材料中延伸第二深度,所述第二深度小于所述第一深度;及第三经掺杂区域,其中所述第三经掺杂区域安置于所述第二经掺杂区域与所述半导体材料的所述前侧上的所述图像传感器电路之间,且其中所述第三经掺杂区域与所述第一经掺杂区域及所述第二经掺杂区域电隔离。In one aspect, the present application is directed to a backside illuminated image sensor comprising: a pixel array comprising a semiconductor material having a front side and a back side; image sensor circuitry disposed on the front side of the semiconductor material to control operation of the pixel array and read out image charge from the pixel array; a first pixel in the pixel array comprising a first doped region, wherein the first doped region is disposed in the semiconductor material proximate the back side and extends a first depth into the semiconductor material to reach the image sensor circuitry; and a second pixel in the pixel array comprising: a second doped region, wherein the second doped region is disposed proximate the back side of the semiconductor material and extends a second depth into the semiconductor material, the second depth being less than the first depth; and a third doped region, wherein the third doped region is disposed between the second doped region and the image sensor circuitry on the front side of the semiconductor material, and wherein the third doped region is electrically isolated from the first and second doped regions.
在另一方面中,本申请案针对于一种成像系统。所述成像系统包括:像素阵列,其包含具有前侧及背侧的半导体材料;图像传感器电路,其安置于所述半导体材料的所述前侧上,以控制所述像素阵列的操作并从所述像素阵列读出图像电荷;所述像素阵列中的第一像素包含第一经掺杂区域,其中所述第一经掺杂区域接近所述半导体材料的所述背侧安置且向所述半导体材料中延伸第一深度;且所述像素阵列中的第二像素包含:第二经掺杂区域,其中所述第二经掺杂区域接近所述半导体材料的所述背侧安置且向所述半导体材料中延伸第二深度;及第三经掺杂区域,其中所述第三经掺杂区域安置于所述第二经掺杂区域与所述半导体材料的所述前侧之间。In another aspect, the present application is directed to an imaging system comprising: a pixel array comprising a semiconductor material having a front side and a back side; image sensor circuitry disposed on the front side of the semiconductor material to control operation of the pixel array and read out image charge from the pixel array; a first pixel in the pixel array comprising a first doped region, wherein the first doped region is disposed proximate the back side of the semiconductor material and extends into the semiconductor material to a first depth; and a second pixel in the pixel array comprising: a second doped region, wherein the second doped region is disposed proximate the back side of the semiconductor material and extends into the semiconductor material to a second depth; and a third doped region, wherein the third doped region is disposed between the second doped region and the front side of the semiconductor material.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
参考以下各图描述本发明的非限制性及非详尽实例,其中在所有各视图中相似参考编号指代相似部件,除非另有规定。Non-limiting and non-exhaustive examples of the present invention are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
图1A是图解说明根据本发明的教示的背侧照明式图像传感器的一个实例的横截面图。1A is a cross-sectional diagram illustrating one example of a backside illuminated image sensor in accordance with the teachings of the present invention.
图1B是图解说明根据本发明的教示具有红外光阻挡器的背侧照明式图像传感器的一个实例的横截面图。1B is a cross-sectional diagram illustrating one example of a backside illuminated image sensor with an infrared light blocker in accordance with the teachings of the present invention.
图1C是图解说明根据本发明的教示具有红外光阻挡器的背侧照明式图像传感器的一个实例的横截面图。1C is a cross-sectional diagram illustrating one example of a backside illuminated image sensor with an infrared light blocker in accordance with the teachings of the present invention.
图2A图解说明根据本发明的教示用于使用图1A中所描绘的背侧照明式图像传感器来计算蓝色、绿色及红色信号的方法。2A illustrates a method for calculating blue, green, and red signals using the backside illuminated image sensor depicted in FIG. 1A , in accordance with the teachings of the present invention.
图2B图解说明根据本发明的教示用于使用图1B中所描绘的背侧照明式图像传感器来计算蓝色、绿色及红外信号的方法。2B illustrates a method for calculating blue, green, and infrared signals using the backside illuminated image sensor depicted in FIG. 1B , in accordance with the teachings of the present invention.
图2C图解说明根据本发明的教示用于使用图1C中所描绘的背侧照明式图像传感器来计算蓝色、绿色、红色及红外信号的方法。2C illustrates a method for calculating blue, green, red, and infrared signals using the backside illuminated image sensor depicted in FIG. 1C , in accordance with the teachings of the present invention.
图3是图解说明根据本发明的教示的图像传感器电路的一个实例的示意图。3 is a schematic diagram illustrating one example of an image sensor circuit in accordance with the teachings of the present invention.
图4是图解说明根据本发明的教示的成像系统的一个实例的图。FIG. 4 is a diagram illustrating one example of an imaging system in accordance with the teachings of the present invention.
所属领域的技术人员将了解,图中的元件是为简单及清晰起见而图解说明的,且未必按比例绘制。举例来说,为了有助于改进对本发明的各种实施例的理解,图中的元件中的一些元件的尺寸可能相对于其它元件放大。此外,通常未描绘在商业上可行的实施例中有用或必需的常见而众所周知的元件以便促进对本发明的这各种实施例的较不受阻挡的观察。Those skilled in the art will appreciate that the elements in the figures are illustrated for simplicity and clarity and are not necessarily drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help improve understanding of the various embodiments of the present invention. Furthermore, common and well-known elements that are useful or necessary in commercially feasible embodiments are often not depicted to facilitate a less obstructed view of the various embodiments of the present invention.
具体实施方式DETAILED DESCRIPTION
如将展示,本发明揭示针对于具有经增强量子效率的图像传感器的方法及设备。在以下描述中,陈述众多特定细节以便提供对本发明的透彻理解。然而,相关领域的技术人员将认识到,本文中所描述的技术可在不具有所述特定细节中的一或多者的情况下实践或者可借助其它方法、组件、材料等来实践。在其它实例中,未详细展示或描述众所周知的结构、材料或操作以避免使某些方面模糊。As will be shown, the present invention discloses methods and apparatus for image sensors with enhanced quantum efficiency. In the following description, numerous specific details are set forth to provide a thorough understanding of the present invention. However, one skilled in the relevant art will recognize that the techniques described herein can be practiced without one or more of these specific details or with other methods, components, materials, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring certain aspects.
在本说明书通篇中对“一个实施例”、“一实施例”、“一个实例”或“一实例”的提及意指结合所述实施例或实例所描述的特定特征、结构或特性包含于本发明的至少一个实施例或实例中。因此,在本说明书通篇的各个位置中例如“在一个实施例中”或“在一个实例中”等短语的出现未必全部指代同一实施例或实例。此外,在一或多个实施例或实例中,可以任何适合方式来组合特定特征、结构或特性。Reference throughout this specification to "one embodiment," "an embodiment," "an example," or "an example" means that a particular feature, structure, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present invention. Thus, the appearances of phrases such as "in one embodiment" or "in an example" in various places throughout this specification are not necessarily all referring to the same embodiment or example. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments or examples.
图1A是图解说明背侧照明式图像传感器100的一个实例的横截面图。背侧照明式图像传感器100包含半导体材料103,半导体材料103具有前侧123及背侧121、第一像素及第二像素。第一像素包含第一经掺杂区域(例如,块105、107及109),所述第一经掺杂区域接近半导体材料103的背侧121而安置且向半导体材料103中延伸第一深度115。第二像素包含第二经掺杂区域(例如,块109或块107及109),所述第二经掺杂区域接近半导体材料103的背侧121而安置且向半导体材料103中延伸第二深度(例如,117或119)。在一个实例中,第二深度(例如,117或119)小于第一深度115。在另一实例或同一实例中,第二经掺杂区域可电耦合到第一经掺杂区域。第二像素还可包含安置于第二经掺杂区域(例如,块109或块107及109)与半导体材料103的前侧123之间的第三经掺杂区域(例如,块105或块105及107)。在一个实例中,第三经掺杂区域与第一经掺杂区域及第二经掺杂区域电隔离。FIG1A is a cross-sectional diagram illustrating one example of a backside illuminated image sensor 100. Backside illuminated image sensor 100 includes semiconductor material 103 having a front side 123 and a back side 121, a first pixel, and a second pixel. The first pixel includes a first doped region (e.g., blocks 105, 107, and 109) disposed proximate back side 121 of semiconductor material 103 and extending a first depth 115 into semiconductor material 103. The second pixel includes a second doped region (e.g., block 109 or blocks 107 and 109) disposed proximate back side 121 of semiconductor material 103 and extending a second depth (e.g., 117 or 119) into semiconductor material 103. In one example, the second depth (e.g., 117 or 119) is less than the first depth 115. In another or the same example, the second doped region can be electrically coupled to the first doped region. The second pixel may also include a third doped region (e.g., block 105 or blocks 105 and 107) disposed between the second doped region (e.g., block 109 or blocks 107 and 109) and the front side 123 of the semiconductor material 103. In one example, the third doped region is electrically isolated from the first doped region and the second doped region.
背侧照明式图像传感器100的一个潜在优点是,其可在不使用滤色器/滤光器的情况下测量红色光、绿色光及蓝色光。块105因为其安置于半导体材料103中的最深处而主要吸收红色光。块107因为其安置于半导体材料103中的中间距离处而主要吸收绿色光。块109因为其安置于接近半导体材料103的表面处而主要吸收蓝色光。使用消光长度在不同波长的光之间进行区分是用以产生具有经增强量子效率的全色图像传感器的优雅的方式。One potential advantage of backside illuminated image sensor 100 is that it can measure red, green, and blue light without the use of color filters. Block 105 primarily absorbs red light because it is located deepest in semiconductor material 103. Block 107 primarily absorbs green light because it is located at an intermediate distance in semiconductor material 103. Block 109 primarily absorbs blue light because it is located near the surface of semiconductor material 103. Using extinction length to distinguish between different wavelengths of light is an elegant way to create a full-color image sensor with enhanced quantum efficiency.
为了测量不同光色彩,背侧照明式图像传感器100中的经掺杂区域可采取数个不同配置。在所描绘的实例中,第一经掺杂区域及第二经掺杂区域在半导体材料103中被安置成吸收红色光、绿色光及蓝色光,且输出由红色光、绿色光及蓝色光产生的图像电荷。在一个实例中,第一深度115大于或等于红色光在半导体材料103中的消光长度,使得第一经掺杂区域(例如,块105、107及109)吸收红色光、绿色光及蓝色光。在一个实例中,第二深度119小于绿色光在半导体材料103中的消光长度,使得第二经掺杂区域109吸收蓝色光且允许红色光及绿色光穿过半导体材料103以由第三经掺杂区域105及107吸收。在此实例中,第三经掺杂区域105及107输出由绿色光及红色光产生的图像电荷。然而,在另一实例或同一实例中,第二深度117小于红色光在半导体材料103中的消光长度,使得第二经掺杂区域107及109吸收蓝色光及绿色光且允许红色光穿过半导体材料103以由第三经掺杂区域105吸收。在此实例中,第三经掺杂区域105输出由红色光产生的图像电荷。在一或多个实例中,“消光长度”可被定义为当大部分的光已被材料吸收时所述光在所述材料中行进的距离。To measure different colors of light, the doped regions in backside illuminated image sensor 100 can adopt several different configurations. In the depicted example, first and second doped regions are arranged in semiconductor material 103 to absorb red, green, and blue light and output image charges generated by the red, green, and blue light. In one example, first depth 115 is greater than or equal to the extinction length of red light in semiconductor material 103, such that first doped regions (e.g., blocks 105, 107, and 109) absorb red, green, and blue light. In one example, second depth 119 is less than the extinction length of green light in semiconductor material 103, such that second doped region 109 absorbs blue light and allows red and green light to pass through semiconductor material 103 to be absorbed by third doped regions 105 and 107. In this example, third doped regions 105 and 107 output image charges generated by green and red light. However, in another or the same example, the second depth 117 is less than the extinction length of red light in the semiconductor material 103, so that the second doped regions 107 and 109 absorb blue and green light and allow red light to pass through the semiconductor material 103 to be absorbed by the third doped region 105. In this example, the third doped region 105 outputs image charge generated by the red light. In one or more examples, the "extinction length" can be defined as the distance that light travels in a material when most of the light has been absorbed by the material.
在所描绘的实例中,经掺杂区域接收入射光,且输出信号S1、S2、S3及S4,如图所示。在一个实例中,信号S1、S2、S3及S4可被输出到安置于半导体材料103的前侧123上的图像传感器电路。在一个实例中,所述图像传感器电路可包含读出电路、控制逻辑、功能逻辑等。信号S1、S2、S3及S4可用于借助经掺杂区域的波长选择性吸收来计算所述信号的红色分量、绿色分量及蓝色分量。虽然所描绘的实例展示,信号S1、S2、S3及S4是经由半导体材料103的前侧123被读出到图像传感器电路,但在另一实例中,信号S1、S2、S3及S4可经由半导体材料103的背侧121或经由半导体材料103的所述各侧被读出。In the depicted example, the doped region receives incident light and outputs signals S1, S2, S3, and S4, as shown. In one example, the signals S1, S2, S3, and S4 can be output to an image sensor circuit disposed on the front side 123 of the semiconductor material 103. In one example, the image sensor circuit can include readout circuitry, control logic, functional logic, etc. The signals S1, S2, S3, and S4 can be used to calculate the red, green, and blue components of the signals using wavelength-selective absorption by the doped region. Although the depicted example shows that the signals S1, S2, S3, and S4 are read out to the image sensor circuit via the front side 123 of the semiconductor material 103, in another example, the signals S1, S2, S3, and S4 can be read out via the back side 121 of the semiconductor material 103 or via each of the sides of the semiconductor material 103.
半导体材料103及经掺杂区域可由一系列广泛的半导体元素及化合物制作而成。在一个实例中,半导体材料103可包含硅;然而,在同一实例或不同实例中,半导体材料103可包含锗、镓、砷、硼等。在一个实例中,半导体材料103是p型,且第一经掺杂区域、第二经掺杂区域及第三经掺杂区域是n型。然而,在不同实例中,半导体材料103是n型,且第一经掺杂区域、第二经掺杂区域及第三经掺杂区域是p型。The semiconductor material 103 and the doped regions can be made from a wide range of semiconductor elements and compounds. In one example, the semiconductor material 103 can include silicon; however, in the same or different examples, the semiconductor material 103 can include germanium, gallium, arsenic, boron, etc. In one example, the semiconductor material 103 is p-type, and the first, second, and third doped regions are n-type. However, in different examples, the semiconductor material 103 is n-type, and the first, second, and third doped regions are p-type.
在所描绘的实例中,背侧照明式图像传感器100进一步包含接近半导体材料103的背侧121安置的夹层111。此外,微透镜层可接近半导体材料103安置使得夹层111安置于半导体材料103与微透镜层113之间。微透镜层113可经定位以将入射光子引导到第一像素及第二像素中。在一个实例中,微透镜层113可由包含光致抗蚀剂的聚合物制作而成。In the depicted example, backside illuminated image sensor 100 further includes an interlayer 111 disposed proximate to backside 121 of semiconductor material 103. Furthermore, a microlens layer can be disposed proximate to semiconductor material 103 such that interlayer 111 is disposed between semiconductor material 103 and microlens layer 113. Microlens layer 113 can be positioned to direct incident photons into first and second pixels. In one example, microlens layer 113 can be fabricated from a polymer including a photoresist.
另外,图1A中所描绘的实例展示,第二经掺杂区域在第三经掺杂区域上方延伸,且第二经掺杂区域的横向边界与第三经掺杂区域的横向边界对准。然而,在未描绘的其它实例中,第二经掺杂区域可延伸超出第三经掺杂区域的横向边界。或者,在其它实例中,第二经掺杂区域可不完全在第三经掺杂区域上方延伸。1A shows that the second doped region extends over the third doped region, and the lateral boundary of the second doped region is aligned with the lateral boundary of the third doped region. However, in other examples not depicted, the second doped region may extend beyond the lateral boundary of the third doped region. Alternatively, in other examples, the second doped region may not extend completely over the third doped region.
图1B是图解说明具有接近半导体材料103的背侧121安置的红外光阻挡器115的背侧照明式图像传感器100的一个实例的横截面图。在一个实例中,红外光阻挡器115经定位以阻止红外光到达至少一个经掺杂区域。在所描绘的实例中,红外光阻挡器115经安置以阻止红外光到达第一经掺杂区域(例如,块105、107及109)。当背侧照明式图像传感器100制作有四个像素(其中的每一者测量由蓝色光、绿色光、红色光及红外光构成的独特信号)时,背侧照明式图像传感器100可用于在不使用滤光器/滤色器的情况下输出个别蓝色、绿色、红色及红外信号。这可改进图像传感器性能,因为整个可见光谱被测量,而并非是个别像素仅接收光谱的一小部分。FIG1B is a cross-sectional view illustrating one example of a backside illuminated image sensor 100 having an infrared light blocker 115 disposed proximate to the backside 121 of the semiconductor material 103. In one example, the infrared light blocker 115 is positioned to block infrared light from reaching at least one doped region. In the depicted example, the infrared light blocker 115 is positioned to block infrared light from reaching the first doped region (e.g., blocks 105, 107, and 109). When the backside illuminated image sensor 100 is fabricated with four pixels, each of which measures a unique signal consisting of blue, green, red, and infrared light, the backside illuminated image sensor 100 can be used to output individual blue, green, red, and infrared signals without the use of optical/color filters. This can improve image sensor performance because the entire visible spectrum is measured, rather than individual pixels receiving only a small portion of the spectrum.
图1C是图解说明具有红外光阻挡器115的背侧照明式图像传感器100的一个实例的横截面图。在所描绘的实例中,红外光阻挡器115经安置以阻止红外光到达多个经掺杂区域。如同在图1B中,当背侧照明式图像传感器100制作有四个像素(其中的每一者测量由蓝色光、绿色光、红色光及红外光构成的独特信号)时,背侧照明式图像传感器100可用于在不使用滤色器的情况下输出个别蓝色、绿色、红色及红外信号。FIG1C is a cross-sectional view illustrating one example of a backside illuminated image sensor 100 having an infrared light blocker 115. In the depicted example, the infrared light blocker 115 is positioned to prevent infrared light from reaching the plurality of doped regions. As in FIG1B , when the backside illuminated image sensor 100 is fabricated with four pixels (each of which measures a unique signal composed of blue light, green light, red light, and infrared light), the backside illuminated image sensor 100 can be used to output individual blue, green, red, and infrared signals without the use of color filters.
图2A图解说明用于使用图1A中所展示的背侧照明式图像传感器来计算蓝色、绿色及红色信号的方法。在所描绘的实例中,S1(例如,块105)测量红色光—因为仅红色光可到达块105。S2(例如,块105、107及109)测量:一个红色信号—因为仅一个块105向S2中输出;两个绿色信号—因为两个块107向S2中输出;及两个蓝色信号—因为块109具有为块105及107的大致两倍多的表面积。S3(例如,块105及107)测量一个红色信号及一个绿色信号—因为一个块105及一个块107向S3输出。S4(例如,块105、107及109)测量:一个红色信号—因为仅一个块105向S4中输出;一个绿色信号—因为一个块107向S4中输出;及两个蓝色信号—因为块109具有为块105及107的大致两倍多的表面积且向S4输出。因此,在图2A中所描绘的实例中,如下输出信号:S1=R;S2=R+2G+2B;S3=R+G;S4=R+G+2B。使用线性代数,可求解个别红色、绿色及蓝色分量。在所描绘的实例中,色彩信号可为:R=S1;G=S3–S1;G=S2–S4;B=(S4–S3)/2。然而,在一个实例中,可视需要修改这些信号以考虑到光学效应及装置优化。FIG2A illustrates a method for calculating blue, green, and red signals using the backside illuminated image sensor shown in FIG1A . In the depicted example, S1 (e.g., block 105) measures red light because only red light can reach block 105. S2 (e.g., blocks 105, 107, and 109) measures: one red signal because only one block 105 outputs into S2; two green signals because two blocks 107 output into S2; and two blue signals because block 109 has approximately twice as much surface area as blocks 105 and 107. S3 (e.g., blocks 105 and 107) measures one red signal and one green signal because one block 105 and one block 107 output into S3. S4 (e.g., blocks 105, 107, and 109) measures: one red signal—because only one block 105 outputs into S4; one green signal—because one block 107 outputs into S4; and two blue signals—because block 109 has roughly twice as much surface area as blocks 105 and 107 and outputs into S4. Thus, in the example depicted in FIG2A, the output signals are as follows: S1 = R; S2 = R + 2G + 2B; S3 = R + G; S4 = R + G + 2B. Using linear algebra, the individual red, green, and blue components can be solved. In the depicted example, the color signals may be: R = S1; G = S3 − S1; G = S2 − S4; B = (S4 − S3)/2. However, in one example, these signals may be modified as needed to account for optical effects and device optimization.
图2B图解说明用于使用图1B中所描绘的背侧照明式图像传感器来计算蓝色、绿色、红色及红外信号的方法。所有源S1、S2、S3、S4测量可见光谱的与图2A中相同的部分。然而,S4被阻止接收红外光,因为红外光阻挡器(例如,红外光阻挡器115)经安置以阻止红外光到达经掺杂区域中的一者。如此,S1、S2及S3输出其可见光谱信号及红外信号,而S4仅输出其可见光谱信号但不输出红外信号。因此,在图2B中所描绘的实例中,如下输出信号:S1=R+IR;S2=R+2G+2B+IR;S3=R+G+IR;S4=R+G+2B。使用线性代数,可求解个别红色、绿色、蓝色及红外分量。在所描绘的实例中,色彩信号可为:R=S3+S4–S2;G=S3–S1;IR=S1+S2–S3–S4;B=(S1+S2–2S3)/2。FIG2B illustrates a method for calculating blue, green, red, and infrared signals using the backside illuminated image sensor depicted in FIG1B . All sources S1, S2, S3, and S4 measure the same portion of the visible spectrum as in FIG2A . However, S4 is blocked from receiving infrared light because an infrared light blocker (e.g., infrared light blocker 115) is positioned to prevent infrared light from reaching one of the doped regions. Thus, S1, S2, and S3 output their visible spectrum signals and infrared signals, while S4 outputs only its visible spectrum signal but no infrared signal. Thus, in the example depicted in FIG2B , the output signals are as follows: S1 = R + IR; S2 = R + 2G + 2B + IR; S3 = R + G + IR; S4 = R + G + 2B. Using linear algebra, the individual red, green, blue, and infrared components can be solved. In the depicted example, the color signals may be: R = S3 + S4 - S2; G = S3 - S1; IR = S1 + S2 - S3 - S4; B = (S1 + S2 - 2S3)/2.
图2C图解说明用于使用图1C中所描绘的背侧照明式图像传感器来计算蓝色、绿色、红色及红外信号的方法。所有源S1、S2、S3、S4测量可见光谱的与图2A中相同的部分。然而,S1、S2及S3被阻止接收红外光,因为红外光阻挡器(例如,红外光阻挡器115)经安置以阻止红外光到达数个经掺杂区域。如此,S4输出其可见光谱信号及红外信号,而S1-S3仅输出其可见光谱信号但不输出红外信号。因此,在图2C中所描绘的实例中,如下输出信号:S1=R;S2=R+2G+2B;S3=R+G;S4=R+G+2B+IR。使用线性代数,可求解个别红色、绿色、蓝色及红外分量。在所描绘的实例中,色彩信号可为R=S1;G=S3–S1;IR=S4+S3–S1–S2;B=(S2–3S1–2S3)/2。虽然所描绘的实例仅展示四个信号源,但在一个实例中,多个红外光阻挡器接近像素阵列安置,且红外光阻挡器阻止红外光到达像素阵列中的至少一个像素。FIG2C illustrates a method for calculating blue, green, red, and infrared signals using the backside illuminated image sensor depicted in FIG1C . All sources S1, S2, S3, and S4 measure the same portion of the visible spectrum as in FIG2A . However, S1, S2, and S3 are blocked from receiving infrared light because infrared light blockers (e.g., infrared light blocker 115) are positioned to prevent infrared light from reaching several doped regions. Thus, S4 outputs its visible spectrum signal and infrared signal, while S1-S3 output only their visible spectrum signals but no infrared signals. Thus, in the example depicted in FIG2C , the output signals are as follows: S1 = R; S2 = R + 2G + 2B; S3 = R + G; S4 = R + G + 2B + IR. Using linear algebra, the individual red, green, blue, and infrared components can be solved. In the depicted example, the color signals may be R=S1; G=S3−S1; IR=S4+S3−S1−S2; and B=(S2−3S1−2S3)/2. Although the depicted example shows only four signal sources, in one example, a plurality of infrared light blockers are positioned proximate to the pixel array, and the infrared light blockers prevent infrared light from reaching at least one pixel in the pixel array.
图3是图解说明图像传感器电路300的一部分的一个实例的示意图。在一个实例中,根据本发明的教示,图像传感器电路300可安置于半导体材料的包含图像传感器的前侧上。在所描绘的实例中,图像传感器电路300包含:第一光电二极管335;第二光电二极管345;第三光电二极管355;第四光电二极管365;第一转移晶体管333;第二转移晶体管343;第三转移晶体管353;第四转移晶体管363;浮动扩散部329;复位晶体管322;放大器晶体管324;及耦合到读出列312的行选择晶体管326。FIG3 is a schematic diagram illustrating one example of a portion of an image sensor circuit 300. In one example, image sensor circuit 300 can be disposed on a front side of a semiconductor material including an image sensor in accordance with the teachings of the present invention. In the depicted example, image sensor circuit 300 includes: a first photodiode 335; a second photodiode 345; a third photodiode 355; a fourth photodiode 365; a first transfer transistor 333; a second transfer transistor 343; a third transfer transistor 353; a fourth transfer transistor 363; a floating diffusion 329; a reset transistor 322; an amplifier transistor 324; and a row select transistor 326 coupled to a readout column 312.
在操作中,在第一光电二极管335、第二光电二极管345、第三光电二极管355及第四光电二极管365(所有这些光电二极管均可包含块105、107及/或109)中积累图像电荷。当入射光进入所述光电二极管且被转换成空穴-电子对时,图像电荷可被转移到浮动扩散部329以被作为图像数据读出。第一转移晶体管333、第二转移晶体管343、第三转移晶体管353及第四转移晶体管363可耦合于所述光电二极管与浮动扩散部329之间以将图像电荷从第一光电二极管335、第二光电二极管345、第三光电二极管355及第四光电二极管365选择性地转移到浮动扩散部329。在一个实例中,所述浮动扩散部电耦合到第一经掺杂区域(例如,块105、107及109)及第三经掺杂区域(例如,块105及107或块105)。在另一实例或同一实例中,第一转移晶体管333电耦合于第一经掺杂区域(例如,块105、107及109)与浮动扩散部329之间,且第二转移晶体管343电耦合于第三经掺杂区域(例如,块105及107或块105)与浮动扩散部329之间。在一个实例中,所述转移晶体管可将信号S1、S2、S3及S4从所述光电二极管输出到浮动扩散部329及其它图像传感器电路。In operation, image charge accumulates in first photodiode 335, second photodiode 345, third photodiode 355, and fourth photodiode 365 (all of which may include blocks 105, 107, and/or 109). When incident light enters the photodiodes and is converted into hole-electron pairs, the image charge can be transferred to floating diffusion 329 to be read out as image data. First, second, third, and fourth transfer transistors 333, 343, 353, and 363 can be coupled between the photodiodes and floating diffusion 329 to selectively transfer image charge from first, second, third, and fourth photodiodes 335, 345, 355, and 365 to floating diffusion 329. In one example, the floating diffusion is electrically coupled to a first doped region (e.g., blocks 105, 107, and 109) and a third doped region (e.g., blocks 105 and 107 or block 105). In another or the same example, a first transfer transistor 333 is electrically coupled between a first doped region (e.g., blocks 105, 107, and 109) and a floating diffusion 329, and a second transfer transistor 343 is electrically coupled between a third doped region (e.g., blocks 105 and 107 or block 105) and the floating diffusion 329. In one example, the transfer transistors can output signals S1, S2, S3, and S4 from the photodiode to the floating diffusion 329 and other image sensor circuitry.
图3中的实例还将复位晶体管322图解说明为耦合于复位电压VDD与浮动扩散部329之间以响应于复位信号RST而选择性地对浮动扩散部329中的电荷进行复位。在所描绘的实例中,放大器晶体管324包含放大器栅极,所述放大器栅极耦合到浮动扩散部329以放大浮动扩散部329上的信号以输出图像数据。行选择晶体管326耦合于读出列312与放大器晶体管324之间以将所述图像数据输出到读出列312。3 also illustrates a reset transistor 322 coupled between a reset voltage VDD and a floating diffusion 329 to selectively reset the charge in the floating diffusion 329 in response to a reset signal RST. In the depicted example, an amplifier transistor 324 includes an amplifier gate coupled to the floating diffusion 329 to amplify the signal on the floating diffusion 329 to output image data. A row select transistor 326 is coupled between the readout column 312 and the amplifier transistor 324 to output the image data to the readout column 312.
在所描绘的实例中,四个光电二极管共享同一浮动扩散部329。在此实例中,每一光电二极管具有其自身的转移晶体管。可通过向每一转移晶体管施加电压而连续地或同时地将电荷从四个光电二极管转移到浮动扩散部329。虽然图3中所描绘的实例展示四个光电二极管连接到浮动扩散部329,但在不同实例中,任何数目个光电二极管可连接到浮动扩散部329。举例来说,在替代实例中,每一光电二极管可耦合到其自身的浮动扩散部及复位晶体管。In the depicted example, four photodiodes share the same floating diffusion 329. In this example, each photodiode has its own transfer transistor. Charge can be transferred from the four photodiodes to the floating diffusion 329 sequentially or simultaneously by applying a voltage to each transfer transistor. While the example depicted in FIG3 shows four photodiodes connected to the floating diffusion 329, in different examples, any number of photodiodes can be connected to the floating diffusion 329. For example, in an alternative example, each photodiode can be coupled to its own floating diffusion and reset transistor.
图4是图解说明成像系统的一个实例的图。成像系统400包含像素阵列405、读出电路410、功能逻辑415及控制电路420。根据本发明的教示,在一个实例中,读出电路410、功能逻辑415及控制电路420可包含于用于控制像素阵列405的操作且从像素阵列405读出图像电荷的图像传感器电路中。像素阵列405中的每一像素(例如,像素P1、P2……、Pn)包含安置于半导体材料(例如,半导体材料103)中的至少一个经掺杂区域(例如,由块105、107及/或109制作的经掺杂区域)。在一个实例中,像素阵列405是个别像素(例如,像素P1、P2……、Pn)的二维(2D)阵列,其包含若干行(例如,行R1到Ry)及若干列(例如,列C1到Cx)。在另一实例或同一实例中,第一像素及第二像素以2×2阵列布置于像素阵列405中。所述2×2阵列可包含两个第一像素及两个第二像素,其中第一经掺杂区域与第二经掺杂区域耦合。所述2×2阵列可自身重复以形成像素阵列405,且个别2×2阵列内的第二经掺杂区域可与其它2×2阵列中的第二经掺杂区域解耦。像素阵列405可用于获取人、地点、物体等的图像数据,接着可使用所述图像数据再现所述人、地点、物体等的2D图像。在一个实例中,在像素阵列405中的每一图像传感器像素已获取其图像数据或图像电荷之后,图像电荷接着由读出电路410读出并被转移到功能逻辑415。在一个实例中,读出电路410经耦合以从浮动扩散部(例如,浮动扩散部329)读出图像电荷,且功能逻辑415耦合到读出电路410以对图像电荷执行逻辑操作。在一个实例中,功能逻辑可使用上文结合图2所描述的功能将来自像素阵列405的信号(例如,信号S1、S2、S3及S4)变换成其相应红色、绿色、蓝色及/或红外分量。FIG4 is a diagram illustrating one example of an imaging system. Imaging system 400 includes pixel array 405, readout circuitry 410, function logic 415, and control circuitry 420. In accordance with the teachings of the present invention, in one example, readout circuitry 410, function logic 415, and control circuitry 420 may be included in image sensor circuitry for controlling the operation of pixel array 405 and reading out image charge from pixel array 405. Each pixel in pixel array 405 (e.g., pixels P1, P2, ..., Pn) includes at least one doped region (e.g., a doped region fabricated from blocks 105, 107, and/or 109) disposed in a semiconductor material (e.g., semiconductor material 103). In one example, pixel array 405 is a two-dimensional (2D) array of individual pixels (e.g., pixels P1, P2, ..., Pn) that includes rows (e.g., rows R1 through Ry) and columns (e.g., columns C1 through Cx). In another or the same example, first pixels and second pixels are arranged in a 2×2 array in pixel array 405. The 2×2 array may include two first pixels and two second pixels, wherein the first doped region is coupled to the second doped region. The 2×2 array may repeat itself to form pixel array 405, and the second doped region within an individual 2×2 array may be decoupled from the second doped region in other 2×2 arrays. Pixel array 405 may be used to acquire image data of a person, place, object, etc., which may then be used to reproduce a 2D image of the person, place, object, etc. In one example, after each image sensor pixel in pixel array 405 has acquired its image data or image charge, the image charge is then read out by readout circuitry 410 and transferred to function logic 415. In one example, readout circuitry 410 is coupled to read out the image charge from a floating diffusion (e.g., floating diffusion 329), and function logic 415 is coupled to readout circuitry 410 to perform logic operations on the image charge. In one example, function logic may convert signals from pixel array 405 (eg, signals S1 , S2 , S3 , and S4 ) into their respective red, green, blue, and/or infrared components using the functions described above in connection with FIG. 2 .
在各种实例中,读出电路410可包含放大电路、模/数(ADC)转换电路或其它电路。功能逻辑415可仅存储所述图像数据或甚至通过应用图像后效果(例如,剪裁、旋转、移除红眼、调整亮度、调整对比度或其它)来操纵所述图像数据。在一个实例中,读出电路410可沿着读出列线一次读出一行图像数据(所图解说明)或可使用多种其它技术(未图解说明)读出所述图像数据,例如串行读出或同时全并行读出所有像素。In various examples, readout circuitry 410 may include amplification circuitry, analog-to-digital (ADC) conversion circuitry, or other circuitry. Function logic 415 may simply store the image data or even manipulate the image data by applying post-image effects (e.g., cropping, rotating, removing red eye, adjusting brightness, adjusting contrast, or other). In one example, readout circuitry 410 may read out image data one row at a time along a readout column line (illustrated) or may read out the image data using a variety of other techniques (not illustrated), such as serial readout or simultaneous full parallel readout of all pixels.
在一个实例中,控制电路420经耦合以控制像素阵列405中的像素(例如,P1、P2、P3等)的操作。举例来说,控制电路420可产生用于控制图像获取的快门信号。在一个实例中,所述快门信号是用于同时启用像素阵列405内的所有像素以在单一获取窗期间同时捕获其相应图像数据的全局快门信号。在另一实例中,快门信号为滚动快门信号,使得在连续获取窗期间依序启用每一像素行、每一像素列或每一像素群组。在另一实例中,图像获取与例如闪光等照明效果同步。In one example, control circuitry 420 is coupled to control the operation of pixels (e.g., P1, P2, P3, etc.) in pixel array 405. For example, control circuitry 420 can generate a shutter signal for controlling image acquisition. In one example, the shutter signal is a global shutter signal for simultaneously enabling all pixels within pixel array 405 to simultaneously capture their respective image data during a single acquisition window. In another example, the shutter signal is a rolling shutter signal such that each pixel row, each pixel column, or each pixel group is sequentially enabled during successive acquisition windows. In another example, image acquisition is synchronized with a lighting effect, such as a flash.
在一个实例中,成像系统400可包含于数码相机、蜂窝电话、膝上型计算机等中。另外,成像系统400可耦合到例如处理器、存储器元件、输出(USB端口、无线发射器、HDMI端口等)、照明/闪光设备、电输入(键盘、触摸显示器、追踪垫、鼠标、麦克风等)及/或显示器等其它硬件元件。其它硬件元件可将指令递送到成像系统400、从成像系统400提取图像数据或操纵由成像系统400供应的图像数据。In one example, the imaging system 400 may be included in a digital camera, a cellular phone, a laptop computer, etc. Additionally, the imaging system 400 may be coupled to other hardware elements such as a processor, memory elements, outputs (USB ports, wireless transmitters, HDMI ports, etc.), lighting/flash devices, electrical inputs (keyboards, touch displays, trackpads, mice, microphones, etc.), and/or displays. The other hardware elements may deliver instructions to the imaging system 400, extract image data from the imaging system 400, or manipulate the image data supplied by the imaging system 400.
包含发明摘要中所描述内容的本发明的所图解说明实例的以上描述并非打算为穷尽性或限制于所揭示的精确形式。尽管出于说明性目的而在本文中描述本发明的特定实施例及实例,但可在不背离本发明的较宽广精神及范围的情况下做出各种等效修改。事实上,应了解,特定实例性结构、材料、使用案例等是出于解释目的而提供且根据本发明的教示还可在其它实施例及实例中采用替代物。The above description of the illustrated examples of the present invention, including that described in the Abstract, is not intended to be exhaustive or limited to the precise forms disclosed. Although specific embodiments and examples of the present invention are described herein for illustrative purposes, various equivalent modifications may be made without departing from the broader spirit and scope of the present invention. Indeed, it should be understood that specific example structures, materials, use cases, etc. are provided for illustrative purposes and that alternatives may be employed in other embodiments and examples in accordance with the teachings of the present invention.
可根据以上详细描述对本发明的实例做出这些修改。所附权利要求书中所使用的术语不应理解为将本发明限制于说明书及权利要求书中所揭示的特定实施例。相反,范围将完全由所附权利要求书来确定,所述权利要求书将根据所创建的权利要求解释原则来加以理解。因此,应将本说明书及图视为说明性而非限制性。These modifications may be made to examples of the present invention in light of the above detailed description. The terms used in the appended claims should not be construed to limit the invention to the specific embodiments disclosed in the specification and claims. Rather, the scope is to be determined entirely by the appended claims, which are to be construed in accordance with established doctrines of claim interpretation. Accordingly, the specification and drawings are to be regarded as illustrative rather than restrictive.
Claims (22)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/612,961 | 2015-02-03 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| HK1224816A1 HK1224816A1 (en) | 2017-08-25 |
| HK1224816B true HK1224816B (en) | 2020-01-10 |
Family
ID=
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI593092B (en) | Visible and infrared image sensors | |
| KR101129128B1 (en) | Circuit and photo sensor overlap for backside illumination image sensor | |
| US9955090B2 (en) | High dynamic range image sensor with virtual high-low sensitivity pixels | |
| US9070611B2 (en) | Image sensor with controllable vertically integrated photodetectors | |
| TWI613802B (en) | Optical diode and filter configuration for high dynamic range image sensors | |
| KR102066603B1 (en) | Image sensor having the 3d photoelectric conversion device | |
| CN104733480B (en) | Image sensor pixel for high dynamic range image sensor | |
| TWI569435B (en) | Image sensor with dielectric charge trapping device | |
| CN106257679A (en) | Imageing sensor and imaging system | |
| TW201703242A (en) | Back-illuminated image sensor pixel with dielectric layer reflection ring | |
| KR20140142966A (en) | A method of generating a pixel array layout for a image sensor and a layout generating system using thereof | |
| CN108810430A (en) | A kind of imaging system and forming method thereof | |
| US8730362B2 (en) | Image sensor with controllable vertically integrated photodetectors | |
| US7498624B2 (en) | Solid-state imaging device | |
| US20130026594A1 (en) | Image sensor with controllable vertically integrated photodetectors | |
| US8946612B2 (en) | Image sensor with controllable vertically integrated photodetectors | |
| US8736728B2 (en) | Image sensor with controllable vertically integrated photodetectors | |
| TWI599027B (en) | Blu-ray enhanced image sensor | |
| HK1224816B (en) | Image sensor with enhanced quantum efficiency | |
| US9565405B2 (en) | Image sensor with enhanced quantum efficiency | |
| HK1224816A1 (en) | Image sensor with enhanced quantum efficiency | |
| HK1222485B (en) | Blue enhanced image sensor | |
| JP4751690B2 (en) | Solid-state image sensor |