HK1226443B - Method for producing engineered heart muscle (ehm) - Google Patents
Method for producing engineered heart muscle (ehm) Download PDFInfo
- Publication number
- HK1226443B HK1226443B HK16114770.9A HK16114770A HK1226443B HK 1226443 B HK1226443 B HK 1226443B HK 16114770 A HK16114770 A HK 16114770A HK 1226443 B HK1226443 B HK 1226443B
- Authority
- HK
- Hong Kong
- Prior art keywords
- serum
- free
- medium
- ehm
- human
- Prior art date
Links
Description
技术领域Technical Field
本发明提供了用于在化学充分限定的完全符合GMP规定的条件下产生工程化心肌(EHM)的新方法。得到的人心肌生成力,并显示出心肌的典型特性。The present invention provides a novel method for producing engineered cardiac muscle (EHM) under chemically well-defined conditions that are fully compliant with GMP regulations. The resulting human cardiac muscle is viable and exhibits typical properties of cardiac muscle.
背景技术Background Art
心脏病是工业化国家的头号致死原因,尽管有完善的药物及介入治疗,其患病率预计仍上升。因此,不可避免地需要新的药物和非药物治疗模式。组织工程化心肌,一方面可以用于鉴定用于治疗心脏病的新药或新药物靶点(物质筛选/靶点确认),另一方面可以直接应用于心脏修复(再生/修复医学)(Eschenhagen和Zimmermann,Circ Res,97:1220-1231(2005);Zimmermann等,Cardiovasc Res,71:419-429(2006))。功能性工程化心肌的主要先决条件是,如原生心肌那样具有产生力的能力。Heart disease is the leading cause of death in industrialized countries, and its prevalence is expected to rise despite the availability of comprehensive medications and interventional therapies. Therefore, new drug and non-drug treatment modalities are inevitably needed. Tissue-engineered myocardium can be used to identify new drugs or new drug targets for treating heart disease (substance screening/target confirmation), and can be directly applied to cardiac repair (regeneration/repair medicine) (Eschenhagen and Zimmermann, Circ Res, 97:1220-1231 (2005); Zimmermann et al., Cardiovasc Res, 71:419-429 (2006)). The main prerequisite for functional engineered myocardium is the ability to generate force like native myocardium.
过去十年间,已建立了若干心肌组织工程化模式。但是,仅利用水凝胶-细胞捕获(Eschenhagen等,Faseb J 11:683-694(1997);Kofidis等,J Thorac Cardiovasc Surg124:63-69(2002);Morritt等,Circulation 115:353-360(2007);Zimmermann等,Biotechnol Bioeng 68:106-114(2000);Tulloch等,Circ Res 109:47-59(2011))或细胞层技术(Shimizu等,Circ Res 90:e40(2002))证实了可靠的力生成。发明人和其它研究人员已经提供证据,即在胶原蛋白-水凝胶中的心肌细胞捕获提供了三维生长环境,该环境一方面可以促进多细胞、各向异性的心肌细胞的组装,另一方面支持未成熟心肌细胞的高度成熟(Tiburc等,Circ Res 109:1105-1114(2011))。得到的工程化心肌(EHM)制剂(以前被描述为工程化心脏组织:EHT)最终有利于形成具有出生后心肌特性的有收缩能力的心肌构建体(Radisic等,Proc Natl Acad Sci USA 101:18129-18134(2004);Tiburcy等,CircRes,109:1105-1114(2011);Zimmermann等,Circ Res 90:223-230(2002))。原理验证的动物研究已经表明,在植入到患病心脏上之后,EHM不仅电整合而且改善心脏功能(Zimmermann等,Nat.Med 12:452-458(2006))。Several myocardial tissue engineering models have been established over the past decade. However, reliable force generation has only been demonstrated using hydrogel-cell capture (Eschenhagen et al., Faseb J 11:683-694 (1997); Kofidis et al., J Thorac Cardiovasc Surg 124:63-69 (2002); Morritt et al., Circulation 115:353-360 (2007); Zimmermann et al., Biotechnol Bioeng 68:106-114 (2000); Tulloch et al., Circ Res 109:47-59 (2011)) or cell layer technology (Shimizu et al., Circ Res 90:e40 (2002)). The inventors and other researchers have provided evidence that the capture of cardiomyocytes in collagen-hydrogels provides a three-dimensional growth environment that promotes the assembly of multicellular, anisotropic cardiomyocytes and supports the high degree of maturation of immature cardiomyocytes (Tiburc et al., Circ Res 109:1105-1114 (2011)). The resulting engineered myocardium (EHM) preparation (formerly described as engineered heart tissue: EHT) ultimately facilitates the formation of contractile myocardial constructs with postnatal myocardial properties (Radisic et al., Proc Natl Acad Sci USA 101:18129-18134 (2004); Tiburcy et al., Circ Res, 109:1105-1114 (2011); Zimmermann et al., Circ Res 90:223-230 (2002)). Proof-of-principle animal studies have shown that, following implantation onto diseased hearts, EHMs not only electrically integrate but also improve cardiac function (Zimmermann et al., Nat. Med 12:452-458 (2006)).
原理上,发明人已经证明,组织工程化心肌可以是一种新的心脏病治疗模式。然而,迄今所有公开报道的心脏组织工程化方法都依赖使用非限定的动物性组分,主要是动物基质(如大鼠胶原蛋白、牛纤维蛋白、小鼠肿瘤来源的细胞外基质),和动物血清(Tulloch等,Circ Res 109:47-59(2011);Zimmermann等,Circ Res 90:223-230(2002);Zimmermann等,Nat.Med 12:452-458(2006);Schaaf等,PloS One 6:e26397(2011);Soong等,Curr Prot Cell Biol 23.8.1-23.8.21(2012);WO 01/55297,WO 2007/054286和WO 2008/058917)。在大鼠EHM模型中,本发明人已进行用无血清培养基替换动物血清的最初研究。虽然本发明人能够在得到的组织中获得相当的力产生,但是本发明人无法在最初七天的组织形成初始阶段除去动物性组分(Naito等,Circulation,114:I72-78(2006);Zimmermann,Hamburg Eppendorf,Habilitation(2006);Schneiderbanger,汉堡大学,论文(2006))。In principle, the inventors have demonstrated that tissue-engineered myocardium could be a new therapeutic modality for heart disease. However, all publicly reported cardiac tissue engineering methods to date have relied on the use of unrestricted animal components, primarily animal matrices (e.g., rat collagen, bovine fibrin, mouse tumor-derived extracellular matrix), and animal serum (Tulloch et al., Circ Res 109:47-59 (2011); Zimmermann et al., Circ Res 90:223-230 (2002); Zimmermann et al., Nat. Med 12:452-458 (2006); Schaaf et al., PloS One 6:e26397 (2011); Soong et al., Curr Prot Cell Biol 23.8.1-23.8.21 (2012); WO 01/55297, WO 2007/054286, and WO 2008/058917). In the rat EHM model, the present inventors have conducted initial studies replacing animal serum with serum-free medium. Although the present inventors were able to obtain comparable force generation in the resulting tissue, the present inventors were unable to remove the animal component during the initial seven-day tissue formation phase (Naito et al., Circulation, 114: 172-78 (2006); Zimmermann, Hamburg Eppendorf, Habilitation (2006); Schneiderbanger, University of Hamburg, Thesis (2006)).
最近,若干用于更有效心脏分化的无血清的、细胞因子导向的操作方案已有所描述(Burridge等,Cell Stem Cell 10:16-28(2012)),产生了含有高达98%心肌细胞的培养物(Lian等,Proc Natl Academic Sci USA(2012))。重要的是,因为使用无动物性产品的限定物质,这些无血清分化操作方案提供了潜在的临床适用性。虽然在GMP条件下扩大人心脏细胞的规模似乎是一个可以解决的问题,但是生成力的人心肌的制造仍是一个挑战。在无血清限定培养条件下支持ESC来源的心肌细胞的器官型构建和高度成熟依然是一个关键问题。Recently, several serum-free, cytokine-guided protocols for more efficient cardiac differentiation have been described (Burridge et al., Cell Stem Cell 10: 16-28 (2012)), resulting in cultures containing up to 98% cardiomyocytes (Lian et al., Proc Natl Academic Sci USA (2012)). Importantly, these serum-free differentiation protocols offer potential clinical applicability due to the use of limited substances free of animal products. Although scaling up human cardiac cells under GMP conditions appears to be a solvable problem, the manufacture of force-generating human myocardium remains a challenge. Supporting the organotypic construction and high maturation of ESC-derived cardiomyocytes under serum-free defined culture conditions remains a key issue.
发明内容Summary of the Invention
在此,发明人报告了一个使用完全限定组分来工程化人心肌(人工程化心肌:hEHM)的操作方案。这些组分包括水凝胶基质、人细胞和完全符合GMP规定的无血清培养基条件。得到的人心肌能生成力,并显示了典型的心肌特性。Here, the inventors report a protocol for engineering human myocardium (human engineered myocardium: hEHM) using fully defined components, including a hydrogel matrix, human cells, and serum-free culture media in full compliance with GMP regulations. The resulting human myocardium is capable of generating force and exhibits typical myocardial properties.
更具体地,提供了一种用于产生工程化心肌(EHM)的方法,所述方法包括下述步骤:More specifically, a method for producing an engineered myocardium (EHM) is provided, the method comprising the following steps:
(i)在一个或多个模具中提供无血清重构混合物,所述重构混合物包含(a)无血清最少必需培养基;(b)无血清补充剂,得到0.5-50mg/ml白蛋白、1-100μg/ml转铁蛋白、0.1-10μg/ml乙醇胺、0.003-0.3μg/ml亚硒酸钠、0.4-40μg/ml盐酸左旋肉碱、0.1-10μg/ml氢化可的松、0.05-5μl/ml脂肪酸补充剂、0.0001-0.1μg/ml三碘-L-甲状腺原氨酸(T3)和0.2-2mg/ml胶原蛋白的终浓度;和(c)人心肌细胞和人非肌细胞的混合物,其中总细胞混合物的20%到80%是心肌细胞;其中重构混合物的pH为7.2到7.6;(i) providing a serum-free reconstitution mixture in one or more molds, the reconstitution mixture comprising (a) serum-free minimal essential medium; (b) a serum-free supplement to give a final concentration of 0.5-50 mg/ml albumin, 1-100 μg/ml transferrin, 0.1-10 μg/ml ethanolamine, 0.003-0.3 μg/ml sodium selenite, 0.4-40 μg/ml L-carnitine hydrochloride, 0.1-10 μg/ml hydrocortisone, 0.05-5 μl/ml fatty acid supplement, 0.0001-0.1 μg/ml triiodo-L-thyronine (T3), and 0.2-2 mg/ml collagen; and (c) a mixture of human cardiomyocytes and human non-myocytes, wherein 20% to 80% of the total cell mixture are cardiomyocytes; wherein the pH of the reconstitution mixture is 7.2 to 7.6;
ii)在所述一个或多个模具中培养无血清重构混合物,由此使无血清重构混合物凝结至少15分钟;ii) incubating the serum-free reconstitution mixture in the one or more molds, thereby allowing the serum-free reconstitution mixture to clot for at least 15 minutes;
iii)在所述一个或多个模具中,在无血清EHM培养基中培养步骤(ii)中获得的混合物,直至所述混合物凝结到至少50%的其初始厚度,其中所述EHM培养基包含(a)含有0.5-3mmol/L Ca2+的基础培养基;(b)如(i)(b)中定义的无血清补充剂;(c)0.5-10mmol/LL-谷氨酰胺;(d)0.01-1.0mmol/L抗坏血酸;(e)1-100ng/ml IGF-1;及(f)1-10ng/ml TGFβ1;iii) culturing the mixture obtained in step (ii) in the one or more molds in serum-free EHM medium until the mixture solidifies to at least 50% of its original thickness, wherein the EHM medium comprises (a) a basal medium containing 0.5-3 mmol/L Ca2 + ; (b) a serum-free supplement as defined in (i)(b); (c) 0.5-10 mmol/L L-glutamine; (d) 0.01-1.0 mmol/L ascorbic acid; (e) 1-100 ng/ml IGF-1; and (f) 1-10 ng/ml TGFβ1;
iv)在如步骤(iii)(a)-(f)中定义的无血清EHM培养基中,在机械拉伸下培养步骤(iii)中获得的混合物,由此形成生成力的EHM。iv) culturing the mixture obtained in step (iii) in a serum-free EHM medium as defined in steps (iii)(a)-(f) under mechanical tension, thereby forming a force-generating EHM.
具体实施方式DETAILED DESCRIPTION
更具体地,本发明提供了一种用于产生工程化心肌(EHM)的方法,所述方法包括下述步骤:More specifically, the present invention provides a method for producing an engineered myocardium (EHM), the method comprising the following steps:
(i)在一个或多个模具中提供无血清重构混合物,所述重构混合物包括(a)无血清最少必需培养基;(b)无血清补充剂,得到下述的终浓度为(i) providing a serum-free reconstitution mixture in one or more molds, the reconstitution mixture comprising (a) serum-free minimum essential medium; (b) serum-free supplements to obtain a final concentration of
0.5-50mg/ml白蛋白(优选1-40mg/ml,更优选2-30mg/ml,还更优选3-20mg/ml,最优选4-10mg/ml,甚至最优选4.5-7.5mg/ml,诸如约5mg/ml),0.5-50 mg/ml albumin (preferably 1-40 mg/ml, more preferably 2-30 mg/ml, still more preferably 3-20 mg/ml, most preferably 4-10 mg/ml, even most preferably 4.5-7.5 mg/ml, such as about 5 mg/ml),
1-100μg/ml转铁蛋白(优选2-90μg/ml,更优选3-80μg/ml,甚至更优选4-70μg/ml,还更优选5-60μg/ml,更优选6-50μg/ml,更优选7-40μg/ml,更优选8-30μg/ml,更优选9-20μg/ml,诸如约10μg/ml),1-100 μg/ml transferrin (preferably 2-90 μg/ml, more preferably 3-80 μg/ml, even more preferably 4-70 μg/ml, still more preferably 5-60 μg/ml, more preferably 6-50 μg/ml, more preferably 7-40 μg/ml, more preferably 8-30 μg/ml, more preferably 9-20 μg/ml, such as about 10 μg/ml),
0.1-10μg/ml乙醇胺(优选0.2-9μg/ml,更优选0.3-8μg/ml,甚至更优选0.4-7μg/ml,还更优选0.5-6μg/ml,更优选0.6-5μg/ml,更优选0.7-4μg/ml,更优选0.8-3μg/ml,更优选1-2.5μg/ml,诸如约2μg/ml),0.1-10 μg/ml ethanolamine (preferably 0.2-9 μg/ml, more preferably 0.3-8 μg/ml, even more preferably 0.4-7 μg/ml, still more preferably 0.5-6 μg/ml, more preferably 0.6-5 μg/ml, more preferably 0.7-4 μg/ml, more preferably 0.8-3 μg/ml, more preferably 1-2.5 μg/ml, such as about 2 μg/ml),
0.003-0.3μg/ml亚硒酸钠(优选0.005-0.2μg/ml,更优选0.01-0.1μg/ml,甚至更优选0.02-0.05μg/ml,最优选约0.03μg/ml,诸如约0.032μg/ml),0.003-0.3 μg/ml sodium selenite (preferably 0.005-0.2 μg/ml, more preferably 0.01-0.1 μg/ml, even more preferably 0.02-0.05 μg/ml, most preferably about 0.03 μg/ml, such as about 0.032 μg/ml),
0.4-40μg/ml盐酸左旋肉碱(优选0.5-30μg/ml,更优选1-20μg/ml,甚至更优选2-10μg/ml,最优选3-5μg/ml,甚至最优选约4μg/ml),0.4-40 μg/ml L-carnitine hydrochloride (preferably 0.5-30 μg/ml, more preferably 1-20 μg/ml, even more preferably 2-10 μg/ml, most preferably 3-5 μg/ml, even most preferably about 4 μg/ml),
0.1-10μg/ml氢化可的松(优选0.2-9μg/ml,更优选0.3-8μg/ml,甚至更优选0.4-7μg/ml,还更优选0.5-6μg/ml,更优选0.6-5μg/ml,更优选0.7-4μg/ml,更优选0.8-3μg/ml,更优选0.9-2μg/ml,诸如约1μg/ml),0.1-10 μg/ml hydrocortisone (preferably 0.2-9 μg/ml, more preferably 0.3-8 μg/ml, even more preferably 0.4-7 μg/ml, still more preferably 0.5-6 μg/ml, more preferably 0.6-5 μg/ml, more preferably 0.7-4 μg/ml, more preferably 0.8-3 μg/ml, more preferably 0.9-2 μg/ml, such as about 1 μg/ml),
0.05-5μl/ml脂肪酸补充剂(优选0.1-4μl/ml,更优选0.2-3μl/ml,甚至更优选0.3-3μl/ml,最优选0.4-2μl/ml,甚至最优选0.45-1μl/ml,诸如约0.5μl/ml),0.05-5 μl/ml fatty acid supplement (preferably 0.1-4 μl/ml, more preferably 0.2-3 μl/ml, even more preferably 0.3-3 μl/ml, most preferably 0.4-2 μl/ml, even most preferably 0.45-1 μl/ml, such as about 0.5 μl/ml),
0.0001-0.1μg/ml三碘-L-甲状腺原氨酸(T3)(优选0.001-0.01μg/ml,更优选0.002-0.0075μg/ml,甚至更优选0.003-0.005μg/ml,最优选约0.004μg/ml),和0.0001-0.1 μg/ml triiodo-L-thyronine (T3) (preferably 0.001-0.01 μg/ml, more preferably 0.002-0.0075 μg/ml, even more preferably 0.003-0.005 μg/ml, most preferably about 0.004 μg/ml), and
0.2-2mg/ml胶原蛋白(优选0.3-1.9mg/ml,更优选0.4-1.8mg/ml,甚至更优选0.4-1.7mg/ml,还更优选0.5-165mg/ml,更优选0.6-1.5mg/ml,更优选0.7-1.4mg/ml,更优选0.8-1.3mg/ml,更优选0.9-1.2mg/ml,诸如约1mg/ml);0.2-2 mg/ml collagen (preferably 0.3-1.9 mg/ml, more preferably 0.4-1.8 mg/ml, even more preferably 0.4-1.7 mg/ml, still more preferably 0.5-165 mg/ml, more preferably 0.6-1.5 mg/ml, more preferably 0.7-1.4 mg/ml, more preferably 0.8-1.3 mg/ml, more preferably 0.9-1.2 mg/ml, such as about 1 mg/ml);
和(c)人心肌细胞和人非肌细胞的混合物,其中20%到80%的总细胞混合物是心肌细胞;and (c) a mixture of human cardiomyocytes and human non-myocytes, wherein 20% to 80% of the total cell mixture are cardiomyocytes;
其中重构混合物的pH为7.0到7.8,优选为7.1到7.7,更优选为7.2到7.6,甚至更优选为7.3到7.5,最优选为约7.4;wherein the pH of the reconstituted mixture is 7.0 to 7.8, preferably 7.1 to 7.7, more preferably 7.2 to 7.6, even more preferably 7.3 to 7.5, most preferably about 7.4;
(ii)在所述一个或多个模具中培养无血清重构混合物,由此使无血清重构混合物凝结至少15分钟,优选0.25-3小时,更优选0.5-1.5小时;(ii) culturing the serum-free reconstitution mixture in the one or more molds, thereby allowing the serum-free reconstitution mixture to clot for at least 15 minutes, preferably 0.25-3 hours, more preferably 0.5-1.5 hours;
(iii)在所述一个或多个模具中,在无血清EHM培养基中培养步骤(ii)中获得的混合物,直至混合物凝结到至少50%(优选至少55%,更优选至少60%,甚至更优选至少70%,最优选至少75%)的其原始厚度,(iii) culturing the mixture obtained in step (ii) in the one or more molds in serum-free EHM medium until the mixture solidifies to at least 50% (preferably at least 55%, more preferably at least 60%, even more preferably at least 70%, most preferably at least 75%) of its original thickness,
其中所述EHM培养基包含The EHM medium comprises
(a)包含0.5-3mmol/L(优选1-2.5mmol/L,更优选约2mmol/L)Ca2+的基础培养基;(a) a basal medium comprising 0.5-3 mmol/L (preferably 1-2.5 mmol/L, more preferably about 2 mmol/L) Ca2 + ;
(b)如(i)(b)中定义的无血清补剂;(b) a serum-free supplement as defined in (i)(b);
(c)0.5-10mmol/L(优选1-7mmol/L,更优选2-6mmol/L,甚至更优选3-5mmol/L,还更优选约2mmol/L)L-谷氨酰胺;(c) 0.5-10 mmol/L (preferably 1-7 mmol/L, more preferably 2-6 mmol/L, even more preferably 3-5 mmol/L, still more preferably about 2 mmol/L) L-glutamine;
(d)0.01-1.0mmol/L(优选0.05-1.0mmol/L,更优选0.1-0.5mmol/L,甚至更优选0.2-0.4mmol/L,还更优选约0.3mmol/L)抗坏血酸;(d) 0.01-1.0 mmol/L (preferably 0.05-1.0 mmol/L, more preferably 0.1-0.5 mmol/L, even more preferably 0.2-0.4 mmol/L, still more preferably about 0.3 mmol/L) ascorbic acid;
(e)1-100ng/ml(优选2-90ng/ml,更优选3-80ng/ml,甚至更优选4-70ng/ml,还更优选5-60ng/ml,更优选6-50ng/ml,更优选7-40ng/ml,更优选8-30ng/ml,更优选9-20ng/ml,诸如约10ng/ml)IGF-1;及(e) 1-100 ng/ml (preferably 2-90 ng/ml, more preferably 3-80 ng/ml, even more preferably 4-70 ng/ml, still more preferably 5-60 ng/ml, more preferably 6-50 ng/ml, more preferably 7-40 ng/ml, more preferably 8-30 ng/ml, more preferably 9-20 ng/ml, such as about 10 ng/ml) IGF-1; and
(f)1-10ng/ml(优选1-9ng/ml,更优选2-8ng/ml,甚至更优选3-7ng/ml,最优选4-6ng/ml,甚至最优选约5ng/ml)TGFβ1;(f) 1-10 ng/ml (preferably 1-9 ng/ml, more preferably 2-8 ng/ml, even more preferably 3-7 ng/ml, most preferably 4-6 ng/ml, even most preferably about 5 ng/ml) TGFβ1;
(iv)在如步骤(iii)(a)-(f)中定义的无血清EHM培养基中,在机械拉伸下培养步骤(iii)中获得的混合物,由此形成生成力的EHM。(iv) culturing the mixture obtained in step (iii) in a serum-free EHM medium as defined in steps (iii)(a)-(f) under mechanical tension, thereby forming a force-generating EHM.
步骤(i)中的最少必需培养基可以选自Iscove’s培养基、αMEM、DMEM和RPMI。在一个优选的实施方案中,该基础培养基是Iscove’s培养基或αMEM。在一个更优选的实施方案中,该基础培养基是Iscove’s培养基。但是任何适宜的最少培养基都可以用于本方法。适宜的最少必需培养基配方由本文提供或者是可公开获得的,例如从ATCC目录。The minimum essential medium in step (i) can be selected from Iscove's medium, αMEM, DMEM and RPMI. In a preferred embodiment, the basal medium is Iscove's medium or αMEM. In a more preferred embodiment, the basal medium is Iscove's medium. However, any suitable minimum medium can be used in this method. Suitable minimum essential medium formulations are provided herein or are publicly available, for example, from the ATCC catalog.
优选地,步骤(i)的无血清补充剂还包含选自维生素A、D-半乳糖、亚油酸、亚麻酸、黄体酮和腐胺中的一个或多个组分。这些组分都有助于细胞的存活。各个组分的适宜浓度是技术人员已知的,或可以容易地使用常规手段确定。Preferably, the serum-free supplement of step (i) further comprises one or more components selected from vitamin A, D-galactose, linoleic acid, linolenic acid, progesterone, and putrescine. These components all contribute to cell survival. The appropriate concentration of each component is known to those skilled in the art or can be readily determined using conventional means.
对于步骤(i)的组分(b)中的所述无血清补充剂,可以采用市售的补充剂或减胰岛素补充剂。可替代地,也可以采用如表2所示的定制补充剂。在一个优选的实施方案中,补充剂或减胰岛素补充剂作为上述方法的步骤(i)的组分(b),用量为2-6%(v/v)。更优选地,补充剂或减胰岛素补充剂作为上述方法的步骤(i)的组分(b),用量为4%(v/v)。For the serum-free supplement in component (b) of step (i), a commercially available supplement or insulin-reducing supplement can be used. Alternatively, a custom supplement as shown in Table 2 can also be used. In a preferred embodiment, the supplement or insulin-reducing supplement is used as component (b) of step (i) of the above method in an amount of 2-6% (v/v). More preferably, the supplement or insulin-reducing supplement is used as component (b) of step (i) of the above method in an amount of 4% (v/v).
此外,步骤(i)的所述重构混合物包含0.3-0.5mg胶原蛋白/1.5×106个心肌细胞和非肌细胞混合物。更优选地,步骤(i)的所述重构混合物包含约0.4mg胶原蛋白/1.5×106个心肌细胞和非肌细胞混合物。In addition, the reconstitution mixture of step (i) comprises 0.3-0.5 mg collagen/1.5×10 6 cardiomyocytes and non-myocyte mixture. More preferably, the reconstitution mixture of step (i) comprises about 0.4 mg collagen/1.5×10 6 cardiomyocytes and non-myocyte mixture.
步骤(i)的重构混合物的组分(c)中的所述胶原蛋白优选为医用级且选自Ⅰ型胶原蛋白、III型胶原蛋白,V型胶原蛋白及其混合物。在一个更优选的实施方案中,步骤(i)的重构混合物的组分(c)含有至少90%的所述胶原蛋白是I型胶原蛋白。但是,所述胶原蛋白还可以进一步包含选自弹力蛋白、层粘连蛋白、巢蛋白(entactin)、巢蛋白(nidogen)、蛋白多糖和纤连蛋白的一个或多个细胞外基质组分。通常,胶原蛋白的确切组成取决于来源,即它来自哪里。胶原蛋白优选是人源的,但牛源或海洋生物源如藻源或鱼源也在考虑范围内。The collagen in component (c) of the reconstructed mixture of step (i) is preferably medical grade and is selected from type I collagen, type III collagen, type V collagen and mixtures thereof. In a more preferred embodiment, component (c) of the reconstructed mixture of step (i) contains at least 90% of the collagen being type I collagen. However, the collagen may further comprise one or more extracellular matrix components selected from elastin, laminin, entactin, nidogen, proteoglycans and fibronectin. Generally, the exact composition of the collagen depends on the source, i.e. where it comes from. The collagen is preferably of human origin, but bovine or marine sources such as algae or fish are also considered.
开发功能性(即产生力的)、限定的、无血清人组织工程化心肌用于潜在的再生心脏治疗,需要克服很多困难。最重要的是人心脏细胞的可靠来源。迄今为止,人多能干细胞已经成为人心脏细胞的主要来源。多能干细胞能够分化为身体的每一类细胞。因此,人多能干细胞为获得真正的人心脏细胞提供了独一无二的机会。目前,最常用的多能干细胞是胚胎干细胞(ESC)或诱导多能干细胞(iPSC)。人ESC系由Thomson和同事首先建立(Thomson等,Science 282:1145-1147(1998);通过引用全文并入本文)。最近,人ESC研究实现了将体细胞再编程成为类ES细胞的新技术。该技术由Yamanaka和同事在2006年率先创立(Takahashi和Yamanaka Cell 126:663-676(2006);通过引用全文并入本文)。产生的诱导多能细胞(iPSC)表现出和ESC非常相似的行为,并且重要的是,其也可以分化成身体的任何细胞。ESC和iPSC的心肌分化发生在胚状体(Schroeder等,Biotechnol Bioeng 92:920-933(2005);通过引用全文并入本文)培养物中,作为或多或少随机事件,产生含有5-20%真正心肌细胞的细胞群(Kehat等,J Clin Invest 108:407-414(2001);Mummery等,Circulation 107:2733-2740(2003);Xu等,Cir Res 91:501-508(2002);所有文献都通过引用并入本文)。此外,据报道,单性生殖干细胞可能也适合EHM产生(Didié等,J Clin Invest.doi:10.1172/JCI66584;通过引用全文并入本文)。因此,在一个优选的实施方案中,心肌细胞是人心肌细胞。优选地,所述心肌细胞来源于胚胎干细胞,其中细胞不是使用涉及修改人类生殖系遗传特性或者涉及为工业或商业目的使用人胚胎的过程产生的。在可替代的实施方案中,心肌细胞来源于如上面所描述的诱导多能细胞、单性生殖干细胞或成体干细胞。Developing functional (i.e., force-generating), limited, serum-free human tissue-engineered myocardium for potential regenerative cardiac therapy requires overcoming many difficulties. The most important is a reliable source of human cardiac cells. To date, human pluripotent stem cells have become the main source of human cardiac cells. Pluripotent stem cells can differentiate into every type of cell in the body. Therefore, human pluripotent stem cells provide a unique opportunity to obtain true human cardiac cells. Currently, the most commonly used pluripotent stem cells are embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs). The human ESC system was first established by Thomson and colleagues (Thomson et al., Science 282:1145-1147 (1998); incorporated herein by reference in its entirety). Recently, human ESC research has achieved a new technology for reprogramming somatic cells into ES cell-like cells. This technology was first established by Yamanaka and colleagues in 2006 (Takahashi and Yamanaka Cell 126:663-676 (2006); incorporated herein by reference in its entirety). The induced pluripotent cells (iPSCs) produced show very similar behavior to ESCs and, importantly, can also differentiate into any cell of the body. Cardiac differentiation of ESCs and iPSCs occurs in embryoid bodies (Schroeder et al., Biotechnol Bioeng 92:920-933 (2005); incorporated herein by reference in their entirety) cultures, as more or less random events, producing cell populations containing 5-20% true cardiomyocytes (Kehat et al., J Clin Invest 108:407-414 (2001); Mummery et al., Circulation 107:2733-2740 (2003); Xu et al., Cir Res 91:501-508 (2002); all incorporated herein by reference). In addition, it has been reported that parthenogenetic stem cells may also be suitable for EHM production (Didié et al., J Clin Invest. doi: 10.1172/JCI66584; incorporated herein by reference in its entirety). Therefore, in a preferred embodiment, the cardiomyocytes are human cardiomyocytes. Preferably, the cardiomyocytes are derived from embryonic stem cells, wherein the cells are not produced using a process involving modification of human germline genetic characteristics or involving the use of human embryos for industrial or commercial purposes. In alternative embodiments, the cardiomyocytes are derived from induced pluripotent cells, parthenogenetic stem cells, or adult stem cells as described above.
最近,若干用于更有效心脏分化的无血清的、细胞因子导向的操作方案已有所描述(Burridge等,Cell Stem Cell 10:16-28(2012);通过引用全文并入本文),产生了含有高达98%心肌细胞的培养物(Lian等,Proc Natl Academic Sci USA(2012);通过引用全文并入本文)。因此,在另一个优选的实施方案中,心肌细胞可以通过无血清分化获得。另一方面,心肌细胞也可来源于非人的灵长类动物干细胞、胚胎或新生儿心肌细胞。Recently, several serum-free, cytokine-guided protocols for more efficient cardiac differentiation have been described (Burridge et al., Cell Stem Cell 10:16-28 (2012); incorporated herein by reference in its entirety), resulting in cultures containing up to 98% cardiomyocytes (Lian et al., Proc Natl Academic Sci USA (2012); incorporated herein by reference in its entirety). Therefore, in another preferred embodiment, cardiomyocytes can be obtained by serum-free differentiation. Alternatively, cardiomyocytes can be derived from non-human primate stem cells, embryonic or neonatal cardiomyocytes.
已经证明,将心肌细胞以与选自非肌细胞的一类或多类细胞的细胞的混合物提供是有优势的,所述非肌细胞诸如成纤维细胞、内皮细胞、平滑肌细胞和间充质干细胞。因此优选地,心肌细胞混合物包含20-80%心肌细胞,更优选30-70%心肌细胞,甚至更优选40-60%心肌细胞,最优选约50%心肌细胞,其中非肌细胞是成纤维细胞或内皮细胞。事实上,一个特别优选的实施方案是非肌细胞为成纤维细胞。适宜的非肌细胞可以通过表面标志物例如CD90的表达来鉴定。适宜的细胞可以通过例如使用诸如免疫染色或荧光激活细胞分选(FACS)的技术来识别。从上述混合物得到的EHM通常生成更强的力。It has been shown that it is advantageous to provide the cardiomyocytes as a mixture with cells selected from one or more types of non-muscle cells, such as fibroblasts, endothelial cells, smooth muscle cells and mesenchymal stem cells. Therefore, preferably, the cardiomyocyte mixture comprises 20-80% cardiomyocytes, more preferably 30-70% cardiomyocytes, even more preferably 40-60% cardiomyocytes, and most preferably about 50% cardiomyocytes, wherein the non-muscle cells are fibroblasts or endothelial cells. In fact, a particularly preferred embodiment is that the non-muscle cells are fibroblasts. Suitable non-muscle cells can be identified by the expression of surface markers such as CD90. Suitable cells can be identified, for example, using techniques such as immunostaining or fluorescence activated cell sorting (FACS). The EHM obtained from the above mixture generally generates stronger force.
优选地,步骤(i)中提供的心肌细胞的细胞浓度为至少2.7-20×106个/ml。而在一个更优选的实施方案中,步骤(i)中提供的心肌细胞的细胞浓度为至少2.9-10×106个/ml,甚至更优选的细胞浓度为至少3.1-5×106个/ml,在一个最优选的实施方案中,细胞浓度为至少3.3-3.4×106个/ml。Preferably, the cardiomyocytes provided in step (i) have a cell concentration of at least 2.7-20×10 6 cells/ml. In a more preferred embodiment, the cardiomyocytes provided in step (i) have a cell concentration of at least 2.9-10×10 6 cells/ml, an even more preferred cell concentration of at least 3.1-5×10 6 cells/ml, and in a most preferred embodiment, a cell concentration of at least 3.3-3.4×10 6 cells/ml.
所述方法中提及的模具可以具有允许EHM掺入有此需要的宿主中的任何合适的形式。然而,在一个优选的实施方案中,所述模具是环状、多角状、盘状或袋状的。The mold mentioned in the method may have any suitable form that allows the EHM to be incorporated into a host in need thereof. However, in a preferred embodiment, the mold is in the form of a ring, a polygon, a disk or a bag.
细胞培养采用本领域一般已知的常用程序和设备进行。通常,培养条件包括在30-40℃、优选为36-38℃、最优选为约37℃的范围中的温度,采用加湿细胞培养孵育箱在5-10%CO2存在下。Cell culture is performed using common procedures and equipment generally known in the art. Typically, culture conditions include a temperature in the range of 30-40°C, preferably 36-38°C, most preferably about 37°C, in a humidified cell culture incubator in the presence of 5-10% CO2 .
对于步骤(iii)的组分(b)中提及的无血清补充剂,可以使用市售的补充剂或减胰岛素补充剂。另外,也可以采用如下表2所示的定制补充剂。在一个优选的实施方案中,补充剂或减胰岛素补充剂作为上述方法的步骤(iii)的组分(b),用量为2-6%(v/v)。更优选地,补充剂或减胰岛素补充剂作为上述方法的步骤(i)的组分(b),用量为4%(v/v)。For the serum-free supplement mentioned in component (b) of step (iii), a commercially available supplement or insulin-reducing supplement can be used. Alternatively, a custom supplement as shown in Table 2 below can be used. In a preferred embodiment, the supplement or insulin-reducing supplement is used as component (b) in step (iii) of the above method in an amount of 2-6% (v/v). More preferably, the supplement or insulin-reducing supplement is used as component (b) in step (i) of the above method in an amount of 4% (v/v).
另外,步骤(iii)的无血清补充剂还包含选自维生素A、D-半乳糖、左旋肉碱、亚油酸、亚麻酸、黄体酮和腐胺的一个或多个组分。如前所述,这些组分都有助于细胞的存活。各个组分的适宜浓度对技术人员是已知的,或可以容易地使用常规手段确定。In addition, the serum-free supplement of step (iii) further comprises one or more components selected from vitamin A, D-galactose, L-carnitine, linoleic acid, linolenic acid, progesterone, and putrescine. As previously mentioned, these components all contribute to cell survival. The appropriate concentrations of the individual components are known to those skilled in the art or can be readily determined using conventional means.
步骤(iii)中所述EHM培养基中包含的基础培养基可以选自Iscove’s培养基、αMEM、DMEM和RPMI。因为RPMI通常具有较低浓度的钙,因此可能有必要相应地向RPMI基础培养基补充钙。如果有必要,可以向基础培养基补充非必需氨基酸。如果αMEM作为基础培养基使用,则EHM培养基无需另行补充非必需氨基酸。非必需氨基酸可以作为组合补充剂商购获得。所述补充剂例如包含750mg/L甘氨酸、890mg/L L-丙氨酸、1320mg/L L-天冬酰胺、1330mg/L L-天冬氨酸、1470mg/L L-谷氨酸、1150mg/L L-脯氨酸和1050mg/L L-丝氨酸。The basal medium included in the EHM culture medium described in step (iii) can be selected from Iscove's culture medium, αMEM, DMEM and RPMI. Because RPMI generally has a lower concentration of calcium, it may be necessary to supplement calcium to the RPMI basal medium accordingly. If necessary, non-essential amino acids can be supplemented to the basal medium. If αMEM is used as the basal medium, the EHM culture medium does not need to be supplemented with non-essential amino acids separately. Non-essential amino acids can be commercially available as a combination supplement. The supplement, for example, includes 750mg/L glycine, 890mg/L L-alanine, 1320mg/L L-asparagine, 1330mg/L L-aspartic acid, 1470mg/L L-glutamic acid, 1150mg/L L-proline and 1050mg/L L-serine.
在一个优选的实施方案中,步骤(iii)中所述EHM培养基中包含的基础培养基是Iscove’s培养基或αMEM。在一个更优选的实施方案中,步骤(iii)中所述EHM培养基中包含的基础培养基是Iscove’s培养基。然而,任何基础培养基都可用于本方法。适宜的最少必需培养基配方由本文提供或者是可公开获得的,例如从ATCC目录。In a preferred embodiment, the basal medium contained in the EHM medium in step (iii) is Iscove's medium or αMEM. In a more preferred embodiment, the basal medium contained in the EHM medium in step (iii) is Iscove's medium. However, any basal medium can be used in this method. Suitable minimum essential medium formulations are provided herein or are publicly available, for example, from the ATCC catalog.
下面的实施例证明,更有利的是,无血清EHM培养基还包含VEGF、FGF或VEGF和FGF两者。添加VEGF和/或FGF已被证明得到展现出更高的力的EHM。The examples below demonstrate that it is more advantageous if the serum-free EHM medium also contains VEGF, FGF, or both VEGF and FGF.Addition of VEGF and/or FGF has been shown to result in EHMs that exhibit higher force.
通常情况下,以约5-20ng/ml VEGF、优选6-18ng/ml、更优选7-16ng/ml、甚至更优选8-14ng/ml、最优选9-12ng/ml的浓度,甚至最优选以约10ng/ml的浓度添加VEGF。Typically, VEGF is added at a concentration of about 5-20 ng/ml VEGF, preferably 6-18 ng/ml, more preferably 7-16 ng/ml, even more preferably 8-14 ng/ml, most preferably 9-12 ng/ml, and even most preferably at a concentration of about 10 ng/ml.
以约5-20ng/ml FGF、优选6-18ng/ml、更优选7-16ng/ml、甚至更优选8-14ng/ml、最优选9-12ng/ml的浓度,甚至最优选以约10ng/ml的浓度添加FGF。FGF is added at a concentration of about 5-20 ng/ml FGF, preferably 6-18 ng/ml, more preferably 7-16 ng/ml, even more preferably 8-14 ng/ml, most preferably 9-12 ng/ml, and even most preferably at a concentration of about 10 ng/ml.
原则上,可以使用任何类型的VEGF、FGF、IGF1和TGFβ1,只要这些生长因子能够经由它们在EHM的心肌细胞表面上的相应受体传导信号即可。然而,在一个优选的实施方案中,VEGF是人VEGF。在另一个优选的实施方案中,FGF是人FGF。在另一个优选的实施方案中,IGF1是人IGF1。还在另一个实施方案中,TGFβ1是人TGFβ1。在最优选的实施方案中,所有VEGF、FGF、IGF1和TGFβ1都是人的。In principle, any type of VEGF, FGF, IGF1, and TGFβ1 can be used, as long as these growth factors are able to transmit signals through their corresponding receptors on the surface of the cardiomyocytes of EHM. However, in a preferred embodiment, the VEGF is human VEGF. In another preferred embodiment, the FGF is human FGF. In another preferred embodiment, the IGF1 is human IGF1. In yet another embodiment, the TGFβ1 is human TGFβ1. In a most preferred embodiment, all VEGF, FGF, IGF1, and TGFβ1 are human.
通常,步骤(iii)中的培养进行至少3天,优选进行约3到约7天。Typically, the culturing in step (iii) is performed for at least 3 days, preferably for about 3 to about 7 days.
原则上,步骤(iv)中的进一步培养可以进行任何合适的时间段。然而,通常情况下,步骤(iv)中的进一步培养进行至少3-60天、优选4-30天、更优选5-20天的时间段。在最优选的实施方案中,进一步培养进行7天,因为这个时间段是优选的短培养时间和足够得到生成力的EHM的时间段的最佳平衡。In principle, the further culturing in step (iv) can be carried out for any suitable period of time. However, typically, the further culturing in step (iv) is carried out for a period of at least 3-60 days, preferably 4-30 days, and more preferably 5-20 days. In a most preferred embodiment, the further culturing is carried out for 7 days, as this period of time is the best balance between the preferred short culturing time and a period of time sufficient to obtain productive EHM.
通常,如本领域公知的,上述方法的步骤(iv)在拉伸装置上进行。优选地,拉伸装置对EHM施加静态、位相性或动态拉伸。更具体地,机械拉伸可以是对抗弹性载荷的(i)静态的,(ii)动态的,或(iii)柔性的。Typically, step (iv) of the above method is performed on a stretching device, as is known in the art. Preferably, the stretching device applies static, phased, or dynamic stretching to the EHM. More specifically, the mechanical stretching can be (i) static, (ii) dynamic, or (iii) flexible against an elastic load.
正如下文将进一步证明地,如使用在Zimmermann等,Circ.Res.90,223-230(2002)中描述的方法测定地,通过上述方法产生的EHM在用3mM钙诱导后生成大于0.01mN的力,如使用在Zimmermann等,Circ.Res.90,223-230(2002)中描述的方法测定地,优选大于0.1mN、更优选大于0.2mN的力、最优选大于0.3mN的力。As will be further demonstrated below, the EHM produced by the above method generates a force greater than 0.01 mN after induction with 3 mM calcium, as measured using the method described in Zimmermann et al., Circ. Res. 90, 223-230 (2002), preferably a force greater than 0.1 mN, more preferably greater than 0.2 mN, and most preferably greater than 0.3 mN, as measured using the method described in Zimmermann et al., Circ. Res. 90, 223-230 (2002).
另一个现有技术中适合作为本文公开的改进方法的基础的操作方案由Soong等,Curr Prot Cell Biol,55:23.8.1-23.8.21(2012)描述,在此通过引用全文并入本文,特别是引用“基本方案2”和“支持方案2”。Another prior art protocol suitable as a basis for the improved methods disclosed herein is described by Soong et al., Curr Prot Cell Biol, 55:23.8.1-23.8.21 (2012), which is hereby incorporated by reference in its entirety, particularly to “Basic Protocol 2” and “Supporting Protocol 2”.
表1:用于人EHM产生的操作方案的比较Table 1: Comparison of protocols for human EHM generation
表2:替代B27的定制补充剂Table 2: Customized supplements to replace B27
用符合细胞培养要求的水配制25×Prepare 25× with water that meets cell culture requirements
表3:无谷氨酰胺的Iscove’s基础培养基配方(Biochrom)Table 3: Iscove’s basal medium without glutamine (Biochrom)
表4:RPMI基础培养基(Invitrogen)Table 4: RPMI basal medium (Invitrogen)
表5:αMEM基础培养基配方(Invitrogen)Table 5: αMEM basal medium formula (Invitrogen)
表6:用于EHM生成的无血清限定培养基Table 6: Serum-free defined medium for EHM generation
表7:另一种用于EHM生成的无血清限定培养基Table 7: Alternative serum-free defined medium for EHM production
通过如下实施方案对本发明作进一步描述:The present invention is further described by the following embodiments:
1.一种用于产生工程化心肌(EHM)的方法,该方法包括下述步骤:1. A method for producing an engineered myocardium (EHM), the method comprising the following steps:
(i)在一个或多个模具中提供无血清重构混合物,所述重构混合物包含(a)无血清最少必需培养基;(b)无血清补充剂,得到0.5-50mg/ml白蛋白、1-100μg/ml转铁蛋白、0.1-10μg/ml乙醇胺、0.003-0.3μg/ml亚硒酸钠、0.4-40μg/ml盐酸左旋肉碱、0.1-10μg/ml氢化可的松、0.05-5μl/ml脂肪酸补充剂、0.0001-0.1μg/ml三碘-L-甲状腺原氨酸(T3)和0.2-2mg/ml胶原蛋白的终浓度;和(c)人心肌细胞和人非肌细胞的混合物,其中总细胞混合物的20%到80%是心肌细胞;其中重构混合物的pH为7.2到7.6;(i) providing a serum-free reconstitution mixture in one or more molds, the reconstitution mixture comprising (a) serum-free minimal essential medium; (b) a serum-free supplement to give a final concentration of 0.5-50 mg/ml albumin, 1-100 μg/ml transferrin, 0.1-10 μg/ml ethanolamine, 0.003-0.3 μg/ml sodium selenite, 0.4-40 μg/ml L-carnitine hydrochloride, 0.1-10 μg/ml hydrocortisone, 0.05-5 μl/ml fatty acid supplement, 0.0001-0.1 μg/ml triiodo-L-thyronine (T3), and 0.2-2 mg/ml collagen; and (c) a mixture of human cardiomyocytes and human non-myocytes, wherein 20% to 80% of the total cell mixture are cardiomyocytes; wherein the pH of the reconstitution mixture is 7.2 to 7.6;
(ii)在所述一个或多个模具中培养无血清重构混合物,由此使无血清重构混合物凝结至少15分钟;(ii) incubating the serum-free reconstitution mixture in the one or more molds, thereby allowing the serum-free reconstitution mixture to clot for at least 15 minutes;
(iii)在所述一个或多个模具中,在无血清EHM培养基中培养步骤(ii)中获得的混合物,直至所述混合物凝结到至少50%的其初始厚度,其中所述EHM培养基包含(a)含有0.5-3mmol/L Ca2+的基础培养基;(b)如(i)(b)中定义的无血清补充剂;(c)0.5-10mmol/LL-谷氨酰胺;(d)0.01-1.0mmol/L抗坏血酸;(e)1-100ng/ml IGF-1;及(f)1-10ng/ml TGFβ1;(iii) culturing the mixture obtained in step (ii) in the one or more molds in serum-free EHM medium until the mixture solidifies to at least 50% of its original thickness, wherein the EHM medium comprises (a) a basal medium containing 0.5-3 mmol/L Ca2 + ; (b) a serum-free supplement as defined in (i)(b); (c) 0.5-10 mmol/L L-glutamine; (d) 0.01-1.0 mmol/L ascorbic acid; (e) 1-100 ng/ml IGF-1; and (f) 1-10 ng/ml TGFβ1;
(iv)在如步骤(iii)(a)-(f)中定义的无血清EHM培养基中,在机械拉伸下培养步骤(iii)中获得的混合物,由此形成生成力的EHM。(iv) culturing the mixture obtained in step (iii) in a serum-free EHM medium as defined in steps (iii)(a)-(f) under mechanical tension, thereby forming a force-generating EHM.
2.实施方案1所述的方法,其中步骤(i)中的所述最少必需培养基选自Iscove’s培养基、αMEM、DMEM和RPMI。2. The method of embodiment 1, wherein the minimal essential culture medium in step (i) is selected from Iscove’s medium, αMEM, DMEM and RPMI.
3.实施方案2所述的方法,其中所述基础培养基是Iscove’s培养基或αMEM。3. The method of embodiment 2, wherein the basal culture medium is Iscove’s medium or αMEM.
4.实施方案2所述的方法,其中所述基础培养基是Iscove’s培养基。4. The method of embodiment 2, wherein the basal medium is Iscove’s medium.
5.实施方案1-4中任一个所述的方法,其中步骤(i)的无血清补充剂还包含选自维生素A、D-半乳糖、亚油酸、亚麻酸、黄体酮和腐胺的一个或多个组分。5. The method according to any one of embodiments 1 to 4, wherein the serum-free supplement of step (i) further comprises one or more components selected from vitamin A, D-galactose, linoleic acid, linolenic acid, progesterone and putrescine.
6.实施方案1-5中任一个所述的方法,其中步骤(i)的组分(b)中的所述无血清补充剂是补充剂或减胰岛素补充剂。6. The method of any one of embodiments 1-5, wherein the serum-free supplement in component (b) of step (i) is a supplement or an insulin-reducing supplement.
7.实施方案6所述的方法,其中步骤(i)的组分(b)中的所述无血清补充剂是2-6%(v/v)补充剂或减胰岛素补充剂。7. The method of embodiment 6, wherein the serum-free supplement in component (b) of step (i) is a 2-6% (v/v) supplement or a reduced insulin supplement.
8.实施方案6所述的方法,其中步骤(i)的组分(b)中的所述无血清补充剂是4%(v/v)补充剂或减胰岛素补充剂。8. The method of embodiment 6, wherein the serum-free supplement in component (b) of step (i) is a 4% (v/v) supplement or a reduced insulin supplement.
9.实施方案1-8中任一个所述的方法,其中步骤(i)的所述重构混合物包含0.3-0.5mg胶原蛋白/1.5×106个心肌细胞和非肌细胞混合物。9. The method according to any one of embodiments 1 to 8, wherein the reconstitution mixture of step (i) comprises 0.3-0.5 mg collagen per 1.5×10 6 mixture of cardiomyocytes and non-myocytes.
10.实施方案9所述的方法,其中步骤(i)的所述重构混合物包含约0.4mg胶原蛋白/1.5×106个心肌细胞和非肌细胞混合物。10. The method of embodiment 9, wherein the reconstitution mixture of step (i) comprises about 0.4 mg collagen per 1.5×10 6 mixture of cardiomyocytes and non-myocytes.
11.实施方案1-10中任一个所述的方法,其中在步骤(i)的重构混合物的组分(c)中,所述胶原蛋白选自I型胶原蛋白、III型胶原蛋白、V型胶原蛋白及其混合物。11. The method of any one of embodiments 1-10, wherein in component (c) of the reconstitution mixture of step (i), the collagen is selected from type I collagen, type III collagen, type V collagen, and mixtures thereof.
12.实施方案1-11中任一个所述的方法,其中在步骤(i)的重构混合物的组分(c)中,至少90%的所述胶原蛋白是I型胶原蛋白。12. The method of any one of embodiments 1-11, wherein in component (c) of the reconstitution mixture of step (i), at least 90% of the collagen is type I collagen.
13.实施方案1-12中任一个所述的方法,其中在步骤(i)的重构混合物的组分(c)中,所述胶原蛋白是医用级的。13. The method of any one of embodiments 1-12, wherein the collagen in component (c) of the reconstitution mixture of step (i) is medical grade.
14.实施方案1-13中任一个所述的方法,其中在步骤(i)的重构混合物的组分(c)中,所述胶原蛋白是人源的、牛源的或海洋生物源的。14. The method of any one of embodiments 1-13, wherein in component (c) of the reconstitution mixture of step (i), the collagen is of human, bovine or marine origin.
15.实施方案1-14中任一个所述的方法,其中在步骤(i)的重构混合物的组分(c)中,所述胶原蛋白还包含选自弹力蛋白、层粘连蛋白、巢蛋白(entactin)、巢蛋白(nidogen)、蛋白多糖和纤连蛋白的一个或多个细胞外基质组分。15. The method of any one of embodiments 1-14, wherein in component (c) of the reconstitution mixture of step (i), the collagen further comprises one or more extracellular matrix components selected from elastin, laminin, entactin, nidogen, proteoglycans and fibronectin.
16.实施方案1-15中任一个所述的方法,其中步骤(i)的重构混合物的pH为7到7.8。16. The method of any one of embodiments 1-15, wherein the pH of the reconstituted mixture of step (i) is 7 to 7.8.
17.实施方案13所述的方法,其中步骤(i)的重构混合物的pH为约7.4。17. The method of embodiment 13, wherein the pH of the reconstituted mixture of step (i) is about 7.4.
18.实施方案1-17中任一个所述的方法,其中所述心肌细胞为人心肌细胞。18. The method of any one of embodiments 1-17, wherein the cardiomyocytes are human cardiomyocytes.
19.实施方案1-18中任一个所述的方法,其中所述心肌细胞来源于胚胎干细胞,其中细胞不是使用涉及修改人类生殖系遗传特性或者为工业或商业目的使用人胚胎的过程产生的。19. The method of any one of embodiments 1-18, wherein the cardiomyocytes are derived from embryonic stem cells, wherein the cells are not produced using a process involving the modification of human germline genetic characteristics or the use of human embryos for industrial or commercial purposes.
20.实施方案1-19中任一个所述的方法,其中所述心肌细胞来源于诱导多能细胞、单性生殖干细胞或成体干细胞。20. The method of any one of embodiments 1-19, wherein the cardiomyocytes are derived from induced pluripotent cells, parthenogenetic stem cells, or adult stem cells.
21.实施方案1-20中任一个所述的方法,其中所述心肌细胞通过无血清分化获得。21. The method of any one of embodiments 1-20, wherein the cardiomyocytes are obtained by serum-free differentiation.
22.实施方案1-21中任一个所述的方法,其中所述心肌细胞是非人的灵长类动物干细胞来源的、胚胎或新生儿心肌细胞。22. The method of any one of embodiments 1-21, wherein the cardiomyocytes are non-human primate stem cell-derived, embryonic or neonatal cardiomyocytes.
23.实施方案1-22中任一个所述的方法,其中所述心肌细胞以与选自非肌细胞的一类或多类细胞的细胞的混合物提供,所述非肌细胞诸如成纤维细胞、内皮细胞、平滑肌细胞和间充质干细胞。23. The method of any one of embodiments 1-22, wherein the cardiomyocytes are provided as a mixture with cells selected from one or more types of cells of non-muscle cells, such as fibroblasts, endothelial cells, smooth muscle cells, and mesenchymal stem cells.
24.实施方案23所述的方法,其中心肌细胞混合物包含20-80%心肌细胞。24. The method of embodiment 23, wherein the cardiomyocyte mixture comprises 20-80% cardiomyocytes.
25.实施方案23所述的方法,其中所述心肌细胞混合物包含30-70%心肌细胞。25. The method of embodiment 23, wherein the cardiomyocyte mixture comprises 30-70% cardiomyocytes.
26.实施方案23所述的方法,其中所述心肌细胞混合物包含40-60%心肌细胞。26. The method of embodiment 23, wherein the cardiomyocyte mixture comprises 40-60% cardiomyocytes.
27.实施方案23所述的方法,其中所述心肌细胞混合物包含50%心肌细胞。27. The method of embodiment 23, wherein the cardiomyocyte mixture comprises 50% cardiomyocytes.
28.实施方案1-27中任一个所述的方法,其中所述非肌细胞是成纤维细胞或内皮细胞。28. The method of any one of embodiments 1-27, wherein the non-muscle cells are fibroblasts or endothelial cells.
29.实施方案1-28中任一个所述的方法,其中所述非肌细胞是成纤维细胞。29. The method of any one of embodiments 1-28, wherein the non-muscle cells are fibroblasts.
30.实施方案1-29中任一个所述的方法,其中所述非肌细胞表达CD90。30. The method of any one of embodiments 1-29, wherein the non-muscle cells express CD90.
31.实施方案1-30中任一个所述的方法,其中步骤(i)中提供的心肌细胞的细胞浓度为至少2.7-20×106个/ml。31. The method of any one of embodiments 1-30, wherein the cell concentration of the cardiomyocytes provided in step (i) is at least 2.7-20×10 6 cells/ml.
32.实施方案31所述的方法,其中步骤(i)中提供的心肌细胞的细胞浓度为至少2.9-10×106个/ml。32. The method of embodiment 31, wherein the cell concentration of the cardiomyocytes provided in step (i) is at least 2.9-10×10 6 cells/ml.
33.实施方案31所述的方法,其中步骤(i)中提供的心肌细胞的细胞浓度为至少3.1-5×106个/ml。33. The method of embodiment 31, wherein the cell concentration of the cardiomyocytes provided in step (i) is at least 3.1-5×10 6 cells/ml.
34.实施方案31所述的方法,其中步骤(i)中提供的心肌细胞的细胞浓度为至少3.3-3.4×106个/ml。34. The method of embodiment 31, wherein the cell concentration of the cardiomyocytes provided in step (i) is at least 3.3-3.4×10 6 cells/ml.
35.实施方案1-34中任一个所述的方法,其中在步骤(ii)中,所述模具是环状、多角状、盘状或袋状。35. The method according to any one of embodiments 1 to 34, wherein in step (ii), the mold is in the shape of a ring, a polygon, a disk or a bag.
36.实施方案1-35中任一个所述的方法,其中步骤(ii)中的培养进行0.25-3小时。36. The method according to any one of embodiments 1-35, wherein the culturing in step (ii) is carried out for 0.25-3 hours.
37.实施方案36所述的方法,其中步骤(ii)中的培养进行0.5-1.5小时。37. The method according to embodiment 36, wherein the culturing in step (ii) is carried out for 0.5-1.5 hours.
38.实施方案1-37中任一个所述的方法,其中培养在30-40℃的温度范围下进行。38. The method of any one of embodiments 1-37, wherein the culturing is performed at a temperature in the range of 30-40°C.
39.实施方案38所述的方法,其中培养在36-38℃的温度范围下进行。39. The method of embodiment 38, wherein the culturing is carried out at a temperature range of 36-38°C.
40.实施方案39所述的方法,其中培养在约37℃下进行。40. The method of embodiment 39, wherein the culturing is performed at about 37°C.
41.实施方案1-40中任一个所述的方法,其中培养在加湿细胞培养孵育箱中在5-10%CO2存在下进行。41. The method of any one of embodiments 1-40, wherein the culturing is performed in a humidified cell culture incubator in the presence of 5-10% CO2 .
42.实施方案1-41中任一个所述的方法,其中步骤(iii)的组分(b)中的无血清补充剂是补充剂或减胰岛素补充剂。42. The method of any one of embodiments 1-41, wherein the serum-free supplement in component (b) of step (iii) is a supplement or an insulin-reducing supplement.
43.实施方案42所述的方法,其中步骤(iii)的组分(b)中的无血清补充剂是2-6%(v/v)补充剂或减胰岛素补充剂。43. The method of embodiment 42, wherein the serum-free supplement in component (b) of step (iii) is a 2-6% (v/v) supplement or a reduced insulin supplement.
44.实施方案43所述的方法,其中步骤(iii)的组分(b)中的无血清补充剂是4%(v/v)补充剂或减胰岛素补充剂。44. The method of embodiment 43, wherein the serum-free supplement in component (b) of step (iii) is a 4% (v/v) supplement or a reduced insulin supplement.
45.实施方案1-44中任一个所述的方法,其中步骤(iii)的所述无血清补充剂还包含选自维生素A、D-半乳糖、左旋肉碱、亚油酸、亚麻酸、黄体酮和腐胺的一个或多个组分。45. The method of any one of embodiments 1-44, wherein the serum-free supplement of step (iii) further comprises one or more components selected from vitamin A, D-galactose, L-carnitine, linoleic acid, linolenic acid, progesterone, and putrescine.
46.实施方案1-45中任一个所述的方法,其中步骤(iii)中所述EHM培养基中包含的基础培养基选自Iscove’s培养基、αMEM、DMEM和RPMI。46. The method according to any one of embodiments 1 to 45, wherein the basal culture medium contained in the EHM culture medium in step (iii) is selected from Iscove’s medium, αMEM, DMEM and RPMI.
47.实施方案46所述的方法,其中所述基础培养基是Iscove’s培养基或αMEM。47. The method of embodiment 46, wherein the basal culture medium is Iscove’s medium or αMEM.
48.实施方案47所述的方法,其中所述基础培养基是Iscove’s培养基。48. The method of embodiment 47, wherein the basal medium is Iscove’s medium.
49.实施方案1-48中任一个所述的方法,其中所述无血清EHM培养基包含约20ng/ml IGF1。49. The method of any one of embodiments 1-48, wherein the serum-free EHM medium comprises about 20 ng/ml IGF1.
50.实施方案1-49中任一个所述的方法,其中所述IGF1是人IGF1。50. The method of any one of embodiments 1-49, wherein the IGF1 is human IGF1.
51.实施方案1-50中任一个所述的方法,其中所述无血清EHM培养基包含约5ng/mlTGFβ1。51. The method of any one of embodiments 1-50, wherein the serum-free EHM medium comprises about 5 ng/ml TGFβ1.
52.实施方案1-51中任一个所述的方法,其中所述TGFβ1是人TGFβ1。52. The method of any one of embodiments 1-51, wherein the TGFβ1 is human TGFβ1.
53.实施方案1-52中任一个所述的方法,其中所述无血清EHM培养基还包含VEGF、FGF或VEGF和FGF两者。53. The method of any one of embodiments 1-52, wherein the serum-free EHM medium further comprises VEGF, FGF, or both VEGF and FGF.
54.实施方案1-53中任一个所述的方法,其中所述VEGF是人VEGF。54. The method of any one of embodiments 1-53, wherein the VEGF is human VEGF.
55.实施方案1-54中任一个所述的方法,其中所述FGF是人FGF。55. The method of any one of embodiments 1-54, wherein the FGF is human FGF.
56.实施方案53所述的方法,其中所述无血清EHM培养基包含约5-20ng/ml VEGF。56. The method of embodiment 53, wherein the serum-free EHM medium comprises about 5-20 ng/ml VEGF.
57.实施方案56所述的方法,其中所述无血清EHM培养基包含约10ng/ml VEGF。57. The method of embodiment 56, wherein the serum-free EHM medium comprises about 10 ng/ml VEGF.
58.实施方案53所述的方法,其中所述无血清EHM培养基包含约5-20ng/ml FGF。58. The method of embodiment 53, wherein the serum-free EHM medium comprises about 5-20 ng/ml FGF.
59.实施方案58所述的方法,其中所述无血清EHM培养基包含约10ng/ml FGF。59. The method of embodiment 58, wherein the serum-free EHM medium comprises about 10 ng/ml FGF.
60.实施方案1-59中任一个所述的方法,其中步骤(iii)中的所述无血清EHM培养基另外还包含750mg/L甘氨酸、890mg/L L-丙氨酸、1320mg/L L-天冬酰胺、1330mg/L天冬氨酸、1470mg/L L-谷氨酸、1150mg/L L-脯氨酸和1050mg/L L-丝氨酸。60. The method of any one of embodiments 1-59, wherein the serum-free EHM medium in step (iii) further comprises 750 mg/L glycine, 890 mg/L L-alanine, 1320 mg/L L-asparagine, 1330 mg/L aspartic acid, 1470 mg/L L-glutamic acid, 1150 mg/L L-proline, and 1050 mg/L L-serine.
61.实施方案1-60中任一个所述的方法,其中步骤(iii)中的培养进行至少3天。61. The method of any one of embodiments 1-60, wherein the culturing in step (iii) is performed for at least 3 days.
62.实施方案61所述的方法,其中步骤(iii)中的培养进行约3到约7天。62. The method of embodiment 61, wherein the culturing in step (iii) is performed for about 3 to about 7 days.
63.实施方案1-62中任一个所述的方法,其中步骤(iv)中的培养进行至少3-60天的时间段。63. The method of any one of embodiments 1-62, wherein the culturing in step (iv) is performed for a period of at least 3-60 days.
64.实施方案63所述的方法,其中所述进一步培养进行4-30天。64. The method of embodiment 63, wherein the further culturing is performed for 4-30 days.
65.实施方案63所述的方法,其中所述进一步培养进行5-20天。65. The method of embodiment 63, wherein the further culturing is performed for 5-20 days.
66.实施方案63所述的方法,其中所述进一步培养进行6-10天。66. The method of embodiment 63, wherein the further culturing is performed for 6-10 days.
67.实施方案63所述的方法,其中所述进一步培养进行7天。67. The method of embodiment 63, wherein the further culturing is carried out for 7 days.
68.实施方案1-67中任一个所述的方法,其中步骤(iv)在拉伸装置上进行。68. The method of any one of embodiments 1-67, wherein step (iv) is performed on a stretching device.
69.实施方案68所述的方法,其中所述拉伸装置施加静态、位相性或动态拉伸。69. The method of embodiment 68, wherein the stretching device applies static, phasic, or dynamic stretching.
70.实施方案1-69中任一个所述的方法,其中如使用在Zimmermann等,Circ.Res.90,223-230(2002)中描述的方法测定地,所述EHM在用3mM钙诱导后生成大于0.01mN的力。70. The method of any one of embodiments 1-69, wherein the EHM generates a force greater than 0.01 mN upon induction with 3 mM calcium as determined using the method described in Zimmermann et al., Circ. Res. 90, 223-230 (2002).
71.实施方案70所述的方法,其中如使用在Zimmermann等,Circ.Res.90,223-230(2002)中描述的方法测定地,所述EHM在用3mM钙诱导后生成大于0.1mN的力。71. The method of embodiment 70, wherein the EHM generates a force greater than 0.1 mN after induction with 3 mM calcium as measured using the method described in Zimmermann et al., Circ. Res. 90, 223-230 (2002).
72.实施方案70所述的方法,其中如使用在Zimmermann等,Circ.Res.90,223-230(2002)中描述的方法测定地,所述EHM在用3mM钙诱导后生成大于0.2mN的力。72. The method of embodiment 70, wherein the EHM generates a force greater than 0.2 mN after induction with 3 mM calcium as measured using the method described in Zimmermann et al., Circ. Res. 90, 223-230 (2002).
73.实施方案70所述的方法,其中如使用在Zimmermann等,Circ.Res.90,223-230(2002)中描述的方法测定地,所述EHM在用3mM钙诱导后生成大于0.3mN的力。73. The method of embodiment 70, wherein the EHM generates a force greater than 0.3 mN after induction with 3 mM calcium as measured using the method described in Zimmermann et al., Circ. Res. 90, 223-230 (2002).
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1.hEHM形成。培养10天后的hEHM(在铸塑模具中培养3天,接着在定制垫片上培养7天;培养时间:3+7天);比例尺:1mm(。Figure 1. hEHM formation. hEHM after 10 days of culture (3 days in a cast mold followed by 7 days on a custom spacer; culture time: 3+7 days); Scale bar: 1 mm.
图2.hEHM收缩功能的表征。(A)用提高cAMP的化合物刺激后的变时性反应(Iso:β-肾上腺素能刺激;IBMX:磷酸二酯酶抑制,n=6/组)。(B)hEHM对浓度渐增的细胞外钙的变力反应,比较hES2(n=12)、hES3(n=12)和iPS I2(n=3)。(C)hEHM(hES2)对异丙肾上腺素(三角形)和氨甲酰胆碱(方块)刺激的变力反应。插图:低钙(最下方的曲线)、用异丙肾上腺素刺激(最上方的曲线)和氨甲酰胆碱刺激(中间的曲线)下的标准化收缩(twitch)。(D)在异丙肾上腺素(三角形)和氨甲酰胆碱(方块)刺激下hEHM的弛豫。插图:标准化收缩*P<0.05相对于基线值(A:配对双尾Student’s t检验;C、D:ANOVA之后进行Dunnet’s post hoc校验)。Figure 2. Characterization of hEHM contractile function. (A) Chronotropic response after stimulation with compounds that increase cAMP (Iso: β-adrenergic stimulation; IBMX: phosphodiesterase inhibition, n = 6/group). (B) Inotropic response of hEHM to increasing concentrations of extracellular calcium, comparing hES2 (n = 12), hES3 (n = 12), and iPS I2 (n = 3). (C) Inotropic response of hEHM (hES2) to stimulation with isoproterenol (triangles) and carbachol (squares). Inset: Normalized contraction (twitch) under low calcium (lowest curve), stimulation with isoproterenol (top curve), and carbachol (middle curve). (D) Relaxation of hEHM under stimulation with isoproterenol (triangles) and carbachol (squares). Inset: normalized contraction *P<0.05 relative to baseline value (A: paired two-tailed Student's t-test; C, D: ANOVA followed by Dunnet's post hoc test).
图3.非肌细胞对于EHM形成的重要性。(A)标准化力与由hES2系(圆:单层心肌分化操作方案(Hudson等,Stem Cell Dev 21:1513-1523(2012)),方块:EB心肌分化操作方案(Yang等,Nature 453:524-528(2008)))和iPS BJ系(三角形)生成的EHM的心肌细胞百分比(辅肌动蛋白+细胞)的比较。(B)用100%心肌细胞(CM 100%)和70%心肌细胞与30%心肌成纤维细胞的混合物(CM/CF 70/30%)生成的hEHM的收缩力,n=1。Figure 3. Importance of non-myocytes for EHM formation. (A) Comparison of normalized force and percentage of cardiomyocytes (actinin+ cells) in EHM generated from the hES2 line (circles: monolayer cardiomyocyte differentiation protocol (Hudson et al., Stem Cell Dev 21:1513-1523 (2012)), squares: EB cardiomyocyte differentiation protocol (Yang et al., Nature 453:524-528 (2008))) and the iPS BJ line (triangles). (B) Contractile force of hEHM generated with 100% cardiomyocytes (CM 100%) and a mixture of 70% cardiomyocytes and 30% cardiac fibroblasts (CM/CF 70/30%), n = 1.
图4.符合GMP要求的水凝胶基质。(A)在2mmol/L的细胞外钙浓度下,用大鼠胶原蛋白(0.4mg/EHM,n=12)或牛胶原蛋白(0.4mg/EHM,n=14)制备的hEHM的收缩力。(B)在2mmol/L细胞外钙下,用“初始操作方案“(大鼠胶原蛋白,n=12)和“基质操作方案”(牛胶原蛋白,无n=9)制备的hEHM的收缩力。请参见表1。(C)在2mmol/L细胞外钙下,仅用牛胶原蛋白(bov.)、牛胶原蛋白加Matrigel(10%v/v)、牛胶原蛋白加纤连蛋白(5μg/EHM)和牛胶原蛋白加纤连蛋白(5μg/EHM)加层粘连蛋白(5μg/EHM)制备的hEHM的收缩力,n=4/组。Figure 4. GMP-compliant hydrogel matrices. (A) Contractile force of hEHM prepared with rat collagen (0.4 mg/EHM, n = 12) or bovine collagen (0.4 mg/EHM, n = 14) at an extracellular calcium concentration of 2 mmol/L. (B) Contractile force of hEHM prepared with the “initial protocol” (rat collagen, n = 12) and the “matrix protocol” (bovine collagen, no, n = 9) at 2 mmol/L extracellular calcium. See Table 1. (C) Contractile force of hEHM prepared with bovine collagen alone (bov), bovine collagen plus Matrigel (10% v/v), bovine collagen plus fibronectin (5 μg/EHM), and bovine collagen plus fibronectin (5 μg/EHM) plus laminin (5 μg/EHM) at 2 mmol/L extracellular calcium, n = 4 per group.
图5.相对于含20%血清的Iscove,基础培养基和无血清生长补充剂筛选。(A)F.l.t.r.:与含血清EHM培养基(还参见表1)相比较,基于Iscove’s、RPMI和αMEM基础培养基(还参见表2-4)的无血清培养基的细胞死亡、心肌细胞百分比(CM百分比)、心肌细胞平均辅肌动蛋白荧光(CM成熟)、基于侧向散射面积的心肌细胞尺寸(CM尺寸)和基于侧向散射面积的非肌细胞尺寸(NM尺寸)的变化。Figure 5. Screening of serum-free growth supplements relative to Iscove's basal medium with 20% serum. (A) F.l.t.r.: Changes in cell death, percentage of cardiomyocytes (CM percentage), mean cardiomyocyte actin fluorescence (CM maturation), cardiomyocyte size based on side scatter area (CM size), and non-myocyte size based on side scatter area (NM size) in serum-free medium based on Iscove's, RPMI, and αMEM basal medium (see also Tables 2-4) compared to serum-supplemented EHM medium (see also Table 1).
(B)F.l.t.r.:与含血清EHM培养基(还参见表1)相比较,具有2%和4%的加胰岛素B27(B27+)和减胰岛素B27(B27-)的无血清培养基的细胞死亡、心肌细胞百分比(CM百分比)、心肌细胞平均辅肌动蛋白荧光(CM成熟)、基于侧向散射面积的心肌细胞尺寸(CM尺寸)和基于侧向散射面积的非肌细胞尺寸(NM尺寸)的变化。(B) F.l.t.r.: Changes in cell death, percentage of cardiomyocytes (CM percentage), mean cardiomyocyte actin fluorescence (CM maturation), cardiomyocyte size based on side scatter area (CM size), and non-myocyte size based on side scatter area (NM size) in serum-free medium with 2% and 4% insulin-plus B27 (B27+) and insulin-minus B27 (B27-) compared to serum-containing EHM medium (see also Table 1).
图6.肽生长因子和脂肪酸补充剂的筛选。(A)为无血清、限定EHM培养基考虑的因子。F.l.t.r.:与不具有因子的无血清培养基相比较,通过所示生长因子和脂肪酸补充剂的细胞死亡、心肌细胞百分比(CM百分比)、心肌细胞平均辅肌动蛋白荧光(CM成熟)、基于侧向散射面积的心肌细胞尺寸(CM尺寸)和基于侧向散射面积的非肌细胞尺寸(NM尺寸)的变化。(b)不为无血清、限定EHM培养基考虑的因子。F.l.t.r.:与不具有因子的无血清培养基相比较,通过所示生长因子和脂肪酸补充剂的细胞死亡、心肌细胞百分比(CM百分比)、心肌细胞平均辅肌动蛋白荧光(CM成熟)、基于侧向散射面积的心肌细胞尺寸(CM尺寸)和基于侧向散射面积的非肌细胞尺寸(NM尺寸)的变化。Figure 6. Screening of peptide growth factors and fatty acid supplements. (A) Factors considered for serum-free, defined EHM medium. F.l.t.r.: Changes in cell death, percentage of cardiomyocytes (CM%), mean cardiomyocyte actin fluorescence (CM maturation), cardiomyocyte size based on side scatter area (CM size), and non-myocyte size based on side scatter area (NM size) with the indicated growth factors and fatty acid supplements compared to serum-free medium without factors. (b) Factors not considered for serum-free, defined EHM medium. F.l.t.r.: Changes in cell death, percentage of cardiomyocytes (CM%), mean cardiomyocyte actin fluorescence (CM maturation), cardiomyocyte size based on side scatter area (CM size), and non-myocyte size based on side scatter area (NM size) with the indicated growth factors and fatty acid supplements compared to serum-free medium without factors.
图7.从hESC细胞的无血清、限定EHM生成。(A)在浓度渐增的细胞外钙情况下的hEHM(hES2)的收缩力,比较含血清培养基(Serum)、基于Iscove’s的无血清培养基(SF-IMDM,还参见表5)、基于aMEM的无血清培养基(SF-aMEM,还参见表6)和基于RPMI的无血清培养基(SF-RPMI)。对于钙的相应EC50,对于Serum、SF-IMDM、SF-aMEM、SF-RPMI,n=15/5/6/7,n.d.为未测定。(B)无血清hEHM的免疫染色,表现出典型的心肌特性(肌束)。用抗α肌节辅肌动蛋白的抗体进行免疫染色,用DAPI进行细胞核染色。(C)含血清EHM(Serum)、基于Iscove’s的无血清EHM(SF-IMDM)和基于aMEM的无血清EHM(SF-aMEM)的、在用1μM异丙肾上腺素的肾上腺素能刺激后力的变化百分比,n=15/5/6,*p<0.05。(D)含血清EHM(Serum)、基于Iscove’s的无血清EHM(SF-IMDM)和基于aMEM的无血清EHM(SF-aMEM)的、在用10μM氨甲酰胆碱的毒蕈碱刺激后力的变化百分比,n=15/5/6。比例尺:20μmFigure 7. Serum-free, defined EHM generation from hESCs. (A) Contractility of hEHM (hES2) in the presence of increasing concentrations of extracellular calcium, comparing serum-containing medium (Serum), Iscove's-based serum-free medium (SF-IMDM, see also Table 5), aMEM-based serum-free medium (SF-aMEM, see also Table 6), and RPMI-based serum-free medium (SF-RPMI). For the respective EC50 values of calcium, n=15/5/6/7 for Serum, SF-IMDM, SF-aMEM, and SF-RPMI, and nd is not determined. (B) Immunostaining of serum-free hEHM, demonstrating typical cardiac muscle properties (muscle bundles). Immunostaining was performed with an antibody against α-sarcomeric actinin, and nuclear staining was performed with DAPI. (C) Percent change in force after adrenergic stimulation with 1 μM isoproterenol in serum-containing EHM (Serum), serum-free EHM based on Iscove's (SF-IMDM), and serum-free EHM based on aMEM (SF-aMEM), n = 15/5/6, *p < 0.05. (D) Percent change in force after muscarinic stimulation with 10 μM carbachol in serum-containing EHM (Serum), serum-free EHM based on Iscove's (SF-IMDM), and serum-free EHM based on aMEM (SF-aMEM), n = 15/5/6. Scale bar: 20 μm
图8.钙对无血清人工程化心肌收缩力的影响。A)在浓度渐增的细胞外钙情况下的hEHM(hES2)的收缩力,比较RPMI培养基(~0.4mM钙,n=2)与加入0.8mM CaCl的RPMI培养基(最终游离钙浓度~1.2mM钙,n=2),B)在RPMI培养基或RPMI+钙培养基中培养的无血清hEHM对1μM异丙肾上腺素的反应。Figure 8. Effect of calcium on contractility of serum-free human engineered cardiac muscle. A) Contractility of hEHM (hES2) in the presence of increasing concentrations of extracellular calcium, comparing RPMI medium (~0.4 mM calcium, n=2) versus RPMI medium supplemented with 0.8 mM CaCl (final free calcium concentration ~1.2 mM calcium, n=2). B) Response of serum-free hEHM cultured in RPMI medium or RPMI + calcium medium to 1 μM isoproterenol.
图9.TGFb1对hEHM力的影响。(A)在浓度渐增的细胞外钙情况下hEHM(iPS BJ)的收缩力,比较无血清培养基(SF)和含5ng/ml TGFβ1的无血清培养基,hEHM来自培养第0-3天(n=4/组,*p<0.05)。(B)比较在含TGFb1处理的无血清培养基中来自培养0-3(SF+TGHb1第0-3天)和培养第0-10天(SF+TGHb1第0-10天,n=5/组)的人EHM(hES2)的收缩力。Figure 9. Effect of TGFβ1 on hEHM force. (A) Contractile force of hEHM (iPS BJ) in the presence of increasing concentrations of extracellular calcium, comparing serum-free medium (SF) and serum-free medium containing 5 ng/ml TGFβ1, hEHM from culture days 0-3 (n=4/group, *p<0.05). (B) Contractile force of hEHM (hES2) from culture days 0-3 (SF+TGHβ1 Day 0-3) and 0-10 (SF+TGHβ1 Day 0-10, n=5/group) in serum-free medium containing TGFβ1.
图10.FGF和VEGF对hEHM力的影响。在浓度渐增的细胞外钙情况下hEHM(hES2)的收缩力,比较无血清培养基(SF,n=3)、含10ng/ml FGF-2的无血清培养基(SF+FGF,n=3)和含10ng/ml VEGF的无血清培养基(SF+VEGF,n=3),*p<0.05,SF+FGF相对于SF。Figure 10. Effects of FGF and VEGF on hEHM force. Contractile force of hEHM (hES2) in the presence of increasing concentrations of extracellular calcium, comparing serum-free medium (SF, n=3), serum-free medium containing 10 ng/ml FGF-2 (SF+FGF, n=3), and serum-free medium containing 10 ng/ml VEGF (SF+VEGF, n=3). *p<0.05, SF+FGF vs. SF.
图11.B27补充剂浓度对hEHM力的影响。在浓度渐增的细胞外钙情况下hEHM(hES2)的收缩力,比较含血清培养基(Serum)、含2%B27的无血清培养基(SF-2%B27)和含4%B27的无血清培养基(SF-4%B27),n=17/9/11,*p<0.05,相对于2%B27。Figure 11. Effect of B27 supplement concentration on hEHM force. Contractile force of hEHM (hES2) in the presence of increasing concentrations of extracellular calcium, comparing serum-supplemented medium (Serum), serum-free medium containing 2% B27 (SF-2%B27), and serum-free medium containing 4% B27 (SF-4%B27), n=17/9/11, *p<0.05 vs. 2% B27.
图12.B27组成对hEHM力的影响。在浓度渐增的细胞外钙情况下hEHM(hES2)的收缩力,比较含血清培养基(n=9)、含完全B27的无血清培养基(n=5)、含减抗氧化剂B27的无血清培养基(n=5)和含减胰岛素B27的无血清培养基(n=5)。Figure 12. Effect of B27 composition on hEHM force. Contractile force of hEHM (hES2) in the presence of increasing concentrations of extracellular calcium, comparing serum-containing medium (n=9), serum-free medium containing complete B27 (n=5), serum-free medium containing reduced antioxidant B27 (n=5), and serum-free medium containing reduced insulin B27 (n=5).
图13.在来自hES和iPS细胞的hEHM,用定制补充剂替代B27。(A)在浓度渐增的细胞外钙情况下hEHM(hES2)的收缩力,比较含血清培养基(n=3)、含减胰岛素B27的无血清培养基(B27-胰岛素,n=5)和含定制补充剂的无血清培养基(CMS;n=3)。(B)在浓度渐增的细胞外钙情况下来自iPS细胞(BJ)的hEHM的收缩力,比较含血清培养基(n=8)、含减胰岛素B27的无血清培养基(n=8)和含定制补充剂的无血清培养基(CMS;n=4)。Figure 13. Replacement of B27 with custom supplements in hEHM derived from hES and iPS cells. (A) Contractile force of hEHM (hES2) in the presence of increasing concentrations of extracellular calcium, comparing serum-containing medium (n=3), serum-free medium with insulin-minus B27 (B27-insulin, n=5), and serum-free medium with custom supplements (CMS; n=3). (B) Contractile force of hEHM derived from iPS cells (BJ) in the presence of increasing concentrations of extracellular calcium, comparing serum-containing medium (n=8), serum-free medium with insulin-minus B27 (n=8), and serum-free medium with custom supplements (CMS; n=4).
图14.在延长培养时间情况下无血清hEHM的成熟。(A)在无血清条件下(n=4-6/条件)培养的2周(下方的曲线)、4周(中间的曲线)和8周(上方的曲线)时间点,hEHM(hiPS-G1)的收缩力。(B)来自8周龄的无血清EHM的个别心肌细胞的明场像。比例尺:20μM。Figure 14. Maturation of serum-free hEHMs under prolonged culture. (A) Contractile force of hEHMs (hiPS-G1) cultured in serum-free conditions (n = 4-6/condition) at 2 weeks (lower curve), 4 weeks (middle curve), and 8 weeks (upper curve). (B) Brightfield images of individual cardiomyocytes from 8-week-old serum-free hEHMs. Scale bar: 20 μM.
以下的实施例用于进一步说明,而非限制本发明。这些实施例包括多个技术特征,应当理解本发明也涉及在本举例说明章节中出现的技术特征的组合。The following examples are used to further illustrate, but not to limit, the present invention. These examples include multiple technical features, and it should be understood that the present invention also relates to the combination of technical features appearing in this illustrative section.
实施例Example
材料Material
本文用到的材料都是市售的。例如,DMEM、RPMI、αMEM(目录编号32561-029)、链霉素、青霉素和B27可获自Invitrogen;医用级牛胶原蛋白购自Devros Medical;脂肪酸补充剂可以从Sigma订购(目录编号F7050);各种生长因子则可购自Peprotech(FGF2,AF-1ββ-18B;IGF-1,AF-100-11;TGFβ1,100-21)。All materials used in this article are commercially available. For example, DMEM, RPMI, αMEM (Catalog No. 32561-029), streptomycin, penicillin, and B27 can be obtained from Invitrogen; medical-grade bovine collagen can be purchased from Devros Medical; fatty acid supplements can be ordered from Sigma (Catalog No. F7050); and various growth factors can be purchased from Peprotech (FGF2, AF-1ββ-18B; IGF-1, AF-100-11; TGFβ1, 100-21).
方法method
人ESC和iPS-系及培养Human ESC and iPS-lines and culture
在本研究中(Robert-Koch研究院批准W.-H.Z.:批准号#12;引用编号:1710-79-1-4-16),本发明人利用了H9.2(Technion,海法,以色列)、hES3(国际胚胎干细胞公司(Embryonic Stem Cell International),新加坡)和转基因hES3-ENVY(Costa,M.等,NatMethods 2:259-260(2005))以及hES2系(McEwen再生医学中心(McEwen Centre forRegenrative Medicine),多伦多,加拿大;Yang等,Nature 453:2:5-528:(2008))。分化的EB在室温下运输至汉堡/哥廷根,并在72-96小时内送达。iPS系来自多伦多(iPS BJ)和哥廷根(iPS I2,Streckfuss-Bomeke等,Eur Heart J(2012)doi:10.1093/eurheartj/ehs203和iPS Sendai)。In this study (Robert-Koch Institute Grant W.-H.Z.: Grant #12; Reference Number: 1710-79-1-4-16), the inventors utilized H9.2 (Technion, Haifa, Israel), hES3 (Embryonic Stem Cell International, Singapore), and transgenic hES3-ENVY (Costa, M. et al., Nat Methods 2:259-260 (2005)), as well as hES2 lines (McEwen Centre for Regenrative Medicine, Toronto, Canada; Yang et al., Nature 453:2:5-528: (2008)). Differentiated EBs were transported to Hamburg/Göttingen at room temperature and delivered within 72-96 hours. iPS lines were from Toronto (iPS BJ) and Göttingen (iPS I2, Streckfuss-Bomeke et al., Eur Heart J (2012) doi: 10.1093/eurheartj/ehs203 and iPS Sendai).
如在别处(Kehat等,J Clin Invest 108:407-414(2001);Mummery等,Circulation 107:2733-2740(2003);Xu等,Circ Res 91:501-508(2002);Yang等,Nature453:524-528(2008);Passier等,Stem Cells 23:772-780(2005);每一篇都通过引用并入本位)描述地,EB用胶原酶B(1mg/ml;H9.2),胶原酶I(2mg/ml)和/或胰蛋白酶/EDTA(0.25%/1mmol/l;hES3、hES3-ENVY、hES2、iPS NJ、iPS I2)消化。原肌球蛋白和肌节辅肌动蛋白染色后,对酶解分散细胞的代表性等分试样中的心肌细胞进行计数。EBs were digested with collagenase B (1 mg/ml; H9.2), collagenase I (2 mg/ml) and/or trypsin/EDTA (0.25%/1 mmol/l; hES3, hES3-ENVY, hES2, iPS NJ, iPS I2) as described elsewhere (Kehat et al., J Clin Invest 108:407-414 (2001); Mummery et al., Circulation 107:2733-2740 (2003); Xu et al., Circ Res 91:501-508 (2002); Yang et al., Nature 453:524-528 (2008); Passier et al., Stem Cells 23:772-780 (2005); each incorporated herein by reference). Cardiomyocytes were counted in representative aliquots of enzymatically dispersed cells after staining for tropomyosin and sarcomeric actinin.
基础人工程化心肌(hEHM)的构建Construction of basic human engineered myocardium (hEHM)
本发明人采用一种改进的EHM-工程化操作方案(Zimmermann等,Circ Res 90:223-230(2002),通过引用并入本文)来构建hEHM。简要地说,通过将包含新鲜分散的ESC衍生物(1×104-15×106个细胞,在含20%胎牛血清、1%非必需氨基酸、2mmol/l谷氨酰胺、100μmol/lβ-巯基乙醇、100U/ml青霉素和100mg/ml链霉素的Iscove-培养基中)、pH中和的源于大鼠尾的I型胶原蛋白(0.4mg/EHM)、MatrigelTM(10%v/v;Becton Dickenson或tebu)和浓缩的含血清培养基(2×DMEM,20%马血清,4%鸡胚提取物,200U/ml青霉素和200mg/ml链霉素)的混合物移取至环形模具(内径/外径:2/4mm;高:5mm)(表1)中来制备EHM(重构体积:450μl)。hEHM在铸塑模具内快速凝结,并在培养第3天转移到静态拉伸装置(110%悬长)上(Zimmermann等,Nat Med 12:452-458(2006),通过引用并入本文)。每隔一天更换培养基。hEHM培养在拉伸下进行7天。The present inventors employed a modified EHM-engineering protocol (Zimmermann et al., Circ Res 90:223-230 (2002), incorporated herein by reference) to construct hEHMs. Briefly, EHMs were prepared by pipetting a mixture containing freshly dispersed ESC derivatives (1×10 4 -15×10 6 cells in Iscove's medium containing 20% fetal bovine serum, 1% non-essential amino acids, 2 mmol/l glutamine, 100 μmol/l β-mercaptoethanol, 100 U/ml penicillin and 100 mg/ml streptomycin), pH-neutralized rat tail-derived type I collagen (0.4 mg/EHM), Matrigel ™ (10% v/v; Becton Dickenson or tebu), and concentrated serum-containing medium (2×DMEM, 20% horse serum, 4% chicken embryo extract, 200 U/ml penicillin and 200 mg/ml streptomycin) into a ring mold (inner/outer diameter: 2/4 mm; height: 5 mm) (Table 1) (reconstitution volume: 450 μl). hEHMs rapidly solidified within the casting mold and were transferred to a static stretch apparatus (110% overhang) on day 3 of culture (Zimmermann et al., Nat Med 12:452-458 (2006), incorporated herein by reference). The culture medium was changed every other day. hEHM cultures were maintained under tension for 7 days.
另一个现有技术中适合作为本文公开的改进方法的基础的操作方案由Soong等,Curr Prot Cell Biol.23.8.1-23.8.21(2012)描述,其通过引用全文并入本文,特别参考“基本操作方案2”和“支持操作方案2”。Another prior art protocol suitable as a basis for the improved methods disclosed herein is described by Soong et al., Curr Prot Cell Biol. 23.8.1-23.8.21 (2012), which is incorporated herein by reference in its entirety, with particular reference to "Basic Protocol 2" and "Supporting Protocol 2."
异种基质组分的去除和替换Removal and replacement of xenogeneic matrix components
为了符合拟GMP(pre-GMP)条件的hEHM,建立了一种减少了异种组分的操作方案(基质方案,表1)。细胞在pH中和的牛胶原蛋白(Devros Medical,0.4mg/EHM)、浓缩含血清培养基(2×DMEM,40%胎牛血清,200U/ml青霉素和200mg/ml链霉素)的混合物中重构,并在含20%胎牛血清、1%非必需氨基酸、2mmol/l谷氨酰胺、0.3mmol/l抗坏血酸、100μmol/lβ-巯基乙醇、100U/ml青霉素和100μg/mL链霉素的Iscove-培养基中培养。To meet pre-GMP conditions for hEHM, a protocol with reduced xenobiotic components was established (matrix protocol, Table 1). Cells were reconstituted in a mixture of pH-neutralized bovine collagen (Devros Medical, 0.4 mg/EHM) and concentrated serum-containing medium (2×DMEM, 40% fetal bovine serum, 200 U/ml penicillin, and 200 mg/ml streptomycin) and cultured in Iscove's medium containing 20% fetal bovine serum, 1% non-essential amino acids, 2 mmol/l glutamine, 0.3 mmol/l ascorbic acid, 100 μmol/l β-mercaptoethanol, 100 U/ml penicillin, and 100 μg/mL streptomycin.
异种培养基组分的去除和替换Removal and replacement of xenogeneic culture medium components
为了生成完全限定的无血清EHM,细胞在pH中和的牛胶原蛋白(Devros Medcial,0.4mg/EHM)、浓缩无血清培养基(2×DMEM,8%B27,200U/ml青霉素和200mg/ml链霉素)的混合物中重构,并在含4%完全B27、1%非必需氨基酸、2mmol/l谷氨酰胺、0.3mmol/l抗坏血酸、20ng/ml IGF-1、10ng/ml FGF2、10ng/ml VEGF、5ng/ml TGFb1(仅培养的第0-3天)和100U/ml青霉素、和100μg/ml链霉素的Iscove-培养基(无血清操作方案,表1)中培养。B27补充剂含有维生素(生物素,DL α生育酚,醋酸酯DL α-生育酚,维生素A)、蛋白质和酶(BSA,游离脂肪酸组分V,过氧化氢酶,人重组胰岛素,人转铁蛋白,超氧化物歧化酶)以及其他细胞支持组分(皮质酮,D-半乳糖,乙醇胺,谷胱甘肽(还原型),左旋肉碱,亚油酸、亚麻酸、黄体酮、腐胺、亚硒酸钠和T3(三碘-I-甲状腺原氨酸))。如所示,将完全B27(Invitrogen,A1486701)与无抗氧化剂B27(Invitrogen,#10889038)和无胰岛素B27(Invitrogen,#0050129SA)进行了比较。B27补充剂被由白蛋白、转铁蛋白、乙醇胺、亚硒酸钠、盐酸左旋肉碱、氢化可的松、脂肪酸补充剂和三碘-L-甲状腺原氨酸组成的定制补充剂替换(表2)。To generate fully defined serum-free EHM, cells were reconstituted in a mixture of pH-neutralized bovine collagen (Devros Medical, 0.4 mg/EHM), concentrated serum-free medium (2×DMEM, 8% B27, 200 U/ml penicillin and 200 mg/ml streptomycin) and cultured in Iscove-medium (serum-free protocol, Table 1) containing 4% complete B27, 1% non-essential amino acids, 2 mmol/l glutamine, 0.3 mmol/l ascorbic acid, 20 ng/ml IGF-1, 10 ng/ml FGF2, 10 ng/ml VEGF, 5 ng/ml TGFb1 (culture days 0-3 only) and 100 U/ml penicillin, and 100 μg/ml streptomycin. B27 supplements contain vitamins (biotin, DL-alpha tocopherol, DL-alpha-tocopherol acetate, vitamin A), proteins, and enzymes (BSA, free fatty acid fraction V, catalase, human recombinant insulin, human transferrin, superoxide dismutase), as well as other cell-supporting components (corticosterone, D-galactose, ethanolamine, glutathione (reduced form), L-carnitine, linoleic acid, linolenic acid, progesterone, putrescine, sodium selenite, and T3 (triiodo-I-thyronine). Complete B27 (Invitrogen, A1486701) was compared with antioxidant-free B27 (Invitrogen, #10889038) and insulin-free B27 (Invitrogen, #0050129SA), as indicated. The B27 supplement was replaced by a customized supplement consisting of albumin, transferrin, ethanolamine, sodium selenite, L-carnitine hydrochloride, hydrocortisone, fatty acid supplement, and triiodo-L-thyronine ( Table 2 ).
收缩功能分析Contractile function analysis
如前所述,本发明人分析了在等长条件下的收缩力和收缩动力学(收缩时间:从50%到最大收缩的时间;弛豫时间:从最大收缩到50%弛豫的时间)(Zimmermann等,CircRes 90:223-230(2002);通过引入并入本文)。将EHM从孵育箱中移出后立刻通过光学显微术评价收缩频率(未经刺激的自发收缩)。As previously described, the present inventors analyzed contractile force and contractile kinetics (contraction time: time from 50% to maximal contraction; relaxation time: time from maximal contraction to 50% relaxation) under isometric conditions (Zimmermann et al., Circ Res 90: 223-230 (2002); incorporated herein by reference). Contraction frequency (unstimulated spontaneous contraction) was assessed by light microscopy immediately after the EHM was removed from the incubator.
流式细胞术Flow cytometry
如上文描述地,将在不同培养基条件下培养的EB制成单细胞悬液。在持续搅拌下将细胞固定在70%冰冻乙醇中。对细胞进行肌节附肌动蛋白(Sigma)染色以标记心肌细胞,以及DAPI染色以分析细胞核DNA含量和排除细胞双重态。细胞在LSRII流式细胞仪(BD)上运行。分析了至少10,000个活细胞。然后分析了以下参数,(1)细胞死亡(凋亡细胞在sub-G1级分中的百分比),(2)心肌细胞和非肌细胞百分比(分别为辅肌动蛋白阳性和阴性细胞),(3)心肌细胞成熟(平均辅肌动蛋白荧光),(4)心肌细胞尺寸和(5)非肌细胞尺寸(基于侧向散射面积,SSC-A)。EBs cultured under different culture conditions were prepared as described above to prepare single cell suspensions. Cells were fixed in 70% ice-cold ethanol under constant stirring. Cells were stained with sarcomere actin (Sigma) to mark cardiomyocytes and DAPI to analyze nuclear DNA content and exclude cell doublets. Cells were run on an LSRII flow cytometer (BD). At least 10,000 viable cells were analyzed. The following parameters were then analyzed, (1) cell death (percentage of apoptotic cells in the sub-G1 fraction), (2) percentage of cardiomyocytes and non-myocytes (actinin positive and negative cells, respectively), (3) cardiomyocyte maturation (mean actinin fluorescence), (4) cardiomyocyte size and (5) non-myocyte size (based on side scatter area, SSC-A).
形态分析Morphological analysis
如之前描述地(Zimmermann等,Circ Res 90:223-230(2002),通过引用并入本文),将hEHM分别固定在中性4%缓冲甲醛/1%甲醇,pH 7.4中,用于共聚焦激光扫描显微术(CLSM;Zeiss 510 Meta LSM系统或Zeiss 710 LSM)。为了进行CLSM,本发明人制备了振动切片(100μm;Leica VT1000 S)并用抗α-肌节辅肌动蛋白的抗体对其进行免疫荧光标记(Sigma克隆EA-53,1:800;用适宜的二次抗体)。细胞核用DAPI(4′,6-二脒基-2-苯基吲哚;1μg/ml)染色。As previously described (Zimmermann et al., Circ Res 90:223-230 (2002), incorporated herein by reference), hEHM were fixed in neutral 4% buffered formaldehyde/1% methanol, pH 7.4 for confocal laser scanning microscopy (CLSM; Zeiss 510 Meta LSM system or Zeiss 710 LSM). For CLSM, the present inventors prepared vibrating sections (100 μm; Leica VT1000 S) and immunofluorescently labeled them with antibodies against α-sarcomeric actinin (Sigma clone EA-53, 1:800; with appropriate secondary antibodies). Cell nuclei were stained with DAPI (4′, 6-diamidino-2-phenylindole; 1 μg/ml).
统计分析Statistical analysis
数据以平均值±平均值的标准差形式呈现。利用成对和非成对双尾Student’s t检验或ANOVA之后进行Dunnet’s post hoc校验来确定统计学差异。P值<0.05则被认为是统计显著的。Data are presented as mean ± standard error of the mean. Statistical differences were determined using paired and unpaired two-tailed Student's t-tests or ANOVA followed by Dunnet's post hoc test. P values < 0.05 were considered statistically significant.
结果result
人工程化心肌(hEHM)的生成Generation of human engineered myocardium (hEHM)
EB-在海法(H9.2;),新加坡(hES3和hES3-ENVY;Costa等,Nat Methods 2:259-260(2005))和多伦多(hHES2;iPS)制备,在室温下在充满培养基的密封容器内用快递送到汉堡/哥廷根。确保在72-96小时内送抵。运抵后,EB转移到新鲜培养基中并复苏24-48小时。在这段时间内,EB恢复自发收缩活动。EB是酶解分散的EB,得到的单细胞悬液分配用于hEHM生成或者细胞组织学。最初的一系列实验摸索每块hEHM必需的细胞数量(1×104-15×106细胞)和不同ESC-系(H9.2,hES2,hES3,hES3-ENVY)和iPS系(I2,BJ,Sendai)对于hEHM构建的效用(n=67)。在hEHM铸塑的48小时内,在全部培养物红均可观察到不同大小的区域的自发性搏动。但是,仅使用1.25-15×106个细胞/EHM时形成生成力的hEHM(图1)。基于EHM的尺寸,可以容易地调节细胞密度。EBs were generated in Haifa (H9.2;), Singapore (hES3 and hES3-ENVY; Costa et al., Nat Methods 2:259-260 (2005)), and Toronto (hHES2; iPS) and shipped to Hamburg/Göttingen in sealed containers filled with culture medium at room temperature by courier. Arrival was ensured within 72-96 hours. Upon arrival, EBs were transferred to fresh culture medium and allowed to recover for 24-48 hours. During this time, EBs resumed spontaneous contractile activity. EBs were enzymatically dissociated, and the resulting single-cell suspensions were used for hEHM generation or cell histology. An initial series of experiments explored the required cell number per hEHM (1×10 4 -15×10 6 cells) and the utility of different ESC lines (H9.2, hES2, hES3, hES3-ENVY) and iPS lines (I2, BJ, Sendai) for hEHM construction (n=67). Within 48 hours of hEHM casting, spontaneous beating of areas of varying sizes was observed in all cultures. However, force-producing hEHMs were formed using only 1.25-15×10 6 cells/EHM ( FIG. 1 ). Cell density can be easily adjusted based on the size of the EHM.
hEHM的器官型功能Organotypic function of hEHM
hEHM在培养中稳定且有节率地收缩至少3周(37℃下,0.8±0.05Hz;n=14)。本发明人在10天内进行了详尽的功能表征。与异丙肾上腺素孵育使自发性搏动频率增加到1.2±0.1Hz(n=6;P<0.01,图2A)。加用3-异丁基-1-甲基黄嘌呤(IBMX;100μmol/l)抑制磷酸二酯酶,引起自发性搏动率进一步提高到1.6±0.1Hz(n=6;P<0.001,图2A)。在2.4mmol/l钙下,hEHM发生最大的平均收缩力为130±13μN(EC50:0.8±0.04mmol/l,n=17;图2B)。在亚-EC50细胞外钙(0.4mmol/l)下,用1μmol/l异丙肾上腺素的β-肾上腺素能刺激使收缩力增加47±12%(n=12;图2C),弛豫缩短至113±2.3ms(n=12;图2D)。hEHM contracted stably and rhythmically in culture for at least 3 weeks (0.8±0.05 Hz at 37°C; n=14). The present inventors performed detailed functional characterization over 10 days. Incubation with isoproterenol increased the spontaneous beating frequency to 1.2±0.1 Hz (n=6; P<0.01, Figure 2A). Addition of 3-isobutyl-1-methylxanthine (IBMX; 100 μmol/l) to inhibit phosphodiesterase further increased the spontaneous beating rate to 1.6±0.1 Hz (n=6; P<0.001, Figure 2A). At 2.4 mmol/l calcium, hEHM produced a maximal mean contractile force of 130±13 μN ( EC50 : 0.8±0.04 mmol/l, n=17; Figure 2B). At sub- EC50 extracellular calcium (0.4 mmol/l), β-adrenergic stimulation with 1 μmol/l isoproterenol increased contractility by 47±12% (n=12; Figure 2C) and shortened relaxation to 113±2.3 ms (n=12; Figure 2D).
非肌细胞在EHM形成中的重要性Importance of non-muscle cells in EHM formation
本实验采用的所有ESC-系和IPS系看起来都适用于hEHM生成。为了测试哪种心肌细胞含量对于生成力的组织是最佳的,本发明人绘制了产生的力相对于心肌细胞百分比的图。有趣的是,得到了钟形分布,其中在心肌细胞百分比为40-80%时产生出最大的力(图3A)。All ESC- and IPS-derived lines used in this experiment appeared suitable for hEHM generation. To test which cardiomyocyte content was optimal for force-generating tissue, the inventors plotted the force generated versus the percentage of cardiomyocytes. Interestingly, a bell-shaped distribution was obtained, with the greatest force generated at a cardiomyocyte percentage of 40-80% ( FIG3A ).
上述发现提示非肌细胞对于恰当的组织形成起重要作用。为加以研究,本发明人用通过表面标记物CD172a(SIRPα)纯化的人心肌细胞进行了实验(Dubois等,NatBiotechnol 29:1011-1018(2011))。从纯化的心肌细胞生成的EHM没有形成生成力的组织(图3B)。然而,补充30%人心脏成纤维细胞产出了有良好力产生的更刚性的组织。这些结果强调非肌细胞对心肌组织形成至关重要,同时这些细胞也需要在无血清条件下得到支持。The above findings suggest that non-myocytes play an important role in proper tissue formation. To investigate this, the present inventors conducted experiments with human cardiomyocytes purified by the surface marker CD172a (SIRPα) (Dubois et al., Nat Biotechnol 29:1011-1018 (2011)). EHM generated from purified cardiomyocytes did not form force-generating tissue (Figure 3B). However, supplementation with 30% human cardiac fibroblasts produced a more rigid tissue with good force generation. These results emphasize that non-myocytes are crucial for myocardial tissue formation and that these cells also need to be supported under serum-free conditions.
用符合GMP要求的基质生成hEHMhEHM production using GMP-compliant matrices
基于本发明人已经在新生大鼠心脏细胞模型上建立起来的操作方案,本发明人初步构建了hEHM(Zimmermann等,Biotechnol Bioeng 68:106-114(2000))。该操作方案包括若干不符合体内“治疗应用”要求的非人组分(包括大鼠胶原蛋白、Matrigel、马血清、胎牛血清和鸡胚提取物)。为了解决这个问题,首先进行了一系列的实验来直接测试是否能减少hEHM-基质的非人组分。大鼠胶原蛋白被医用级(GMP)牛胶原蛋白替代而不损失性能(图4A)。同样,马血清和鸡胚提取物都能剔除而不对hEHM的形成和功能造成负面影响(“基质操作方案”,图4B,表1)。用其他细胞外基质蛋白诸如作为的主要组分之一的纤连蛋白和层粘连蛋白来补充牛胶原蛋白,没有产生额外的益处(图4C)。Based on the operating protocol that the inventors have established in the neonatal rat heart cell model, the inventors initially constructed hEHM (Zimmermann et al., Biotechnol Bioeng 68: 106-114 (2000)). This operating protocol includes several non-human components (including rat collagen, Matrigel, horse serum, fetal bovine serum and chicken embryo extract) that do not meet the requirements of "therapeutic application" in vivo. To address this issue, a series of experiments were first conducted to directly test whether the non-human components of the hEHM matrix could be reduced. Rat collagen was replaced with medical grade (GMP) bovine collagen without loss of performance (Figure 4A). Similarly, horse serum and chicken embryo extract could be eliminated without negatively affecting the formation and function of hEHM ("Matrix Operating Protocol", Figure 4B, Table 1). Supplementing bovine collagen with other extracellular matrix proteins such as fibronectin and laminin, one of the main components, did not produce additional benefits (Figure 4C).
支持hEHM形成的无血清培养基的限定Definition of serum-free culture medium supporting hEHM formation
为了进一步限定人EHM培养并使其符合GMP要求,本发明人寻求用化学限定的补充剂替代所有非限定的血清组分。本发明人提出了一种基于三维人拟胚体(EB)培养的简化筛选算法来筛选这些补充剂。在无血清条件下培养了用于该筛选的ESC(Yang等,Nature 453:524-528(2008);Kattman等,Cell Stem Cell 8:228-240(2011))。筛选的参照是我们的含血清EHM培养基(表1):(1)Iscove’s,(2)2mmol/L谷氨酰胺,(3)20%FBS,(4)1%非必需氨基酸,(5)0.3mmol/L抗坏血酸,(6)100μmol/lβ-巯基乙醇,(7)100U/ml青霉素/100mg/ml链霉素。作为基础培养基和补充剂的有利或不利作用的读出结果,建立了一个基于流式细胞术的操作方案(Tiburcy等,Circ Res109:1105-1114(2011);通过引用并入本文),用于测定(1)细胞死亡(基于亚-G1 DNA含量),(2)心肌细胞含量(基于脯肌动蛋白的表达),(3)心肌细胞成熟(基于每个心肌细胞的脯肌动蛋白平均荧光),(4)心肌细胞尺寸,和(5)非肌细胞尺寸(基于侧向散射面积)。To further define human EHM culture and make it GMP-compliant, the present inventors sought to replace all non-restricted serum components with chemically defined supplements. The present inventors proposed a simplified screening algorithm based on three-dimensional human embryoid body (EB) culture to screen these supplements. ESCs used for this screening were cultured under serum-free conditions (Yang et al., Nature 453:524-528 (2008); Kattman et al., Cell Stem Cell 8:228-240 (2011)). The reference for screening was our serum-containing EHM medium (Table 1): (1) Iscove's, (2) 2 mmol/L glutamine, (3) 20% FBS, (4) 1% non-essential amino acids, (5) 0.3 mmol/L ascorbic acid, (6) 100 μmol/l β-mercaptoethanol, and (7) 100 U/ml penicillin/100 mg/ml streptomycin. As a readout of the favorable or unfavorable effects of basal medium and supplements, a flow cytometry-based protocol was established (Tiburcy et al., Circ Res 109:1105-1114 (2011); incorporated herein by reference) to measure (1) cell death (based on sub-G1 DNA content), (2) cardiomyocyte content (based on pro-actin expression), (3) cardiomyocyte maturation (based on pro-actin mean fluorescence per cardiomyocyte), (4) cardiomyocyte size, and (5) non-myocyte size (based on side scatter area).
本发明人首先筛选了三种含和不含B27补充的基础培养基配方(Iscove’s,RPMI,αMEM:表3-5)。B27已经被几个研究小组用于人ESC和iPSC的分化(Burridge等,Cell StemCell 10:16-28(2012))。筛选显示B27对拟胚体(EB)的形成是必不可少的,与受试的基础培养基无关。Iscove’s和RPMI显示出可比较的结果,而aMEM看起来会导致稍高的细胞死亡。另一方面,αMEM对于心肌脯肌动蛋白表达是卓越的(图5A)。The inventors first screened three basal medium formulations with and without B27 supplementation (Iscove's, RPMI, αMEM: Tables 3-5). B27 has been used by several research groups for the differentiation of human ESCs and iPSCs (Burridge et al., Cell Stem Cell 10: 16-28 (2012)). The screening showed that B27 was essential for the formation of embryoid bodies (EBs), regardless of the basal medium tested. Iscove's and RPMI showed comparable results, while aMEM appeared to cause slightly higher cell death. On the other hand, αMEM was superior for cardiac pro-actin expression (Figure 5A).
基于在RPMI基础培养基中培养的EHM表现不太理想的初步发现(图7),本发明人继续用Iscove’s或aMEM作为基础培养基进行筛选。本发明人接下来仔细审视了含和不含胰岛素情况下B27在其标准配方中的效用。与无胰岛素B27和较低B27(2%)补充浓度比较,含胰岛素的4%B27补充(最终浓度10μg/ml)示出了最低的细胞死亡以及可能对非肌细胞更大的支持(心肌细胞百分比降低,提示转向更多非肌细胞)(图5B)。然后,本发明人筛选了6种在EC50浓度以上的肽生长因子和脂肪酸补充剂的效用。PDGF-BB、CT-1和神经调节蛋白-1造成大量的细胞死亡,而IGF-1看起来保护免于细胞死亡(图6A、B)。TGFβ1、VEGF和脂肪酸补充剂增强个别心肌细胞的脯肌动蛋白表达。FGF-2支持非肌细胞生长,并增加心肌细胞尺寸(图6A)。TGFβ2不具有有益效果(图6B)。所有测试的化合物或它们的组合均涉及心脏发育和EHM生成(Naito等,Ciirculation 114:I72-78(2006);Shimojo等,Am J Physiol Heart CircPhysiol 293:H474-481(2007);Vantleret等,J Mol Cell Cardiol 48:1316-1323(2010);Odiete等,Circ Res 111:1376-1385(2012);Wollert和Chien J Mol Med(Berl)75:492-501(1997);Price等,Anat Rec A Discov Mol Cell Evol Biol 272:424-433(2003);Molin等,Dev Dyn 227:431-444(2003);Corda等,Circ Res 81:679-687(1997);Lopaschuk和Jaswal J Cardiovasc Pharmacol 56:130-140;其全部通过引用并入本文)。Based on the initial finding that EHM cultured in RPMI basal medium performed less than ideally ( FIG. 7 ), the inventors continued screening using Iscove’s or aMEM as basal medium. The inventors next carefully examined the efficacy of B27 in its standard formulation with and without insulin. Compared to B27 without insulin and a lower B27 (2%) supplementation concentration, 4% B27 supplementation with insulin (final concentration 10 μg/ml) showed the lowest cell death and potentially greater support for non-myocytes (reduced percentage of cardiomyocytes, suggesting a shift towards more non-myocytes) ( FIG. 5B ). The inventors then screened the efficacy of six peptide growth factors and fatty acid supplements at concentrations above the EC50. PDGF-BB, CT-1, and neuregulin-1 caused extensive cell death, while IGF-1 appeared to protect against cell death ( FIG. 6A , B ). TGFβ1, VEGF, and fatty acid supplementation enhanced pro-actin expression in individual cardiomyocytes. FGF-2 supported non-myocyte growth and increased cardiomyocyte size ( FIG. 6A ). TGFβ2 had no beneficial effect (Figure 6B). All compounds tested or their combinations are involved in cardiac development and EHM generation (Naito et al., Ciirculation 114:172-78 (2006); Shimojo et al., Am J Physiol Heart CircPhysiol 293:H474-481 (2007); Vantleret et al., J Mol Cell Cardiol 48:1316-1323 (2010); Odiete et al., Circ Res 111:1376-1385 (2012); Wollert and Chien J Mol Med (Berl) 75:492-501 (1997); Price et al., Anat Rec A Discov Mol Cell Evol Biol 272:424-433 (2003); Molin et al., Dev Dyn 227:431-444 (2003); Corda et al., Circ Res 81:679-687 (1997); Lopaschuk and Jaswal J Cardiovasc Pharmacol 56:130-140; herein incorporated by reference in their entireties).
EHM的发育以两个阶段为特征。最初出现的是“凝结阶段”,在这阶段,分离的细胞在基质中“定居”,重构自己和基质,也可能伴随大量的细胞死亡。此阶段受非肌细胞的影响很大。第二个阶段是在机械载荷下的组织成熟。这一阶段的特征是肥厚性生长和心肌细胞成熟,定位,力发展渐增,和基质稳定(Tiburcy等,Circ Res 109:1105-1114(2011))。The development of EHM is characterized by two stages. The first stage is the "condensation stage", in which isolated cells "settle" in the matrix, reconstruct themselves and the matrix, and may also be accompanied by a large amount of cell death. This stage is greatly influenced by non-muscle cells. The second stage is tissue maturation under mechanical load. This stage is characterized by hypertrophic growth and myocyte maturation, positioning, increasing force development, and matrix stabilization (Tiburcy et al., Circ Res 109: 1105-1114 (2011)).
本发明人推断,根据阶段,可能要求不同的培养基条件。为了防止细胞在凝结阶段死亡,本发明人选择中性的、甚或减少初始筛选中细胞死亡的培养基组分的组合。即Iscove’s基础培养基、4%B27和IGF-1。同时,通过非肌细胞的基质重构和凝结得到了增加非肌细胞的数目和/或尺寸的因子(IGF-1、TGF-β1、FGF-2,在第一阶段)的支持。添加VEGF以支持心肌细胞的成熟(表5)。然后测试了该培养基支持生成力的EHM形成的能力。无血清的EHM以113±12bpm的自发性博动频率连续搏动,n=7。含血清的EHM跳动得明显更快(199±8bpm,n=8)。本发明人发现了与含血清对照组相比较类似的最大力发生和钙敏感度(图7A)。Iscove’s和αMEM基础培养基都支持EHM的形成,两者收缩力结果具有可比性。RPMI不支持生成力的组织(图7A,表5、6)。从形态上看,无血清EHM包含具有各向异性排列的心肌细胞的良好发育的肌肉束(图7B)。重要的是,无血清EHM对肾上腺素能和毒蕈碱刺激产生了如对心肌所预期的反应。事实上,αMEM EHM的反应明显优于含血清对照组。(图7C、D)The inventors reasoned that different culture medium conditions might be required depending on the stage. To prevent cell death during the condensation phase, the inventors selected a combination of culture medium components that were neutral or even reduced cell death in the initial screening. Namely, Iscove's basal medium, 4% B27, and IGF-1. Simultaneously, factors that increase the number and/or size of non-myocytes (IGF-1, TGF-β1, FGF-2 in the first stage) were supported by matrix remodeling and condensation of non-myocytes. VEGF was added to support the maturation of cardiomyocytes (Table 5). The ability of this culture medium to support the formation of force-generating EHMs was then tested. Serum-free EHMs beat continuously at a spontaneous beat frequency of 113±12 bpm, n=7. Serum-containing EHMs beat significantly faster (199±8 bpm, n=8). The inventors found similar maximum force generation and calcium sensitivity compared to the serum-containing control group (Figure 7A). Both Iscove's and αMEM basal media supported the formation of EHMs, and the contractile force results of the two were comparable. RPMI did not support force-generating tissue (Figure 7A, Tables 5 and 6). Morphologically, serum-free EHM contained well-developed muscle bundles with anisotropically arranged cardiomyocytes (Figure 7B). Importantly, serum-free EHM produced responses to adrenergic and muscarinic stimulation as expected for myocardium. In fact, the response of αMEM EHM was significantly superior to that of serum-containing controls (Figures 7C and D).
发明人推测,RPMI培养基表现不佳是由于RPMI培养基的游离钙浓度(0.424mmol/L,表4)低于生理浓度。为了验证该推测是否正确,本发明人另外进行了一个实验,将RPMI培养基与添加0.8mM CaCl的RPMI培养基(最终游离钙浓度为1.242mmol/L)进行了比较。虽然在RPMI情况下的EHM几乎不收缩,但是补充钙却得到可测量的最大力,及对异丙肾上腺素更好的反应性(图8)。事实上,在经补充的RPMI情况下最大力产生与IMDM或αMEM培养基是可比较的(图7A),表明~1–2mmol/L钙的范围对恰当组织功能是必需的。The inventors speculated that the poor performance of RPMI medium was due to the subphysiological free calcium concentration of RPMI medium (0.424 mmol/L, Table 4). To verify whether this speculation was correct, the inventors conducted an additional experiment comparing RPMI medium with RPMI medium supplemented with 0.8 mM CaCl (final free calcium concentration of 1.242 mmol/L). Although EHMs in the RPMI condition showed little contraction, calcium supplementation resulted in measurable maximum force and better responsiveness to isoproterenol (Figure 8). In fact, the maximum force generated in the supplemented RPMI condition was comparable to that of IMDM or αMEM medium (Figure 7A), indicating that a range of ~1–2 mmol/L calcium is necessary for proper tissue function.
为了验证初始筛选结果,本发明人还测试了关键因子对功能性EHM形成的影响。从第0天至第3天添加TGFβ1是必要的,但延长的TGFβ1处理没有带来额外的益处(图9A、B)。FGF和VEGF都能够增加力生成,确证两者对组织形成有重要贡献(图10)。To validate the initial screening results, the inventors also tested the effects of key factors on the formation of functional EHMs. Addition of TGFβ1 from day 0 to day 3 was essential, but prolonged TGFβ1 treatment did not provide additional benefits (Figures 9A, B). Both FGF and VEGF increased force generation, confirming that both contribute significantly to tissue formation (Figure 10).
B27添加剂浓度提高到4%要优于2%B27(图11)。为了测试B27的哪些组分对EHM功能是至关重要的,本发明人首先对市售的不同B27制剂进行了实验。本发明人将完全B27与减胰岛素B27、和减抗氧化剂B27进行了比较。减抗氧化剂B27与完全B27表现相当,提示抗氧化剂是非必需的。令人惊讶的是,减胰岛素B27的表现优于完全B27,提示补充胰岛素也不是必需的(图12)。Increasing the concentration of B27 additive to 4% was superior to 2% B27 (Figure 11). To test which components of B27 are critical for EHM function, the inventors first conducted experiments on different commercially available B27 formulations. The inventors compared complete B27 with insulin-reduced B27 and antioxidant-reduced B27. Antioxidant-reduced B27 performed comparable to complete B27, suggesting that antioxidants are not essential. Surprisingly, insulin-reduced B27 performed better than complete B27, suggesting that insulin supplementation is also not necessary (Figure 12).
基于这些结果,本发明人开发出了一个替代B27的定制血清补充剂(表7)。当本发明人将该定制血清补充剂针对含血清培养基和含减胰岛素B27的无血清培养基进行测试时,本发明人发现最大力产生具有可比性,提示B27可以从无血清EHM培养中省去,并且都被定制血清补充剂替代(图13A)。这些发现得到了来自iPSC的hEHM的证实,其表明了用于从不同多能干细胞源生成限定工程化心肌的效用。(图13B)。Based on these results, the inventors developed a custom serum supplement to replace B27 (Table 7). When the inventors tested this custom serum supplement against serum-containing medium and serum-free medium containing insulin-minus B27, the inventors found that maximum force generation was comparable, suggesting that B27 can be omitted from serum-free EHM culture and all replaced by custom serum supplements (Figure 13A). These findings were confirmed by hEHM from iPSC, which demonstrated the effectiveness of generating limited engineered myocardium from different pluripotent stem cell sources. (Figure 13B).
为了探究无血清hEHM是否支持心肌细胞的长期培养和成熟,本发明人在培养的第2周、第4周和第8周测试了来自hIPS-G1的无血清hEHM的力产生。本发明人观察到力产生的强劲提高(图14A)和个别hEHM来源的心肌细胞的具有规律横纹的棒状形态,这指示在无血清条件下良好高度成熟。To explore whether serum-free hEHM supports long-term culture and maturation of cardiomyocytes, the inventors tested the force production of serum-free hEHM from hIPS-G1 at culture weeks 2, 4, and 8. The inventors observed a robust increase in force production ( FIG14A ) and a rod-like morphology with regular striations of individual hEHM-derived cardiomyocytes, indicating good, advanced maturation under serum-free conditions.
结论in conclusion
本研究首次表明,分化的、生成力的人心脏肌肉可以在体外在完全限定的、无血清条件下生成。该操作方案适用于胚胎干细胞(ESC)和诱导多能干细胞(iPS)来源的心脏肌肉。This study demonstrates for the first time that differentiated, force-producing human cardiac muscle can be generated in vitro under fully defined, serum-free conditions. The protocol is applicable to cardiac muscle derived from both embryonic stem (ESC) and induced pluripotent stem (iPS) cells.
这是一个重大突破,不仅使未来能够进行体外研究,以诸如探讨成熟和肥大且不再受血清因素的混淆干扰,而且使在GMP要求下的体内应用和治疗方法的潜力成为可能。This is a major breakthrough that not only enables future in vitro studies to investigate, for example, maturation and hypertrophy without the confounding effects of serum factors, but also enables the potential for in vivo applications and therapeutic approaches under GMP requirements.
参考文献References
WO 01/55297WO 01/55297
WO 2007/054286WO 2007/054286
WO 2008/058917WO 2008/058917
Zimmermann,Kardiale Regeneration mit künstlichem Herzgewebe.Hamburg Eppendorf,Habilitation(2006)Zimmermann,Kardiale Regeneration mit künstlichem Herzgewebe.Hamburg Eppendorf,Habilitation(2006)
Schneiderbanger,Zur Bedeutung von Tranforming Growth Factor-β1 undInterleukin-1β für die Morphologie,die Genexpression und die kontraktileFunktion von rekonstituiertem dreidimensionalen künstlichen Herzmuskelgewebe.Hamburg,Dissertation(2006)Schneiderbanger, Zur Bedeutung on Tranforming Growth Factor-β1 and Interleukin-1β für die Morphologie,die Genexpression and die kontraktileFunktion on rekonstituiertem dreidimensionalen künstlichen Herzmuskelgewebe.Hamburg,Dissertation(2006)
Eschenhagen,T.和Zimmermann,W.H.Engineering myocardial tissue.Circ Res97,1220-1231(2005).Eschenhagen, T. and Zimmermann, W.H. Engineering myocardial tissue. Circ Res 97, 1220-1231 (2005).
Zimmermann,W.H.,等.Heart muscle engineering:an update on cardiacmuscle replacement therapy.Cardiovasc Res 71,419-429(2006).Zimmermann, W.H., et al. Heart muscle engineering: an update on cardiacmuscle replacement therapy. Cardiovasc Res 71, 419-429 (2006).
Eschenhagen,T.,等.Three-dimensional reconstitution of embryoniccardiomyocytes in a collagen matrix:a new heart muscle model system.Faseb J11,683-694(1997).Eschenhagen, T., et al. Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. Faseb J11, 683-694 (1997).
Kofidis,T.,等.In vitro engineering of heart muscle:artificialmyocardial tissue.J Thorac Cardiovasc Surg 124,63-69(2002).Kofidis,T.,et al.In vitro engineering of heart muscle:artificialmyocardial tissue.J Thorac Cardiovasc Surg 124,63-69(2002).
Morritt,A.N.,等.Cardiac tissue engineering in an in vivo vascularizedchamber.Circulation 115,353-360(2007).Morritt, A.N., et al. Cardiac tissue engineering in an in vivo vascularized chamber. Circulation 115, 353-360 (2007).
Radisic,M.,等.Functional assembly of engineered myocardium byelectrical stimulation of cardiac myocytes cultured on scaffolds.Proc NatlAcad Sci U S A 101,18129-18134(2004).Radisic, M., et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc NatlAcad Sci U S A 101, 18129-18134 (2004).
Shimizu,T.,等.Fabrication of pulsatile cardiac tissue grafts using anovel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces.Circ Res 90,e40(2002).Shimizu, T., et al. Fabrication of pulsatile cardiac tissue grafts using anovel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90, e40 (2002).
Zimmermann,W.H.,等.Three-dimensional engineered heart tissue fromneonatal rat cardiac myocytes.Biotechnol Bioeng 68,106-114(2000).Zimmermann, W.H., et al. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng 68, 106-114 (2000).
Tulloch,N.L.,等.Growth of engineered human myocardium with mechanicalloading and vascular coculture.Circ Res 109,47-59(2011).Tulloch, N.L., et al. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109,47-59(2011).
Tiburcy,M.,等.Terminal differentiation,advanced organotypicmaturation,and modeling of hypertrophic growth in engineered hearttissue.Circ Res 109,1105-1114(2011).Tiburcy, M., et al. Terminal differentiation, advanced organotypicmaturation, and modeling of hypertrophic growth in engineered hearttissue. Circ Res 109, 1105-1114 (2011).
Zimmermann,W.H.,等.Tissue engineering of a differentiated cardiacmuscle construct.Circ Res 90,223-230(2002).Zimmermann, W.H., et al. Tissue engineering of a differentiated cardiacmuscle construct. Circ Res 90, 223-230 (2002).
Zimmermann,W.H.,等.Engineered heart tissue grafts improve systolicand diastolic function in infarcted rat hearts.Nat Med 12,452-458(2006).Zimmermann, W.H., et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12, 452-458 (2006).
Schaaf,S.,等.Human engineered heart tissue as a versatile tool inbasic research and preclinical toxicology.PLoS One 6,e26397(2011).Schaaf, S., et al. Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS One 6, e26397 (2011).
Naito,H.,等.Optimizing engineered heart tissue for therapeuticapplications as surrogate heart muscle.Circulation 114,I72-78(2006).Naito, H., et al. Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation 114, I72-78 (2006).
Thomson,J.A.,等.Embryonic stem cell lines derived from humanblastocysts.Science 282,1145-1147(1998).Thomson, J.A., et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147 (1998).
Takahashi,K.和Yamanaka,S.Induction of pluripotent stem cells frommouse embryonic and adult fibroblast cultures by defined factors.Cell 126,663-676(2006).Takahashi, K. and Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676 (2006).
Schroeder,M.,等.Differentiation and lineage selection of mouseembryonic stem cells in a stirred bench scale bioreactor with automatedprocess control.Biotechnol Bioeng 92,920-933(2005).Schroeder, M., et al. Differentiation and lineage selection of mouseembryonic stem cells in a stirred bench scale bioreactor with automated process control. Biotechnol Bioeng 92, 920-933 (2005).
Kehat,I.,等.Human embryonic stem cells can differentiate intomyocytes with structural and functional properties of cardiomyocytes.J ClinInvest 108,407-414(2001).Kehat, I., et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J ClinInvest 108, 407-414 (2001).
Mummery,C.,等.Differentiation of human embryonic stem cells tocardiomyocytes:role of coculture with visceral endoderm-likecells.Circulation 107,2733-2740(2003).Mummery, C., et al. Differentiation of human embryonic stem cells tocardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107, 2733-2740 (2003).
Xu,C.,Police,S.,Rao,N.和Carpenter,M.K.Characterization and enrichmentof cardiomyocytes derived from human embryonic stem cells.Circ Res 91,501-508(2002).Xu, C., Police, S., Rao, N., and Carpenter, M.K. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91, 501-508 (2002).
Burridge,P.W.,Keller,G.,Gold,J.D.和Wu,J.C.Production of de novocardiomyocytes:human pluripotent stem cell differentiation and directreprogramming.Cell Stem Cell 10,16-28(2012).Burridge, P.W., Keller, G., Gold, J.D., and Wu, J.C. Production of de novocardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10, 16-28 (2012).
Lian,X.,等.Robust cardiomyocyte differentiation from humanpluripotent stem cells via temporal modulation of canonical Wntsignaling.Proc Natl Acad Sci U S A(2012).Lian,
Costa,M.,等.The hESC line Envy expresses high levels of GFP in alldifferentiated progeny.Nat Methods 2,259-260(2005).Costa, M., et al. The hESC line Envy expresses high levels of GFP in alldifferentiated progeny. Nat Methods 2, 259-260 (2005).
Yang,L.,等.Human cardiovascular progenitor cells develop from a KDR+embryonic-stem-cell-derived population.Nature 453,524-528(2008).Yang, L., et al. Human cardiovascular progenitor cells develop from a KDR+embryonic-stem-cell-derived population. Nature 453,524-528(2008).
Streckfuss-Bomeke,K.,等.Comparative study of human-inducedpluripotent stem cells derived from bone marrow cells,hair keratinocytes,andskin fibroblasts.Eur Heart J,doi:10.1093/eurheartj/ehs203(2012).Streckfuss-Bomeke, K., et al. Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts. Eur Heart J, doi:10.1093/eurheartj/ehs203(2012).
Passier,R.,等.Increased cardiomyocyte differentiation from humanembryonic stem cells in serum-free cultures.Stem Cells 23,772-780(2005).Passier, R., et al. Increased cardiomyocyte differentiation from humanembryonic stem cells in serum-free cultures. Stem Cells 23,772-780 (2005).
Dubois,N.C.,等.SIRPA is a specific cell-surface marker for isolatingcardiomyocytes derived from human pluripotent stem cells.Nat Biotechnol 29,1011-1018(2011).Dubois, N.C., et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol 29, 1011-1018 (2011).
Kattman,S.J.,等.Stage-specific optimization of activin/nodal and BMPsignaling promotes cardiac differentiation of mouse and human pluripotentstem cell lines.Cell Stem Cell 8,228-240.Kattman, S.J., et al. Stage-specific optimization of activin/nodal and BMPsignaling promotes cardiac differentiation of mouse and human pluripotentstem cell lines. Cell Stem Cell 8, 228-240.
Shimojo,N.,等.Contributory role of VEGF overexpression in endothelin-1-induced cardiomyocyte hypertrophy.Am J Physiol Heart Circ Physiol 293,H474-481(2007).Shimojo, N., et al. Contributory role of VEGF overexpression in endothelin-1-induced cardiomyocyte hypertrophy. Am J Physiol Heart Circ Physiol 293, H474-481 (2007).
Vantler,M.,等.PDGF-BB protects cardiomyocytes from apoptosis andimproves contractile function of engineered heart tissue.J Mol Cell Cardiol48,1316-1323(2010).Vantler, M., et al. PDGF-BB protects cardiomyocytes from apoptosis and improves contractile function of engineered heart tissue. J Mol Cell Cardiol 48, 1316-1323 (2010).
Odiete,O.,Hill,M.F.和Sawyer,D.B.Neuregulin in cardiovasculardevelopment and disease.Circ Res 111,1376-1385(2012).Odiete, O., Hill, M.F., and Sawyer, D.B. Neuregulin in cardiovascular development and disease. Circ Res 111, 1376-1385 (2012).
Wollert,K.C.和Chien,K.R.Cardiotrophin-1 and the role of gp 130-dependent signaling pathways in cardiac growth and development.J Mol Med(Berl)75,492-501(1997).Wollert, K.C. and Chien, K.R. Cardiotrophin-1 and the role of gp 130-dependent signaling pathways in cardiac growth and development. J Mol Med (Berl) 75, 492-501 (1997).
Price,R.L.,等.Effects of platelet-derived growth factor-AA and-BB onembryonic cardiac development.Anat Rec A Discov Mol Cell Evol Biol 272,424-433(2003).Price, R.L., et al. Effects of platelet-derived growth factor-AA and-BB onembryonic cardiac development. Anat Rec A Discov Mol Cell Evol Biol 272,424-433(2003).
Molin,D.G.,等.Expression patterns of Tgfbeta1-3 associate withmyocardialisation of the outflow tract and the development of the epicardiumand the fibrous heart skeleton.Dev Dyn 227,431-444(2003).Molin, D.G., et al. Expression patterns of Tgfbeta1-3 associate with myocardialisation of the outflow tract and the development of the epicardium and the fibrous heart skeleton. Dev Dyn 227,431-444(2003).
Corda,S.,等.Trophic effect of human pericardial fluid on adultcardiac myocytes.Differential role of fibroblast growth factor-2and factorsrelated to ventricular hypertrophy.Circ Res 81,679-687(1997).Corda, S., et al. Trophic effect of human pericardial fluid on adultcardiac myocytes. Differential role of fibroblast growth factor-2and factors related to ventricular hypertrophy. Circ Res 81,679-687(1997).
Lopaschuk,G.D.和Jaswal,J.S.Energy metabolic phenotype of thecardiomyocyte during development,differentiation,and postnatal maturation.JCardiovasc Pharmacol 56,130-140.Lopaschuk, G.D. and Jaswal, J.S. Energy metabolic phenotype of thecardiomyocyte during development, differentiation, and postnatal maturation. JCardiovasc Pharmacol 56, 130-140.
Didié等.Parthenogenetic stem cells for tissue-engineered heartrepair.J Clin Invest.doi:10.1172/JCI66854.Didié et al. Parthenogenetic stem cells for tissue-engineered heartrepair. J Clin Invest.doi:10.1172/JCI66854.
Soong等.Cardiac Differentiation of Human Enbryonic Stem Cells andtheir Assembly into Engineered Heart Muscle.Curr Prot Cell Biol.55:23.8.1-23.8.21,(2012).Soong et al. Cardiac Differentiation of Human Enbryonic Stem Cells and their Assembly into Engineered Heart Muscle. Curr Prot Cell Biol. 55:23.8.1-23.8.21, (2012).
Hudson,J.,Titmarsh,D.,Hidalgo,A.,Wolvetang,E.和Cooper-White,J.Primitive cardiac cells from human embryonic stem cells.Stem Cells Dev 21,1513-1523(2012).Hudson, J., Titmarsh, D., Hidalgo, A., Wolvetang, E. and Cooper-White, J. Primitive cardiac cells from human embryonic stem cells. Stem Cells Dev 21, 1513-1523 (2012).
Claims (14)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP13181352.9 | 2013-08-22 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| HK1226443A1 HK1226443A1 (en) | 2017-09-29 |
| HK1226443B true HK1226443B (en) | 2021-02-05 |
Family
ID=
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11492594B2 (en) | Method for producing engineered heart muscle (EHM) | |
| JP6581655B2 (en) | Generation of pluripotent stem cell-derived keratinocytes and maintenance of keratinocyte culture | |
| CA2914922C (en) | Culture medium compositions for maturating cardiomyocytes derived from pluripotent mammalian stem cells. | |
| US20070010011A1 (en) | Defined media for pluripotent stem cell culture | |
| David et al. | Co-culture approaches for cultivated meat production | |
| KR101861171B1 (en) | Cardiomyocyte medium with dialyzed serum | |
| KR102368751B1 (en) | Method for manufacturing ciliary margin stem cells | |
| CA3007107A1 (en) | Methods of differentiating retinal cells | |
| Liu et al. | A synthetic substrate to support early mesodermal differentiation of human embryonic stem cells | |
| JP6744084B2 (en) | Stem cell-derived medium for differentiated cells, method for producing differentiated cells from stem cells, and method for producing cell pharmaceutical composition containing the differentiated cells | |
| US20230081733A1 (en) | Methods for preparing keratinocytes | |
| WO2023037544A1 (en) | Method for producing pluripotent stem cells | |
| HK1226443B (en) | Method for producing engineered heart muscle (ehm) | |
| JP2019010001A (en) | Medium for culture of stem cell, proliferation promoter and culturing method, and cell composition including stem cell and method for producing the same | |
| HK1226443A1 (en) | Method for producing engineered heart muscle (ehm) | |
| KR20060114381A (en) | Feeder cell preparation medium and feeder cell for embryonic stem cell | |
| Rajala | Development of Human Stem Cell Culture Conditions for Clinical Cell Therapy |