[go: up one dir, main page]

HK40016239B - Mutations of the pik3ca gene in human cancers - Google Patents

Mutations of the pik3ca gene in human cancers Download PDF

Info

Publication number
HK40016239B
HK40016239B HK42020006177.8A HK42020006177A HK40016239B HK 40016239 B HK40016239 B HK 40016239B HK 42020006177 A HK42020006177 A HK 42020006177A HK 40016239 B HK40016239 B HK 40016239B
Authority
HK
Hong Kong
Prior art keywords
dna
homo sapiens
mutations
pik3ca
exon
Prior art date
Application number
HK42020006177.8A
Other languages
German (de)
French (fr)
Chinese (zh)
Other versions
HK40016239A (en
Inventor
Yardena Samuels
Victor Velculescu
Kenneth Kinzler
Bert Vogelstein
Original Assignee
The Johns Hopkins University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Johns Hopkins University filed Critical The Johns Hopkins University
Publication of HK40016239A publication Critical patent/HK40016239A/en
Publication of HK40016239B publication Critical patent/HK40016239B/en

Links

Description

FIELD OF THE INVENTION
'The invention relates to the fields of diagnostic tests and therapeutic methods for cancer.
BACKGROUND OF THE INVENTION
PI3Ks are lipid kinases that function as signal transducers downstream of cell surface receptors and mediate pathways important for cell growth, proliferation, adhesion, survival and motility (1, 2). Although increased PI3K activity has been observed in marry colorectal and other tumors (3, 4), no intragenic mutations of PI3K have been identified.
Members of the PIK3 pathway have been previously reported to be altered in cancers, for example, the PTEN tumor suppressor gene (75, 76), whose function is to reverse the phosphorylation mediated by PI3Ks (77, IS). Reduplication or amplification of the chromosomal regions containing PIK3CA and AKT2 has been reported in some human cancers (2, 19, 20), but the genes that are the targets of such large-scale genetic events have not been and cannot easily be defined.
Philip et al., Cancer Res 2001 Oct 15; 61(20): 7426-7429 discloses the detection of nucleotide mutations in the p85α subunit of PI3K but there is no reference to PIK3CA.
BRIEF SUMMARY OF THE INVENTION
In a first embodiment a method is provided for detecting a mutated PIK3CA polynucleotide in accordance with claim 1.
In a second embodiment of the invention a method is provided for detecting a mutated PIK3CA polynucleotide in accordance with claim 2.
BRIEF DESCRIPTION OF THE DRAWINGS
  • Fig. 1. Detection of mutations in of PIK3CA, Representative examples of mutations in exons 9 and 20. In each case, the top sequence chromatogram was obtained from normal tissue and the three lower sequence chromatograms from the indicated tumors, Arrows indicate the location of missense mutations. The nucleotide and amino acid alterations are indicated above the arrow.
  • Fig. 2, Distribution of mutations in PIK3CA. Arrows indicate the location of missense mutations, and boxes represent functional domains (p85BD, p85 binding domain; RBD, Ras binding domain; C2 domain; Helical domain; Kinase domain). The percentage of mutations detected within each region in cancers is indicated below.
  • Figs. 3A-3C. Increased lipid kinase activity of mutant p110α. NIH3T3 cells were transfected with empty vector or with vector constructs containing either wild-type p110α or mutant p110α (H1047R) as indicated above the lanes. Immunoprecipitations were performed either with control IgG or anti-p85 polyclonal antibodies. (Fig. 3A) Half of the immunoprecipitates were subjected to a PI3-kinase assay using phosphatidylinositol as a substrate. "PI3P" indicates the position of PI-3-phosphate determined with standard phosphatidyl markers and "Ori" indicates the origin. (Fig. 3B) The other half of the immunoprecipitates was analyzed by western blotting with anti-p110α antibody. (Fig. 3C) Cell lysates from transfected cells contained similar amounts of total protein as determined by western blotting using an anti-α-tubulin antibody. Identical results to those shown in this figure were observed in three independent transfection experiments.
DETAILED DESCRIPTION OF THE INVENTION
The clustering of mutations within PIK3CA make it an excellent marker for early detection or for following disease progression. Testing focused in the clustered regions will yield most of the mutant alleles.
The human PIK3CA coding sequence is reported in the literature and is shown in SEQ ID NO: 1. This is the sequence of one particular individual in the population of humans. Humans vary from one to another in their gene sequences. These variations are very minimal, sometimes occurring at a frequency of about 1 to 10 nucleotides per gene. Different forms of any particular gene exist within the human population. These different forms are called allelic variants. Allelic variants often do not change the amino acid sequence of the encoded protein; such variants are termed synonymous. Even if they do change the encoded amino acid (non-synonymous), the function of the protein is not typically affected. Such changes are evolutionarily or functionally neutral. When human PIK3CA is referred to in the present application all allelic variants are intended to be encompassed by the term. The sequence of SEQ ID NO: 1 is provided merely as a representative example of a wild-type human sequence. The invention is not limited to this single allelic form of PIK3CA. For purposes of determining a mutation, PIK3CA sequences determined in a test sample can be compared to a sequence determined in a different tissue of the human. A difference in the sequence in the two tissues indicates a somatic mutation. Alternatively, the sequence determined in a PIK3CA gene in a test sample can be compared to the sequence of SEQ ID NO: 1. A difference between the test sample sequence and SEQ ID NO: 1 can be identified as a mutation. Tissues suspected of being cancerous can be tested, as can body samples that may be expected to contain sloughed-off cells from tumors or cells of cancers. Suitable body samples for testing include blood, serum, plasma, sputum, urine, stool, nipple aspirate, saliva, and cerebrospinal fluid.
Mutations in PIK3CA cluster in exons 9 (SEQ ID NO: 4) and 20 (SEQ ID NO: 5). Other mutations occur, but these two exons appear to be the hotspots for mutations. Many mutations occur in PIK3CA's helical domain (nt 1567-2124 of SEQ ID NO: 2) and in its kinase domain (nt 2095-3096 of SEQ ID NO: 2). Fewer occur in PIK3CA's P85BD domain (nt 103-335 of SEQ ID NO: 2). Mutations have been found in exons 1, 2, 4, 5, 7, 9, 13, 18, and 20. Any combination of these exons can be tested, optionally in conjunction with testing other exons. Testing for mutations can be done along the whole coding sequence or can be focused in the areas where mutations have been found to cluster. Particular hotspots of mutations occur at nucleotide positions 1624, 1633, 1636, and 3140 of PIK3CA coding sequence.
PIK3CA mutations have been found in a variety of different types of tumors. Thus any of a variety of tumors can be tested for PIK3CA mutations. These tissues include, without limitation: colorectal tissue, brain tissue, gastric tissue, breast tissue, and lung tissue.
Any type of intragenic mutation can be detected. These include substitution mutations, deletion mutations, and insertion mutations. The size of the mutations is likely to be small, on the order of from 1 to 3 nucleotides. Mutations which can be detected include, but are not limited to G1624A, G1633A, C1636A, A3140G, G113A, T1258C, G3129T, C3139T, and G2702T. Any combination of these mutations can be tested.
The mutations that are found in PIK3CA appear to be activating mutations. Thus therapeutic regimens involving inhibition of p110α activity or expression can be used to inhibit progression of a tumor in a human. Inhibitory molecules which can be used include antisense oligonucleotides or antisense constructs, a molecule comprising an antibody binding region, and siRNA molecules. Molecules comprising an antibody binding region can be full antibodies, single chain variable regions, antibody fragments, antibody conjugates, etc. The antibody binding regions may but need not bind to epitopes contained within the kinase domain (nt 2095-3096 of SEQ ID NO: 2) of PIK3CA, the helical domain (nt 1567-2124 of SEQ ID NO: 2) of PIK3CA, or the P85BD domain (nt 103-335 of SEQ ID NO: 2) of PIK3CA.
Antisense constructs, antisense oligonucleotides, RNA interference constructs or siRNA duplex RNA molecules can be used to interfere with expression of PIK3CA. Typically at least 15, 17, 19, or 21 nucleotides of the complement of PIK3CA mRNA sequence are sufficient for an antisense molecule. Typically at least 19, 21, 22, or 23 nucleotides of PIK3CA are sufficient for an RNA interference molecule. Preferably an RNA interference molecule will have a 2 nucleotide 3' overhang. If the RNA interference molecule is expressed in a cell from a construct, for example from a hairpin molecule or from an inverted repeat of the desired PIK3CA sequence, then the endogenous cellular machinery will create the overhangs. siRNA molecules can be prepared by chemical synthesis, in vitro transcription, or digestion of long dsRNA by Rnase III or Dicer. These can be introduced into cells by transfection, electroporation, or other methods known in the art. See Hannon, GJ, 2002, RNA Interference, Nature 418: 244-251; Bernstein E et al., 2002, The rest is silence. RNA 7: 1509-1521; Hutvagner G et al., RNAi: Nature abhors a double-strand. Curr. Opin. Genetics & Development 12: 225-232; Brummelkamp, 2002, A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550-553; Lee NS, Dohjima T, Bauer G, Li H, Li M-J, Ehsani A, Salvaterra P, and Rossi J. (2002). Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnol. 20:500-505; Miyagishi M, and Taira K. (2002). U6-promoter-driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells. Nature Biotechnol. 20:497-500; Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, and Conklin DS. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes & Dev. 16:948-958; Paul CP, Good PD, Winer I, and Engelke DR. (2002). Effective expression of small interfering RNA in human cells. Nature Biotechnol. 20:505-508; Sui G, Soohoo C, Affar E-B, Gay F, Shi Y, Forrester WC, and Shi Y. (2002). A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99(6):5515-5520; Yu J-Y, DeRuiter SL, and Turner DL. (2002). RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 99(9):6047-6052.
Antisense or RNA interference molecules can be delivered in vitro to cells or in vivo, e.g., to tumors of a mammal. Typical delivery means known in the art can be used. For example, delivery to a tumor can be accomplished by intratumoral injections. Other modes of delivery can be used without limitation, including: intravenous, intramuscular, intraperitoneal, intraarterial, local delivery during surgery, endoscopic, subcutaneous, and per os. In a mouse model, the antisense or RNA interference can be adminstered to a tumor cell in vitro, and the tumor cell can be subsequently administered to a mouse. Vectors can be selected for desirable properties for any particular application. Vectors can be viral or plasmid. Adenoviral vectors are useful in this regard. Tissue-specific, cell-type specific, or otherwise regulatable promoters can be used to control the transcription of the inhibitory polynucleotide molecules. Non-viral carriers such as liposomes or nanospheres can also be used.
Using the p110α protein according to the invention, one of ordinary skill in the art can readily generate antibodies which specifically bind to the proteins. Such antibodies can be monoclonal or polyclonal. They can be chimeric, humanized, or totally human. Any functional fragment or derivative of an antibody can be used including Fab, Fab', Fab2, Fab'2, and single chain variable regions. So long as the fragment or derivative retains specificity of binding for the endothelial marker protein it can be used. Antibodies can be tested for specificity of binding by comparing binding to appropriate antigen to binding to irrelevant antigen or antigen mixture under a given set of conditions. If the antibody binds to the appropriate antigen at least 2, 5, 7, and preferably 10 times more than to irrelevant antigen or antigen mixture then it is considered to be specific.
Techniques for making such partially to fully human antibodies are known in the art and any such techniques can be used. According to one particularly preferred embodiment, fully human antibody sequences are made in a transgenic mouse which has been engineered to express human heavy and light chain antibody genes. Multiple strains of such transgenic mice have been made which can produce different classes of antibodies. B cells from transgenic mice which are producing a desirable antibody can be fused to make hybridoma cell lines for continuous production of the desired antibody. See for example, Nina D. Russel, Jose R. F. Corvalan, Michael L. Gallo, C. Geoffrey Davis, Liise-Anne Pirofski. Production of Protective Human Antipneumococcal Antibodies by Transgenic Mice with Human Immunoglobulin Loci Infection and Immunity April 2000, p. 1820-1826; Michael L. Gallo, Vladimir E. Ivanov, Aya Jakobovits, and C. Geoffrey Davis. The human immunoglobulin loci introduced into mice: V (D) and J gene segment usage similar to that of adult humans European Journal of Immunology 30: 534-540, 2000; Larry L. Green. Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies Journal of Immunological Methods 231 11-23, 1999; Yang X-D, Corvalan JRF, Wang P, Roy CM-N and Davis CG. Fully Human Anti-interleukin-8 Monoclonal Antibodies: Potential Therapeutics for the Treatment of Inflammatory Disease States. Journal of Leukocyte Biology Vol. 66, pp401-410 (1999); Yang X-D, Jia X-C, Corvalan JRF, Wang P, CG Davis and Jakobovits A. Eradication of Established Tumors by a Fully Human Monoclonal Antibody to the Epidermal Growth Factor Receptor without Concomitant Chemotherapy. Cancer Research Vol. 59, Number 6, pp1236-1243 (1999) ; Jakobovits A. Production and selection of antigen-specific fully human monoclonal antibodies from mice engineered with human Ig loci. Advanced Drug Delivery Reviews Vol. 31, pp: 33-42 (1998); Green L and Jakobovits A. Regulation of B cell development by variable gene complexity in mice reconstituted with human immunoglobulin yeast artificial chromosomes. J. Exp. Med. Vol. 188, Number 3, pp: 483-495 (1998); Jakobovits A. The long-awaited magic bullets: therapeutic human monoclonal antibodies from transgenic mice. Exp. Opin. Invest. Drugs Vol. 7(4), pp : 607-614 (1998) ; Tsuda H, Maynard-Currie K, Reid L, Yoshida T, Edamura K, Maeda N, Smithies O, Jakobovits A. Inactivation of Mouse HPRT locus by a 203-bp retrotransposon insertion and a 55-kb gene-targeted deletion: establishment of new HPRT-Deficient mouse embryonic stem cell lines. Genomics Vol. 42, pp: 413-421 (1997) ; Sherman-Gold, R. Monoclonal Antibodies: The Evolution from '80s Magic Bullets To Mature, Mainstream Applications as Clinical Therapeutics. Genetic Engineering News Vol. 17, Number 14 (August 1997); Mendez M, Green L, Corvalan J, Jia X-C, Maynard-Currie C, Yang X-d, Gallo M, Louie D, Lee D, Erickson K, Luna J, Roy C, Abderrahim H, Kirschenbaum F, Noguchi M, Smith D, Fukushima A, Hales J, Finer M, Davis C, Zsebo K, Jakobovits A. Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nature Genetics Vol. 15, pp: 146-156 (1997); Jakobovits A. Mice engineered with human immunoglobulin YACs: A new technology for production of fully human antibodies for autoimmunity therapy. Weir's Handbook of Experimental Immunology, The Integrated Immune System Vol. IV, pp: 194.1-194.7 (1996) ; Jakobovits A. Production of fully human antibodies by transgenic mice. Current Opinion in Biotechnology Vol. 6, No. 5, pp: 561-566 (1995) ; Mendez M, Abderrahim H, Noguchi M, David N, Hardy M, Green L, Tsuda H, Yoast S, Maynard-Currie C, Garza D, Gemmill R, Jakobovits A, Klapholz S. Analysis of the structural integrity of YACs comprising human immunoglobulin genes in yeast and in embryonic stem cells. Genomics Vol. 26, pp: 294-307 (1995); Jakobovits A. YAC Vectors: Humanizing the mouse genome. Current Biology Vol. 4, No. 8, pp: 761-763 (1994); Arbones M, Ord D, Ley K, Ratech H, Maynard-Curry K, Otten G, Capon D, Tedder T. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity Vol. 1, No. 4, pp: 247-260 (1994); Green L, Hardy M, Maynard-Curry K, Tsuda H, Louie D, Mendez M, Abderrahim H, Noguchi M, Smith D, Zeng Y, et. al. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nature Genetics Vol. 7, No. 1, pp: 13-21 (1994); Jakobovits A, Moore A, Green L, Vergara G, Maynard-Curry K, Austin H, Klapholz S. Germ-line transmission and expression of a human-derived yeast artificial chromosome. Nature Vol. 362, No. 6417, pp: 255-258 (1993) ; Jakobovits A, Vergara G, Kennedy J, Hales J, McGuinness R, Casentini-Borocz D, Brenner D, Otten G. Analysis of homozygous mutant chimeric mice: deletion of the immunoglobulin heavy-chain joining region blocks B-cell development and antibody production. Proceedings of the National Academy of Sciences USA Vol. 90, No. 6, pp: 2551-2555 (1993); Kucherlapati et al., U.S. 6,1075,181 .
Antibodies can also be made using phage display techniques. Such techniques can be used to isolate an initial antibody or to generate variants with altered specificity or avidity characteristics. Single chain Fv can also be used as is convenient. They can be made from vaccinated transgenic mice, if desired. Antibodies can be produced in cell culture, in phage, or in various animals, including but not limited to cows, rabbits, goats, mice, rats, hamsters, guinea pigs, sheep, dogs, cats, monkeys, chimpanzees, apes.
Antibodies can be labeled with a detectable moiety such as a radioactive atom, a chromophore, a fluorophore, or the like. Such labeled antibodies can be used for diagnostic techniques, either in vivo, or in an isolated test sample. Antibodies can also be conjugated, for example, to a pharmaceutical agent, such as chemotherapeutic drug or a toxin. They can be linked to a cytokine, to a ligand, to another antibody. Suitable agents for coupling to antibodies to achieve an anti-tumor effect include cytokines, such as interleukin 2 (IL-2) and Tumor Necrosis Factor (TNF); photosensitizers, for use in photodynamic therapy, including aluminum (III) phthalocyanine tetrasulfonate, hematoporphyrin, and phthalocyanine; radionuclides, such as iodine-131 (131I), yttrium-90 (90Y), bismuth-212 (212Bi), bismuth-213 (213Bi), technetium-99m (99mTc), rhenium-186 (186Re), and rhenium-188 (188Re); antibiotics, such as doxorubicin, adriamycin, daunorubicin, methotrexate, daunomycin, neocarzinostatin, and carboplatin; bacterial, plant, and other toxins, such as diphtheria toxin, pseudomonas exotoxin A, staphylococcal enterotoxin A, abrin-A toxin, ricin A (deglycosylated ricin A and native ricin A), TGF-alpha toxin, cytotoxin from chinese cobra (naja naja atra), and gelonin (a plant toxin); ribosome inactivating proteins from plants, bacteria and fungi, such as restrictocin (a ribosome inactivating protein produced by Aspergillus restrictus), saporin (a ribosome inactivating protein from Saponaria officinalis), and RNase; tyrosine kinase inhibitors; ly207702 (a difluorinated purine nucleoside); liposomes containing antitumor agents (e.g., antisense oligonucleotides, plasmids which encode for toxins, methotrexate, etc.); and other antibodies or antibody fragments, such as F(ab).
Those of skill in the art will readily understand and be able to make such antibody derivatives, as they are well known in the art. The antibodies may be cytotoxic on their own, or they may be used to deliver cytotoxic agents to particular locations in the body. The antibodies can be administered to individuals in need thereof as a form of passive immunization.
Given the success of small molecule protein kinase inhibitors, one can develop specific or non-specific inhibitors of p110α for treatment of the large number of patients with these mutations or cancers generally. It is clearly possible to develop broad-spectrum PI3K inhibitors, as documented by studies of LY294002 and wortmannin (2, 21,22). Our data suggest that the development of more specific inhibitors that target p110α but not other PI3Ks would be worthwhile.
Candidate chemotherapeutic agents can be identified as agents which inhibit p110α activity or expression. Test compounds can be synthetic or naturally occurring. They can be previously identified to have physiological activity or not. Tests on candidate chemotherapeutic agents can be run in cell-free systems or in whole cells. p110α activity can be tested by any means known in the art. These include methods taught in references 2, 22 and in Truitt et al., J. Exp. Med., 179, 1071-1076 (1994). Expression can be monitored by determining PI3KCA protein or mRNA. Antibody methods such as western blotting can be used to determine protein. Northern blotting can be used to measure mRNA. Other methods can be used without limitation. When testing for chemotherapeutic agents, the p110α used in the assay can be a wild-type or an activated form. The activated form may contain a substitution mutation selected from the group consisting of E542K, E545K, Q546K, and H1047R. Moreover, inhibitors can be tested to determine their specificity for either p110α or an activated form of p110α. Comparative tests can be run against similar enzymes including PIK3CB, PIK3CG, PIK3C2A, PIK3C2B, PIK3C2G, PIK3C3, A-TM, ATR, FRAP1, LAT1-3TM,SMG1, PRKDC, and TRRAP to determine the relative specificity for the p110α enzyme.
Once a non-synonymous, intragenic mutation in a PIK3CA coding sequence is identified in a test tissue of a patient, that information can be used to make therapeutic decisions. Patients with such mutations are good candidates for therapy with a p110α inhibitor. Such inhibitors can be specific or general for the family of inhibitors. Such inhibitors include LY294002 and wortmannin. Such inhibitors further include molecules comprising an antibody binding region specific for p110α. Such molecules are discussed above.
Sets of primers for amplifying and/or sequencing PIK3CA can be provided in kits or assembled from components. Useful sets include pairs of forward and reverse primers optionally teamed with sequencing primers. The forward primers are shown in SEQ ID NO: 6 to 158. The reverse primers are shown in SEQ ID NO: 159 to 310. The sequencing primers are shown in : SEQ ID NO: 311 to 461. Pairs or triplets or combinations of these pairs or triplets can be packaged and used together to amplify and/or sequence parts of the PIK3CA gene. Pairs can be packaged in single or divided containers. Instructions for using the primers according to the methods of the present invention can be provided in any medium which is convenient, including paper, electronic, or a world-wide web address.
EXAMPLES Example 1-This example demonstrates that the PIK3CA gene is the predominant target of mutations in this gene family
To evaluate whether PI3Ks is genetically implicated in tumorigenesis, we directly examined the DNA sequences of members of this gene family in colorectal cancers.
PI3K catalytic subunits are divided into three major classes depending on their substrate specificity (5). Additionally, a set of more distantly related proteins, including members of the mTOR family, constitute a fourth class (6). We used Hidden Markov models to identify 15 human genes containing kinase domains related to those of known PI3Ks in the human genome (7). These comprised seven PI3Ks, six members of the mTOR subfamily and two uncharacterized PI3K-like genes (Table 1). Table 1. PI3K genes analyzed
hCT1640694 NM_006218 p110-alpha Class IA
hCT7084 NM_006219 PIK3C1, p110-beta Class IA
hCT2292011 NM_005026 p110-delta Class IA
hCT7976 NM_002649 PI3CG, P13K-gamma Class IB
hCT2270768 NM_002645 CPK, PI3-K-C2A, PI3K-C2alpha Class II
hCT7448 NM_002646 C2-PI3K, PI3K-C2beta Class II
hCT1951422 NM_004570 PI3K-C2-gamma Class II
hCT13660 NM_002647 Vps34 Class III
hCT29277 NM_000051 AT1, ATA, ATC, ATD, ATE, ATDC Class IV
hCT1951523 NM_001184 FRP1, SCKL, SCKL1 Class IV
hCT2292935 NM_004958 FRAP, MTOR, FRAP2, RAFT1, RAPT1 Class IV
hCT2273636 NM_014006 ATX, LIP, KIAA0421 Class IV
hCT2257127 NM_006904 p350, DNAPK, DNPK1, HYRC1, XRCC7 Class IV
hCT32594 NM_003496 TR-AP, PAF400 Class IV
none hCT2257641 none Class IV
none hCT13051 none Class IV
Table 1. PI3K genes analyzed
*PI3K genes are grouped into previously described classes (S3,S4). Class I, II and III comprise PI3K catalytic subunits, while class IV comprises PI3K-like genes including members of the mTOR (target of rapamycin), ATM (ataxia telangiectasia mutated), and DNAPK (DNA-dependent protein kinase) subfamilies, as well as two previously uncharacterized genes.
We initially examined 111 exons encoding the predicted kinase domains of these genes (Table 2). The exons were polymerase chain reaction (PCR) amplified and directly sequenced from genomic DNA of 35 colorectal cancers (8). Only one of the genes (PIK3CA) contained any somatic (i.e., tumor-specific) mutations. Table 2. Primers used for PCR amplification and sequencing
hCT2270768-Ex21 TTCCAGCCTGGGTAACAAAG CGTCAGAACAAGACCCTGTG AAAGGGGAAATGCGTAGGAC
hCT2270768-Ex22 CCTGACCTCAGGTGTTCTGC CCCGGCCACTAAGTTATTTTTC TCCCAAAGTGCTGGGATTAC
hCT2270768-Ex23 TGCACATTCTGCACGTGTATC CTGCCATTAAATGCGTCTTG CCAGAACTTAAAGTGAAATTTAAAAAG
hCT2270768-Ex24 TCCCAGTTTGTATGCTATTGAGAG CTTTGGGCCTTTTTCATTCC GCGAGGCAAAACACAAAGC
hCT2270768-Ex25 TGGAAATTCAAAAGTGTGTGG TGTCTGGCTTATTTCACACG TTGGAAATGGCTGTACCTCAG
hCT2270768-Ex26 CACTAATGAACCCCTCAAGACTG AACTTTTGACAGCCTACTATGTGC TACTTGAGCAGCCCACAGG
hCT2270768-Ex 27- 1 TCCTTGGCAAAGTGACAATC GACCATTCATGAAAGAAACAAGC AAAGGAATGAAAGTGGTTTTTGTC
hCT13660-Ex16 CTCTCACATACAACACCATCTCC CCATGTACCGGTAACAAAAGAAG TGCAATGTAATAGTTTTCCAAGG
hCT13660-Ex17 ATGTATCTCATTGAAAACCCAAC TGAGCTTTCTAGGATCGTACCTG CAGCAAATGAACTAAGCCACAG
hCT13660-Ex18 TCCCAAAGTGCTGGGATTAC GCAGGAAGGTCCAACTTGTC TGCTATACTATTTGCCCACAAAAC
hCT13660-Ex19 CCTATGACATAAATGCCAGTACAAAC ATCTTCAACTGCGAACATGC GAATGCATTTATTCAGAGATGAGG
hCT13660-Ex20 TCTTTTGTTCAGTCAGCATCTCTC AAGCATCAATGACTACTTTAATCAAC TGCTAGACACTTGCTGGTCAC
hCT13660-Ex21 TTGAGAATTCAGATGAGAAACCAG TCCCAAAGTGCTGGGATTAC TTGATATTAAAGTTGCACAAACTGC
hCT13660-Ex22 GAAGGCCACTCTCAAACCTG TTGTTGCCTTTGTCATTTTG TCAATTGTGTGACATATCACCTACC
hCT13660-Ex23 TCAAGGCTTGCATTTCATTG ATGTGACTGTGGGCAGGAAC TCACTGTAGAAATCCAAGTACCAC
hCT13660-Ex24 TTCCACACTCCAAAGAATGC GCTGGTGAGATGTCAAAACG TCTGCATCAGTTTGATTCTGC
hCT13660-Ex 25- 1 AATTGCAATCCTCTTGGTAGC TCAACATATTACTTCCTCCAGAACTC AATGCACTTTTTATTTTATTAG
hCT32594-Ex 66- 2 GCCAAGACCAAGCAACTCC TTCTCCCATGTCAGGGAATC GAAAAGTGCCGGTTCTTGAG
hCT32594-Ex 67- 1 ATAAACGACCGCTGGCCTAC GACCCTCAAAGGCTAACGTG GCCTACACAGTCCGTTTTCC
hCT32594-Ex 67- 2 GTACATCCGGGGACACAATG TCCCTGGTCAGCACAGACTAC AGAGGAGCGTGTGTTGCAG
hCT32594-Ex68 ACCGGGTTCTTCCAGCTAAG AGCTGTCTCATTTCCACCATC ACTCTGACGGTGGAGCTGAG
hCT32594-Ex 69- 1 CAATGCGTGCGTTAAATCTG CGCGTCGTTTATGTCAAATC GCTCTTGGTGCTAAGTTAAAGAGG
hCT32594-Ex 69- 2 CCCAATGCCACGGACTAC CGCGTCGTTTATGTCAAATC ATCCAGCTGGCTCTGATAGG
hCT32594-Ex70 ATCCAGCTGGCTCTGATAGG CATAACACACAGGGGTGCTG TGAACAGCCAGATCCTCTCC
hCT32594-Ex71 CTGGTGCTGAAACTCGACTG GAACTGGGCGAGGTTGTG GTCCCACCTTGTTAGGAAGC
hCT32594-Ex 72- 1 GTCTCGTTCTCTCCCTCACG TCCCTTTCTTACACGCAAAC TGGCATTCTGAAAACGGTTC
hCT32594-Ex 72- 2 CACAACCTCGCCCAGTTC CAGTTCCGCCTGTACATTCAC GCAAACAGCCTGGACAATC
hCT7976-Ex5 AGCATCACCCTCAGAGCATAC AGCGCTCCTGCTTTCAGTC CACATATTTCTGTCCCCTGTTG
hCT7976-Ex6 TGCCATACCTCTTAGGCACTTC GTCTTGGCGCAGATCATCAC TGTGGTTCTTTGGAGCACAG
hCT7976-Ex7 CGACAGAGCAAGATTCCATC TTTTGTCACCAGTTGAAATGC CCAAGGTACATTTCGGAAAAC
hCT7976-Ex8 AGATTGCCATCTGAGGAAGG GACTGGGAAAAAGCATGAGC ACCAGCCCTTTCCTCTTGTC
hCT7976-Ex9 GCATGGAGAGGAAGTGAACC CGGTGATCATAATATTGTCATTGTG TTCTTCCTCATGCCATTGTG
hCT7976-Ex10 TGGCCAGAGAGTTTGATTTATG GGAAGTGTGGGCTTGTCTTC GTGGCATCTGGCTGTCATC
hCT7976-Ex 11-1 CCCTCAATCTCTTGGGAAAG TGCACAGTCCATCCTTTGTC CAATTAGTTTTCCTTGAGCACTCC
hCT7976-Ex 11- 2 TGGTTTCTTCTCATGGACAGG AATGCCAGCTTTCACAATGTC TCTTCTTTATCCAGGACATCTGTG
hCT7448-Ex21 GGGTGTCCACACTTCTCAGG GGCCAAGACCACATGGTAAG CCTGGGAGAGGTCTGGTTC
hCT7448-Ex22 CCGGAAGAAACAATGAGCAG TCCTACATTAAGACAGCATGGAAC GGCAGCATCTTGGTCTGAAG
hCT7448-Ex23 GGTGTGAGCTGAGTGAGCAG TGCCTCCCTTTTAAGGCTATC GAGCACTTGGGAGACCTGAG
hCT7448-Ex24 GTGGGAATGACCTTCCTTTC AGGTCCTTCTGCCAACAAAG AGGGAAGCATGAGCACAGTC
hCT7448-Ex25 GGATGAACAGGCAGATGTGAG CGTCTTCTCTCCTCCAATGC TGAGTTCTGTCTGGCTGTGG
hCT7448-Ex26 AGCCCCTTCTATCCAGTGTG GGTATTCAGTTGGGGCTCAG TGATGAGGGATGAGGGAAAC
hCT7448-Ex27 TGCCCACAGCATCTGTCTAC TGTATCCACGTGGTCAGCTC AGGGTTAGGGAGCCTAGCTG
hCT7448-Ex 28- 1 ATTGTGTGCCAGTCATTTGC ACAGGACGCTCGGTCAAC TCCTTGGAACACCCCTGTC
hCT1951523-Ex 39- 2 TTCCACATTAAGCATGAGCAC TTGCCATCAGTACAAATGAGTTTAG CAGTCATGATACCTACACTTCCATC
hCT1951523-Ex40 GACAGTCATTCTTTTCATAGGTCATAG TTCCTGCTTTTTAAGAGTGATCTG CAACTCTGAAATAAAAGCAATCTGG
hCT1951523-Ex41 CCACATAGTAAGCCTTCAATGAC AGGAAGGAAGGGATGGAAAC TTCTTTGGTTATGAAATGAACAATC
hCT1951523-Ex42 TGAAAAATGTTCCTTTATTCTTG AGAAACCACTCATGAAAA TTGAATAAAAGTAGATGTTTCTTGTCC
hCT1951523-Ex43 TCTGAGAACATTCCCTGATCC CGCATTACTACATGATCCACTG TACCAAGAATATAATACGTTGTTATGG
hCT2257127-Ex76 TCAGCTCTCTAATCCTGAACTGC TGTCACAGAAAGCATGAGACC CGGCTTCTGGCACATAAAAC
hCT2257127-Ex 77- 1 AGCAGAGAAGAAACATATACCAT AGAAATAACTGTCAATATCCCAGTATCAC CCATTGAGCACTCCATTCATTAC
hCT2257127-Ex 77- 2 CATTTTGGGAAAGGAGGTTC TCATTAAACATTTAGTAATGTGTGCTC CCCTGGGAATCTGAAAGAATG
hCT2257127-Ex78 ATTACAGGCGTGAGCCACTG AGGCAACAGGGCAAGACTC TGGGCCGTTGTCTCATATAC
hCT2257127-Ex 79- 1 TTTGGCACTGTCTTCAGAGG CCTGAAAGGGAGAATAAAAGG CACTCTGGCTTTTCCCTCTG
hCT2257127-Ex 79- 2 AGAGGGAACACCCTTTCCTG CCTGAAAGGGAGAATAAAAGG AGGTCATGAATGGGATCCTG
hCT2257127-Ex80 TATAGCGTTGTGCCCATGAC TATTGACCCAGCCAGCAGAC CATATTGCTTGGCGTCCAC
hCT2257127-Ex81 TCCTGCCTCTTTGCTATTTTTCAATG TATATTGAGACTCAAATATCGA TCTTGGTGATCTTTGCCTTTG
hCT2257127-Ex82 TTGCCTCAGAGAGATCATCAAG TGATGCATATCAGAGCGTGAG TCATCAAGATTATTCGATATTTGAGTC
hCT2257127-Ex 83-1 TAGGGGCGCTAATCGTACTG TTCAATGACCATGACAAAACG CGAGAAAGTAAAGTGCCTGCTG
hCT2257127-Ex 83-2 TCTGATATGCATCAGCCACTG TTCAATGACCATGACAAAACG CGGGATTGGAGACAGACATC
hCT2257127-Ex84 TGATTTCAAGGGAAGCAGAG TGGTTTTCAAGCAGACAATCC GAGGATGCTGCCATTTGTG
hCT2257127-Ex85 TGTAGAAAGCAAGGCTGCTC TCCTCCTCAATGAAAGCAGAG CATGCTAACAGAGTGTCAAGAGC
hCT1951422-Ex19 ACCCCAAAGTCATCCAAGTG CAATGTGATCCCAACTGGTC CGAATTCTTTTTGCCATTTC
hCT1951422-Ex20 AAAGGCTCCAGTTGATGGAC TTATTGCCAATTGGAGTTTGG AAAGTCTGCAAGGGGCTATG
hCT1951422-Ex21 CCATTAAAACCACTCTAAGTCAGG TTCTGTTGGCTTATCATTTTTG TCAGGCTAGAAATGTATCCAAGG
hCT1951422-Ex22 AAGCCTCCTCCAGAAAAGAAG CCCAGAAACTAAATAAAATGCAG AAAGGAAAGGGGTAATCCAG
hCT1951422-Ex23 CCCTCCTGTCCACTGAGATG AATCAAATTTGTTGCATTAAAAATC TTTACTTTTTATGATTACCTCTGATGC
hCT1951422-Ex24 TCTCAAGCTGCCTCACAATG GTTTTCTCATTCCTTTCTCTTCC AAAGAAAATTCAAATGAAAATAAGTCG
hCT1951422-Ex25 AAAGACATTGCCATGCAAAC TTTGGGAAAGGGAACACAAG CATGCAAACTTGGGTCTAGATG
hCT1951422-Ex26 TTGTTGGGCTCCAAATAAAC GATTTTTCCTTGGAACATCCTC TTGGCTTTTTCCCCTCATAC
hCT13051-Ex5 CCCTGGAGTGCTTACATGAG CGGGGATCAGATTTGCTATG TAAAGCCTTTCCCAGCTCAG
hCT13051-Ex6 GACTTTATAAACACTCGACATTAGAGC TAGGGGGTCATCCTCAGGTC CCTGCTGCTTCCACAGGAC
hCT13051-Ex7 ATGATGACCTCTGGCAGGAC GTCTTCCCCTGCTCAATCAC CATGGACGTCCTGTGGAAG
hCT13051-Ex8 GAATCAACCGTCAGCGTGTC GACACGTTGTGGGCCAGCCAGT GTGTCCCATTCATCCTCACC
hCT13051-Ex9 CTGGCACCGGGGAAAACAGAG CTGCCGGTTATCTTCGGACACGTT AACAGAGGAGGCGCTGAAG
hCT2282983-Ex40 TGGACATCGACTACAAGTCTGG TGAGTGAGGGCAGACAGATG GCCTCACCCTACCCATCC
hCT2282983-Ex41 TCCTTGGGGTTTTGAAGAAG TGGCACCTGAACCATGTAAG AGATTGCTGGGGTTCCTTTC
hCT2282983-Ex42 AAGGCCTTCCAGACTCTTGC CGTACATGCCGAAGTCTGTC CCACCTCACTCCATCTCTGG
hCT2282983-Ex43 CCTCTTTGTTTTTCCCTACCG GCCCTGGTTTTAACCCTTAAC TGGGGTAAGTTCCCTGAGTG
hCT2282983-Ex 44-1 CTTCCACAGTGGGGGTACAG CCAGCTCCAGCTTCTGACTC TACAGAGCCAGGGAGAGTGC
hCT2282983-Ex 44-2 GACACAACGGCAACATTATGCTG TTGTGTTTTCTTGGAGACAG TATCATCCACATCGGTCAGC
hCT2292935-Ex46 CATTCCAAAGCATCTGGTTTTAC CAATGAGCATGGGAGAGATG TTTGGGACAAGTAATTGTTATTAGC
hCT2292935-Ex47 TTGTGAGGAACGTGTGATTAGG TGGAGTTTCTGGGACTACAGG TTGAATGCAGTGGTGCTCTC
hCT2292935-Ex48 CTGGGCAACAGAGCAAGAC CCTTCTTCAAAGCTGATTCTCTC TCTGCCTGTGTTCTGAGCTG
hCT2292935-Ex49 TCCCTTCTCCTTTGGCTATG CGCTCTACAGCCAATCACAG GAACTCAGCTCTGCCTGGAC
hCT2292935-Ex50 ATAGCACCACTGCCTTCCAG TGGCATCACAATCAATAGGG GCGAGACTCGGTCTCAAAAG
hCT2292935-Ex51 TGCAGAAGTGGAGGTGGAG CTCCAAGGGGGTTAGAGTCC ATCGTTTGCCAACTCCTAGC
hCT2292935-Ex52 AACCCAAGCTGCTTCCTTTC CAGGAAACCAGGTCAGAAGTG AATCAGTGCAGGTGATGCAG
hCT2292935-Ex53 AGTCCTGCCCTGATTCCTTC TTTTTGCAGAAAGGGGTCTTAC ACATGGCCTGTGTCTGCTTC
hCT2292935-Ex54 CCCACCCACTTATTCCTGAG GCCCACCCCACTCTAGAAAC GACTGGAAGAAAATAACCAAGTTTC
hCT2292935-Ex55 TTTCCCCTTTAGGGTAGGTAGG TGGAACCTTTTCTGCTCAAAG GGCAGGCGTTAAAGGAATAG
hCT2292935-Ex56 CGGACATAGAGGAAGGATTGC AGCTGCATGGTGCCAAAG AAAAACAGGGCACCCATTG
hCT2292935-Ex57 TGGCCAAACTTTTCAAATCC ATAACAATGGGCACATGCAG TTAAGCCCACAGGGAACAAG
hCT2292935-Ex 58- 1 TGGGAGAGCTCAGGGAATAC GGTCATTCTTCCATCAGCAAG TGTCAGACCTTGGCCTTTTC
hCT2273636-Ex 35- 1 TCCCAAAGTGCTGGGATTAC CACACCCACACTCACACAAAG TCTTCTGAAAAATGGAGGAAGTC
hCT2273636-Ex 35- 2 TTGGCTGCCATGACTAACAC GGCACTGCAGGCTAATAATG GCTCTTCCTGGGGAAGTCTC
hCT2273636-Ex 36-1 GCTCTCAGTGTGCCTCATGG GGGACCTCAAGTCTTTTCCTTC CAGTTTTTGACTGCCACTGC
hCT2273636-Ex 36- 2 AAGAAACACCCCGGTTCC GGGACCTCAAGTCTTTTCCTTC TCCATGCTCGACACTATTCTG
hCT2273636-Ex 37- 1 AAATTTAGTTGAGTAATGAGAGAATGC GGAAGGGAAGGAGGACAAAC TTCTACTTTACATACAAAAGGCACTC
hCT2273636-Ex 37- 2 GTAAAATTGGCCCTGCTTTG CGTCTCAAACTACCAAGTCTGG AGTTGGGCTTAGCCTGGATG
hCT2273636-Ex38 CATAACCACATGCAGCAACC CACCCAGTGCTGTTTCAATG AGTATCACGTCCATGTTGGAG
hCT2273636-Ex39 AATTGGCCTTGGAGACAGAC CGCCGCATAATGTGTAAAAC CAATGTTTGCTTTGAAAAAGG
hCT2273636-Ex 40-1 TTCATGTGAGCAGGTATGCTG TGCCATATTTAACTGCCATTTC TGAGCAAAACCTGTGGAATG
hCT2273636-Ex 40-2 TTGTGTACGACCCTCTGGTG TGCCATATTTAACTGCCATTTC TTTGCTGGTGCTGTCTATGG
hCT2273636-Ex41 TTTGTACAGTGGAGGCAACG GCAGTCACTGAGACAGCTTTTATC GGATGTGCAAAATGTTCTTCTG
hCT7084-Ex17 CAGCTGGTTATGTGTGTTTATGG TAAGCATAGCCTCGGAGAAC GGGAGCAGGTGTTATTGATTG
hCT7084-Ex18 TGTCCTCATGGTTGCTTTTC GGACCATTAATAGCTACCTTCCTG GGTGAGGAGTTTTCCCAAGC
hCT7084-Ex19 CAGGGACATGCTATCCAAAG AGGCAAGACAACATATTTGAAAG AGCACAGAGTTTGTTAATGTTTTTAG
hCT7084-Ex20 TGGTGGAACTTGTGTTTTTCC AAGGGCTATGTGTCATTTTGTTC GCTGACTTCTATTGGGAGCATAC
hCT7084-Ex21 TCATACGGTTTTGGCAGCTC CATCAAGCAAGCAAACAAATG CAGAGGTATGGTTTGGGTCTC
hCT7084-Ex22 ACAGAGGGAGAAGGGCTCAG AATTCCCCCAAAAGCTTCC TGGGGGTCTAGGACTATGGAG
hCT7084-Ex23 TGGGACAATTTTCGCAGAAG TTCCCTCCTGGCTAAGAACC GCTGTGTTTTCTTAATTTCCTGTATG
hCT7084-Ex 24- 1 ATGAAGCATGCTGCCTGATG AAAAGCAGAGGGAATCATCG CAGCCTCCTGCAGACTTTG
hCT2257641-Ex 1- 56 GGGGGCCTTTAGAAGGAAG TCCCATTCATGACCTGGAAG CATTTTGGGAAAGGAGGTTC
hCT2257641-Ex 1- 57 TGGAGTTCCTGAGAAATGAGC GGCCCGCTTTAAGAGATCAG CGGTCAGTATGACGGTAGGG
hCT2257641-Ex 1- 58 AGAGGGAACACCCTTTCCTG CATGCCCAAAGTCGATCC AGGTCATGAATGGGATCCTG
hCT2257641-Ex 1-59 CATGATGTTGGAGCTTACATGC ACACATCCATGGTGTTGGTG GGCGCTAATCGTACTGAAAC
hCT2257641-Ex 1-60 CGGGATTGGAGACAGACATC TGCCACAGCCACATAGTCTC TATGGTGGCCATGGAGACTG
hCT2257641-Ex 1-61 CATCATGGTACACGCACTCC TTCTATCTGCAGACTCCCACAG AGGAGCCCTCCTTTGATTG
hCT29277-Ex55 CTCAATCAGAGCCTGAACCAC GGAAAAGAAAGCAGGAGAAGC GGCCAGTGGTATCTGCTGAC
hCT29277-Ex56 CCCGGCCTAAAGTTGTAGTTC AAATGGAGAAAAGCCTGGTTC AAGACAAAATCCCAAATAAAGCAG
hCT29277-Ex57 TGGGAGACTGTCAAGAGGTG AAGCAATCCTCCCACCTTG ATTGGTTTGAGTGCCCTTTG
hCT29277-Ex58 TTCCTCCAAGGAGCTTTGTC CCTTCCTTTTTCACTCACACAC AAAATGCTTTGCACTGACTCTG
hCT29277-Ex59 TTCCCTGTCCAGACTGTTAGC TGATTTAATAATGAAGATGGGTTGG TTCATCTTTATTGCCCCTATATCTG
hCT29277-Ex60 CCGGTTATGCACATCATTTAAG ACTCAGTACCCCAGGCAGAG TTAAAGATTATACCAAGTCAGTGGTC
hCT29277-Ex61 GCAGCCAGAGCAGAAGTAAAC TCAAACTCCTGGGCTCAAAC CATGTGGTTTCTTGCCTTTG
hCT29277-Ex62 TCTAATGAAAGCCCACTCTGC CAGCCACATCCCCCTATG AAGCATAGGCTCAGCATACTACAC
hCT29277-Ex63 AAGTGTGCATGATGTTTGTTCC TGCCTTCTTCCACTCCTTTC CCCATCAACTACCATGTGACTG
hCT29277-Ex 64-1 GATGACCAAGAATGCAAACG AAGAGTGAAAGCAGAGATGTTCC GGTCCTGTTGTCAGTTTTTCAG
NM_005026 Ex17 ATCATCTTTAAGAACGGGGATGG ACTAAGCCTCAGGAGCAGCCT GGTCCTGGGGTGCTCCTAGA
NM_005026 Ex18 CCTCAGATGCTGGTGCCG GATACTTGGGGAAGAGAGACCTACC TCCTCAACTGAGCCAAGTAGCC
NM_005026 Ex19 TCTTCATGCCTTGGCTCTGG GAGGGGAGAGGAGGGGGAG TGTGTCCTCCATGTTCTGTTGG
NM_005026 Ex20 TCCGAGAGAGTGGGCAGGTA CACAAACCTGCCCACATTGC TGGCCCCTCTGCCTAGCA
NM_005026 Ex21 GGGCAGGTTTGTGGGTCAT CCTGGGCGGCTCAACTCT CCACTGCTGGGTCCTGGG
NM_005026 Ex22 GGAACTGGGGGCTCTGGG AGGCGTTTCCGTTTATGGC GAATAGAGAGCTTTTCCTGAGATGC
hCT1640694-Ex 1-1 GTTTCTGCTTTGGGACAACCAT CTGCTTCTTGAGTAACACTTACG GATTCATCTTGAAGAAGTTGATGG
hCT1640694-Ex 1-2 CTCCACGACCATCATCAGG GATTACGAAGGTATTGGTTTAGACAG ACTTGATGCCCCCAAGAATC
hCT1640694-Ex 1-3 CCCCCTCCATCAACTTCTTC GGTGTTAAAAATAGTTCCATAGTTCG CTCAAGAAGCAGAAAGGGAAG
hCT1640694-Ex 2-1 TCATCAAAAATTTGTTTTAACCTAGC TATAAGCAGTCCCTGCCTTC TCTACAGAGTTCCCTGTTTGC
hCT1640694-Ex 2- 2 TTCTGAACGTTTGTAAAGAAGCTG TATAAGCAGTCCCTGCCTTC GCTGTGGATCTTAGGGACCTC
hCT1640694-Ex 3- 1 GCAGCCCGCTCAGATATAAAC CTGGGCGAGAGTGAGATTCC AAAAAGCATTTCTGATATGGATAAAG
hCT1640694-Ex 3- 2 TCTGAAAATCAACCATGACTGTG ATGAACCCAGGAGGCAGAG TCGAAGTATGTTGCTATCCTCTG
hCT1640694-Ex 4- 1 TCTTGTGCTTCAACGTAAATCC CGGAGATTTGGATGTTCTCC AAAATAATAAGCATCAGCATTTGAC
hCT1640694-Ex 4- 2 TCTCAACTGCCAATGGACTG CGGAGATTTGGATGTTCTCC TTATTCCAGACGCATTTCCAC
hCT1640694-Ex5 TAGTGGATGAAGGCAGCAAC TTTGTAGAAATGGGGTCTTGC TTTGAGTCTATCGAGTGTGTGC
hCT1640694-Ex6 TGCCTTTTCCAATCAATCTC AATTCCTGAAGCTCTCCCAAG TTCCTGTTTTTCGTTTGGTTG
hCT1640694-Ex7 GGGGAAAAAGGAAAGAATGG TGCTGAACCAGTCAAACTCC TGAATTTTCCTTTTGGGGAAG
hCT1640694-Ex8 TTTGCTGAACCCTATTGGTG TTGCAATATTGGTCCTAGAGTTC TGGATCAAATCCAAATAAAGTAAGG
hCT1640694-Ex9 GATTGGTTCTTTCCTGTCTCTG CCACAAATATCAATTTACAACCATTG TTGCTTTTTCTGTAAATCATCTGTG
hCT1640694-Ex10 ACCTTTTGAACAGCATGCAA TGGAAATAATGTTAAGGGTGTTTTT TATTTCATTTATTTATGTGGAC
hCT1640694-Ex11 AAAACACCCTTAACATTATTTCCATAG TCTGCATGGCCGATCTAAAG GAAGTTAAGGCAGTGTTTTAGATGG
hCT1640694-Ex12 TTTATTCTAGATCCATACAACTTCCTTT AAAGTTGAGAAGCTCATCACTGGTAC ACCAGTAATATCCACTTTCTTTCTG
hCT1640694-Ex13 CTGAAACTCATGGTGGTTTTG TGGTTCCAAATCCTAATCTGC TTTATTGGATTTCAAAAATGAGTG
hCT1640694-Ex14 GAGTGTTGCTGCTCTGTGTTG TTGAGGGTAGGAGAATGAGAGAG TCTCATGTGAGAAAGAGATTAGCAG
hCT1640694-Ex15 GGATTCCTAAATAAAAATTGAGGTG CATGCATATTTCAAAGGTCAAG TGGCTTTCAGTAGTTTTCATGG
hCT1640694-Ex16 TTGCTTTCCTGAAGTTTCTTTTG TCAAGTAAGAGGAGGATATGTCAAAG CATGTGATGGCGTGATCC
hCT1640694-Ex17 GGGGAAAGGCAGTAAAGGTC CATCAAATATTTCAAAGGTTGAGC AGGAATACACAAACACCGACAG
hCT1640694-Ex18 TCCTTATTCGTTGTCAGTGATTG GTCAAAACAAATGGCACACG TGCACCCTGTTTTCTTTTCTC
hCT1640694-Ex19 CATGGTGAAAGACGATGGAC TTACAGGCATGAACCACCAC TGGACAAGTAATGGTTTTCTCTG
hCT1640694-Ex 20-1 TGGGGTAAAGGGAATCAAAAG CCTATGCAATCGGTCTTTGC TGACATTTGAGCAAAGACCTG
hCT1640694-Ex 20-2 TTGCATACATTCGAAAGACC GGGGATTTTTGTTTTGTTTTG TTTGTTTTGTTTTGTTTTTT
Table 2. Primers used for PCR amplification and sequencing
Example 2-This example demonstrates the striking clustering of mutations within the PIK3CA gene
All coding exons of PIK3CA were then analyzed in an additional 199 colorectal cancers, revealing mutations in a total of 74 tumors (32%) (Table 3 and examples in Figure 1). Table 3. mutations in human cancers
Exon 1 C112T R38C pB5 1 1
Exon 1 G113A R38H p85 2 2
Exon 1 G263A R88Q p85 1 1
Exon 1 C311G P104R p85 1 1
Exon 1 G317T G106V p85 1 1
Exon 1 G323C R108P p85 1 1
Exon 1 del332-334 delK111 1 - 1
Exon 2 G353A G118D 1 1
Exon 2 G365A G122D 1 1
Exon 2 C370A P124T 1 1
Exon 4 T1035A N345K C2 1 1
Exon 4 G1048C D350H C2 1 1
Exon 5 T1132C C378R C2 1 1
Exon 7 T1258C C420R C2 2 2
Exon 7 G1357C E453Q C2 1 1
Exon 9 C1616G P539R Helical 1 1
Exon 9 G1624A E542K Helical 9 1 10
Exon 9 A1625G E542G Helical 1 1
Exon 9 A1625T E542V Helical 1 1
Exon 9 G1633A E545K Helical 21 1 22
Exon 9 A1634G E545G Helical 1 1
Exon 9 G1635T E545D Helical 1 1
Exon 9 C1636A Q546K Helical 5 5
Exon 9 A1637C Q546P Helical 1 1
Exon 12 C1981A Q661K Helical 1 1
Exon 13 A2102C H701P Helical 1 1
Exon 18 G2702T C901F Kinase 1 1 2
Exon 18 T2725C F909L Kinase 1 1
Exon 20 T3022C S1008P Kinase 1 1
Exon 20 A3073G T1025A Kinase 1 1
Exon 20 C3074A T1025N Kinase 1 1
Exon 20 G3129T M10431 Kinase 2 2
Exon 20 C3139T H1047Y Kinase 2 2
Exon 20 A3140G H1047R Kinase 15 2 1 18
Exon 20 A3140T H1047L Kinase 1 1
Exon 20 G3145A G1049S Kinase 1 1
Tumors with mutations 74 4 3 1 1 0 0 2
No. samples screened 234 15 12 12 24 11 12 76
Percent of tumors with mutations 32% 27% 25% 8% 4% 0% 0% 3%
Table 3. mutations in human cancers
Example 3-This example demonstrates that the mutations in PIK3CA occur late in tumorigenesis.
To determine the timing of PIK3CA mutations during neoplastic progression, we evaluated 76 pre-malignant colorectal tumors of various size and degree of dysplasia. Only two PIK3CA mutations were found (E542K and E542V), both in very advanced adenomas greater than 5 cm in diameter and of tubuluvillous type. These data suggest that PIK3CA abnormalities occur at relatively late stages of neoplasia, near the time that tumors begin to invade and metastasize.
Example 4-This example demonstrates that PIK3CA mutations in a variety of different cancer types.
We then evaluated PIK3CA for genetic alterations in other tumor types (Table 1). Mutations were identified in four of fifteen (27%) glioblastomas, three of twelve (25%) gastric cancers, one of thirteen (8%) breast, and one of twenty four (4%) lung cancers. No mutations were observed in eleven pancreatic cancers or twelve medulloblastomas. In total, 89 mutations were observed, all but 3 of which were heterozygous.
Example 5-This example demonstrates the non-random nature of the genetic alterations observed.
The sheer number of mutations observed in PIK3CA in five different cancer types strongly suggests that these mutations are functionally important. This conclusion is buttressed by two additional independent lines of evidence. First, analysis of the ratio of non-synonymous to synonymous mutations is a good measure of selection during tumor progression, as silent alterations are unlikely to exert a growth advantage. The ratio of non-synonymous to synonymous mutations in PIK3CA was 89 to 2, far higher than the 2:1 ratio expected by chance (P<1x10-4). Second, the prevalence of non-synonymous changes located in the PI3K catalytic and accessory domains was ∼120 per Mb tumor DNA, over 100 times higher than the background mutation frequency of nonfunctional alterations observed in the genome of cancer cells (P<1x10-4) (9).
Although the effect of these mutations on kinase function has not yet been experimentally tested, their positions and nature within PIK3CA imply that they are likely to be activating. No truncating mutations were observed and >75% of alterations occurred in two small clusters in exons 9 and 20 (Table 2 and Figure 1). The affected residues within these clusters are highly conserved evolutionarily, retaining identity in mouse, rat, and chicken. The clustering of somatic missense mutations in specific domains is similar to that observed for activating mutations in other oncogenes, such as RAS (10), BRAF (11, 12), β-catenin (13), and members of the tyrosine kinome (14).
These genetic data suggest that mutant PIK3CA is likely to function as an oncogene in human cancers.
Example 6-This example demonstrates that gene amplification of PIK3CA is not common.
Quantitative PCR analysis of PIK3CA in 96 colorectal cancers showed no evidence of gene amplification, suggesting that gene copy alterations are not a significant mechanism of activation in this tumor type. The primers used were:
  • Real time PI3K hCT1640694 20-1F (intron)
  • TTACTTATAGGTTTCAGGAGATGTGTT (SEQ ID NO: 486); and
  • Real time PI3K hCT1640694 20-1R
  • GGGTCTTTCGAATGTATGCAATG (SEQ ID NO: 487)
The Sequence Listing appended to the end of this application contains the following sequences:
  • SEQ ID NO: 1=coding sequence only (nt 13 to 3201 of SEQ ID NO: 2)
  • SEQ ID NO: 2=mRNA sequence (NM_006218)
  • SEQ ID NO: 3=protein sequence (NP_006209)
  • SEQ ID NO: 4=exon 9_
  • SEQ ID NO: 5=exon 20
  • SEQ ID NO: 6 to 165 =forward primers
  • SEQ ID NO: 166 to 325=reverse primers
  • SEQ ID NO: 326 to 485=sequencing primers
  • SEQ ID NO: 486 and 487 amplification primers
References and Notes
  1. 1. R. Katso et al., Annu Rev Cell Dev Biol 17, 615-75 (2001).
  2. 2. I. Vivanco, C. L. Sawyers, Nat Rev Cancer 2, 489-501 (Jul, 2002).
  3. 3. W. A. Phillips, F. St Clair, A. D. Munday, R. J. Thomas, C. A. Mitchell, Cancer 83, 41-7 (Jul 1, 1998).
  4. 4. E. S. Gershtein, V. A. Shatskaya, V. D. Ermilova, N. E. Kushlinsky, M. A. Krasil'nikov, Clin Chim Acta 287, 59-67 (Sep, 1999).
  5. 5. B. Vanhaesebroeck, M. D. Waterfield, Exp Cell Res 253, 239-54 (Nov 25, 1999).
  6. 6. S. Djordjevic, P. C. Driscoll, Trends Biochem Sci 27, 426-32 (Aug, 2002).
  7. 7. Catalytic subunits of PI3Ks were identified by analysis of InterPro (IPR) PI3K domains (IPR000403) present within the Celera draft human genome sequence. This resulted in identification of 15 PI3Ks and related PI3K genes. The kinase domain of PIK3CD gene was not represented in the current draft of human genome sequence and was therefore not included in this study.
  8. 8. Sequences for all annotated exons and adjacent intronic sequences containing the kinase domain of identified PI3Ks were extracted from the Celera draft human genome sequence (URL address: www host server, domain name celera.com). Celera and Genbank accession numbers of all analyzed genes are available in Table 1. Primers for PCR amplification and sequencing were designed using the Primer 3 program (URL address: http file type; www-genome.wi.mit.edu host server, cgi-bin domain name, primer directory, primer3_www.cgi subdirectory), and were synthesized by MWG (High Point, NC) or IDT (Coralville, IA). PCR amplification and sequencing were performed on tumor DNA from early passage cell lines or primary tumors as previously described (12) using a 384 capillary automated sequencing apparatus (Spectrumedix, State College, PA). Sequence traces were assembled and analyzed to identify potential genomic alterations using the Mutation Explorer software package (SoftGenetics, State College, PA). Of the exons extracted, 96% were successfully analyzed. Sequences of all primers used for PCR amplification and sequencing are provided in Table S1.
  9. 9. T. L. Wang et al., Proc Natl Acad Sci U S A 99, 3076-80. (2002).
  10. 10. J. L. Bos et al., Nature 327, 293-7 (1987).
  11. 11. H. Davies et al., Nature (Jun 9, 2002).
  12. 12. H. Rajagopalan et al., Nature 418, 934. (2002).
  13. 13. P. J. Morin et al., Science 275, 1787-90 (1997).
  14. 14. A. Bardelli et al., Science 300, 949 (May 9, 2003).
  15. 15. J. Li et al., Science 275, 1943-7 (1997).
  16. 16. P. A. Steck et al., Nat Genet 15, 356-62 (1997).
  17. 17. T. Maehama, J. E. Dixon, J Biol Chem 273, 13375-8 (May 29, 1998).
  18. 18. M. P. Myers et al., Proc Natl Acad Sci U S A 95, 13513-8 (Nov 10, 1998).
  19. 19. L. Shayesteh et al., Nat Genet 21, 99-102 (Jan, 1999).
  20. 20. J. Q. Cheng et al., Proc Natl Acad Sci U S A 89, 9267-71 (Oct 1, 1992).
  21. 21. L. Hu, J. Hofmann, Y. Lu, G. B. Mills, R. B. Jaffe, Cancer Res 62, 1087-92 (Feb 15, 2002).
  22. 22. J. Luo, B. D. Manning, L. C. Cantley, Cancer Cell 4, 257-62 (2003).
SEQUENCE LISTING
  • <110> Velculescu, Victor Kinzler, Kenneth Vogelstein, Bert Samuels, Yardena
  • <120> MUTATIONS OF THE PIK3CA GENE IN HUMAN CANCERS
  • <130> 001107.00428
  • <160> 487
  • <170> FastSEQ for Windows Version 4.0
  • <210> 1 <211> 3412 <212> DNA <213> Homo sapiens
  • <400> 1
  • <210> 2 <211> 3424 <212> RNA <213> Homo sapiens
  • <400> 2
  • <210> 3 <211> 1068 <212> PRT <213> Homo sapiens
  • <400> 3
  • <210> 4 <211> 125 <212> DNA <213> Homo sapiens
  • <400> 4
  • <210> 5 <211> 1186 <212> DNA <213> Homo sapiens
  • <400> 5
  • <210> 6 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 6 ttccagcctg ggtaacaaag   20
  • <210> 7 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 7 cctgacctca ggtgttctgc   20
  • <210> 8 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 8 tgcacattct gcacgtgtat c   21
  • <210> 9 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 9 tcccagtttg tatgctattg agag   24
  • <210> 10 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 10 tggaaattca aaagtgtgtg g   21
  • <210> 11 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 11 cactaatgaa cccctcaaga ctg   23
  • <210> 12 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 12 tccttggcaa agtgacaatc   20
  • <210> 13 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 13 ctctcacata caacaccatc tcc   23
  • <210> 14 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 14 atgtatctca ttgaaaaccc aac   23
  • <210> 15 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 15 tcccaaagtg ctgggattac   20
  • <210> 16 <211> 26 <212> DNA <213> Homo sapiens
  • <400> 16 cctatgacat aaatgccagt acaaac   26
  • <210> 17 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 17 tcttttgttc agtcagcatc tctc   24
  • <210> 18 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 18 ttgagaattc agatgagaaa ccag   24
  • <210> 19 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 19 gaaggccact ctcaaacctg   20
  • <210> 20 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 20 tcaaggcttg catttcattg   20
  • <210> 21 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 21 ttccacactc caaagaatgc   20
  • <210> 22 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 22 aattgcaatc ctcttggtag c   21
  • <210> 23 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 23 gccaagacca agcaactcc   19
  • <210> 24 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 24 ataaacgacc gctggcctac   20
  • <210> 25 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 25 gtacatccgg ggacacaatg   20
  • <210> 26 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 26 accgggttct tccagctaag   20
  • <210> 27 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 27 caatgcgtgc gttaaatctg   20
  • <210> 28 <211> 18 <212> DNA <213> Homo sapiens
  • <400> 28 cccaatgcca cggactac   18
  • <210> 29 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 29 atccagctgg ctctgatagg   20
  • <210> 30 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 30 ctggtgctga aactcgactg   20
  • <210> 31 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 31 gtctcgttct ctccctcacg   20
  • <210> 32 <211> 18 <212> DNA <213> Homo sapiens
  • <400> 32 cacaacctcg cccagttc   18
  • <210> 33 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 33 agcatcaccc tcagagcata c   21
  • <210> 34 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 34 tgccatacct cttaggcact tc   22
  • <210> 35 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 35 cgacagagca agattccatc   20
  • <210> 36 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 36 agattgccat ctgaggaagg   20
  • <210> 37 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 37 gcatggagag gaagtgaacc   20
  • <210> 38 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 38 tggccagaga gtttgattta tg   22
  • <210> 39 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 39 ccctcaatct cttgggaaag   20
  • <210> 40 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 40 tggtttcttc tcatggacag g   21
  • <210> 41 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 41 gggtgtccac acttctcagg   20
  • <210> 42 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 42 ccggaagaaa caatgagcag   20
  • <210> 43 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 43 ggtgtgagct gagtgagcag   20
  • <210> 44 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 44 gtgggaatga ccttcctttc   20
  • <210> 45 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 45 ggatgaacag gcagatgtga g   21
  • <210> 46 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 46 agccccttct atccagtgtg   20
  • <210> 47 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 47 tgcccacagc atctgtctac   20
  • <210> 48 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 48 attgtgtgcc agtcatttgc   20
  • <210> 49 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 49 ttccacatta agcatgagca c   21
  • <210> 50 <211> 27 <212> DNA <213> Homo sapiens
  • <400> 50 gacagtcatt cttttcatag gtcatag   27
  • <210> 51 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 51 ccacatagta agccttcaat gac   23
  • <210> 52 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 52 tgaaaaatgt tcctttattc ttg   23
  • <210> 53 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 53 tctgagaaca ttccctgatc c   21
  • <210> 54 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 54 tcagctctct aatcctgaac tgc   23
  • <210> 55 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 55 agcagagaag aaacatatac cat   23
  • <210> 56 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 56 cattttggga aaggaggttc   20
  • <210> 57 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 57 attacaggcg tgagccactg   20
  • <210> 58 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 58 tttggcactg tcttcagagg   20
  • <210> 59 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 59 agagggaaca ccctttcctg   20
  • <210> 60 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 60 tatagcgttg tgcccatgac   20
  • <210> 61 <211> 26 <212> DNA <213> Homo sapiens
  • <400> 61 tcctgcctct ttgctatttt tcaatg   26
  • <210> 62 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 62 ttgcctcaga gagatcatca ag   22
  • <210> 63 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 63 taggggcgct aatcgtactg   20
  • <210> 64 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 64 tctgatatgc atcagccact g   21
  • <210> 65 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 65 tgatttcaag ggaagcagag   20
  • <210> 66 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 66 tgtagaaagc aaggctgctc   20
  • <210> 67 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 67 accccaaagt catccaagtg   20
  • <210> 68 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 68 aaaggctcca gttgatggac   20
  • <210> 69 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 69 ccattaaaac cactctaagt cagg   24
  • <210> 70 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 70 aagcctcctc cagaaaagaa g   21
  • <210> 71 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 71 ccctcctgtc cactgagatg   20
  • <210> 72 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 72 tctcaagctg cctcacaatg   20
  • <210> 73 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 73 aaagacattg ccatgcaaac   20
  • <210> 74 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 74 ttgttgggct ccaaataaac   20
  • <210> 75 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 75 ccctggagtg cttacatgag   20
  • <210> 76 <211> 27 <212> DNA <213> Homo sapiens
  • <400> 76 gactttataa acactcgaca ttagagc   27
  • <210> 77 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 77 atgatgacct ctggcaggac   20
  • <210> 78 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 78 gaatcaaccg tcagcgtgtc   20
  • <210> 79 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 79 ctggcaccgg ggaaaacaga g   21
  • <210> 80 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 80 tggacatcga ctacaagtct gg   22
  • <210> 81 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 81 tccttggggt tttgaagaag   20
  • <210> 82 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 82 aaggccttcc agactcttgc   20
  • <210> 83 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 83 cctctttgtt tttccctacc g   21
  • <210> 84 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 84 cttccacagt gggggtacag   20
  • <210> 85 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 85 gacacaacgg caacattatg ctg   23
  • <210> 86 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 86 cattccaaag catctggttt tac   23
  • <210> 87 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 87 ttgtgaggaa cgtgtgatta gg   22
  • <210> 88 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 88 ctgggcaaca gagcaagac   19
  • <210> 89 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 89 tcccttctcc tttggctatg   20
  • <210> 90 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 90 atagcaccac tgccttccag   20
  • <210> 91 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 91 tgcagaagtg gaggtggag   19
  • <210> 92 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 92 aacccaagct gcttcctttc   20
  • <210> 93 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 93 agtcctgccc tgattccttc   20
  • <210> 94 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 94 cccacccact tattcctgag   20
  • <210> 95 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 95 tttccccttt agggtaggta gg   22
  • <210> 96 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 96 cggacataga ggaaggattg c   21
  • <210> 97 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 97 tggccaaact tttcaaatcc   20
  • <210> 98 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 98 tgggagagct cagggaatac   20
  • <210> 99 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 99 tcccaaagtg ctgggattac   20
  • <210> 100 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 100 ttggctgcca tgactaacac   20
  • <210> 101 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 101 gctctcagtg tgcctcatgg   20
  • <210> 102 <211> 18 <212> DNA <213> Homo sapiens
  • <400> 102 aagaaacacc ccggttcc   18
  • <210> 103 <211> 27 <212> DNA <213> Homo sapiens
  • <400> 103 aaatttagtt gagtaatgag agaatgc   27
  • <210> 104 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 104 gtaaaattgg ccctgctttg   20
  • <210> 105 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 105 cataaccaca tgcagcaacc   20
  • <210> 106 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 106 aattggcctt ggagacagac   20
  • <210> 107 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 107 ttcatgtgag caggtatgct g   21
  • <210> 108 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 108 ttgtgtacga ccctctggtg   20
  • <210> 109 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 109 tttgtacagt ggaggcaacg   20
  • <210> 110 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 110 cagctggtta tgtgtgttta tgg   23
  • <210> 111 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 111 tgtcctcatg gttgcttttc   20
  • <210> 112 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 112 cagggacatg ctatccaaag   20
  • <210> 113 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 113 tggtggaact tgtgtttttc c   21
  • <210> 114 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 114 tcatacggtt ttggcagctc   20
  • <210> 115 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 115 acagagggag aagggctcag   20
  • <210> 116 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 116 tgggacaatt ttcgcagaag   20
  • <210> 117 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 117 atgaagcatg ctgcctgatg   20
  • <210> 118 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 118 gggggccttt agaaggaag   19
  • <210> 119 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 119 tggagttcct gagaaatgag c   21
  • <210> 120 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 120 agagggaaca ccctttcctg   20
  • <210> 121 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 121 catgatgttg gagcttacat gc   22
  • <210> 122 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 122 cgggattgga gacagacatc   20
  • <210> 123 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 123 catcatggta cacgcactcc   20
  • <210> 124 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 124 ctcaatcaga gcctgaacca c   21
  • <210> 125 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 125 cccggcctaa agttgtagtt c   21
  • <210> 126 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 126 tgggagactg tcaagaggtg   20
  • <210> 127 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 127 ttcctccaag gagctttgtc   20
  • <210> 128 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 128 ttccctgtcc agactgttag c   21
  • <210> 129 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 129 ccggttatgc acatcattta ag   22
  • <210> 130 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 130 gcagccagag cagaagtaaa c   21
  • <210> 131 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 131 tctaatgaaa gcccactctg c   21
  • <210> 132 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 132 aagtgtgcat gatgtttgtt cc   22
  • <210> 133 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 133 gatgaccaag aatgcaaacg   20
  • <210> 134 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 134 atcatcttta agaacgggga tgg   23
  • <210> 135 <211> 18 <212> DNA <213> Homo sapiens
  • <400> 135 cctcagatgc tggtgccg   18
  • <210> 136 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 136 tcttcatgcc ttggctctgg   20
  • <210> 137 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 137 tccgagagag tgggcaggta   20
  • <210> 138 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 138 gggcaggttt gtgggtcat   19
  • <210> 139 <211> 18 <212> DNA <213> Homo sapiens
  • <400> 139 ggaactgggg gctctggg   18
  • <210> 140 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 140 gtttctgctt tgggacaacc at   22
  • <210> 141 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 141 ctccacgacc atcatcagg   19
  • <210> 142 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 142 ccccctccat caacttcttc   20
  • <210> 143 <211> 26 <212> DNA <213> Homo sapiens
  • <400> 143 tcatcaaaaa tttgttttaa cctagc   26
  • <210> 144 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 144 ttctgaacgt ttgtaaagaa gctg   24
  • <210> 145 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 145 gcagcccgct cagatataaa c   21
  • <210> 146 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 146 tctgaaaatc aaccatgact gtg   23
  • <210> 147 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 147 tcttgtgctt caacgtaaat cc   22
  • <210> 148 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 148 tctcaactgc caatggactg   20
  • <210> 149 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 149 tagtggatga aggcagcaac   20
  • <210> 150 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 150 tgccttttcc aatcaatctc   20
  • <210> 151 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 151 ggggaaaaag gaaagaatgg   20
  • <210> 152 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 152 tttgctgaac cctattggtg   20
  • <210> 153 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 153 gattggttct ttcctgtctc tg   22
  • <210> 154 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 154 accttttgaa cagcatgcaa   20
  • <210> 155 <211> 27 <212> DNA <213> Homo sapiens
  • <400> 155 aaaacaccct taacattatt tccatag   27
  • <210> 156 <211> 28 <212> DNA <213> Homo sapiens
  • <400> 156 tttattctag atccatacaa cttccttt   28
  • <210> 157 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 157 ctgaaactca tggtggtttt g   21
  • <210> 158 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 158 gagtgttgct gctctgtgtt g   21
  • <210> 159 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 159 ggattcctaa ataaaaattg aggtg   25
  • <210> 160 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 160 ttgctttcct gaagtttctt ttg   23
  • <210> 161 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 161 ggggaaaggc agtaaaggtc   20
  • <210> 162 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 162 tccttattcg ttgtcagtga ttg   23
  • <210> 163 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 163 catggtgaaa gacgatggac   20
  • <210> 164 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 164 tggggtaaag ggaatcaaaa g   21
  • <210> 165 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 165 ttgcatacat tcgaaagacc   20
  • <210> 166 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 166 cgtcagaaca agaccctgtg   20
  • <210> 167 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 167 cccggccact aagttatttt tc   22
  • <210> 168 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 168 ctgccattaa atgcgtcttg   20
  • <210> 169 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 169 ctttgggcct ttttcattcc   20
  • <210> 170 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 170 tgtctggctt atttcacacg   20
  • <210> 171 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 171 aacttttgac agcctactat gtgc   24
  • <210> 172 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 172 gaccattcat gaaagaaaca agc   23
  • <210> 173 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 173 ccatgtaccg gtaacaaaag aag   23
  • <210> 174 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 174 tgagctttct aggategtae ctg   23
  • <210> 175 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 175 gcaggaaggt ccaacttgtc   20
  • <210> 176 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 176 atcttcaact gcgaacatgc   20
  • <210> 177 <211> 26 <212> DNA <213> Homo sapiens
  • <400> 177 aagcatcaat gactacttta atcaac   26
  • <210> 178 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 178 tcccaaagtg ctgggattac   20
  • <210> 179 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 179 ttgttgcctt tgtcattttg   20
  • <210> 180 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 180 atgtgactgt gggcaggaac   20
  • <210> 181 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 181 gctggtgaga tgtcaaaacg   20
  • <210> 182 <211> 26 <212> DNA <213> Homo sapiens
  • <400> 182 tcaacatatt acttcctcca gaactc   26
  • <210> 183 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 183 ttctcccatg tcagggaatc   20
  • <210> 184 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 184 gaccctcaaa ggctaacgtg   20
  • <210> 185 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 185 tccctggtca gcacagacta c   21
  • <210> 186 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 186 agctgtctca tttccaccat c   21
  • <210> 187 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 187 cgcgtcgttt atgtcaaatc   20
  • <210> 188 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 188 cgcgtcgttt atgtcaaatc   20
  • <210> 189 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 189 cataacacac aggggtgctg   20
  • <210> 190 <211> 18 <212> DNA <213> Homo sapiens
  • <400> 190 gaactgggcg aggttgtg   18
  • <210> 191 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 191 tccctttctt acacgcaaac   20
  • <210> 192 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 192 cagttccgcc tgtacattca c   21
  • <210> 193 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 193 agcgctcctg ctttcagtc   19
  • <210> 194 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 194 gtcttggcgc agatcatcac   20
  • <210> 195 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 195 ttttgtcacc agttgaaatg c   21
  • <210> 196 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 196 gactgggaaa aagcatgagc   20
  • <210> 197 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 197 cggtgatcat aatattgtca ttgtg   25
  • <210> 198 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 198 ggaagtgtgg gcttgtcttc   20
  • <210> 199 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 199 tgcacagtcc atcctttgtc   20
  • <210> 200 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 200 aatgccagct ttcacaatgt c   21
  • <210> 201 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 201 ggccaagacc acatggtaag   20
  • <210> 202 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 202 tcctacatta agacagcatg gaac   24
  • <210> 203 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 203 tgcctccctt ttaaggctat c   21
  • <210> 204 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 204 aggtccttct gccaacaaag   20
  • <210> 205 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 205 cgtcttctct cctccaatgc   20
  • <210> 206 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 206 ggtattcagt tggggctcag   20
  • <210> 207 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 207 tgtatccacg tggtcagctc   20
  • <210> 208 <211> 18 <212> DNA <213> Homo sapiens
  • <400> 208 acaggacgct cggtcaac   18
  • <210> 209 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 209 ttgccatcag tacaaatgag tttag   25
  • <210> 210 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 210 ttcctgcttt ttaagagtga tctg   24
  • <210> 211 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 211 aggaaggaag ggatggaaac   20
  • <210> 212 <211> 18 <212> DNA <213> Homo sapiens
  • <400> 212 agaaaccact catgaaaa   18
  • <210> 213 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 213 cgcattacta catgatccac tg   22
  • <210> 214 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 214 tgtcacagaa agcatgagac c   21
  • <210> 215 <211> 29 <212> DNA <213> Homo sapiens
  • <400> 215 agaaataact gtcaatatcc cagtatcac   29
  • <210> 216 <211> 27 <212> DNA <213> Homo sapiens
  • <400> 216 tcattaaaca tttagtaatg tgtgctc   27
  • <210> 217 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 217 aggcaacagg gcaagactc   19
  • <210> 218 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 218 cctgaaaggg agaataaaag g   21
  • <210> 219 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 219 cctgaaaggg agaataaaag g   21
  • <210> 220 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 220 tattgaccca gccagcagac   20
  • <210> 221 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 221 tatattgaga ctcaaatatc ga   22
  • <210> 222 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 222 tgatgcatat cagagcgtga g   21
  • <210> 223 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 223 ttcaatgacc atgacaaaac g   21
  • <210> 224 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 224 ttcaatgacc atgacaaaac g   21
  • <210> 225 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 225 tggttttcaa gcagacaatc c   21
  • <210> 226 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 226 tcctcctcaa tgaaagcaga g   21
  • <210> 227 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 227 caatgtgatc ccaactggtc   20
  • <210> 228 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 228 ttattgccaa ttggagtttg g   21
  • <210> 229 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 229 ttctgttggc ttatcatttt tg   22
  • <210> 230 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 230 cccagaaact aaataaaatg cag   23
  • <210> 231 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 231 aatcaaattt gttgcattaa aaatc   25
  • <210> 232 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 232 gttttctcat tcctttctct tcc   23
  • <210> 233 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 233 tttgggaaag ggaacacaag   20
  • <210> 234 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 234 gatttttcct tggaacatcc tc   22
  • <210> 235 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 235 cggggatcag atttgctatg   20
  • <210> 236 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 236 tagggggtca tcctcaggtc   20
  • <210> 237 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 237 gtcttcccct gctcaatcac   20
  • <210> 238 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 238 gacacgttgt gggccagcca gt   22
  • <210> 239 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 239 ctgccggtta tcttcggaca cgtt 24
  • <210> 240 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 240 tgagtgaggg cagacagatg   20
  • <210> 241 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 241 tggcacctga accatgtaag   20
  • <210> 242 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 242 cgtacatgcc gaagtctgtc   20
  • <210> 243 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 243 gccctggttt taacccttaa c   21
  • <210> 244 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 244 ccagctccag cttctgactc   20
  • <210> 245 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 245 ttgtgttttc ttggagacag   20
  • <210> 246 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 246 caatgagcat gggagagatg   20
  • <210> 247 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 247 tggagtttct gggactacag g   21
  • <210> 248 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 248 ccttcttcaa agctgattct ctc   23
  • <210> 249 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 249 cgctctacag ccaatcacag   20
  • <210> 250 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 250 tggcatcaca atcaataggg   20
  • <210> 251 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 251 ctccaagggg gttagagtcc   20
  • <210> 252 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 252 caggaaacca ggtcagaagt g   21
  • <210> 253 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 253 tttttgcaga aaggggtctt ac   22
  • <210> 254 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 254 gcccacccca ctctagaaac   20
  • <210> 255 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 255 tggaaccttt tctgctcaaa g   21
  • <210> 256 <211> 18 <212> DNA <213> Homo sapiens
  • <400> 256 agctgcatgg tgccaaag   18
  • <210> 257 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 257 ataacaatgg gcacatgcag   20
  • <210> 258 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 258 ggtcattctt ccatcagcaa g   21
  • <210> 259 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 259 cacacccaca ctcacacaaa g   21
  • <210> 260 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 260 ggcactgcag gctaataatg   20
  • <210> 261 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 261 gggacctcaa gtcttttcct tc   22
  • <210> 262 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 262 gggacctcaa gtcttttcct tc   22
  • <210> 263 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 263 ggaagggaag gaggacaaac   20
  • <210> 264 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 264 cgtctcaaac taccaagtct gg   22
  • <210> 265 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 265 cacccagtgc tgtttcaatg   20
  • <210> 266 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 266 cgccgcataa tgtgtaaaac   20
  • <210> 267 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 267 tgccatattt aactgccatt tc   22
  • <210> 268 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 268 tgccatattt aactgccatt tc   22
  • <210> 269 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 269 gcagtcactg agacagcttt tatc   24
  • <210> 270 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 270 taagcatagc ctcggagaac   20
  • <210> 271 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 271 ggaccattaa tagctacctt cctg   24
  • <210> 272 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 272 aggcaagaca acatatttga aag   23
  • <210> 273 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 273 aagggctatg tgtcattttg ttc   23
  • <210> 274 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 274 catcaagcaa gcaaacaaat g   21
  • <210> 275 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 275 aattccccca aaagcttcc   19
  • <210> 276 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 276 ttccctcctg gctaagaacc   20
  • <210> 277 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 277 aaaagcagag ggaatcatcg   20
  • <210> 278 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 278 tcccattcat gacctggaag   20
  • <210> 279 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 279 ggcccgcttt aagagatcag   20
  • <210> 280 <211> 18 <212> DNA <213> Homo sapiens
  • <400> 280 catgcccaaa gtcgatcc   18
  • <210> 281 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 281 acacatccat ggtgttggtg   20
  • <210> 282 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 282 tgccacagcc acatagtctc   20
  • <210> 283 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 283 ttctatctgc agactcccac ag   22
  • <210> 284 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 284 ggaaaagaaa gcaggagaag c   21
  • <210> 285 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 285 aaatggagaa aagcctggtt c   21
  • <210> 286 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 286 aagcaatcct cccaccttg   19
  • <210> 287 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 287 ccttcctttt tcactcacac ac   22
  • <210> 288 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 288 tgatttaata atgaagatgg gttgg   25
  • <210> 289 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 289 actcagtacc ccaggcagag   20
  • <210> 290 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 290 tcaaactcct gggctcaaac   20
  • <210> 291 <211> 18 <212> DNA <213> Homo sapiens
  • <400> 291 cagccacatc cccctatg   18
  • <210> 292 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 292 tgccttcttc cactcctttc   20
  • <210> 293 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 293 aagagtgaaa gcagagatgt tcc   23
  • <210> 294 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 294 actaagcctc aggagcagcc t   21
  • <210> 295 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 295 gatacttggg gaagagagac ctacc   25
  • <210> 296 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 296 gaggggagag gagggggag 19
  • <210> 297 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 297 cacaaacctg cccacattgc 20
  • <210> 298 <211> 18 <212> DNA <213> Homo sapiens
  • <400> 298 cctgggcggc tcaactct 18
  • <210> 299 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 299 aggcgtttcc gtttatggc 19
  • <210> 300 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 300 ctgcttcttg agtaacactt acg 23
  • <210> 301 <211> 26 <212> DNA <213> Homo sapiens
  • <400> 301 gattacgaag gtattggttt agacag 26
  • <210> 302 <211> 26 <212> DNA <213> Homo sapiens
  • <400> 302 ggtgttaaaa atagttccat agttcg 26
  • <210> 303 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 303 tataagcagt ccctgccttc 20
  • <210> 304 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 304 tataagcagt ccctgccttc 20
  • <210> 305 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 305 ctgggcgaga gtgagattcc 20
  • <210> 306 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 306 atgaacccag gaggcagag 19
  • <210> 307 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 307 cggagatttg gatgttctcc 20
  • <210> 308 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 308 cggagatttg gatgttctcc 20
  • <210> 309 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 309 tttgtagaaa tggggtcttg c 21
  • <210> 310 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 310 aattcctgaa gctctcccaa g 21
  • <210> 311 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 311 tgctgaacca gtcaaactcc 20
  • <210> 312 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 312 ttgcaatatt ggtcctagag ttc 23
  • <210> 313 <211> 26 <212> DNA <213> Homo sapiens
  • <400> 313 ccacaaatat caatttacaa ccattg 26
  • <210> 314 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 314 tggaaataat gttaagggtg ttttt 25
  • <210> 315 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 315 tctgcatggc cgatctaaag 20
  • <210> 316 <211> 26 <212> DNA <213> Homo sapiens
  • <400> 316 aaagttgaga agctcatcac tggtac 26
  • <210> 317 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 317 tggttccaaa tcctaatctg c 21
  • <210> 318 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 318 ttgagggtag gagaatgaga gag 23
  • <210> 319 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 319 catgcatatt tcaaaggtca ag   22
  • <210> 320 <211> 26 <212> DNA <213> Homo sapiens
  • <400> 320 tcaagtaaga ggaggatatg tcaaag 26
  • <210> 321 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 321 catcaaatat ttcaaaggtt gagc   24
  • <210> 322 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 322 gtcaaaacaa atggcacacg   20
  • <210> 323 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 323 ttacaggcat gaaccaccac   20
  • <210> 324 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 324 cctatgcaat cggtctttgc   20
  • <210> 325 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 325 ggggattttt gttttgtttt g 21
  • <210> 326 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 326 aaaggggaaa tgcgtaggac   20
  • <210> 327 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 327 tcccaaagtg ctgggattac   20
  • <210> 328 <211> 27 <212> DNA <213> Homo sapiens
  • <400> 328 ccagaactta aagtgaaatt taaaaag   27
  • <210> 329 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 329 gcgaggcaaa acacaaagc   19
  • <210> 330 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 330 ttggaaatgg ctgtacctca g   21
  • <210> 331 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 331 tacttgagca gcccacagg   19
  • <210> 332 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 332 aaaggaatga aagtggtttt tgtc 24
  • <210> 333 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 333 tgcaatgtaa tagttttcca agg   23
  • <210> 334 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 334 cagcaaatga actaagccac ag   22
  • <210> 335 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 335 tgctatacta tttgcccaca aaac   24
  • <210> 336 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 336 gaatgcattt attcagagat gagg   24
  • <210> 337 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 337 tgctagacac ttgctggtca c   21
  • <210> 338 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 338 ttgatattaa agttgcacaa actgc   25
  • <210> 339 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 339 tcaattgtgt gacatatcac ctacc   25
  • <210> 340 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 340 tcactgtaga aatccaagta ccac   24
  • <210> 341 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 341 tctgcatcag tttgattctg c   21
  • <210> 342 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 342 aatgcacttt ttattttatt ag   22
  • <210> 343 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 343 gaaaagtgcc ggttcttgag   20
  • <210> 344 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 344 gcctacacag tccgttttcc   20
  • <210> 345 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 345 agaggagcgt gtgttgcag 19
  • <210> 346 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 346 actctgacgg tggagctgag   20
  • <210> 347 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 347 gctcttggtg ctaagttaaa gagg   24
  • <210> 348 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 348 atccagctgg ctctgatagg   20
  • <210> 349 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 349 tgaacagcca gatcctctcc   20
  • <210> 350 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 350 gtcccacctt gttaggaagc   20
  • <210> 351 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 351 tggcattctg aaaacggttc   20
  • <210> 352 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 352 gcaaacagcc tggacaatc   19
  • <210> 353 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 353 cacatatttc tgtcccctgt tg   22
  • <210> 354 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 354 tgtggttctt tggagcacag   20
  • <210> 355 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 355 ccaaggtaca tttcggaaaa c   21
  • <210> 356 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 356 accagccctt tcctcttgtc   20
  • <210> 357 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 357 ttcttcctca tgccattgtg   20
  • <210> 358 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 358 gtggcatctg gctgtcatc   19
  • <210> 359 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 359 caattagttt tccttgagca ctcc   24
  • <210> 360 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 360 tcttctttat ccaggacatc tgtg   24
  • <210> 361 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 361 cctgggagag gtctggttc   19
  • <210> 362 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 362 ggcagcatct tggtctgaag   20
  • <210> 363 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 363 gagcacttgg gagacctgag   20
  • <210> 364 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 364 agggaagcat gagcacagtc   20
  • <210> 365 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 365 tgagttctgt ctggctgtgg   20
  • <210> 366 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 366 tgatgaggga tgagggaaac 20
  • <210> 367 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 367 agggttaggg agcctagctg   20
  • <210> 368 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 368 tccttggaac acccctgtc   19
  • <210> 369 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 369 cagtcatgat acctacactt ccatc   25
  • <210> 370 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 370 caactctgaa ataaaagcaa tctgg   25
  • <210> 371 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 371 ttctttggtt atgaaatgaa caatc 25
  • <210> 372 <211> 27 <212> DNA <213> Homo sapiens
  • <400> 372 ttgaataaaa gtagatgttt cttgtcc   27
  • <210> 373 <211> 27 <212> DNA <213> Homo sapiens
  • <400> 373 taccaagaat ataatacgtt gttatgg   27
  • <210> 374 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 374 cggcttctgg cacataaaac   20
  • <210> 375 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 375 ccattgagca ctccattcat tac   23
  • <210> 376 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 376 ccctgggaat ctgaaagaat g   21
  • <210> 377 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 377 tgggccgttg tctcatatac   20
  • <210> 378 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 378 cactctggct tttccctctg   20
  • <210> 379 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 379 aggtcatgaa tgggatcctg   20
  • <210> 380 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 380 catattgctt ggcgtccac   19
  • <210> 381 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 381 tcttggtgat ctttgccttt g   21
  • <210> 382 <211> 27 <212> DNA <213> Homo sapiens
  • <400> 382 tcatcaagat tattcgatat ttgagtc   27
  • <210> 383 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 383 cgagaaagta aagtgcctgc tg   22
  • <210> 384 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 384 cgggattgga gacagacatc   20
  • <210> 385 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 385 gaggatgctg ccatttgtg   19
  • <210> 386 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 386 catgctaaca gagtgtcaag agc   23
  • <210> 387 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 387 cgaattcttt ttgccatttc   20
  • <210> 388 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 388 aaagtctgca aggggctatg   20
  • <210> 389 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 389 tcaggctaga aatgtatcca agg   23
  • <210> 390 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 390 aaaggaaagg ggtaatccag   20
  • <210> 391 <211> 27 <212> DNA <213> Homo sapiens
  • <400> 391 tttacttttt atgattacct ctgatgc   27
  • <210> 392 <211> 27 <212> DNA <213> Homo sapiens
  • <400> 392 aaagaaaatt caaatgaaaa taagtcg   27
  • <210> 393 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 393 catgcaaact tgggtctaga tg   22
  • <210> 394 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 394 ttggcttttt cccctcatac   20
  • <210> 395 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 395 taaagccttt cccagctcag   20
  • <210> 396 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 396 cctgctgctt ccacaggac   19
  • <210> 397 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 397 catggacgtc ctgtggaag   19
  • <210> 398 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 398 gtgtcccatt catcctcacc   20
  • <210> 399 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 399 aacagaggag gcgctgaag   19
  • <210> 400 <211> 18 <212> DNA <213> Homo sapiens
  • <400> 400 gcctcaccct acccatcc   18
  • <210> 401 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 401 agattgctgg ggttcctttc   20
  • <210> 402 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 402 ccacctcact ccatctctgg   20
  • <210> 403 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 403 tggggtaagt tccctgagtg   20
  • <210> 404 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 404 tacagagcca gggagagtgc   20
  • <210> 405 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 405 tatcatccac atcggtcagc   20
  • <210> 406 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 406 tttgggacaa gtaattgtta ttagc 25
  • <210> 407 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 407 ttgaatgcag tggtgctctc   20
  • <210> 408 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 408 tctgcctgtg ttctgagctg   20
  • <210> 409 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 409 gaactcagct ctgcctggac   20
  • <210> 410 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 410 gcgagactcg gtctcaaaag   20
  • <210> 411 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 411 atcgtttgcc aactcctagc   20
  • <210> 412 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 412 aatcagtgca ggtgatgcag   20
  • <210> 413 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 413 acatggcctg tgtctgcttc   20
  • <210> 414 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 414 gactggaaga aaataaccaa gtttc   25
  • <210> 415 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 415 ggcaggcgtt aaaggaatag   20
  • <210> 416 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 416 aaaaacaggg cacccattg   19
  • <210> 417 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 417 ttaagcccac agggaacaag   20
  • <210> 418 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 418 tgtcagacct tggccttttc   20
  • <210> 419 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 419 tcttctgaaa aatggaggaa gtc   23
  • <210> 420 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 420 gctcttcctg gggaagtctc   20
  • <210> 421 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 421 cagtttttga ctgccactgc   20
  • <210> 422 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 422 tccatgctcg acactattct g   21
  • <210> 423 <211> 26 <212> DNA <213> Homo sapiens
  • <400> 423 ttctacttta catacaaaag gcactc   26
  • <210> 424 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 424 agttgggctt agcctggatg   20
  • <210> 425 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 425 agtatcacgt ccatgttgga g   21
  • <210> 426 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 426 caatgtttgc tttgaaaaag g   21
  • <210> 427 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 427 tgagcaaaac ctgtggaatg   20
  • <210> 428 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 428 tttgctggtg ctgtctatgg   20
  • <210> 429 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 429 ggatgtgcaa aatgttcttc tg   22
  • <210> 430 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 430 gggagcaggt gttattgatt g 21
  • <210> 431 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 431 ggtgaggagt tttcccaagc   20
  • <210> 432 <211> 26 <212> DNA <213> Homo sapiens
  • <400> 432 agcacagagt ttgttaatgt ttttag   26
  • <210> 433 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 433 gctgacttct attgggagca tac   23
  • <210> 434 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 434 cagaggtatg gtttgggtct c 21
  • <210> 435 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 435 tgggggtcta ggactatgga g 21
  • <210> 436 <211> 26 <212> DNA <213> Homo sapiens
  • <400> 436 gctgtgtttt cttaatttcc tgtatg   26
  • <210> 437 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 437 cagcctcctg cagactttg   19
  • <210> 438 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 438 cattttggga aaggaggttc 20
  • <210> 439 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 439 cggtcagtat gacggtaggg   20
  • <210> 440 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 440 aggtcatgaa tgggatcctg   20
  • <210> 441 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 441 ggcgctaatc gtactgaaac   20
  • <210> 442 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 442 tatggtggcc atggagactg   20
  • <210> 443 <211> 19 <212> DNA <213> Homo sapiens
  • <400> 443 aggagccctc ctttgattg   19
  • <210> 444 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 444 ggccagtggt atctgctgac   20
  • <210> 445 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 445 aagacaaaat cccaaataaa gcag   24
  • <210> 446 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 446 attggtttga gtgccctttg   20
  • <210> 447 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 447 aaaatgcttt gcactgactc tg   22
  • <210> 448 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 448 ttcatcttta ttgcccctat atctg   25
  • <210> 449 <211> 26 <212> DNA <213> Homo sapiens
  • <400> 449 ttaaagatta taccaagtca gtggtc   26
  • <210> 450 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 450 catgtggttt cttgcctttg   20
  • <210> 451 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 451 aagcataggc tcagcatact acac   24
  • <210> 452 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 452 cccatcaact accatgtgac tg   22
  • <210> 453 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 453 ggtcctgttg tcagtttttc ag   22
  • <210> 454 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 454 ggtcctgggg tgctcctaga   20
  • <210> 455 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 455 tcctcaactg agccaagtag cc   22
  • <210> 456 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 456 tgtgtcctcc atgttctgtt gg   22
  • <210> 457 <211> 18 <212> DNA <213> Homo sapiens
  • <400> 457 tggcccctct gcctagca   18
  • <210> 458 <211> 18 <212> DNA <213> Homo sapiens
  • <400> 458 ccactgctgg gtcctggg   18
  • <210> 459 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 459 gaatagagag cttttcctga gatgc   25
  • <210> 460 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 460 gattcatctt gaagaagttg atgg   24
  • <210> 461 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 461 acttgatgcc cccaagaatc   20
  • <210> 462 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 462 ctcaagaagc agaaagggaa g   21
  • <210> 463 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 463 tctacagagt tccctgtttg c   21
  • <210> 464 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 464 gctgtggatc ttagggacct c   21
  • <210> 465 <211> 26 <212> DNA <213> Homo sapiens
  • <400> 465 aaaaagcatt tctgatatgg ataaag 26
  • <210> 466 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 466 tcgaagtatg ttgctatcct ctg   23
  • <210> 467 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 467 aaaataataa gcatcagcat ttgac   25
  • <210> 468 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 468 ttattccaga cgcatttcca c   21
  • <210> 469 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 469 tttgagtcta tcgagtgtgt gc 22
  • <210> 470 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 470 ttcctgtttt tcgtttggtt g   21
  • <210> 471 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 471 tgaattttcc ttttggggaa g   21
  • <210> 472 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 472 tggatcaaat ccaaataaag taagg   25
  • <210> 473 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 473 ttgctttttc tgtaaatcat ctgtg   25
  • <210> 474 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 474 tatttcattt atttatgtgg ac   22
  • <210> 475 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 475 gaagttaagg cagtgtttta gatgg   25
  • <210> 476 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 476 accagtaata tccactttct ttctg   25
  • <210> 477 <211> 24 <212> DNA <213> Homo sapiens
  • <400> 477 tttattggat ttcaaaaatg agtg   24
  • <210> 478 <211> 25 <212> DNA <213> Homo sapiens
  • <400> 478 tctcatgtga gaaagagatt agcag   25
  • <210> 479 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 479 tggctttcag tagttttcat gg   22
  • <210> 480 <211> 18 <212> DNA <213> Homo sapiens
  • <400> 480 catgtgatgg cgtgatcc   18
  • <210> 481 <211> 22 <212> DNA <213> Homo sapiens
  • <400> 481 aggaatacac aaacaccgac ag   22
  • <210> 482 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 482 tgcaccctgt tttcttttct c   21
  • <210> 483 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 483 tggacaagta atggttttct ctg   23
  • <210> 484 <211> 21 <212> DNA <213> Homo sapiens
  • <400> 484 tgacatttga gcaaagacct g   21
  • <210> 485 <211> 20 <212> DNA <213> Homo sapiens
  • <400> 485 tttgttttgt tttgtttttt   20
  • <210> 486 <211> 27 <212> DNA <213> Homo sapiens
  • <400> 486 ttacttatag gtttcaggag atgtgtt   27
  • <210> 487 <211> 23 <212> DNA <213> Homo sapiens
  • <400> 487 gggtctttcg aatgtatgca atg   23

Claims (5)

  1. A method for detecting a mutated PIK3CA polynucleotide, comprising: amplifying a PIK3CA polynucleotide; and sequencing the polynucleotide amplified in the amplification step to detect the presence of a mutation in the polynucleotide amplified in the amplification step, wherein the mutation is at least one mutation selected from the group consisting of C112T, G113A, G263A, C311G, G317T, G323C, del332-334, G353A, G365A, C370A, T1035A, G1048C, T1132C, T1258C, G1357C, C1616G, G1624A, A1625G, A1625T, G1633A, A1634G, G1635T, C1636A, A1637C, C1981A, A2102C, G2702T, T2725C, T3022C, A3073G, C3074A, G3129T, C3139T, A3140G, A3140T, G3145A in comparison with a wild type PIK3CA polynucleotide, the wild type PIK3CA polynucleotide having a nucleotide sequence of SEQ ID NO.1.
  2. A method for detecting a mutated PIK3CA polynucleotide, the method comprising detecting the presence of the mutated PIK3CA polynucleotide according to claim 1 in a sample obtained from a subject.
  3. The method according to claim 2, wherein the sample comprises a genomic DNA of a tumor cell.
  4. The method according to claim 2 or 3, wherein the sample is a colorectal tissue, brain tissue, gastric tissue, breast tissue, lung tissue, blood, serum, plasma, sputum, saliva, urine, stool, or nipple aspirate.
  5. The method according to any of claims 2 to 4, wherein the subject is a cancer patient.
HK42020006177.8A 2004-03-02 2020-04-20 Mutations of the pik3ca gene in human cancers HK40016239B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US54888604 2004-03-02

Publications (2)

Publication Number Publication Date
HK40016239A HK40016239A (en) 2020-09-11
HK40016239B true HK40016239B (en) 2022-02-18

Family

ID=

Similar Documents

Publication Publication Date Title
US10787713B2 (en) Mutations of the PIK3CA gene in human cancers
HK40016239B (en) Mutations of the pik3ca gene in human cancers
HK40016239A (en) Mutations of the pik3ca gene in human cancers