HK40016239B - Mutations of the pik3ca gene in human cancers - Google Patents
Mutations of the pik3ca gene in human cancers Download PDFInfo
- Publication number
- HK40016239B HK40016239B HK42020006177.8A HK42020006177A HK40016239B HK 40016239 B HK40016239 B HK 40016239B HK 42020006177 A HK42020006177 A HK 42020006177A HK 40016239 B HK40016239 B HK 40016239B
- Authority
- HK
- Hong Kong
- Prior art keywords
- dna
- homo sapiens
- mutations
- pik3ca
- exon
- Prior art date
Links
Description
'The invention relates to the fields of diagnostic tests and therapeutic methods for cancer.
PI3Ks are lipid kinases that function as signal transducers downstream of cell surface receptors and mediate pathways important for cell growth, proliferation, adhesion, survival and motility (1, 2). Although increased PI3K activity has been observed in marry colorectal and other tumors (3, 4), no intragenic mutations of PI3K have been identified.
Members of the PIK3 pathway have been previously reported to be altered in cancers, for example, the PTEN tumor suppressor gene (75, 76), whose function is to reverse the phosphorylation mediated by PI3Ks (77, IS). Reduplication or amplification of the chromosomal regions containing PIK3CA and AKT2 has been reported in some human cancers (2, 19, 20), but the genes that are the targets of such large-scale genetic events have not been and cannot easily be defined.
Philip et al., Cancer Res 2001 Oct 15; 61(20): 7426-7429 discloses the detection of nucleotide mutations in the p85α subunit of PI3K but there is no reference to PIK3CA.
In a first embodiment a method is provided for detecting a mutated PIK3CA polynucleotide in accordance with claim 1.
In a second embodiment of the invention a method is provided for detecting a mutated PIK3CA polynucleotide in accordance with claim 2.
- Fig. 1. Detection of mutations in of PIK3CA, Representative examples of mutations in exons 9 and 20. In each case, the top sequence chromatogram was obtained from normal tissue and the three lower sequence chromatograms from the indicated tumors, Arrows indicate the location of missense mutations. The nucleotide and amino acid alterations are indicated above the arrow.
- Fig. 2, Distribution of mutations in PIK3CA. Arrows indicate the location of missense mutations, and boxes represent functional domains (p85BD, p85 binding domain; RBD, Ras binding domain; C2 domain; Helical domain; Kinase domain). The percentage of mutations detected within each region in cancers is indicated below.
- Figs. 3A-3C. Increased lipid kinase activity of mutant p110α. NIH3T3 cells were transfected with empty vector or with vector constructs containing either wild-type p110α or mutant p110α (H1047R) as indicated above the lanes. Immunoprecipitations were performed either with control IgG or anti-p85 polyclonal antibodies. (Fig. 3A) Half of the immunoprecipitates were subjected to a PI3-kinase assay using phosphatidylinositol as a substrate. "PI3P" indicates the position of PI-3-phosphate determined with standard phosphatidyl markers and "Ori" indicates the origin. (Fig. 3B) The other half of the immunoprecipitates was analyzed by western blotting with anti-p110α antibody. (Fig. 3C) Cell lysates from transfected cells contained similar amounts of total protein as determined by western blotting using an anti-α-tubulin antibody. Identical results to those shown in this figure were observed in three independent transfection experiments.
The clustering of mutations within PIK3CA make it an excellent marker for early detection or for following disease progression. Testing focused in the clustered regions will yield most of the mutant alleles.
The human PIK3CA coding sequence is reported in the literature and is shown in SEQ ID NO: 1. This is the sequence of one particular individual in the population of humans. Humans vary from one to another in their gene sequences. These variations are very minimal, sometimes occurring at a frequency of about 1 to 10 nucleotides per gene. Different forms of any particular gene exist within the human population. These different forms are called allelic variants. Allelic variants often do not change the amino acid sequence of the encoded protein; such variants are termed synonymous. Even if they do change the encoded amino acid (non-synonymous), the function of the protein is not typically affected. Such changes are evolutionarily or functionally neutral. When human PIK3CA is referred to in the present application all allelic variants are intended to be encompassed by the term. The sequence of SEQ ID NO: 1 is provided merely as a representative example of a wild-type human sequence. The invention is not limited to this single allelic form of PIK3CA. For purposes of determining a mutation, PIK3CA sequences determined in a test sample can be compared to a sequence determined in a different tissue of the human. A difference in the sequence in the two tissues indicates a somatic mutation. Alternatively, the sequence determined in a PIK3CA gene in a test sample can be compared to the sequence of SEQ ID NO: 1. A difference between the test sample sequence and SEQ ID NO: 1 can be identified as a mutation. Tissues suspected of being cancerous can be tested, as can body samples that may be expected to contain sloughed-off cells from tumors or cells of cancers. Suitable body samples for testing include blood, serum, plasma, sputum, urine, stool, nipple aspirate, saliva, and cerebrospinal fluid.
Mutations in PIK3CA cluster in exons 9 (SEQ ID NO: 4) and 20 (SEQ ID NO: 5). Other mutations occur, but these two exons appear to be the hotspots for mutations. Many mutations occur in PIK3CA's helical domain (nt 1567-2124 of SEQ ID NO: 2) and in its kinase domain (nt 2095-3096 of SEQ ID NO: 2). Fewer occur in PIK3CA's P85BD domain (nt 103-335 of SEQ ID NO: 2). Mutations have been found in exons 1, 2, 4, 5, 7, 9, 13, 18, and 20. Any combination of these exons can be tested, optionally in conjunction with testing other exons. Testing for mutations can be done along the whole coding sequence or can be focused in the areas where mutations have been found to cluster. Particular hotspots of mutations occur at nucleotide positions 1624, 1633, 1636, and 3140 of PIK3CA coding sequence.
PIK3CA mutations have been found in a variety of different types of tumors. Thus any of a variety of tumors can be tested for PIK3CA mutations. These tissues include, without limitation: colorectal tissue, brain tissue, gastric tissue, breast tissue, and lung tissue.
Any type of intragenic mutation can be detected. These include substitution mutations, deletion mutations, and insertion mutations. The size of the mutations is likely to be small, on the order of from 1 to 3 nucleotides. Mutations which can be detected include, but are not limited to G1624A, G1633A, C1636A, A3140G, G113A, T1258C, G3129T, C3139T, and G2702T. Any combination of these mutations can be tested.
The mutations that are found in PIK3CA appear to be activating mutations. Thus therapeutic regimens involving inhibition of p110α activity or expression can be used to inhibit progression of a tumor in a human. Inhibitory molecules which can be used include antisense oligonucleotides or antisense constructs, a molecule comprising an antibody binding region, and siRNA molecules. Molecules comprising an antibody binding region can be full antibodies, single chain variable regions, antibody fragments, antibody conjugates, etc. The antibody binding regions may but need not bind to epitopes contained within the kinase domain (nt 2095-3096 of SEQ ID NO: 2) of PIK3CA, the helical domain (nt 1567-2124 of SEQ ID NO: 2) of PIK3CA, or the P85BD domain (nt 103-335 of SEQ ID NO: 2) of PIK3CA.
Antisense constructs, antisense oligonucleotides, RNA interference constructs or siRNA duplex RNA molecules can be used to interfere with expression of PIK3CA. Typically at least 15, 17, 19, or 21 nucleotides of the complement of PIK3CA mRNA sequence are sufficient for an antisense molecule. Typically at least 19, 21, 22, or 23 nucleotides of PIK3CA are sufficient for an RNA interference molecule. Preferably an RNA interference molecule will have a 2 nucleotide 3' overhang. If the RNA interference molecule is expressed in a cell from a construct, for example from a hairpin molecule or from an inverted repeat of the desired PIK3CA sequence, then the endogenous cellular machinery will create the overhangs. siRNA molecules can be prepared by chemical synthesis, in vitro transcription, or digestion of long dsRNA by Rnase III or Dicer. These can be introduced into cells by transfection, electroporation, or other methods known in the art. See Hannon, GJ, 2002, RNA Interference, Nature 418: 244-251; Bernstein E et al., 2002, The rest is silence. RNA 7: 1509-1521; Hutvagner G et al., RNAi: Nature abhors a double-strand. Curr. Opin. Genetics & Development 12: 225-232; Brummelkamp, 2002, A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550-553; Lee NS, Dohjima T, Bauer G, Li H, Li M-J, Ehsani A, Salvaterra P, and Rossi J. (2002). Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnol. 20:500-505; Miyagishi M, and Taira K. (2002). U6-promoter-driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells. Nature Biotechnol. 20:497-500; Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, and Conklin DS. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes & Dev. 16:948-958; Paul CP, Good PD, Winer I, and Engelke DR. (2002). Effective expression of small interfering RNA in human cells. Nature Biotechnol. 20:505-508; Sui G, Soohoo C, Affar E-B, Gay F, Shi Y, Forrester WC, and Shi Y. (2002). A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99(6):5515-5520; Yu J-Y, DeRuiter SL, and Turner DL. (2002). RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 99(9):6047-6052.
Antisense or RNA interference molecules can be delivered in vitro to cells or in vivo, e.g., to tumors of a mammal. Typical delivery means known in the art can be used. For example, delivery to a tumor can be accomplished by intratumoral injections. Other modes of delivery can be used without limitation, including: intravenous, intramuscular, intraperitoneal, intraarterial, local delivery during surgery, endoscopic, subcutaneous, and per os. In a mouse model, the antisense or RNA interference can be adminstered to a tumor cell in vitro, and the tumor cell can be subsequently administered to a mouse. Vectors can be selected for desirable properties for any particular application. Vectors can be viral or plasmid. Adenoviral vectors are useful in this regard. Tissue-specific, cell-type specific, or otherwise regulatable promoters can be used to control the transcription of the inhibitory polynucleotide molecules. Non-viral carriers such as liposomes or nanospheres can also be used.
Using the p110α protein according to the invention, one of ordinary skill in the art can readily generate antibodies which specifically bind to the proteins. Such antibodies can be monoclonal or polyclonal. They can be chimeric, humanized, or totally human. Any functional fragment or derivative of an antibody can be used including Fab, Fab', Fab2, Fab'2, and single chain variable regions. So long as the fragment or derivative retains specificity of binding for the endothelial marker protein it can be used. Antibodies can be tested for specificity of binding by comparing binding to appropriate antigen to binding to irrelevant antigen or antigen mixture under a given set of conditions. If the antibody binds to the appropriate antigen at least 2, 5, 7, and preferably 10 times more than to irrelevant antigen or antigen mixture then it is considered to be specific.
Techniques for making such partially to fully human antibodies are known in the art and any such techniques can be used. According to one particularly preferred embodiment, fully human antibody sequences are made in a transgenic mouse which has been engineered to express human heavy and light chain antibody genes. Multiple strains of such transgenic mice have been made which can produce different classes of antibodies. B cells from transgenic mice which are producing a desirable antibody can be fused to make hybridoma cell lines for continuous production of the desired antibody. See for example, Nina D. Russel, Jose R. F. Corvalan, Michael L. Gallo, C. Geoffrey Davis, Liise-Anne Pirofski. Production of Protective Human Antipneumococcal Antibodies by Transgenic Mice with Human Immunoglobulin Loci Infection and Immunity April 2000, p. 1820-1826; Michael L. Gallo, Vladimir E. Ivanov, Aya Jakobovits, and C. Geoffrey Davis. The human immunoglobulin loci introduced into mice: V (D) and J gene segment usage similar to that of adult humans European Journal of Immunology 30: 534-540, 2000; Larry L. Green. Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies Journal of Immunological Methods 231 11-23, 1999; Yang X-D, Corvalan JRF, Wang P, Roy CM-N and Davis CG. Fully Human Anti-interleukin-8 Monoclonal Antibodies: Potential Therapeutics for the Treatment of Inflammatory Disease States. Journal of Leukocyte Biology Vol. 66, pp401-410 (1999); Yang X-D, Jia X-C, Corvalan JRF, Wang P, CG Davis and Jakobovits A. Eradication of Established Tumors by a Fully Human Monoclonal Antibody to the Epidermal Growth Factor Receptor without Concomitant Chemotherapy. Cancer Research Vol. 59, Number 6, pp1236-1243 (1999) ; Jakobovits A. Production and selection of antigen-specific fully human monoclonal antibodies from mice engineered with human Ig loci. Advanced Drug Delivery Reviews Vol. 31, pp: 33-42 (1998); Green L and Jakobovits A. Regulation of B cell development by variable gene complexity in mice reconstituted with human immunoglobulin yeast artificial chromosomes. J. Exp. Med. Vol. 188, Number 3, pp: 483-495 (1998); Jakobovits A. The long-awaited magic bullets: therapeutic human monoclonal antibodies from transgenic mice. Exp. Opin. Invest. Drugs Vol. 7(4), pp : 607-614 (1998) ; Tsuda H, Maynard-Currie K, Reid L, Yoshida T, Edamura K, Maeda N, Smithies O, Jakobovits A. Inactivation of Mouse HPRT locus by a 203-bp retrotransposon insertion and a 55-kb gene-targeted deletion: establishment of new HPRT-Deficient mouse embryonic stem cell lines. Genomics Vol. 42, pp: 413-421 (1997) ; Sherman-Gold, R. Monoclonal Antibodies: The Evolution from '80s Magic Bullets To Mature, Mainstream Applications as Clinical Therapeutics. Genetic Engineering News Vol. 17, Number 14 (August 1997); Mendez M, Green L, Corvalan J, Jia X-C, Maynard-Currie C, Yang X-d, Gallo M, Louie D, Lee D, Erickson K, Luna J, Roy C, Abderrahim H, Kirschenbaum F, Noguchi M, Smith D, Fukushima A, Hales J, Finer M, Davis C, Zsebo K, Jakobovits A. Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nature Genetics Vol. 15, pp: 146-156 (1997); Jakobovits A. Mice engineered with human immunoglobulin YACs: A new technology for production of fully human antibodies for autoimmunity therapy. Weir's Handbook of Experimental Immunology, The Integrated Immune System Vol. IV, pp: 194.1-194.7 (1996) ; Jakobovits A. Production of fully human antibodies by transgenic mice. Current Opinion in Biotechnology Vol. 6, No. 5, pp: 561-566 (1995) ; Mendez M, Abderrahim H, Noguchi M, David N, Hardy M, Green L, Tsuda H, Yoast S, Maynard-Currie C, Garza D, Gemmill R, Jakobovits A, Klapholz S. Analysis of the structural integrity of YACs comprising human immunoglobulin genes in yeast and in embryonic stem cells. Genomics Vol. 26, pp: 294-307 (1995); Jakobovits A. YAC Vectors: Humanizing the mouse genome. Current Biology Vol. 4, No. 8, pp: 761-763 (1994); Arbones M, Ord D, Ley K, Ratech H, Maynard-Curry K, Otten G, Capon D, Tedder T. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity Vol. 1, No. 4, pp: 247-260 (1994); Green L, Hardy M, Maynard-Curry K, Tsuda H, Louie D, Mendez M, Abderrahim H, Noguchi M, Smith D, Zeng Y, et. al. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nature Genetics Vol. 7, No. 1, pp: 13-21 (1994); Jakobovits A, Moore A, Green L, Vergara G, Maynard-Curry K, Austin H, Klapholz S. Germ-line transmission and expression of a human-derived yeast artificial chromosome. Nature Vol. 362, No. 6417, pp: 255-258 (1993) ; Jakobovits A, Vergara G, Kennedy J, Hales J, McGuinness R, Casentini-Borocz D, Brenner D, Otten G. Analysis of homozygous mutant chimeric mice: deletion of the immunoglobulin heavy-chain joining region blocks B-cell development and antibody production. Proceedings of the National Academy of Sciences USA Vol. 90, No. 6, pp: 2551-2555 (1993); Kucherlapati et al., U.S. 6,1075,181 .
Antibodies can also be made using phage display techniques. Such techniques can be used to isolate an initial antibody or to generate variants with altered specificity or avidity characteristics. Single chain Fv can also be used as is convenient. They can be made from vaccinated transgenic mice, if desired. Antibodies can be produced in cell culture, in phage, or in various animals, including but not limited to cows, rabbits, goats, mice, rats, hamsters, guinea pigs, sheep, dogs, cats, monkeys, chimpanzees, apes.
Antibodies can be labeled with a detectable moiety such as a radioactive atom, a chromophore, a fluorophore, or the like. Such labeled antibodies can be used for diagnostic techniques, either in vivo, or in an isolated test sample. Antibodies can also be conjugated, for example, to a pharmaceutical agent, such as chemotherapeutic drug or a toxin. They can be linked to a cytokine, to a ligand, to another antibody. Suitable agents for coupling to antibodies to achieve an anti-tumor effect include cytokines, such as interleukin 2 (IL-2) and Tumor Necrosis Factor (TNF); photosensitizers, for use in photodynamic therapy, including aluminum (III) phthalocyanine tetrasulfonate, hematoporphyrin, and phthalocyanine; radionuclides, such as iodine-131 (131I), yttrium-90 (90Y), bismuth-212 (212Bi), bismuth-213 (213Bi), technetium-99m (99mTc), rhenium-186 (186Re), and rhenium-188 (188Re); antibiotics, such as doxorubicin, adriamycin, daunorubicin, methotrexate, daunomycin, neocarzinostatin, and carboplatin; bacterial, plant, and other toxins, such as diphtheria toxin, pseudomonas exotoxin A, staphylococcal enterotoxin A, abrin-A toxin, ricin A (deglycosylated ricin A and native ricin A), TGF-alpha toxin, cytotoxin from chinese cobra (naja naja atra), and gelonin (a plant toxin); ribosome inactivating proteins from plants, bacteria and fungi, such as restrictocin (a ribosome inactivating protein produced by Aspergillus restrictus), saporin (a ribosome inactivating protein from Saponaria officinalis), and RNase; tyrosine kinase inhibitors; ly207702 (a difluorinated purine nucleoside); liposomes containing antitumor agents (e.g., antisense oligonucleotides, plasmids which encode for toxins, methotrexate, etc.); and other antibodies or antibody fragments, such as F(ab).
Those of skill in the art will readily understand and be able to make such antibody derivatives, as they are well known in the art. The antibodies may be cytotoxic on their own, or they may be used to deliver cytotoxic agents to particular locations in the body. The antibodies can be administered to individuals in need thereof as a form of passive immunization.
Given the success of small molecule protein kinase inhibitors, one can develop specific or non-specific inhibitors of p110α for treatment of the large number of patients with these mutations or cancers generally. It is clearly possible to develop broad-spectrum PI3K inhibitors, as documented by studies of LY294002 and wortmannin (2, 21,22). Our data suggest that the development of more specific inhibitors that target p110α but not other PI3Ks would be worthwhile.
Candidate chemotherapeutic agents can be identified as agents which inhibit p110α activity or expression. Test compounds can be synthetic or naturally occurring. They can be previously identified to have physiological activity or not. Tests on candidate chemotherapeutic agents can be run in cell-free systems or in whole cells. p110α activity can be tested by any means known in the art. These include methods taught in references 2, 22 and in Truitt et al., J. Exp. Med., 179, 1071-1076 (1994). Expression can be monitored by determining PI3KCA protein or mRNA. Antibody methods such as western blotting can be used to determine protein. Northern blotting can be used to measure mRNA. Other methods can be used without limitation. When testing for chemotherapeutic agents, the p110α used in the assay can be a wild-type or an activated form. The activated form may contain a substitution mutation selected from the group consisting of E542K, E545K, Q546K, and H1047R. Moreover, inhibitors can be tested to determine their specificity for either p110α or an activated form of p110α. Comparative tests can be run against similar enzymes including PIK3CB, PIK3CG, PIK3C2A, PIK3C2B, PIK3C2G, PIK3C3, A-TM, ATR, FRAP1, LAT1-3TM,SMG1, PRKDC, and TRRAP to determine the relative specificity for the p110α enzyme.
Once a non-synonymous, intragenic mutation in a PIK3CA coding sequence is identified in a test tissue of a patient, that information can be used to make therapeutic decisions. Patients with such mutations are good candidates for therapy with a p110α inhibitor. Such inhibitors can be specific or general for the family of inhibitors. Such inhibitors include LY294002 and wortmannin. Such inhibitors further include molecules comprising an antibody binding region specific for p110α. Such molecules are discussed above.
Sets of primers for amplifying and/or sequencing PIK3CA can be provided in kits or assembled from components. Useful sets include pairs of forward and reverse primers optionally teamed with sequencing primers. The forward primers are shown in SEQ ID NO: 6 to 158. The reverse primers are shown in SEQ ID NO: 159 to 310. The sequencing primers are shown in : SEQ ID NO: 311 to 461. Pairs or triplets or combinations of these pairs or triplets can be packaged and used together to amplify and/or sequence parts of the PIK3CA gene. Pairs can be packaged in single or divided containers. Instructions for using the primers according to the methods of the present invention can be provided in any medium which is convenient, including paper, electronic, or a world-wide web address.
To evaluate whether PI3Ks is genetically implicated in tumorigenesis, we directly examined the DNA sequences of members of this gene family in colorectal cancers.
PI3K catalytic subunits are divided into three major classes depending on their substrate specificity (5). Additionally, a set of more distantly related proteins, including members of the mTOR family, constitute a fourth class (6). We used Hidden Markov models to identify 15 human genes containing kinase domains related to those of known PI3Ks in the human genome (7). These comprised seven PI3Ks, six members of the mTOR subfamily and two uncharacterized PI3K-like genes (Table 1). Table 1. PI3K genes analyzed
Table 1. PI3K genes analyzed
| hCT1640694 | NM_006218 | p110-alpha | Class IA | |
| hCT7084 | NM_006219 | PIK3C1, p110-beta | Class IA | |
| hCT2292011 | NM_005026 | p110-delta | Class IA | |
| hCT7976 | NM_002649 | PI3CG, P13K-gamma | Class IB | |
| hCT2270768 | NM_002645 | CPK, PI3-K-C2A, PI3K-C2alpha | Class II | |
| hCT7448 | NM_002646 | C2-PI3K, PI3K-C2beta | Class II | |
| hCT1951422 | NM_004570 | PI3K-C2-gamma | Class II | |
| hCT13660 | NM_002647 | Vps34 | Class III | |
| hCT29277 | NM_000051 | AT1, ATA, ATC, ATD, ATE, ATDC | Class IV | |
| hCT1951523 | NM_001184 | FRP1, SCKL, SCKL1 | Class IV | |
| hCT2292935 | NM_004958 | FRAP, MTOR, FRAP2, RAFT1, RAPT1 | Class IV | |
| hCT2273636 | NM_014006 | ATX, LIP, KIAA0421 | Class IV | |
| hCT2257127 | NM_006904 | p350, DNAPK, DNPK1, HYRC1, XRCC7 | Class IV | |
| hCT32594 | NM_003496 | TR-AP, PAF400 | Class IV | |
| none | hCT2257641 | none | Class IV | |
| none | hCT13051 | none | Class IV |
| *PI3K genes are grouped into previously described classes (S3,S4). Class I, II and III comprise PI3K catalytic subunits, while class IV comprises PI3K-like genes including members of the mTOR (target of rapamycin), ATM (ataxia telangiectasia mutated), and DNAPK (DNA-dependent protein kinase) subfamilies, as well as two previously uncharacterized genes. |
We initially examined 111 exons encoding the predicted kinase domains of these genes (Table 2). The exons were polymerase chain reaction (PCR) amplified and directly sequenced from genomic DNA of 35 colorectal cancers (8). Only one of the genes (PIK3CA) contained any somatic (i.e., tumor-specific) mutations. Table 2. Primers used for PCR amplification and sequencing
Table 2. Primers used for PCR amplification and sequencing
| hCT2270768-Ex21 | TTCCAGCCTGGGTAACAAAG | CGTCAGAACAAGACCCTGTG | AAAGGGGAAATGCGTAGGAC |
| hCT2270768-Ex22 | CCTGACCTCAGGTGTTCTGC | CCCGGCCACTAAGTTATTTTTC | TCCCAAAGTGCTGGGATTAC |
| hCT2270768-Ex23 | TGCACATTCTGCACGTGTATC | CTGCCATTAAATGCGTCTTG | CCAGAACTTAAAGTGAAATTTAAAAAG |
| hCT2270768-Ex24 | TCCCAGTTTGTATGCTATTGAGAG | CTTTGGGCCTTTTTCATTCC | GCGAGGCAAAACACAAAGC |
| hCT2270768-Ex25 | TGGAAATTCAAAAGTGTGTGG | TGTCTGGCTTATTTCACACG | TTGGAAATGGCTGTACCTCAG |
| hCT2270768-Ex26 | CACTAATGAACCCCTCAAGACTG | AACTTTTGACAGCCTACTATGTGC | TACTTGAGCAGCCCACAGG |
| hCT2270768-Ex 27- 1 | TCCTTGGCAAAGTGACAATC | GACCATTCATGAAAGAAACAAGC | AAAGGAATGAAAGTGGTTTTTGTC |
| hCT13660-Ex16 | CTCTCACATACAACACCATCTCC | CCATGTACCGGTAACAAAAGAAG | TGCAATGTAATAGTTTTCCAAGG |
| hCT13660-Ex17 | ATGTATCTCATTGAAAACCCAAC | TGAGCTTTCTAGGATCGTACCTG | CAGCAAATGAACTAAGCCACAG |
| hCT13660-Ex18 | TCCCAAAGTGCTGGGATTAC | GCAGGAAGGTCCAACTTGTC | TGCTATACTATTTGCCCACAAAAC |
| hCT13660-Ex19 | CCTATGACATAAATGCCAGTACAAAC | ATCTTCAACTGCGAACATGC | GAATGCATTTATTCAGAGATGAGG |
| hCT13660-Ex20 | TCTTTTGTTCAGTCAGCATCTCTC | AAGCATCAATGACTACTTTAATCAAC | TGCTAGACACTTGCTGGTCAC |
| hCT13660-Ex21 | TTGAGAATTCAGATGAGAAACCAG | TCCCAAAGTGCTGGGATTAC | TTGATATTAAAGTTGCACAAACTGC |
| hCT13660-Ex22 | GAAGGCCACTCTCAAACCTG | TTGTTGCCTTTGTCATTTTG | TCAATTGTGTGACATATCACCTACC |
| hCT13660-Ex23 | TCAAGGCTTGCATTTCATTG | ATGTGACTGTGGGCAGGAAC | TCACTGTAGAAATCCAAGTACCAC |
| hCT13660-Ex24 | TTCCACACTCCAAAGAATGC | GCTGGTGAGATGTCAAAACG | TCTGCATCAGTTTGATTCTGC |
| hCT13660-Ex 25- 1 | AATTGCAATCCTCTTGGTAGC | TCAACATATTACTTCCTCCAGAACTC | AATGCACTTTTTATTTTATTAG |
| hCT32594-Ex 66- 2 | GCCAAGACCAAGCAACTCC | TTCTCCCATGTCAGGGAATC | GAAAAGTGCCGGTTCTTGAG |
| hCT32594-Ex 67- 1 | ATAAACGACCGCTGGCCTAC | GACCCTCAAAGGCTAACGTG | GCCTACACAGTCCGTTTTCC |
| hCT32594-Ex 67- 2 | GTACATCCGGGGACACAATG | TCCCTGGTCAGCACAGACTAC | AGAGGAGCGTGTGTTGCAG |
| hCT32594-Ex68 | ACCGGGTTCTTCCAGCTAAG | AGCTGTCTCATTTCCACCATC | ACTCTGACGGTGGAGCTGAG |
| hCT32594-Ex 69- 1 | CAATGCGTGCGTTAAATCTG | CGCGTCGTTTATGTCAAATC | GCTCTTGGTGCTAAGTTAAAGAGG |
| hCT32594-Ex 69- 2 | CCCAATGCCACGGACTAC | CGCGTCGTTTATGTCAAATC | ATCCAGCTGGCTCTGATAGG |
| hCT32594-Ex70 | ATCCAGCTGGCTCTGATAGG | CATAACACACAGGGGTGCTG | TGAACAGCCAGATCCTCTCC |
| hCT32594-Ex71 | CTGGTGCTGAAACTCGACTG | GAACTGGGCGAGGTTGTG | GTCCCACCTTGTTAGGAAGC |
| hCT32594-Ex 72- 1 | GTCTCGTTCTCTCCCTCACG | TCCCTTTCTTACACGCAAAC | TGGCATTCTGAAAACGGTTC |
| hCT32594-Ex 72- 2 | CACAACCTCGCCCAGTTC | CAGTTCCGCCTGTACATTCAC | GCAAACAGCCTGGACAATC |
| hCT7976-Ex5 | AGCATCACCCTCAGAGCATAC | AGCGCTCCTGCTTTCAGTC | CACATATTTCTGTCCCCTGTTG |
| hCT7976-Ex6 | TGCCATACCTCTTAGGCACTTC | GTCTTGGCGCAGATCATCAC | TGTGGTTCTTTGGAGCACAG |
| hCT7976-Ex7 | CGACAGAGCAAGATTCCATC | TTTTGTCACCAGTTGAAATGC | CCAAGGTACATTTCGGAAAAC |
| hCT7976-Ex8 | AGATTGCCATCTGAGGAAGG | GACTGGGAAAAAGCATGAGC | ACCAGCCCTTTCCTCTTGTC |
| hCT7976-Ex9 | GCATGGAGAGGAAGTGAACC | CGGTGATCATAATATTGTCATTGTG | TTCTTCCTCATGCCATTGTG |
| hCT7976-Ex10 | TGGCCAGAGAGTTTGATTTATG | GGAAGTGTGGGCTTGTCTTC | GTGGCATCTGGCTGTCATC |
| hCT7976-Ex 11-1 | CCCTCAATCTCTTGGGAAAG | TGCACAGTCCATCCTTTGTC | CAATTAGTTTTCCTTGAGCACTCC |
| hCT7976-Ex 11- 2 | TGGTTTCTTCTCATGGACAGG | AATGCCAGCTTTCACAATGTC | TCTTCTTTATCCAGGACATCTGTG |
| hCT7448-Ex21 | GGGTGTCCACACTTCTCAGG | GGCCAAGACCACATGGTAAG | CCTGGGAGAGGTCTGGTTC |
| hCT7448-Ex22 | CCGGAAGAAACAATGAGCAG | TCCTACATTAAGACAGCATGGAAC | GGCAGCATCTTGGTCTGAAG |
| hCT7448-Ex23 | GGTGTGAGCTGAGTGAGCAG | TGCCTCCCTTTTAAGGCTATC | GAGCACTTGGGAGACCTGAG |
| hCT7448-Ex24 | GTGGGAATGACCTTCCTTTC | AGGTCCTTCTGCCAACAAAG | AGGGAAGCATGAGCACAGTC |
| hCT7448-Ex25 | GGATGAACAGGCAGATGTGAG | CGTCTTCTCTCCTCCAATGC | TGAGTTCTGTCTGGCTGTGG |
| hCT7448-Ex26 | AGCCCCTTCTATCCAGTGTG | GGTATTCAGTTGGGGCTCAG | TGATGAGGGATGAGGGAAAC |
| hCT7448-Ex27 | TGCCCACAGCATCTGTCTAC | TGTATCCACGTGGTCAGCTC | AGGGTTAGGGAGCCTAGCTG |
| hCT7448-Ex 28- 1 | ATTGTGTGCCAGTCATTTGC | ACAGGACGCTCGGTCAAC | TCCTTGGAACACCCCTGTC |
| hCT1951523-Ex 39- 2 | TTCCACATTAAGCATGAGCAC | TTGCCATCAGTACAAATGAGTTTAG | CAGTCATGATACCTACACTTCCATC |
| hCT1951523-Ex40 | GACAGTCATTCTTTTCATAGGTCATAG | TTCCTGCTTTTTAAGAGTGATCTG | CAACTCTGAAATAAAAGCAATCTGG |
| hCT1951523-Ex41 | CCACATAGTAAGCCTTCAATGAC | AGGAAGGAAGGGATGGAAAC | TTCTTTGGTTATGAAATGAACAATC |
| hCT1951523-Ex42 | TGAAAAATGTTCCTTTATTCTTG | AGAAACCACTCATGAAAA | TTGAATAAAAGTAGATGTTTCTTGTCC |
| hCT1951523-Ex43 | TCTGAGAACATTCCCTGATCC | CGCATTACTACATGATCCACTG | TACCAAGAATATAATACGTTGTTATGG |
| hCT2257127-Ex76 | TCAGCTCTCTAATCCTGAACTGC | TGTCACAGAAAGCATGAGACC | CGGCTTCTGGCACATAAAAC |
| hCT2257127-Ex 77- 1 | AGCAGAGAAGAAACATATACCAT | AGAAATAACTGTCAATATCCCAGTATCAC | CCATTGAGCACTCCATTCATTAC |
| hCT2257127-Ex 77- 2 | CATTTTGGGAAAGGAGGTTC | TCATTAAACATTTAGTAATGTGTGCTC | CCCTGGGAATCTGAAAGAATG |
| hCT2257127-Ex78 | ATTACAGGCGTGAGCCACTG | AGGCAACAGGGCAAGACTC | TGGGCCGTTGTCTCATATAC |
| hCT2257127-Ex 79- 1 | TTTGGCACTGTCTTCAGAGG | CCTGAAAGGGAGAATAAAAGG | CACTCTGGCTTTTCCCTCTG |
| hCT2257127-Ex 79- 2 | AGAGGGAACACCCTTTCCTG | CCTGAAAGGGAGAATAAAAGG | AGGTCATGAATGGGATCCTG |
| hCT2257127-Ex80 | TATAGCGTTGTGCCCATGAC | TATTGACCCAGCCAGCAGAC | CATATTGCTTGGCGTCCAC |
| hCT2257127-Ex81 | TCCTGCCTCTTTGCTATTTTTCAATG | TATATTGAGACTCAAATATCGA | TCTTGGTGATCTTTGCCTTTG |
| hCT2257127-Ex82 | TTGCCTCAGAGAGATCATCAAG | TGATGCATATCAGAGCGTGAG | TCATCAAGATTATTCGATATTTGAGTC |
| hCT2257127-Ex 83-1 | TAGGGGCGCTAATCGTACTG | TTCAATGACCATGACAAAACG | CGAGAAAGTAAAGTGCCTGCTG |
| hCT2257127-Ex 83-2 | TCTGATATGCATCAGCCACTG | TTCAATGACCATGACAAAACG | CGGGATTGGAGACAGACATC |
| hCT2257127-Ex84 | TGATTTCAAGGGAAGCAGAG | TGGTTTTCAAGCAGACAATCC | GAGGATGCTGCCATTTGTG |
| hCT2257127-Ex85 | TGTAGAAAGCAAGGCTGCTC | TCCTCCTCAATGAAAGCAGAG | CATGCTAACAGAGTGTCAAGAGC |
| hCT1951422-Ex19 | ACCCCAAAGTCATCCAAGTG | CAATGTGATCCCAACTGGTC | CGAATTCTTTTTGCCATTTC |
| hCT1951422-Ex20 | AAAGGCTCCAGTTGATGGAC | TTATTGCCAATTGGAGTTTGG | AAAGTCTGCAAGGGGCTATG |
| hCT1951422-Ex21 | CCATTAAAACCACTCTAAGTCAGG | TTCTGTTGGCTTATCATTTTTG | TCAGGCTAGAAATGTATCCAAGG |
| hCT1951422-Ex22 | AAGCCTCCTCCAGAAAAGAAG | CCCAGAAACTAAATAAAATGCAG | AAAGGAAAGGGGTAATCCAG |
| hCT1951422-Ex23 | CCCTCCTGTCCACTGAGATG | AATCAAATTTGTTGCATTAAAAATC | TTTACTTTTTATGATTACCTCTGATGC |
| hCT1951422-Ex24 | TCTCAAGCTGCCTCACAATG | GTTTTCTCATTCCTTTCTCTTCC | AAAGAAAATTCAAATGAAAATAAGTCG |
| hCT1951422-Ex25 | AAAGACATTGCCATGCAAAC | TTTGGGAAAGGGAACACAAG | CATGCAAACTTGGGTCTAGATG |
| hCT1951422-Ex26 | TTGTTGGGCTCCAAATAAAC | GATTTTTCCTTGGAACATCCTC | TTGGCTTTTTCCCCTCATAC |
| hCT13051-Ex5 | CCCTGGAGTGCTTACATGAG | CGGGGATCAGATTTGCTATG | TAAAGCCTTTCCCAGCTCAG |
| hCT13051-Ex6 | GACTTTATAAACACTCGACATTAGAGC | TAGGGGGTCATCCTCAGGTC | CCTGCTGCTTCCACAGGAC |
| hCT13051-Ex7 | ATGATGACCTCTGGCAGGAC | GTCTTCCCCTGCTCAATCAC | CATGGACGTCCTGTGGAAG |
| hCT13051-Ex8 | GAATCAACCGTCAGCGTGTC | GACACGTTGTGGGCCAGCCAGT | GTGTCCCATTCATCCTCACC |
| hCT13051-Ex9 | CTGGCACCGGGGAAAACAGAG | CTGCCGGTTATCTTCGGACACGTT | AACAGAGGAGGCGCTGAAG |
| hCT2282983-Ex40 | TGGACATCGACTACAAGTCTGG | TGAGTGAGGGCAGACAGATG | GCCTCACCCTACCCATCC |
| hCT2282983-Ex41 | TCCTTGGGGTTTTGAAGAAG | TGGCACCTGAACCATGTAAG | AGATTGCTGGGGTTCCTTTC |
| hCT2282983-Ex42 | AAGGCCTTCCAGACTCTTGC | CGTACATGCCGAAGTCTGTC | CCACCTCACTCCATCTCTGG |
| hCT2282983-Ex43 | CCTCTTTGTTTTTCCCTACCG | GCCCTGGTTTTAACCCTTAAC | TGGGGTAAGTTCCCTGAGTG |
| hCT2282983-Ex 44-1 | CTTCCACAGTGGGGGTACAG | CCAGCTCCAGCTTCTGACTC | TACAGAGCCAGGGAGAGTGC |
| hCT2282983-Ex 44-2 | GACACAACGGCAACATTATGCTG | TTGTGTTTTCTTGGAGACAG | TATCATCCACATCGGTCAGC |
| hCT2292935-Ex46 | CATTCCAAAGCATCTGGTTTTAC | CAATGAGCATGGGAGAGATG | TTTGGGACAAGTAATTGTTATTAGC |
| hCT2292935-Ex47 | TTGTGAGGAACGTGTGATTAGG | TGGAGTTTCTGGGACTACAGG | TTGAATGCAGTGGTGCTCTC |
| hCT2292935-Ex48 | CTGGGCAACAGAGCAAGAC | CCTTCTTCAAAGCTGATTCTCTC | TCTGCCTGTGTTCTGAGCTG |
| hCT2292935-Ex49 | TCCCTTCTCCTTTGGCTATG | CGCTCTACAGCCAATCACAG | GAACTCAGCTCTGCCTGGAC |
| hCT2292935-Ex50 | ATAGCACCACTGCCTTCCAG | TGGCATCACAATCAATAGGG | GCGAGACTCGGTCTCAAAAG |
| hCT2292935-Ex51 | TGCAGAAGTGGAGGTGGAG | CTCCAAGGGGGTTAGAGTCC | ATCGTTTGCCAACTCCTAGC |
| hCT2292935-Ex52 | AACCCAAGCTGCTTCCTTTC | CAGGAAACCAGGTCAGAAGTG | AATCAGTGCAGGTGATGCAG |
| hCT2292935-Ex53 | AGTCCTGCCCTGATTCCTTC | TTTTTGCAGAAAGGGGTCTTAC | ACATGGCCTGTGTCTGCTTC |
| hCT2292935-Ex54 | CCCACCCACTTATTCCTGAG | GCCCACCCCACTCTAGAAAC | GACTGGAAGAAAATAACCAAGTTTC |
| hCT2292935-Ex55 | TTTCCCCTTTAGGGTAGGTAGG | TGGAACCTTTTCTGCTCAAAG | GGCAGGCGTTAAAGGAATAG |
| hCT2292935-Ex56 | CGGACATAGAGGAAGGATTGC | AGCTGCATGGTGCCAAAG | AAAAACAGGGCACCCATTG |
| hCT2292935-Ex57 | TGGCCAAACTTTTCAAATCC | ATAACAATGGGCACATGCAG | TTAAGCCCACAGGGAACAAG |
| hCT2292935-Ex 58- 1 | TGGGAGAGCTCAGGGAATAC | GGTCATTCTTCCATCAGCAAG | TGTCAGACCTTGGCCTTTTC |
| hCT2273636-Ex 35- 1 | TCCCAAAGTGCTGGGATTAC | CACACCCACACTCACACAAAG | TCTTCTGAAAAATGGAGGAAGTC |
| hCT2273636-Ex 35- 2 | TTGGCTGCCATGACTAACAC | GGCACTGCAGGCTAATAATG | GCTCTTCCTGGGGAAGTCTC |
| hCT2273636-Ex 36-1 | GCTCTCAGTGTGCCTCATGG | GGGACCTCAAGTCTTTTCCTTC | CAGTTTTTGACTGCCACTGC |
| hCT2273636-Ex 36- 2 | AAGAAACACCCCGGTTCC | GGGACCTCAAGTCTTTTCCTTC | TCCATGCTCGACACTATTCTG |
| hCT2273636-Ex 37- 1 | AAATTTAGTTGAGTAATGAGAGAATGC | GGAAGGGAAGGAGGACAAAC | TTCTACTTTACATACAAAAGGCACTC |
| hCT2273636-Ex 37- 2 | GTAAAATTGGCCCTGCTTTG | CGTCTCAAACTACCAAGTCTGG | AGTTGGGCTTAGCCTGGATG |
| hCT2273636-Ex38 | CATAACCACATGCAGCAACC | CACCCAGTGCTGTTTCAATG | AGTATCACGTCCATGTTGGAG |
| hCT2273636-Ex39 | AATTGGCCTTGGAGACAGAC | CGCCGCATAATGTGTAAAAC | CAATGTTTGCTTTGAAAAAGG |
| hCT2273636-Ex 40-1 | TTCATGTGAGCAGGTATGCTG | TGCCATATTTAACTGCCATTTC | TGAGCAAAACCTGTGGAATG |
| hCT2273636-Ex 40-2 | TTGTGTACGACCCTCTGGTG | TGCCATATTTAACTGCCATTTC | TTTGCTGGTGCTGTCTATGG |
| hCT2273636-Ex41 | TTTGTACAGTGGAGGCAACG | GCAGTCACTGAGACAGCTTTTATC | GGATGTGCAAAATGTTCTTCTG |
| hCT7084-Ex17 | CAGCTGGTTATGTGTGTTTATGG | TAAGCATAGCCTCGGAGAAC | GGGAGCAGGTGTTATTGATTG |
| hCT7084-Ex18 | TGTCCTCATGGTTGCTTTTC | GGACCATTAATAGCTACCTTCCTG | GGTGAGGAGTTTTCCCAAGC |
| hCT7084-Ex19 | CAGGGACATGCTATCCAAAG | AGGCAAGACAACATATTTGAAAG | AGCACAGAGTTTGTTAATGTTTTTAG |
| hCT7084-Ex20 | TGGTGGAACTTGTGTTTTTCC | AAGGGCTATGTGTCATTTTGTTC | GCTGACTTCTATTGGGAGCATAC |
| hCT7084-Ex21 | TCATACGGTTTTGGCAGCTC | CATCAAGCAAGCAAACAAATG | CAGAGGTATGGTTTGGGTCTC |
| hCT7084-Ex22 | ACAGAGGGAGAAGGGCTCAG | AATTCCCCCAAAAGCTTCC | TGGGGGTCTAGGACTATGGAG |
| hCT7084-Ex23 | TGGGACAATTTTCGCAGAAG | TTCCCTCCTGGCTAAGAACC | GCTGTGTTTTCTTAATTTCCTGTATG |
| hCT7084-Ex 24- 1 | ATGAAGCATGCTGCCTGATG | AAAAGCAGAGGGAATCATCG | CAGCCTCCTGCAGACTTTG |
| hCT2257641-Ex 1- 56 | GGGGGCCTTTAGAAGGAAG | TCCCATTCATGACCTGGAAG | CATTTTGGGAAAGGAGGTTC |
| hCT2257641-Ex 1- 57 | TGGAGTTCCTGAGAAATGAGC | GGCCCGCTTTAAGAGATCAG | CGGTCAGTATGACGGTAGGG |
| hCT2257641-Ex 1- 58 | AGAGGGAACACCCTTTCCTG | CATGCCCAAAGTCGATCC | AGGTCATGAATGGGATCCTG |
| hCT2257641-Ex 1-59 | CATGATGTTGGAGCTTACATGC | ACACATCCATGGTGTTGGTG | GGCGCTAATCGTACTGAAAC |
| hCT2257641-Ex 1-60 | CGGGATTGGAGACAGACATC | TGCCACAGCCACATAGTCTC | TATGGTGGCCATGGAGACTG |
| hCT2257641-Ex 1-61 | CATCATGGTACACGCACTCC | TTCTATCTGCAGACTCCCACAG | AGGAGCCCTCCTTTGATTG |
| hCT29277-Ex55 | CTCAATCAGAGCCTGAACCAC | GGAAAAGAAAGCAGGAGAAGC | GGCCAGTGGTATCTGCTGAC |
| hCT29277-Ex56 | CCCGGCCTAAAGTTGTAGTTC | AAATGGAGAAAAGCCTGGTTC | AAGACAAAATCCCAAATAAAGCAG |
| hCT29277-Ex57 | TGGGAGACTGTCAAGAGGTG | AAGCAATCCTCCCACCTTG | ATTGGTTTGAGTGCCCTTTG |
| hCT29277-Ex58 | TTCCTCCAAGGAGCTTTGTC | CCTTCCTTTTTCACTCACACAC | AAAATGCTTTGCACTGACTCTG |
| hCT29277-Ex59 | TTCCCTGTCCAGACTGTTAGC | TGATTTAATAATGAAGATGGGTTGG | TTCATCTTTATTGCCCCTATATCTG |
| hCT29277-Ex60 | CCGGTTATGCACATCATTTAAG | ACTCAGTACCCCAGGCAGAG | TTAAAGATTATACCAAGTCAGTGGTC |
| hCT29277-Ex61 | GCAGCCAGAGCAGAAGTAAAC | TCAAACTCCTGGGCTCAAAC | CATGTGGTTTCTTGCCTTTG |
| hCT29277-Ex62 | TCTAATGAAAGCCCACTCTGC | CAGCCACATCCCCCTATG | AAGCATAGGCTCAGCATACTACAC |
| hCT29277-Ex63 | AAGTGTGCATGATGTTTGTTCC | TGCCTTCTTCCACTCCTTTC | CCCATCAACTACCATGTGACTG |
| hCT29277-Ex 64-1 | GATGACCAAGAATGCAAACG | AAGAGTGAAAGCAGAGATGTTCC | GGTCCTGTTGTCAGTTTTTCAG |
| NM_005026 Ex17 | ATCATCTTTAAGAACGGGGATGG | ACTAAGCCTCAGGAGCAGCCT | GGTCCTGGGGTGCTCCTAGA |
| NM_005026 Ex18 | CCTCAGATGCTGGTGCCG | GATACTTGGGGAAGAGAGACCTACC | TCCTCAACTGAGCCAAGTAGCC |
| NM_005026 Ex19 | TCTTCATGCCTTGGCTCTGG | GAGGGGAGAGGAGGGGGAG | TGTGTCCTCCATGTTCTGTTGG |
| NM_005026 Ex20 | TCCGAGAGAGTGGGCAGGTA | CACAAACCTGCCCACATTGC | TGGCCCCTCTGCCTAGCA |
| NM_005026 Ex21 | GGGCAGGTTTGTGGGTCAT | CCTGGGCGGCTCAACTCT | CCACTGCTGGGTCCTGGG |
| NM_005026 Ex22 | GGAACTGGGGGCTCTGGG | AGGCGTTTCCGTTTATGGC | GAATAGAGAGCTTTTCCTGAGATGC |
| hCT1640694-Ex 1-1 | GTTTCTGCTTTGGGACAACCAT | CTGCTTCTTGAGTAACACTTACG | GATTCATCTTGAAGAAGTTGATGG |
| hCT1640694-Ex 1-2 | CTCCACGACCATCATCAGG | GATTACGAAGGTATTGGTTTAGACAG | ACTTGATGCCCCCAAGAATC |
| hCT1640694-Ex 1-3 | CCCCCTCCATCAACTTCTTC | GGTGTTAAAAATAGTTCCATAGTTCG | CTCAAGAAGCAGAAAGGGAAG |
| hCT1640694-Ex 2-1 | TCATCAAAAATTTGTTTTAACCTAGC | TATAAGCAGTCCCTGCCTTC | TCTACAGAGTTCCCTGTTTGC |
| hCT1640694-Ex 2- 2 | TTCTGAACGTTTGTAAAGAAGCTG | TATAAGCAGTCCCTGCCTTC | GCTGTGGATCTTAGGGACCTC |
| hCT1640694-Ex 3- 1 | GCAGCCCGCTCAGATATAAAC | CTGGGCGAGAGTGAGATTCC | AAAAAGCATTTCTGATATGGATAAAG |
| hCT1640694-Ex 3- 2 | TCTGAAAATCAACCATGACTGTG | ATGAACCCAGGAGGCAGAG | TCGAAGTATGTTGCTATCCTCTG |
| hCT1640694-Ex 4- 1 | TCTTGTGCTTCAACGTAAATCC | CGGAGATTTGGATGTTCTCC | AAAATAATAAGCATCAGCATTTGAC |
| hCT1640694-Ex 4- 2 | TCTCAACTGCCAATGGACTG | CGGAGATTTGGATGTTCTCC | TTATTCCAGACGCATTTCCAC |
| hCT1640694-Ex5 | TAGTGGATGAAGGCAGCAAC | TTTGTAGAAATGGGGTCTTGC | TTTGAGTCTATCGAGTGTGTGC |
| hCT1640694-Ex6 | TGCCTTTTCCAATCAATCTC | AATTCCTGAAGCTCTCCCAAG | TTCCTGTTTTTCGTTTGGTTG |
| hCT1640694-Ex7 | GGGGAAAAAGGAAAGAATGG | TGCTGAACCAGTCAAACTCC | TGAATTTTCCTTTTGGGGAAG |
| hCT1640694-Ex8 | TTTGCTGAACCCTATTGGTG | TTGCAATATTGGTCCTAGAGTTC | TGGATCAAATCCAAATAAAGTAAGG |
| hCT1640694-Ex9 | GATTGGTTCTTTCCTGTCTCTG | CCACAAATATCAATTTACAACCATTG | TTGCTTTTTCTGTAAATCATCTGTG |
| hCT1640694-Ex10 | ACCTTTTGAACAGCATGCAA | TGGAAATAATGTTAAGGGTGTTTTT | TATTTCATTTATTTATGTGGAC |
| hCT1640694-Ex11 | AAAACACCCTTAACATTATTTCCATAG | TCTGCATGGCCGATCTAAAG | GAAGTTAAGGCAGTGTTTTAGATGG |
| hCT1640694-Ex12 | TTTATTCTAGATCCATACAACTTCCTTT | AAAGTTGAGAAGCTCATCACTGGTAC | ACCAGTAATATCCACTTTCTTTCTG |
| hCT1640694-Ex13 | CTGAAACTCATGGTGGTTTTG | TGGTTCCAAATCCTAATCTGC | TTTATTGGATTTCAAAAATGAGTG |
| hCT1640694-Ex14 | GAGTGTTGCTGCTCTGTGTTG | TTGAGGGTAGGAGAATGAGAGAG | TCTCATGTGAGAAAGAGATTAGCAG |
| hCT1640694-Ex15 | GGATTCCTAAATAAAAATTGAGGTG | CATGCATATTTCAAAGGTCAAG | TGGCTTTCAGTAGTTTTCATGG |
| hCT1640694-Ex16 | TTGCTTTCCTGAAGTTTCTTTTG | TCAAGTAAGAGGAGGATATGTCAAAG | CATGTGATGGCGTGATCC |
| hCT1640694-Ex17 | GGGGAAAGGCAGTAAAGGTC | CATCAAATATTTCAAAGGTTGAGC | AGGAATACACAAACACCGACAG |
| hCT1640694-Ex18 | TCCTTATTCGTTGTCAGTGATTG | GTCAAAACAAATGGCACACG | TGCACCCTGTTTTCTTTTCTC |
| hCT1640694-Ex19 | CATGGTGAAAGACGATGGAC | TTACAGGCATGAACCACCAC | TGGACAAGTAATGGTTTTCTCTG |
| hCT1640694-Ex 20-1 | TGGGGTAAAGGGAATCAAAAG | CCTATGCAATCGGTCTTTGC | TGACATTTGAGCAAAGACCTG |
| hCT1640694-Ex 20-2 | TTGCATACATTCGAAAGACC | GGGGATTTTTGTTTTGTTTTG | TTTGTTTTGTTTTGTTTTTT |
All coding exons of PIK3CA were then analyzed in an additional 199 colorectal cancers, revealing mutations in a total of 74 tumors (32%) (Table 3 and examples in Figure 1 ). Table 3. mutations in human cancers
Table 3. mutations in human cancers
| Exon 1 | C112T | R38C | pB5 | 1 | 1 | |||||||
| Exon 1 | G113A | R38H | p85 | 2 | 2 | |||||||
| Exon 1 | G263A | R88Q | p85 | 1 | 1 | |||||||
| Exon 1 | C311G | P104R | p85 | 1 | 1 | |||||||
| Exon 1 | G317T | G106V | p85 | 1 | 1 | |||||||
| Exon 1 | G323C | R108P | p85 | 1 | 1 | |||||||
| Exon 1 | del332-334 | delK111 | 1 | - 1 | ||||||||
| Exon 2 | G353A | G118D | 1 | 1 | ||||||||
| Exon 2 | G365A | G122D | 1 | 1 | ||||||||
| Exon 2 | C370A | P124T | 1 | 1 | ||||||||
| Exon 4 | T1035A | N345K | C2 | 1 | 1 | |||||||
| Exon 4 | G1048C | D350H | C2 | 1 | 1 | |||||||
| Exon 5 | T1132C | C378R | C2 | 1 | 1 | |||||||
| Exon 7 | T1258C | C420R | C2 | 2 | 2 | |||||||
| Exon 7 | G1357C | E453Q | C2 | 1 | 1 | |||||||
| Exon 9 | C1616G | P539R | Helical | 1 | 1 | |||||||
| Exon 9 | G1624A | E542K | Helical | 9 | 1 | 10 | ||||||
| Exon 9 | A1625G | E542G | Helical | 1 | 1 | |||||||
| Exon 9 | A1625T | E542V | Helical | 1 | 1 | |||||||
| Exon 9 | G1633A | E545K | Helical | 21 | 1 | 22 | ||||||
| Exon 9 | A1634G | E545G | Helical | 1 | 1 | |||||||
| Exon 9 | G1635T | E545D | Helical | 1 | 1 | |||||||
| Exon 9 | C1636A | Q546K | Helical | 5 | 5 | |||||||
| Exon 9 | A1637C | Q546P | Helical | 1 | 1 | |||||||
| Exon 12 | C1981A | Q661K | Helical | 1 | 1 | |||||||
| Exon 13 | A2102C | H701P | Helical | 1 | 1 | |||||||
| Exon 18 | G2702T | C901F | Kinase | 1 | 1 | 2 | ||||||
| Exon 18 | T2725C | F909L | Kinase | 1 | 1 | |||||||
| Exon 20 | T3022C | S1008P | Kinase | 1 | 1 | |||||||
| Exon 20 | A3073G | T1025A | Kinase | 1 | 1 | |||||||
| Exon 20 | C3074A | T1025N | Kinase | 1 | 1 | |||||||
| Exon 20 | G3129T | M10431 | Kinase | 2 | 2 | |||||||
| Exon 20 | C3139T | H1047Y | Kinase | 2 | 2 | |||||||
| Exon 20 | A3140G | H1047R | Kinase | 15 | 2 | 1 | 18 | |||||
| Exon 20 | A3140T | H1047L | Kinase | 1 | 1 | |||||||
| Exon 20 | G3145A | G1049S | Kinase | 1 | 1 | |||||||
| Tumors with mutations | 74 | 4 | 3 | 1 | 1 | 0 | 0 | 2 | ||||
| No. samples screened | 234 | 15 | 12 | 12 | 24 | 11 | 12 | 76 | ||||
| Percent of tumors with mutations | 32% | 27% | 25% | 8% | 4% | 0% | 0% | 3% | ||||
To determine the timing of PIK3CA mutations during neoplastic progression, we evaluated 76 pre-malignant colorectal tumors of various size and degree of dysplasia. Only two PIK3CA mutations were found (E542K and E542V), both in very advanced adenomas greater than 5 cm in diameter and of tubuluvillous type. These data suggest that PIK3CA abnormalities occur at relatively late stages of neoplasia, near the time that tumors begin to invade and metastasize.
We then evaluated PIK3CA for genetic alterations in other tumor types (Table 1). Mutations were identified in four of fifteen (27%) glioblastomas, three of twelve (25%) gastric cancers, one of thirteen (8%) breast, and one of twenty four (4%) lung cancers. No mutations were observed in eleven pancreatic cancers or twelve medulloblastomas. In total, 89 mutations were observed, all but 3 of which were heterozygous.
The sheer number of mutations observed in PIK3CA in five different cancer types strongly suggests that these mutations are functionally important. This conclusion is buttressed by two additional independent lines of evidence. First, analysis of the ratio of non-synonymous to synonymous mutations is a good measure of selection during tumor progression, as silent alterations are unlikely to exert a growth advantage. The ratio of non-synonymous to synonymous mutations in PIK3CA was 89 to 2, far higher than the 2:1 ratio expected by chance (P<1x10-4). Second, the prevalence of non-synonymous changes located in the PI3K catalytic and accessory domains was ∼120 per Mb tumor DNA, over 100 times higher than the background mutation frequency of nonfunctional alterations observed in the genome of cancer cells (P<1x10-4) (9).
Although the effect of these mutations on kinase function has not yet been experimentally tested, their positions and nature within PIK3CA imply that they are likely to be activating. No truncating mutations were observed and >75% of alterations occurred in two small clusters in exons 9 and 20 (Table 2 and Figure 1 ). The affected residues within these clusters are highly conserved evolutionarily, retaining identity in mouse, rat, and chicken. The clustering of somatic missense mutations in specific domains is similar to that observed for activating mutations in other oncogenes, such as RAS (10), BRAF (11, 12), β-catenin (13), and members of the tyrosine kinome (14).
These genetic data suggest that mutant PIK3CA is likely to function as an oncogene in human cancers.
Quantitative PCR analysis of PIK3CA in 96 colorectal cancers showed no evidence of gene amplification, suggesting that gene copy alterations are not a significant mechanism of activation in this tumor type. The primers used were:
- Real time PI3K hCT1640694 20-1F (intron)
- TTACTTATAGGTTTCAGGAGATGTGTT (SEQ ID NO: 486); and
- Real time PI3K hCT1640694 20-1R
- GGGTCTTTCGAATGTATGCAATG (SEQ ID NO: 487)
The Sequence Listing appended to the end of this application contains the following sequences:
- SEQ ID NO: 1=coding sequence only (nt 13 to 3201 of SEQ ID NO: 2)
- SEQ ID NO: 2=mRNA sequence (NM_006218)
- SEQ ID NO: 3=protein sequence (NP_006209)
- SEQ ID NO: 4=exon 9_
- SEQ ID NO: 5=exon 20
- SEQ ID NO: 6 to 165 =forward primers
- SEQ ID NO: 166 to 325=reverse primers
- SEQ ID NO: 326 to 485=sequencing primers
- SEQ ID NO: 486 and 487 amplification primers
- 1. R. Katso et al., Annu Rev Cell Dev Biol 17, 615-75 (2001).
- 2. I. Vivanco, C. L. Sawyers, Nat Rev Cancer 2, 489-501 (Jul, 2002).
- 3. W. A. Phillips, F. St Clair, A. D. Munday, R. J. Thomas, C. A. Mitchell, Cancer 83, 41-7 (Jul 1, 1998).
- 4. E. S. Gershtein, V. A. Shatskaya, V. D. Ermilova, N. E. Kushlinsky, M. A. Krasil'nikov, Clin Chim Acta 287, 59-67 (Sep, 1999).
- 5. B. Vanhaesebroeck, M. D. Waterfield, Exp Cell Res 253, 239-54 (Nov 25, 1999).
- 6. S. Djordjevic, P. C. Driscoll, Trends Biochem Sci 27, 426-32 (Aug, 2002).
- 7. Catalytic subunits of PI3Ks were identified by analysis of InterPro (IPR) PI3K domains (IPR000403) present within the Celera draft human genome sequence. This resulted in identification of 15 PI3Ks and related PI3K genes. The kinase domain of PIK3CD gene was not represented in the current draft of human genome sequence and was therefore not included in this study.
- 8. Sequences for all annotated exons and adjacent intronic sequences containing the kinase domain of identified PI3Ks were extracted from the Celera draft human genome sequence (URL address: www host server, domain name celera.com). Celera and Genbank accession numbers of all analyzed genes are available in Table 1. Primers for PCR amplification and sequencing were designed using the Primer 3 program (URL address: http file type; www-genome.wi.mit.edu host server, cgi-bin domain name, primer directory, primer3_www.cgi subdirectory), and were synthesized by MWG (High Point, NC) or IDT (Coralville, IA). PCR amplification and sequencing were performed on tumor DNA from early passage cell lines or primary tumors as previously described (12) using a 384 capillary automated sequencing apparatus (Spectrumedix, State College, PA). Sequence traces were assembled and analyzed to identify potential genomic alterations using the Mutation Explorer software package (SoftGenetics, State College, PA). Of the exons extracted, 96% were successfully analyzed. Sequences of all primers used for PCR amplification and sequencing are provided in Table S1.
- 9. T. L. Wang et al., Proc Natl Acad Sci U S A 99, 3076-80. (2002).
- 10. J. L. Bos et al., Nature 327, 293-7 (1987).
- 11. H. Davies et al., Nature (Jun 9, 2002).
- 12. H. Rajagopalan et al., Nature 418, 934. (2002).
- 13. P. J. Morin et al., Science 275, 1787-90 (1997).
- 14. A. Bardelli et al., Science 300, 949 (May 9, 2003).
- 15. J. Li et al., Science 275, 1943-7 (1997).
- 16. P. A. Steck et al., Nat Genet 15, 356-62 (1997).
- 17. T. Maehama, J. E. Dixon, J Biol Chem 273, 13375-8 (May 29, 1998).
- 18. M. P. Myers et al., Proc Natl Acad Sci U S A 95, 13513-8 (Nov 10, 1998).
- 19. L. Shayesteh et al., Nat Genet 21, 99-102 (Jan, 1999).
- 20. J. Q. Cheng et al., Proc Natl Acad Sci U S A 89, 9267-71 (Oct 1, 1992).
- 21. L. Hu, J. Hofmann, Y. Lu, G. B. Mills, R. B. Jaffe, Cancer Res 62, 1087-92 (Feb 15, 2002).
- 22. J. Luo, B. D. Manning, L. C. Cantley, Cancer Cell 4, 257-62 (2003).
- <110> Velculescu, Victor Kinzler, Kenneth Vogelstein, Bert Samuels, Yardena
- <120> MUTATIONS OF THE PIK3CA GENE IN HUMAN CANCERS
- <130> 001107.00428
- <160> 487
- <170> FastSEQ for Windows Version 4.0
- <210> 1 <211> 3412 <212> DNA <213> Homo sapiens
- <400> 1
- <210> 2 <211> 3424 <212> RNA <213> Homo sapiens
- <400> 2
- <210> 3 <211> 1068 <212> PRT <213> Homo sapiens
- <400> 3
- <210> 4 <211> 125 <212> DNA <213> Homo sapiens
- <400> 4
- <210> 5 <211> 1186 <212> DNA <213> Homo sapiens
- <400> 5
- <210> 6 <211> 20 <212> DNA <213> Homo sapiens
- <400> 6 ttccagcctg ggtaacaaag 20
- <210> 7 <211> 20 <212> DNA <213> Homo sapiens
- <400> 7 cctgacctca ggtgttctgc 20
- <210> 8 <211> 21 <212> DNA <213> Homo sapiens
- <400> 8 tgcacattct gcacgtgtat c 21
- <210> 9 <211> 24 <212> DNA <213> Homo sapiens
- <400> 9 tcccagtttg tatgctattg agag 24
- <210> 10 <211> 21 <212> DNA <213> Homo sapiens
- <400> 10 tggaaattca aaagtgtgtg g 21
- <210> 11 <211> 23 <212> DNA <213> Homo sapiens
- <400> 11 cactaatgaa cccctcaaga ctg 23
- <210> 12 <211> 20 <212> DNA <213> Homo sapiens
- <400> 12 tccttggcaa agtgacaatc 20
- <210> 13 <211> 23 <212> DNA <213> Homo sapiens
- <400> 13 ctctcacata caacaccatc tcc 23
- <210> 14 <211> 23 <212> DNA <213> Homo sapiens
- <400> 14 atgtatctca ttgaaaaccc aac 23
- <210> 15 <211> 20 <212> DNA <213> Homo sapiens
- <400> 15 tcccaaagtg ctgggattac 20
- <210> 16 <211> 26 <212> DNA <213> Homo sapiens
- <400> 16 cctatgacat aaatgccagt acaaac 26
- <210> 17 <211> 24 <212> DNA <213> Homo sapiens
- <400> 17 tcttttgttc agtcagcatc tctc 24
- <210> 18 <211> 24 <212> DNA <213> Homo sapiens
- <400> 18 ttgagaattc agatgagaaa ccag 24
- <210> 19 <211> 20 <212> DNA <213> Homo sapiens
- <400> 19 gaaggccact ctcaaacctg 20
- <210> 20 <211> 20 <212> DNA <213> Homo sapiens
- <400> 20 tcaaggcttg catttcattg 20
- <210> 21 <211> 20 <212> DNA <213> Homo sapiens
- <400> 21 ttccacactc caaagaatgc 20
- <210> 22 <211> 21 <212> DNA <213> Homo sapiens
- <400> 22 aattgcaatc ctcttggtag c 21
- <210> 23 <211> 19 <212> DNA <213> Homo sapiens
- <400> 23 gccaagacca agcaactcc 19
- <210> 24 <211> 20 <212> DNA <213> Homo sapiens
- <400> 24 ataaacgacc gctggcctac 20
- <210> 25 <211> 20 <212> DNA <213> Homo sapiens
- <400> 25 gtacatccgg ggacacaatg 20
- <210> 26 <211> 20 <212> DNA <213> Homo sapiens
- <400> 26 accgggttct tccagctaag 20
- <210> 27 <211> 20 <212> DNA <213> Homo sapiens
- <400> 27 caatgcgtgc gttaaatctg 20
- <210> 28 <211> 18 <212> DNA <213> Homo sapiens
- <400> 28 cccaatgcca cggactac 18
- <210> 29 <211> 20 <212> DNA <213> Homo sapiens
- <400> 29 atccagctgg ctctgatagg 20
- <210> 30 <211> 20 <212> DNA <213> Homo sapiens
- <400> 30 ctggtgctga aactcgactg 20
- <210> 31 <211> 20 <212> DNA <213> Homo sapiens
- <400> 31 gtctcgttct ctccctcacg 20
- <210> 32 <211> 18 <212> DNA <213> Homo sapiens
- <400> 32 cacaacctcg cccagttc 18
- <210> 33 <211> 21 <212> DNA <213> Homo sapiens
- <400> 33 agcatcaccc tcagagcata c 21
- <210> 34 <211> 22 <212> DNA <213> Homo sapiens
- <400> 34 tgccatacct cttaggcact tc 22
- <210> 35 <211> 20 <212> DNA <213> Homo sapiens
- <400> 35 cgacagagca agattccatc 20
- <210> 36 <211> 20 <212> DNA <213> Homo sapiens
- <400> 36 agattgccat ctgaggaagg 20
- <210> 37 <211> 20 <212> DNA <213> Homo sapiens
- <400> 37 gcatggagag gaagtgaacc 20
- <210> 38 <211> 22 <212> DNA <213> Homo sapiens
- <400> 38 tggccagaga gtttgattta tg 22
- <210> 39 <211> 20 <212> DNA <213> Homo sapiens
- <400> 39 ccctcaatct cttgggaaag 20
- <210> 40 <211> 21 <212> DNA <213> Homo sapiens
- <400> 40 tggtttcttc tcatggacag g 21
- <210> 41 <211> 20 <212> DNA <213> Homo sapiens
- <400> 41 gggtgtccac acttctcagg 20
- <210> 42 <211> 20 <212> DNA <213> Homo sapiens
- <400> 42 ccggaagaaa caatgagcag 20
- <210> 43 <211> 20 <212> DNA <213> Homo sapiens
- <400> 43 ggtgtgagct gagtgagcag 20
- <210> 44 <211> 20 <212> DNA <213> Homo sapiens
- <400> 44 gtgggaatga ccttcctttc 20
- <210> 45 <211> 21 <212> DNA <213> Homo sapiens
- <400> 45 ggatgaacag gcagatgtga g 21
- <210> 46 <211> 20 <212> DNA <213> Homo sapiens
- <400> 46 agccccttct atccagtgtg 20
- <210> 47 <211> 20 <212> DNA <213> Homo sapiens
- <400> 47 tgcccacagc atctgtctac 20
- <210> 48 <211> 20 <212> DNA <213> Homo sapiens
- <400> 48 attgtgtgcc agtcatttgc 20
- <210> 49 <211> 21 <212> DNA <213> Homo sapiens
- <400> 49 ttccacatta agcatgagca c 21
- <210> 50 <211> 27 <212> DNA <213> Homo sapiens
- <400> 50 gacagtcatt cttttcatag gtcatag 27
- <210> 51 <211> 23 <212> DNA <213> Homo sapiens
- <400> 51 ccacatagta agccttcaat gac 23
- <210> 52 <211> 23 <212> DNA <213> Homo sapiens
- <400> 52 tgaaaaatgt tcctttattc ttg 23
- <210> 53 <211> 21 <212> DNA <213> Homo sapiens
- <400> 53 tctgagaaca ttccctgatc c 21
- <210> 54 <211> 23 <212> DNA <213> Homo sapiens
- <400> 54 tcagctctct aatcctgaac tgc 23
- <210> 55 <211> 23 <212> DNA <213> Homo sapiens
- <400> 55 agcagagaag aaacatatac cat 23
- <210> 56 <211> 20 <212> DNA <213> Homo sapiens
- <400> 56 cattttggga aaggaggttc 20
- <210> 57 <211> 20 <212> DNA <213> Homo sapiens
- <400> 57 attacaggcg tgagccactg 20
- <210> 58 <211> 20 <212> DNA <213> Homo sapiens
- <400> 58 tttggcactg tcttcagagg 20
- <210> 59 <211> 20 <212> DNA <213> Homo sapiens
- <400> 59 agagggaaca ccctttcctg 20
- <210> 60 <211> 20 <212> DNA <213> Homo sapiens
- <400> 60 tatagcgttg tgcccatgac 20
- <210> 61 <211> 26 <212> DNA <213> Homo sapiens
- <400> 61 tcctgcctct ttgctatttt tcaatg 26
- <210> 62 <211> 22 <212> DNA <213> Homo sapiens
- <400> 62 ttgcctcaga gagatcatca ag 22
- <210> 63 <211> 20 <212> DNA <213> Homo sapiens
- <400> 63 taggggcgct aatcgtactg 20
- <210> 64 <211> 21 <212> DNA <213> Homo sapiens
- <400> 64 tctgatatgc atcagccact g 21
- <210> 65 <211> 20 <212> DNA <213> Homo sapiens
- <400> 65 tgatttcaag ggaagcagag 20
- <210> 66 <211> 20 <212> DNA <213> Homo sapiens
- <400> 66 tgtagaaagc aaggctgctc 20
- <210> 67 <211> 20 <212> DNA <213> Homo sapiens
- <400> 67 accccaaagt catccaagtg 20
- <210> 68 <211> 20 <212> DNA <213> Homo sapiens
- <400> 68 aaaggctcca gttgatggac 20
- <210> 69 <211> 24 <212> DNA <213> Homo sapiens
- <400> 69 ccattaaaac cactctaagt cagg 24
- <210> 70 <211> 21 <212> DNA <213> Homo sapiens
- <400> 70 aagcctcctc cagaaaagaa g 21
- <210> 71 <211> 20 <212> DNA <213> Homo sapiens
- <400> 71 ccctcctgtc cactgagatg 20
- <210> 72 <211> 20 <212> DNA <213> Homo sapiens
- <400> 72 tctcaagctg cctcacaatg 20
- <210> 73 <211> 20 <212> DNA <213> Homo sapiens
- <400> 73 aaagacattg ccatgcaaac 20
- <210> 74 <211> 20 <212> DNA <213> Homo sapiens
- <400> 74 ttgttgggct ccaaataaac 20
- <210> 75 <211> 20 <212> DNA <213> Homo sapiens
- <400> 75 ccctggagtg cttacatgag 20
- <210> 76 <211> 27 <212> DNA <213> Homo sapiens
- <400> 76 gactttataa acactcgaca ttagagc 27
- <210> 77 <211> 20 <212> DNA <213> Homo sapiens
- <400> 77 atgatgacct ctggcaggac 20
- <210> 78 <211> 20 <212> DNA <213> Homo sapiens
- <400> 78 gaatcaaccg tcagcgtgtc 20
- <210> 79 <211> 21 <212> DNA <213> Homo sapiens
- <400> 79 ctggcaccgg ggaaaacaga g 21
- <210> 80 <211> 22 <212> DNA <213> Homo sapiens
- <400> 80 tggacatcga ctacaagtct gg 22
- <210> 81 <211> 20 <212> DNA <213> Homo sapiens
- <400> 81 tccttggggt tttgaagaag 20
- <210> 82 <211> 20 <212> DNA <213> Homo sapiens
- <400> 82 aaggccttcc agactcttgc 20
- <210> 83 <211> 21 <212> DNA <213> Homo sapiens
- <400> 83 cctctttgtt tttccctacc g 21
- <210> 84 <211> 20 <212> DNA <213> Homo sapiens
- <400> 84 cttccacagt gggggtacag 20
- <210> 85 <211> 23 <212> DNA <213> Homo sapiens
- <400> 85 gacacaacgg caacattatg ctg 23
- <210> 86 <211> 23 <212> DNA <213> Homo sapiens
- <400> 86 cattccaaag catctggttt tac 23
- <210> 87 <211> 22 <212> DNA <213> Homo sapiens
- <400> 87 ttgtgaggaa cgtgtgatta gg 22
- <210> 88 <211> 19 <212> DNA <213> Homo sapiens
- <400> 88 ctgggcaaca gagcaagac 19
- <210> 89 <211> 20 <212> DNA <213> Homo sapiens
- <400> 89 tcccttctcc tttggctatg 20
- <210> 90 <211> 20 <212> DNA <213> Homo sapiens
- <400> 90 atagcaccac tgccttccag 20
- <210> 91 <211> 19 <212> DNA <213> Homo sapiens
- <400> 91 tgcagaagtg gaggtggag 19
- <210> 92 <211> 20 <212> DNA <213> Homo sapiens
- <400> 92 aacccaagct gcttcctttc 20
- <210> 93 <211> 20 <212> DNA <213> Homo sapiens
- <400> 93 agtcctgccc tgattccttc 20
- <210> 94 <211> 20 <212> DNA <213> Homo sapiens
- <400> 94 cccacccact tattcctgag 20
- <210> 95 <211> 22 <212> DNA <213> Homo sapiens
- <400> 95 tttccccttt agggtaggta gg 22
- <210> 96 <211> 21 <212> DNA <213> Homo sapiens
- <400> 96 cggacataga ggaaggattg c 21
- <210> 97 <211> 20 <212> DNA <213> Homo sapiens
- <400> 97 tggccaaact tttcaaatcc 20
- <210> 98 <211> 20 <212> DNA <213> Homo sapiens
- <400> 98 tgggagagct cagggaatac 20
- <210> 99 <211> 20 <212> DNA <213> Homo sapiens
- <400> 99 tcccaaagtg ctgggattac 20
- <210> 100 <211> 20 <212> DNA <213> Homo sapiens
- <400> 100 ttggctgcca tgactaacac 20
- <210> 101 <211> 20 <212> DNA <213> Homo sapiens
- <400> 101 gctctcagtg tgcctcatgg 20
- <210> 102 <211> 18 <212> DNA <213> Homo sapiens
- <400> 102 aagaaacacc ccggttcc 18
- <210> 103 <211> 27 <212> DNA <213> Homo sapiens
- <400> 103 aaatttagtt gagtaatgag agaatgc 27
- <210> 104 <211> 20 <212> DNA <213> Homo sapiens
- <400> 104 gtaaaattgg ccctgctttg 20
- <210> 105 <211> 20 <212> DNA <213> Homo sapiens
- <400> 105 cataaccaca tgcagcaacc 20
- <210> 106 <211> 20 <212> DNA <213> Homo sapiens
- <400> 106 aattggcctt ggagacagac 20
- <210> 107 <211> 21 <212> DNA <213> Homo sapiens
- <400> 107 ttcatgtgag caggtatgct g 21
- <210> 108 <211> 20 <212> DNA <213> Homo sapiens
- <400> 108 ttgtgtacga ccctctggtg 20
- <210> 109 <211> 20 <212> DNA <213> Homo sapiens
- <400> 109 tttgtacagt ggaggcaacg 20
- <210> 110 <211> 23 <212> DNA <213> Homo sapiens
- <400> 110 cagctggtta tgtgtgttta tgg 23
- <210> 111 <211> 20 <212> DNA <213> Homo sapiens
- <400> 111 tgtcctcatg gttgcttttc 20
- <210> 112 <211> 20 <212> DNA <213> Homo sapiens
- <400> 112 cagggacatg ctatccaaag 20
- <210> 113 <211> 21 <212> DNA <213> Homo sapiens
- <400> 113 tggtggaact tgtgtttttc c 21
- <210> 114 <211> 20 <212> DNA <213> Homo sapiens
- <400> 114 tcatacggtt ttggcagctc 20
- <210> 115 <211> 20 <212> DNA <213> Homo sapiens
- <400> 115 acagagggag aagggctcag 20
- <210> 116 <211> 20 <212> DNA <213> Homo sapiens
- <400> 116 tgggacaatt ttcgcagaag 20
- <210> 117 <211> 20 <212> DNA <213> Homo sapiens
- <400> 117 atgaagcatg ctgcctgatg 20
- <210> 118 <211> 19 <212> DNA <213> Homo sapiens
- <400> 118 gggggccttt agaaggaag 19
- <210> 119 <211> 21 <212> DNA <213> Homo sapiens
- <400> 119 tggagttcct gagaaatgag c 21
- <210> 120 <211> 20 <212> DNA <213> Homo sapiens
- <400> 120 agagggaaca ccctttcctg 20
- <210> 121 <211> 22 <212> DNA <213> Homo sapiens
- <400> 121 catgatgttg gagcttacat gc 22
- <210> 122 <211> 20 <212> DNA <213> Homo sapiens
- <400> 122 cgggattgga gacagacatc 20
- <210> 123 <211> 20 <212> DNA <213> Homo sapiens
- <400> 123 catcatggta cacgcactcc 20
- <210> 124 <211> 21 <212> DNA <213> Homo sapiens
- <400> 124 ctcaatcaga gcctgaacca c 21
- <210> 125 <211> 21 <212> DNA <213> Homo sapiens
- <400> 125 cccggcctaa agttgtagtt c 21
- <210> 126 <211> 20 <212> DNA <213> Homo sapiens
- <400> 126 tgggagactg tcaagaggtg 20
- <210> 127 <211> 20 <212> DNA <213> Homo sapiens
- <400> 127 ttcctccaag gagctttgtc 20
- <210> 128 <211> 21 <212> DNA <213> Homo sapiens
- <400> 128 ttccctgtcc agactgttag c 21
- <210> 129 <211> 22 <212> DNA <213> Homo sapiens
- <400> 129 ccggttatgc acatcattta ag 22
- <210> 130 <211> 21 <212> DNA <213> Homo sapiens
- <400> 130 gcagccagag cagaagtaaa c 21
- <210> 131 <211> 21 <212> DNA <213> Homo sapiens
- <400> 131 tctaatgaaa gcccactctg c 21
- <210> 132 <211> 22 <212> DNA <213> Homo sapiens
- <400> 132 aagtgtgcat gatgtttgtt cc 22
- <210> 133 <211> 20 <212> DNA <213> Homo sapiens
- <400> 133 gatgaccaag aatgcaaacg 20
- <210> 134 <211> 23 <212> DNA <213> Homo sapiens
- <400> 134 atcatcttta agaacgggga tgg 23
- <210> 135 <211> 18 <212> DNA <213> Homo sapiens
- <400> 135 cctcagatgc tggtgccg 18
- <210> 136 <211> 20 <212> DNA <213> Homo sapiens
- <400> 136 tcttcatgcc ttggctctgg 20
- <210> 137 <211> 20 <212> DNA <213> Homo sapiens
- <400> 137 tccgagagag tgggcaggta 20
- <210> 138 <211> 19 <212> DNA <213> Homo sapiens
- <400> 138 gggcaggttt gtgggtcat 19
- <210> 139 <211> 18 <212> DNA <213> Homo sapiens
- <400> 139 ggaactgggg gctctggg 18
- <210> 140 <211> 22 <212> DNA <213> Homo sapiens
- <400> 140 gtttctgctt tgggacaacc at 22
- <210> 141 <211> 19 <212> DNA <213> Homo sapiens
- <400> 141 ctccacgacc atcatcagg 19
- <210> 142 <211> 20 <212> DNA <213> Homo sapiens
- <400> 142 ccccctccat caacttcttc 20
- <210> 143 <211> 26 <212> DNA <213> Homo sapiens
- <400> 143 tcatcaaaaa tttgttttaa cctagc 26
- <210> 144 <211> 24 <212> DNA <213> Homo sapiens
- <400> 144 ttctgaacgt ttgtaaagaa gctg 24
- <210> 145 <211> 21 <212> DNA <213> Homo sapiens
- <400> 145 gcagcccgct cagatataaa c 21
- <210> 146 <211> 23 <212> DNA <213> Homo sapiens
- <400> 146 tctgaaaatc aaccatgact gtg 23
- <210> 147 <211> 22 <212> DNA <213> Homo sapiens
- <400> 147 tcttgtgctt caacgtaaat cc 22
- <210> 148 <211> 20 <212> DNA <213> Homo sapiens
- <400> 148 tctcaactgc caatggactg 20
- <210> 149 <211> 20 <212> DNA <213> Homo sapiens
- <400> 149 tagtggatga aggcagcaac 20
- <210> 150 <211> 20 <212> DNA <213> Homo sapiens
- <400> 150 tgccttttcc aatcaatctc 20
- <210> 151 <211> 20 <212> DNA <213> Homo sapiens
- <400> 151 ggggaaaaag gaaagaatgg 20
- <210> 152 <211> 20 <212> DNA <213> Homo sapiens
- <400> 152 tttgctgaac cctattggtg 20
- <210> 153 <211> 22 <212> DNA <213> Homo sapiens
- <400> 153 gattggttct ttcctgtctc tg 22
- <210> 154 <211> 20 <212> DNA <213> Homo sapiens
- <400> 154 accttttgaa cagcatgcaa 20
- <210> 155 <211> 27 <212> DNA <213> Homo sapiens
- <400> 155 aaaacaccct taacattatt tccatag 27
- <210> 156 <211> 28 <212> DNA <213> Homo sapiens
- <400> 156 tttattctag atccatacaa cttccttt 28
- <210> 157 <211> 21 <212> DNA <213> Homo sapiens
- <400> 157 ctgaaactca tggtggtttt g 21
- <210> 158 <211> 21 <212> DNA <213> Homo sapiens
- <400> 158 gagtgttgct gctctgtgtt g 21
- <210> 159 <211> 25 <212> DNA <213> Homo sapiens
- <400> 159 ggattcctaa ataaaaattg aggtg 25
- <210> 160 <211> 23 <212> DNA <213> Homo sapiens
- <400> 160 ttgctttcct gaagtttctt ttg 23
- <210> 161 <211> 20 <212> DNA <213> Homo sapiens
- <400> 161 ggggaaaggc agtaaaggtc 20
- <210> 162 <211> 23 <212> DNA <213> Homo sapiens
- <400> 162 tccttattcg ttgtcagtga ttg 23
- <210> 163 <211> 20 <212> DNA <213> Homo sapiens
- <400> 163 catggtgaaa gacgatggac 20
- <210> 164 <211> 21 <212> DNA <213> Homo sapiens
- <400> 164 tggggtaaag ggaatcaaaa g 21
- <210> 165 <211> 20 <212> DNA <213> Homo sapiens
- <400> 165 ttgcatacat tcgaaagacc 20
- <210> 166 <211> 20 <212> DNA <213> Homo sapiens
- <400> 166 cgtcagaaca agaccctgtg 20
- <210> 167 <211> 22 <212> DNA <213> Homo sapiens
- <400> 167 cccggccact aagttatttt tc 22
- <210> 168 <211> 20 <212> DNA <213> Homo sapiens
- <400> 168 ctgccattaa atgcgtcttg 20
- <210> 169 <211> 20 <212> DNA <213> Homo sapiens
- <400> 169 ctttgggcct ttttcattcc 20
- <210> 170 <211> 20 <212> DNA <213> Homo sapiens
- <400> 170 tgtctggctt atttcacacg 20
- <210> 171 <211> 24 <212> DNA <213> Homo sapiens
- <400> 171 aacttttgac agcctactat gtgc 24
- <210> 172 <211> 23 <212> DNA <213> Homo sapiens
- <400> 172 gaccattcat gaaagaaaca agc 23
- <210> 173 <211> 23 <212> DNA <213> Homo sapiens
- <400> 173 ccatgtaccg gtaacaaaag aag 23
- <210> 174 <211> 23 <212> DNA <213> Homo sapiens
- <400> 174 tgagctttct aggategtae ctg 23
- <210> 175 <211> 20 <212> DNA <213> Homo sapiens
- <400> 175 gcaggaaggt ccaacttgtc 20
- <210> 176 <211> 20 <212> DNA <213> Homo sapiens
- <400> 176 atcttcaact gcgaacatgc 20
- <210> 177 <211> 26 <212> DNA <213> Homo sapiens
- <400> 177 aagcatcaat gactacttta atcaac 26
- <210> 178 <211> 20 <212> DNA <213> Homo sapiens
- <400> 178 tcccaaagtg ctgggattac 20
- <210> 179 <211> 20 <212> DNA <213> Homo sapiens
- <400> 179 ttgttgcctt tgtcattttg 20
- <210> 180 <211> 20 <212> DNA <213> Homo sapiens
- <400> 180 atgtgactgt gggcaggaac 20
- <210> 181 <211> 20 <212> DNA <213> Homo sapiens
- <400> 181 gctggtgaga tgtcaaaacg 20
- <210> 182 <211> 26 <212> DNA <213> Homo sapiens
- <400> 182 tcaacatatt acttcctcca gaactc 26
- <210> 183 <211> 20 <212> DNA <213> Homo sapiens
- <400> 183 ttctcccatg tcagggaatc 20
- <210> 184 <211> 20 <212> DNA <213> Homo sapiens
- <400> 184 gaccctcaaa ggctaacgtg 20
- <210> 185 <211> 21 <212> DNA <213> Homo sapiens
- <400> 185 tccctggtca gcacagacta c 21
- <210> 186 <211> 21 <212> DNA <213> Homo sapiens
- <400> 186 agctgtctca tttccaccat c 21
- <210> 187 <211> 20 <212> DNA <213> Homo sapiens
- <400> 187 cgcgtcgttt atgtcaaatc 20
- <210> 188 <211> 20 <212> DNA <213> Homo sapiens
- <400> 188 cgcgtcgttt atgtcaaatc 20
- <210> 189 <211> 20 <212> DNA <213> Homo sapiens
- <400> 189 cataacacac aggggtgctg 20
- <210> 190 <211> 18 <212> DNA <213> Homo sapiens
- <400> 190 gaactgggcg aggttgtg 18
- <210> 191 <211> 20 <212> DNA <213> Homo sapiens
- <400> 191 tccctttctt acacgcaaac 20
- <210> 192 <211> 21 <212> DNA <213> Homo sapiens
- <400> 192 cagttccgcc tgtacattca c 21
- <210> 193 <211> 19 <212> DNA <213> Homo sapiens
- <400> 193 agcgctcctg ctttcagtc 19
- <210> 194 <211> 20 <212> DNA <213> Homo sapiens
- <400> 194 gtcttggcgc agatcatcac 20
- <210> 195 <211> 21 <212> DNA <213> Homo sapiens
- <400> 195 ttttgtcacc agttgaaatg c 21
- <210> 196 <211> 20 <212> DNA <213> Homo sapiens
- <400> 196 gactgggaaa aagcatgagc 20
- <210> 197 <211> 25 <212> DNA <213> Homo sapiens
- <400> 197 cggtgatcat aatattgtca ttgtg 25
- <210> 198 <211> 20 <212> DNA <213> Homo sapiens
- <400> 198 ggaagtgtgg gcttgtcttc 20
- <210> 199 <211> 20 <212> DNA <213> Homo sapiens
- <400> 199 tgcacagtcc atcctttgtc 20
- <210> 200 <211> 21 <212> DNA <213> Homo sapiens
- <400> 200 aatgccagct ttcacaatgt c 21
- <210> 201 <211> 20 <212> DNA <213> Homo sapiens
- <400> 201 ggccaagacc acatggtaag 20
- <210> 202 <211> 24 <212> DNA <213> Homo sapiens
- <400> 202 tcctacatta agacagcatg gaac 24
- <210> 203 <211> 21 <212> DNA <213> Homo sapiens
- <400> 203 tgcctccctt ttaaggctat c 21
- <210> 204 <211> 20 <212> DNA <213> Homo sapiens
- <400> 204 aggtccttct gccaacaaag 20
- <210> 205 <211> 20 <212> DNA <213> Homo sapiens
- <400> 205 cgtcttctct cctccaatgc 20
- <210> 206 <211> 20 <212> DNA <213> Homo sapiens
- <400> 206 ggtattcagt tggggctcag 20
- <210> 207 <211> 20 <212> DNA <213> Homo sapiens
- <400> 207 tgtatccacg tggtcagctc 20
- <210> 208 <211> 18 <212> DNA <213> Homo sapiens
- <400> 208 acaggacgct cggtcaac 18
- <210> 209 <211> 25 <212> DNA <213> Homo sapiens
- <400> 209 ttgccatcag tacaaatgag tttag 25
- <210> 210 <211> 24 <212> DNA <213> Homo sapiens
- <400> 210 ttcctgcttt ttaagagtga tctg 24
- <210> 211 <211> 20 <212> DNA <213> Homo sapiens
- <400> 211 aggaaggaag ggatggaaac 20
- <210> 212 <211> 18 <212> DNA <213> Homo sapiens
- <400> 212 agaaaccact catgaaaa 18
- <210> 213 <211> 22 <212> DNA <213> Homo sapiens
- <400> 213 cgcattacta catgatccac tg 22
- <210> 214 <211> 21 <212> DNA <213> Homo sapiens
- <400> 214 tgtcacagaa agcatgagac c 21
- <210> 215 <211> 29 <212> DNA <213> Homo sapiens
- <400> 215 agaaataact gtcaatatcc cagtatcac 29
- <210> 216 <211> 27 <212> DNA <213> Homo sapiens
- <400> 216 tcattaaaca tttagtaatg tgtgctc 27
- <210> 217 <211> 19 <212> DNA <213> Homo sapiens
- <400> 217 aggcaacagg gcaagactc 19
- <210> 218 <211> 21 <212> DNA <213> Homo sapiens
- <400> 218 cctgaaaggg agaataaaag g 21
- <210> 219 <211> 21 <212> DNA <213> Homo sapiens
- <400> 219 cctgaaaggg agaataaaag g 21
- <210> 220 <211> 20 <212> DNA <213> Homo sapiens
- <400> 220 tattgaccca gccagcagac 20
- <210> 221 <211> 22 <212> DNA <213> Homo sapiens
- <400> 221 tatattgaga ctcaaatatc ga 22
- <210> 222 <211> 21 <212> DNA <213> Homo sapiens
- <400> 222 tgatgcatat cagagcgtga g 21
- <210> 223 <211> 21 <212> DNA <213> Homo sapiens
- <400> 223 ttcaatgacc atgacaaaac g 21
- <210> 224 <211> 21 <212> DNA <213> Homo sapiens
- <400> 224 ttcaatgacc atgacaaaac g 21
- <210> 225 <211> 21 <212> DNA <213> Homo sapiens
- <400> 225 tggttttcaa gcagacaatc c 21
- <210> 226 <211> 21 <212> DNA <213> Homo sapiens
- <400> 226 tcctcctcaa tgaaagcaga g 21
- <210> 227 <211> 20 <212> DNA <213> Homo sapiens
- <400> 227 caatgtgatc ccaactggtc 20
- <210> 228 <211> 21 <212> DNA <213> Homo sapiens
- <400> 228 ttattgccaa ttggagtttg g 21
- <210> 229 <211> 22 <212> DNA <213> Homo sapiens
- <400> 229 ttctgttggc ttatcatttt tg 22
- <210> 230 <211> 23 <212> DNA <213> Homo sapiens
- <400> 230 cccagaaact aaataaaatg cag 23
- <210> 231 <211> 25 <212> DNA <213> Homo sapiens
- <400> 231 aatcaaattt gttgcattaa aaatc 25
- <210> 232 <211> 23 <212> DNA <213> Homo sapiens
- <400> 232 gttttctcat tcctttctct tcc 23
- <210> 233 <211> 20 <212> DNA <213> Homo sapiens
- <400> 233 tttgggaaag ggaacacaag 20
- <210> 234 <211> 22 <212> DNA <213> Homo sapiens
- <400> 234 gatttttcct tggaacatcc tc 22
- <210> 235 <211> 20 <212> DNA <213> Homo sapiens
- <400> 235 cggggatcag atttgctatg 20
- <210> 236 <211> 20 <212> DNA <213> Homo sapiens
- <400> 236 tagggggtca tcctcaggtc 20
- <210> 237 <211> 20 <212> DNA <213> Homo sapiens
- <400> 237 gtcttcccct gctcaatcac 20
- <210> 238 <211> 22 <212> DNA <213> Homo sapiens
- <400> 238 gacacgttgt gggccagcca gt 22
- <210> 239 <211> 24 <212> DNA <213> Homo sapiens
- <400> 239 ctgccggtta tcttcggaca cgtt 24
- <210> 240 <211> 20 <212> DNA <213> Homo sapiens
- <400> 240 tgagtgaggg cagacagatg 20
- <210> 241 <211> 20 <212> DNA <213> Homo sapiens
- <400> 241 tggcacctga accatgtaag 20
- <210> 242 <211> 20 <212> DNA <213> Homo sapiens
- <400> 242 cgtacatgcc gaagtctgtc 20
- <210> 243 <211> 21 <212> DNA <213> Homo sapiens
- <400> 243 gccctggttt taacccttaa c 21
- <210> 244 <211> 20 <212> DNA <213> Homo sapiens
- <400> 244 ccagctccag cttctgactc 20
- <210> 245 <211> 20 <212> DNA <213> Homo sapiens
- <400> 245 ttgtgttttc ttggagacag 20
- <210> 246 <211> 20 <212> DNA <213> Homo sapiens
- <400> 246 caatgagcat gggagagatg 20
- <210> 247 <211> 21 <212> DNA <213> Homo sapiens
- <400> 247 tggagtttct gggactacag g 21
- <210> 248 <211> 23 <212> DNA <213> Homo sapiens
- <400> 248 ccttcttcaa agctgattct ctc 23
- <210> 249 <211> 20 <212> DNA <213> Homo sapiens
- <400> 249 cgctctacag ccaatcacag 20
- <210> 250 <211> 20 <212> DNA <213> Homo sapiens
- <400> 250 tggcatcaca atcaataggg 20
- <210> 251 <211> 20 <212> DNA <213> Homo sapiens
- <400> 251 ctccaagggg gttagagtcc 20
- <210> 252 <211> 21 <212> DNA <213> Homo sapiens
- <400> 252 caggaaacca ggtcagaagt g 21
- <210> 253 <211> 22 <212> DNA <213> Homo sapiens
- <400> 253 tttttgcaga aaggggtctt ac 22
- <210> 254 <211> 20 <212> DNA <213> Homo sapiens
- <400> 254 gcccacccca ctctagaaac 20
- <210> 255 <211> 21 <212> DNA <213> Homo sapiens
- <400> 255 tggaaccttt tctgctcaaa g 21
- <210> 256 <211> 18 <212> DNA <213> Homo sapiens
- <400> 256 agctgcatgg tgccaaag 18
- <210> 257 <211> 20 <212> DNA <213> Homo sapiens
- <400> 257 ataacaatgg gcacatgcag 20
- <210> 258 <211> 21 <212> DNA <213> Homo sapiens
- <400> 258 ggtcattctt ccatcagcaa g 21
- <210> 259 <211> 21 <212> DNA <213> Homo sapiens
- <400> 259 cacacccaca ctcacacaaa g 21
- <210> 260 <211> 20 <212> DNA <213> Homo sapiens
- <400> 260 ggcactgcag gctaataatg 20
- <210> 261 <211> 22 <212> DNA <213> Homo sapiens
- <400> 261 gggacctcaa gtcttttcct tc 22
- <210> 262 <211> 22 <212> DNA <213> Homo sapiens
- <400> 262 gggacctcaa gtcttttcct tc 22
- <210> 263 <211> 20 <212> DNA <213> Homo sapiens
- <400> 263 ggaagggaag gaggacaaac 20
- <210> 264 <211> 22 <212> DNA <213> Homo sapiens
- <400> 264 cgtctcaaac taccaagtct gg 22
- <210> 265 <211> 20 <212> DNA <213> Homo sapiens
- <400> 265 cacccagtgc tgtttcaatg 20
- <210> 266 <211> 20 <212> DNA <213> Homo sapiens
- <400> 266 cgccgcataa tgtgtaaaac 20
- <210> 267 <211> 22 <212> DNA <213> Homo sapiens
- <400> 267 tgccatattt aactgccatt tc 22
- <210> 268 <211> 22 <212> DNA <213> Homo sapiens
- <400> 268 tgccatattt aactgccatt tc 22
- <210> 269 <211> 24 <212> DNA <213> Homo sapiens
- <400> 269 gcagtcactg agacagcttt tatc 24
- <210> 270 <211> 20 <212> DNA <213> Homo sapiens
- <400> 270 taagcatagc ctcggagaac 20
- <210> 271 <211> 24 <212> DNA <213> Homo sapiens
- <400> 271 ggaccattaa tagctacctt cctg 24
- <210> 272 <211> 23 <212> DNA <213> Homo sapiens
- <400> 272 aggcaagaca acatatttga aag 23
- <210> 273 <211> 23 <212> DNA <213> Homo sapiens
- <400> 273 aagggctatg tgtcattttg ttc 23
- <210> 274 <211> 21 <212> DNA <213> Homo sapiens
- <400> 274 catcaagcaa gcaaacaaat g 21
- <210> 275 <211> 19 <212> DNA <213> Homo sapiens
- <400> 275 aattccccca aaagcttcc 19
- <210> 276 <211> 20 <212> DNA <213> Homo sapiens
- <400> 276 ttccctcctg gctaagaacc 20
- <210> 277 <211> 20 <212> DNA <213> Homo sapiens
- <400> 277 aaaagcagag ggaatcatcg 20
- <210> 278 <211> 20 <212> DNA <213> Homo sapiens
- <400> 278 tcccattcat gacctggaag 20
- <210> 279 <211> 20 <212> DNA <213> Homo sapiens
- <400> 279 ggcccgcttt aagagatcag 20
- <210> 280 <211> 18 <212> DNA <213> Homo sapiens
- <400> 280 catgcccaaa gtcgatcc 18
- <210> 281 <211> 20 <212> DNA <213> Homo sapiens
- <400> 281 acacatccat ggtgttggtg 20
- <210> 282 <211> 20 <212> DNA <213> Homo sapiens
- <400> 282 tgccacagcc acatagtctc 20
- <210> 283 <211> 22 <212> DNA <213> Homo sapiens
- <400> 283 ttctatctgc agactcccac ag 22
- <210> 284 <211> 21 <212> DNA <213> Homo sapiens
- <400> 284 ggaaaagaaa gcaggagaag c 21
- <210> 285 <211> 21 <212> DNA <213> Homo sapiens
- <400> 285 aaatggagaa aagcctggtt c 21
- <210> 286 <211> 19 <212> DNA <213> Homo sapiens
- <400> 286 aagcaatcct cccaccttg 19
- <210> 287 <211> 22 <212> DNA <213> Homo sapiens
- <400> 287 ccttcctttt tcactcacac ac 22
- <210> 288 <211> 25 <212> DNA <213> Homo sapiens
- <400> 288 tgatttaata atgaagatgg gttgg 25
- <210> 289 <211> 20 <212> DNA <213> Homo sapiens
- <400> 289 actcagtacc ccaggcagag 20
- <210> 290 <211> 20 <212> DNA <213> Homo sapiens
- <400> 290 tcaaactcct gggctcaaac 20
- <210> 291 <211> 18 <212> DNA <213> Homo sapiens
- <400> 291 cagccacatc cccctatg 18
- <210> 292 <211> 20 <212> DNA <213> Homo sapiens
- <400> 292 tgccttcttc cactcctttc 20
- <210> 293 <211> 23 <212> DNA <213> Homo sapiens
- <400> 293 aagagtgaaa gcagagatgt tcc 23
- <210> 294 <211> 21 <212> DNA <213> Homo sapiens
- <400> 294 actaagcctc aggagcagcc t 21
- <210> 295 <211> 25 <212> DNA <213> Homo sapiens
- <400> 295 gatacttggg gaagagagac ctacc 25
- <210> 296 <211> 19 <212> DNA <213> Homo sapiens
- <400> 296 gaggggagag gagggggag 19
- <210> 297 <211> 20 <212> DNA <213> Homo sapiens
- <400> 297 cacaaacctg cccacattgc 20
- <210> 298 <211> 18 <212> DNA <213> Homo sapiens
- <400> 298 cctgggcggc tcaactct 18
- <210> 299 <211> 19 <212> DNA <213> Homo sapiens
- <400> 299 aggcgtttcc gtttatggc 19
- <210> 300 <211> 23 <212> DNA <213> Homo sapiens
- <400> 300 ctgcttcttg agtaacactt acg 23
- <210> 301 <211> 26 <212> DNA <213> Homo sapiens
- <400> 301 gattacgaag gtattggttt agacag 26
- <210> 302 <211> 26 <212> DNA <213> Homo sapiens
- <400> 302 ggtgttaaaa atagttccat agttcg 26
- <210> 303 <211> 20 <212> DNA <213> Homo sapiens
- <400> 303 tataagcagt ccctgccttc 20
- <210> 304 <211> 20 <212> DNA <213> Homo sapiens
- <400> 304 tataagcagt ccctgccttc 20
- <210> 305 <211> 20 <212> DNA <213> Homo sapiens
- <400> 305 ctgggcgaga gtgagattcc 20
- <210> 306 <211> 19 <212> DNA <213> Homo sapiens
- <400> 306 atgaacccag gaggcagag 19
- <210> 307 <211> 20 <212> DNA <213> Homo sapiens
- <400> 307 cggagatttg gatgttctcc 20
- <210> 308 <211> 20 <212> DNA <213> Homo sapiens
- <400> 308 cggagatttg gatgttctcc 20
- <210> 309 <211> 21 <212> DNA <213> Homo sapiens
- <400> 309 tttgtagaaa tggggtcttg c 21
- <210> 310 <211> 21 <212> DNA <213> Homo sapiens
- <400> 310 aattcctgaa gctctcccaa g 21
- <210> 311 <211> 20 <212> DNA <213> Homo sapiens
- <400> 311 tgctgaacca gtcaaactcc 20
- <210> 312 <211> 23 <212> DNA <213> Homo sapiens
- <400> 312 ttgcaatatt ggtcctagag ttc 23
- <210> 313 <211> 26 <212> DNA <213> Homo sapiens
- <400> 313 ccacaaatat caatttacaa ccattg 26
- <210> 314 <211> 25 <212> DNA <213> Homo sapiens
- <400> 314 tggaaataat gttaagggtg ttttt 25
- <210> 315 <211> 20 <212> DNA <213> Homo sapiens
- <400> 315 tctgcatggc cgatctaaag 20
- <210> 316 <211> 26 <212> DNA <213> Homo sapiens
- <400> 316 aaagttgaga agctcatcac tggtac 26
- <210> 317 <211> 21 <212> DNA <213> Homo sapiens
- <400> 317 tggttccaaa tcctaatctg c 21
- <210> 318 <211> 23 <212> DNA <213> Homo sapiens
- <400> 318 ttgagggtag gagaatgaga gag 23
- <210> 319 <211> 22 <212> DNA <213> Homo sapiens
- <400> 319 catgcatatt tcaaaggtca ag 22
- <210> 320 <211> 26 <212> DNA <213> Homo sapiens
- <400> 320 tcaagtaaga ggaggatatg tcaaag 26
- <210> 321 <211> 24 <212> DNA <213> Homo sapiens
- <400> 321 catcaaatat ttcaaaggtt gagc 24
- <210> 322 <211> 20 <212> DNA <213> Homo sapiens
- <400> 322 gtcaaaacaa atggcacacg 20
- <210> 323 <211> 20 <212> DNA <213> Homo sapiens
- <400> 323 ttacaggcat gaaccaccac 20
- <210> 324 <211> 20 <212> DNA <213> Homo sapiens
- <400> 324 cctatgcaat cggtctttgc 20
- <210> 325 <211> 21 <212> DNA <213> Homo sapiens
- <400> 325 ggggattttt gttttgtttt g 21
- <210> 326 <211> 20 <212> DNA <213> Homo sapiens
- <400> 326 aaaggggaaa tgcgtaggac 20
- <210> 327 <211> 20 <212> DNA <213> Homo sapiens
- <400> 327 tcccaaagtg ctgggattac 20
- <210> 328 <211> 27 <212> DNA <213> Homo sapiens
- <400> 328 ccagaactta aagtgaaatt taaaaag 27
- <210> 329 <211> 19 <212> DNA <213> Homo sapiens
- <400> 329 gcgaggcaaa acacaaagc 19
- <210> 330 <211> 21 <212> DNA <213> Homo sapiens
- <400> 330 ttggaaatgg ctgtacctca g 21
- <210> 331 <211> 19 <212> DNA <213> Homo sapiens
- <400> 331 tacttgagca gcccacagg 19
- <210> 332 <211> 24 <212> DNA <213> Homo sapiens
- <400> 332 aaaggaatga aagtggtttt tgtc 24
- <210> 333 <211> 23 <212> DNA <213> Homo sapiens
- <400> 333 tgcaatgtaa tagttttcca agg 23
- <210> 334 <211> 22 <212> DNA <213> Homo sapiens
- <400> 334 cagcaaatga actaagccac ag 22
- <210> 335 <211> 24 <212> DNA <213> Homo sapiens
- <400> 335 tgctatacta tttgcccaca aaac 24
- <210> 336 <211> 24 <212> DNA <213> Homo sapiens
- <400> 336 gaatgcattt attcagagat gagg 24
- <210> 337 <211> 21 <212> DNA <213> Homo sapiens
- <400> 337 tgctagacac ttgctggtca c 21
- <210> 338 <211> 25 <212> DNA <213> Homo sapiens
- <400> 338 ttgatattaa agttgcacaa actgc 25
- <210> 339 <211> 25 <212> DNA <213> Homo sapiens
- <400> 339 tcaattgtgt gacatatcac ctacc 25
- <210> 340 <211> 24 <212> DNA <213> Homo sapiens
- <400> 340 tcactgtaga aatccaagta ccac 24
- <210> 341 <211> 21 <212> DNA <213> Homo sapiens
- <400> 341 tctgcatcag tttgattctg c 21
- <210> 342 <211> 22 <212> DNA <213> Homo sapiens
- <400> 342 aatgcacttt ttattttatt ag 22
- <210> 343 <211> 20 <212> DNA <213> Homo sapiens
- <400> 343 gaaaagtgcc ggttcttgag 20
- <210> 344 <211> 20 <212> DNA <213> Homo sapiens
- <400> 344 gcctacacag tccgttttcc 20
- <210> 345 <211> 19 <212> DNA <213> Homo sapiens
- <400> 345 agaggagcgt gtgttgcag 19
- <210> 346 <211> 20 <212> DNA <213> Homo sapiens
- <400> 346 actctgacgg tggagctgag 20
- <210> 347 <211> 24 <212> DNA <213> Homo sapiens
- <400> 347 gctcttggtg ctaagttaaa gagg 24
- <210> 348 <211> 20 <212> DNA <213> Homo sapiens
- <400> 348 atccagctgg ctctgatagg 20
- <210> 349 <211> 20 <212> DNA <213> Homo sapiens
- <400> 349 tgaacagcca gatcctctcc 20
- <210> 350 <211> 20 <212> DNA <213> Homo sapiens
- <400> 350 gtcccacctt gttaggaagc 20
- <210> 351 <211> 20 <212> DNA <213> Homo sapiens
- <400> 351 tggcattctg aaaacggttc 20
- <210> 352 <211> 19 <212> DNA <213> Homo sapiens
- <400> 352 gcaaacagcc tggacaatc 19
- <210> 353 <211> 22 <212> DNA <213> Homo sapiens
- <400> 353 cacatatttc tgtcccctgt tg 22
- <210> 354 <211> 20 <212> DNA <213> Homo sapiens
- <400> 354 tgtggttctt tggagcacag 20
- <210> 355 <211> 21 <212> DNA <213> Homo sapiens
- <400> 355 ccaaggtaca tttcggaaaa c 21
- <210> 356 <211> 20 <212> DNA <213> Homo sapiens
- <400> 356 accagccctt tcctcttgtc 20
- <210> 357 <211> 20 <212> DNA <213> Homo sapiens
- <400> 357 ttcttcctca tgccattgtg 20
- <210> 358 <211> 19 <212> DNA <213> Homo sapiens
- <400> 358 gtggcatctg gctgtcatc 19
- <210> 359 <211> 24 <212> DNA <213> Homo sapiens
- <400> 359 caattagttt tccttgagca ctcc 24
- <210> 360 <211> 24 <212> DNA <213> Homo sapiens
- <400> 360 tcttctttat ccaggacatc tgtg 24
- <210> 361 <211> 19 <212> DNA <213> Homo sapiens
- <400> 361 cctgggagag gtctggttc 19
- <210> 362 <211> 20 <212> DNA <213> Homo sapiens
- <400> 362 ggcagcatct tggtctgaag 20
- <210> 363 <211> 20 <212> DNA <213> Homo sapiens
- <400> 363 gagcacttgg gagacctgag 20
- <210> 364 <211> 20 <212> DNA <213> Homo sapiens
- <400> 364 agggaagcat gagcacagtc 20
- <210> 365 <211> 20 <212> DNA <213> Homo sapiens
- <400> 365 tgagttctgt ctggctgtgg 20
- <210> 366 <211> 20 <212> DNA <213> Homo sapiens
- <400> 366 tgatgaggga tgagggaaac 20
- <210> 367 <211> 20 <212> DNA <213> Homo sapiens
- <400> 367 agggttaggg agcctagctg 20
- <210> 368 <211> 19 <212> DNA <213> Homo sapiens
- <400> 368 tccttggaac acccctgtc 19
- <210> 369 <211> 25 <212> DNA <213> Homo sapiens
- <400> 369 cagtcatgat acctacactt ccatc 25
- <210> 370 <211> 25 <212> DNA <213> Homo sapiens
- <400> 370 caactctgaa ataaaagcaa tctgg 25
- <210> 371 <211> 25 <212> DNA <213> Homo sapiens
- <400> 371 ttctttggtt atgaaatgaa caatc 25
- <210> 372 <211> 27 <212> DNA <213> Homo sapiens
- <400> 372 ttgaataaaa gtagatgttt cttgtcc 27
- <210> 373 <211> 27 <212> DNA <213> Homo sapiens
- <400> 373 taccaagaat ataatacgtt gttatgg 27
- <210> 374 <211> 20 <212> DNA <213> Homo sapiens
- <400> 374 cggcttctgg cacataaaac 20
- <210> 375 <211> 23 <212> DNA <213> Homo sapiens
- <400> 375 ccattgagca ctccattcat tac 23
- <210> 376 <211> 21 <212> DNA <213> Homo sapiens
- <400> 376 ccctgggaat ctgaaagaat g 21
- <210> 377 <211> 20 <212> DNA <213> Homo sapiens
- <400> 377 tgggccgttg tctcatatac 20
- <210> 378 <211> 20 <212> DNA <213> Homo sapiens
- <400> 378 cactctggct tttccctctg 20
- <210> 379 <211> 20 <212> DNA <213> Homo sapiens
- <400> 379 aggtcatgaa tgggatcctg 20
- <210> 380 <211> 19 <212> DNA <213> Homo sapiens
- <400> 380 catattgctt ggcgtccac 19
- <210> 381 <211> 21 <212> DNA <213> Homo sapiens
- <400> 381 tcttggtgat ctttgccttt g 21
- <210> 382 <211> 27 <212> DNA <213> Homo sapiens
- <400> 382 tcatcaagat tattcgatat ttgagtc 27
- <210> 383 <211> 22 <212> DNA <213> Homo sapiens
- <400> 383 cgagaaagta aagtgcctgc tg 22
- <210> 384 <211> 20 <212> DNA <213> Homo sapiens
- <400> 384 cgggattgga gacagacatc 20
- <210> 385 <211> 19 <212> DNA <213> Homo sapiens
- <400> 385 gaggatgctg ccatttgtg 19
- <210> 386 <211> 23 <212> DNA <213> Homo sapiens
- <400> 386 catgctaaca gagtgtcaag agc 23
- <210> 387 <211> 20 <212> DNA <213> Homo sapiens
- <400> 387 cgaattcttt ttgccatttc 20
- <210> 388 <211> 20 <212> DNA <213> Homo sapiens
- <400> 388 aaagtctgca aggggctatg 20
- <210> 389 <211> 23 <212> DNA <213> Homo sapiens
- <400> 389 tcaggctaga aatgtatcca agg 23
- <210> 390 <211> 20 <212> DNA <213> Homo sapiens
- <400> 390 aaaggaaagg ggtaatccag 20
- <210> 391 <211> 27 <212> DNA <213> Homo sapiens
- <400> 391 tttacttttt atgattacct ctgatgc 27
- <210> 392 <211> 27 <212> DNA <213> Homo sapiens
- <400> 392 aaagaaaatt caaatgaaaa taagtcg 27
- <210> 393 <211> 22 <212> DNA <213> Homo sapiens
- <400> 393 catgcaaact tgggtctaga tg 22
- <210> 394 <211> 20 <212> DNA <213> Homo sapiens
- <400> 394 ttggcttttt cccctcatac 20
- <210> 395 <211> 20 <212> DNA <213> Homo sapiens
- <400> 395 taaagccttt cccagctcag 20
- <210> 396 <211> 19 <212> DNA <213> Homo sapiens
- <400> 396 cctgctgctt ccacaggac 19
- <210> 397 <211> 19 <212> DNA <213> Homo sapiens
- <400> 397 catggacgtc ctgtggaag 19
- <210> 398 <211> 20 <212> DNA <213> Homo sapiens
- <400> 398 gtgtcccatt catcctcacc 20
- <210> 399 <211> 19 <212> DNA <213> Homo sapiens
- <400> 399 aacagaggag gcgctgaag 19
- <210> 400 <211> 18 <212> DNA <213> Homo sapiens
- <400> 400 gcctcaccct acccatcc 18
- <210> 401 <211> 20 <212> DNA <213> Homo sapiens
- <400> 401 agattgctgg ggttcctttc 20
- <210> 402 <211> 20 <212> DNA <213> Homo sapiens
- <400> 402 ccacctcact ccatctctgg 20
- <210> 403 <211> 20 <212> DNA <213> Homo sapiens
- <400> 403 tggggtaagt tccctgagtg 20
- <210> 404 <211> 20 <212> DNA <213> Homo sapiens
- <400> 404 tacagagcca gggagagtgc 20
- <210> 405 <211> 20 <212> DNA <213> Homo sapiens
- <400> 405 tatcatccac atcggtcagc 20
- <210> 406 <211> 25 <212> DNA <213> Homo sapiens
- <400> 406 tttgggacaa gtaattgtta ttagc 25
- <210> 407 <211> 20 <212> DNA <213> Homo sapiens
- <400> 407 ttgaatgcag tggtgctctc 20
- <210> 408 <211> 20 <212> DNA <213> Homo sapiens
- <400> 408 tctgcctgtg ttctgagctg 20
- <210> 409 <211> 20 <212> DNA <213> Homo sapiens
- <400> 409 gaactcagct ctgcctggac 20
- <210> 410 <211> 20 <212> DNA <213> Homo sapiens
- <400> 410 gcgagactcg gtctcaaaag 20
- <210> 411 <211> 20 <212> DNA <213> Homo sapiens
- <400> 411 atcgtttgcc aactcctagc 20
- <210> 412 <211> 20 <212> DNA <213> Homo sapiens
- <400> 412 aatcagtgca ggtgatgcag 20
- <210> 413 <211> 20 <212> DNA <213> Homo sapiens
- <400> 413 acatggcctg tgtctgcttc 20
- <210> 414 <211> 25 <212> DNA <213> Homo sapiens
- <400> 414 gactggaaga aaataaccaa gtttc 25
- <210> 415 <211> 20 <212> DNA <213> Homo sapiens
- <400> 415 ggcaggcgtt aaaggaatag 20
- <210> 416 <211> 19 <212> DNA <213> Homo sapiens
- <400> 416 aaaaacaggg cacccattg 19
- <210> 417 <211> 20 <212> DNA <213> Homo sapiens
- <400> 417 ttaagcccac agggaacaag 20
- <210> 418 <211> 20 <212> DNA <213> Homo sapiens
- <400> 418 tgtcagacct tggccttttc 20
- <210> 419 <211> 23 <212> DNA <213> Homo sapiens
- <400> 419 tcttctgaaa aatggaggaa gtc 23
- <210> 420 <211> 20 <212> DNA <213> Homo sapiens
- <400> 420 gctcttcctg gggaagtctc 20
- <210> 421 <211> 20 <212> DNA <213> Homo sapiens
- <400> 421 cagtttttga ctgccactgc 20
- <210> 422 <211> 21 <212> DNA <213> Homo sapiens
- <400> 422 tccatgctcg acactattct g 21
- <210> 423 <211> 26 <212> DNA <213> Homo sapiens
- <400> 423 ttctacttta catacaaaag gcactc 26
- <210> 424 <211> 20 <212> DNA <213> Homo sapiens
- <400> 424 agttgggctt agcctggatg 20
- <210> 425 <211> 21 <212> DNA <213> Homo sapiens
- <400> 425 agtatcacgt ccatgttgga g 21
- <210> 426 <211> 21 <212> DNA <213> Homo sapiens
- <400> 426 caatgtttgc tttgaaaaag g 21
- <210> 427 <211> 20 <212> DNA <213> Homo sapiens
- <400> 427 tgagcaaaac ctgtggaatg 20
- <210> 428 <211> 20 <212> DNA <213> Homo sapiens
- <400> 428 tttgctggtg ctgtctatgg 20
- <210> 429 <211> 22 <212> DNA <213> Homo sapiens
- <400> 429 ggatgtgcaa aatgttcttc tg 22
- <210> 430 <211> 21 <212> DNA <213> Homo sapiens
- <400> 430 gggagcaggt gttattgatt g 21
- <210> 431 <211> 20 <212> DNA <213> Homo sapiens
- <400> 431 ggtgaggagt tttcccaagc 20
- <210> 432 <211> 26 <212> DNA <213> Homo sapiens
- <400> 432 agcacagagt ttgttaatgt ttttag 26
- <210> 433 <211> 23 <212> DNA <213> Homo sapiens
- <400> 433 gctgacttct attgggagca tac 23
- <210> 434 <211> 21 <212> DNA <213> Homo sapiens
- <400> 434 cagaggtatg gtttgggtct c 21
- <210> 435 <211> 21 <212> DNA <213> Homo sapiens
- <400> 435 tgggggtcta ggactatgga g 21
- <210> 436 <211> 26 <212> DNA <213> Homo sapiens
- <400> 436 gctgtgtttt cttaatttcc tgtatg 26
- <210> 437 <211> 19 <212> DNA <213> Homo sapiens
- <400> 437 cagcctcctg cagactttg 19
- <210> 438 <211> 20 <212> DNA <213> Homo sapiens
- <400> 438 cattttggga aaggaggttc 20
- <210> 439 <211> 20 <212> DNA <213> Homo sapiens
- <400> 439 cggtcagtat gacggtaggg 20
- <210> 440 <211> 20 <212> DNA <213> Homo sapiens
- <400> 440 aggtcatgaa tgggatcctg 20
- <210> 441 <211> 20 <212> DNA <213> Homo sapiens
- <400> 441 ggcgctaatc gtactgaaac 20
- <210> 442 <211> 20 <212> DNA <213> Homo sapiens
- <400> 442 tatggtggcc atggagactg 20
- <210> 443 <211> 19 <212> DNA <213> Homo sapiens
- <400> 443 aggagccctc ctttgattg 19
- <210> 444 <211> 20 <212> DNA <213> Homo sapiens
- <400> 444 ggccagtggt atctgctgac 20
- <210> 445 <211> 24 <212> DNA <213> Homo sapiens
- <400> 445 aagacaaaat cccaaataaa gcag 24
- <210> 446 <211> 20 <212> DNA <213> Homo sapiens
- <400> 446 attggtttga gtgccctttg 20
- <210> 447 <211> 22 <212> DNA <213> Homo sapiens
- <400> 447 aaaatgcttt gcactgactc tg 22
- <210> 448 <211> 25 <212> DNA <213> Homo sapiens
- <400> 448 ttcatcttta ttgcccctat atctg 25
- <210> 449 <211> 26 <212> DNA <213> Homo sapiens
- <400> 449 ttaaagatta taccaagtca gtggtc 26
- <210> 450 <211> 20 <212> DNA <213> Homo sapiens
- <400> 450 catgtggttt cttgcctttg 20
- <210> 451 <211> 24 <212> DNA <213> Homo sapiens
- <400> 451 aagcataggc tcagcatact acac 24
- <210> 452 <211> 22 <212> DNA <213> Homo sapiens
- <400> 452 cccatcaact accatgtgac tg 22
- <210> 453 <211> 22 <212> DNA <213> Homo sapiens
- <400> 453 ggtcctgttg tcagtttttc ag 22
- <210> 454 <211> 20 <212> DNA <213> Homo sapiens
- <400> 454 ggtcctgggg tgctcctaga 20
- <210> 455 <211> 22 <212> DNA <213> Homo sapiens
- <400> 455 tcctcaactg agccaagtag cc 22
- <210> 456 <211> 22 <212> DNA <213> Homo sapiens
- <400> 456 tgtgtcctcc atgttctgtt gg 22
- <210> 457 <211> 18 <212> DNA <213> Homo sapiens
- <400> 457 tggcccctct gcctagca 18
- <210> 458 <211> 18 <212> DNA <213> Homo sapiens
- <400> 458 ccactgctgg gtcctggg 18
- <210> 459 <211> 25 <212> DNA <213> Homo sapiens
- <400> 459 gaatagagag cttttcctga gatgc 25
- <210> 460 <211> 24 <212> DNA <213> Homo sapiens
- <400> 460 gattcatctt gaagaagttg atgg 24
- <210> 461 <211> 20 <212> DNA <213> Homo sapiens
- <400> 461 acttgatgcc cccaagaatc 20
- <210> 462 <211> 21 <212> DNA <213> Homo sapiens
- <400> 462 ctcaagaagc agaaagggaa g 21
- <210> 463 <211> 21 <212> DNA <213> Homo sapiens
- <400> 463 tctacagagt tccctgtttg c 21
- <210> 464 <211> 21 <212> DNA <213> Homo sapiens
- <400> 464 gctgtggatc ttagggacct c 21
- <210> 465 <211> 26 <212> DNA <213> Homo sapiens
- <400> 465 aaaaagcatt tctgatatgg ataaag 26
- <210> 466 <211> 23 <212> DNA <213> Homo sapiens
- <400> 466 tcgaagtatg ttgctatcct ctg 23
- <210> 467 <211> 25 <212> DNA <213> Homo sapiens
- <400> 467 aaaataataa gcatcagcat ttgac 25
- <210> 468 <211> 21 <212> DNA <213> Homo sapiens
- <400> 468 ttattccaga cgcatttcca c 21
- <210> 469 <211> 22 <212> DNA <213> Homo sapiens
- <400> 469 tttgagtcta tcgagtgtgt gc 22
- <210> 470 <211> 21 <212> DNA <213> Homo sapiens
- <400> 470 ttcctgtttt tcgtttggtt g 21
- <210> 471 <211> 21 <212> DNA <213> Homo sapiens
- <400> 471 tgaattttcc ttttggggaa g 21
- <210> 472 <211> 25 <212> DNA <213> Homo sapiens
- <400> 472 tggatcaaat ccaaataaag taagg 25
- <210> 473 <211> 25 <212> DNA <213> Homo sapiens
- <400> 473 ttgctttttc tgtaaatcat ctgtg 25
- <210> 474 <211> 22 <212> DNA <213> Homo sapiens
- <400> 474 tatttcattt atttatgtgg ac 22
- <210> 475 <211> 25 <212> DNA <213> Homo sapiens
- <400> 475 gaagttaagg cagtgtttta gatgg 25
- <210> 476 <211> 25 <212> DNA <213> Homo sapiens
- <400> 476 accagtaata tccactttct ttctg 25
- <210> 477 <211> 24 <212> DNA <213> Homo sapiens
- <400> 477 tttattggat ttcaaaaatg agtg 24
- <210> 478 <211> 25 <212> DNA <213> Homo sapiens
- <400> 478 tctcatgtga gaaagagatt agcag 25
- <210> 479 <211> 22 <212> DNA <213> Homo sapiens
- <400> 479 tggctttcag tagttttcat gg 22
- <210> 480 <211> 18 <212> DNA <213> Homo sapiens
- <400> 480 catgtgatgg cgtgatcc 18
- <210> 481 <211> 22 <212> DNA <213> Homo sapiens
- <400> 481 aggaatacac aaacaccgac ag 22
- <210> 482 <211> 21 <212> DNA <213> Homo sapiens
- <400> 482 tgcaccctgt tttcttttct c 21
- <210> 483 <211> 23 <212> DNA <213> Homo sapiens
- <400> 483 tggacaagta atggttttct ctg 23
- <210> 484 <211> 21 <212> DNA <213> Homo sapiens
- <400> 484 tgacatttga gcaaagacct g 21
- <210> 485 <211> 20 <212> DNA <213> Homo sapiens
- <400> 485 tttgttttgt tttgtttttt 20
- <210> 486 <211> 27 <212> DNA <213> Homo sapiens
- <400> 486 ttacttatag gtttcaggag atgtgtt 27
- <210> 487 <211> 23 <212> DNA <213> Homo sapiens
- <400> 487 gggtctttcg aatgtatgca atg 23
Claims (5)
- A method for detecting a mutated PIK3CA polynucleotide, comprising: amplifying a PIK3CA polynucleotide; and sequencing the polynucleotide amplified in the amplification step to detect the presence of a mutation in the polynucleotide amplified in the amplification step, wherein the mutation is at least one mutation selected from the group consisting of C112T, G113A, G263A, C311G, G317T, G323C, del332-334, G353A, G365A, C370A, T1035A, G1048C, T1132C, T1258C, G1357C, C1616G, G1624A, A1625G, A1625T, G1633A, A1634G, G1635T, C1636A, A1637C, C1981A, A2102C, G2702T, T2725C, T3022C, A3073G, C3074A, G3129T, C3139T, A3140G, A3140T, G3145A in comparison with a wild type PIK3CA polynucleotide, the wild type PIK3CA polynucleotide having a nucleotide sequence of SEQ ID NO.1.
- A method for detecting a mutated PIK3CA polynucleotide, the method comprising detecting the presence of the mutated PIK3CA polynucleotide according to claim 1 in a sample obtained from a subject.
- The method according to claim 2, wherein the sample comprises a genomic DNA of a tumor cell.
- The method according to claim 2 or 3, wherein the sample is a colorectal tissue, brain tissue, gastric tissue, breast tissue, lung tissue, blood, serum, plasma, sputum, saliva, urine, stool, or nipple aspirate.
- The method according to any of claims 2 to 4, wherein the subject is a cancer patient.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US54888604 | 2004-03-02 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| HK40016239A HK40016239A (en) | 2020-09-11 |
| HK40016239B true HK40016239B (en) | 2022-02-18 |
Family
ID=
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10787713B2 (en) | Mutations of the PIK3CA gene in human cancers | |
| HK40016239B (en) | Mutations of the pik3ca gene in human cancers | |
| HK40016239A (en) | Mutations of the pik3ca gene in human cancers |