[go: up one dir, main page]

JP2000050697A - Control device for synchronous motor - Google Patents

Control device for synchronous motor

Info

Publication number
JP2000050697A
JP2000050697A JP10215127A JP21512798A JP2000050697A JP 2000050697 A JP2000050697 A JP 2000050697A JP 10215127 A JP10215127 A JP 10215127A JP 21512798 A JP21512798 A JP 21512798A JP 2000050697 A JP2000050697 A JP 2000050697A
Authority
JP
Japan
Prior art keywords
current
synchronous motor
value
magnetic flux
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10215127A
Other languages
Japanese (ja)
Other versions
JP3707251B2 (en
Inventor
Yoshitoshi Akita
佳稔 秋田
Toshiaki Okuyama
俊昭 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21512798A priority Critical patent/JP3707251B2/en
Publication of JP2000050697A publication Critical patent/JP2000050697A/en
Application granted granted Critical
Publication of JP3707251B2 publication Critical patent/JP3707251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

(57)【要約】 【課題】負荷角δが不安定領域(90度付近)に近づく
のを防止し、トルク低下なしに安定に運転できる同期電
動機制御装置を実現する。 【解決手段】負荷角δの設定値と磁束値及びトルク電流
値に基づき、M軸上の励磁電流Imを制御するδ抑制器
19を設けることで、δを安定な領域に抑制制御する。 【効果】同期電動機の安定な運転が可能になる。
(57) Abstract: A synchronous motor control device capable of preventing a load angle δ from approaching an unstable region (around 90 degrees) and stably operating without a decrease in torque is realized. A δ suppressor 19 for controlling an exciting current Im on an M-axis is provided based on a set value of a load angle δ, a magnetic flux value, and a torque current value, so that δ is controlled to be suppressed in a stable region. [Effect] The stable operation of the synchronous motor is enabled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、同期電動機の制御
装置に関わり、特に電動機の磁束およびトルクを高精度
制御する同期電動機制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synchronous motor control device, and more particularly to a synchronous motor control for controlling a magnetic flux and a torque of a motor with high precision.

【0002】[0002]

【従来の技術】同期電動機のベクトル制御では、回転磁
極座標のd,q軸から負荷角δだけ回転した、回転磁界
座標のM,T軸を基準座標に用いて、電動機電流の励磁
電流成分とトルク電流成分を制御する。
2. Description of the Related Art In vector control of a synchronous motor, the M and T axes of a rotating magnetic field coordinate rotated from the d and q axes of a rotating magnetic pole coordinate by a load angle δ are used as reference coordinates to determine the exciting current component of the motor current and Controls the torque current component.

【0003】ここで、MT軸は磁束ΦのT軸成分φtが
零となるように選ぶ、即ちM軸は磁束の方向と一致する
ことを仮定する。この時、電機子鎖交磁束ΦはM軸にの
み存在するためΦ=φmであり、φmを制御することに
より磁束の大きさが制御される。そして、磁束が一定の
時、トルクは電機子電流のT軸成分Itに比例するた
め、Itを制御することによりトルクが制御される。ま
た、電機子電流のM軸成分Imを零とすることで、磁束
と電流が直交し(Φ⊥I)、電動機力率を1に制御でき
る。この時の座標軸の関係は図2のように示される。
Here, it is assumed that the MT axis is selected so that the T-axis component φt of the magnetic flux Φ becomes zero, that is, the M axis coincides with the direction of the magnetic flux. At this time, since the armature interlinkage magnetic flux Φ exists only on the M axis, Φ = φm, and the magnitude of the magnetic flux is controlled by controlling φm. When the magnetic flux is constant, the torque is proportional to the T-axis component It of the armature current. Therefore, the torque is controlled by controlling It. By setting the M-axis component Im of the armature current to zero, the magnetic flux and the current are orthogonal (Φ 直交 I), and the power factor of the motor can be controlled to 1. The relationship between the coordinate axes at this time is shown in FIG.

【0004】ベクトル制御により同期電動機を駆動した
場合、負荷の大きさにより負荷角δは変化し、また同期
電動機を安定に駆動できる範囲は負荷角δが−90度<
δ<90度であることがわかっている。ここで、特に界
磁弱め域で負荷が急変した場合、同期電動機の負荷角が
過渡的に安定範囲を越えてしまい制御不能になる問題が
あるため、例えば特開平4−150789 号に記載されたもの
では、制御演算によりδ推定値δ^を求める際、リミッ
タ回路を具備し、δ^を設定値以下に制限し、不安定
(磁束およびトルク低下)を防止している。しかしなが
ら、この方法ではδ^がリミッタ設定値で制限された
時、ベクトル制御が不完全となり、磁束変動(低下)及
びトルク低下の問題がある。また、δ値を低減するよう
に同期電動機を設計すると、電動機は大型化する問題が
ある。
When the synchronous motor is driven by vector control, the load angle δ changes depending on the magnitude of the load, and the range in which the synchronous motor can be driven stably is when the load angle δ is −90 degrees <
It has been found that δ <90 degrees. Here, especially when the load suddenly changes in the field weakening region, there is a problem that the load angle of the synchronous motor exceeds the stable range transiently and becomes uncontrollable. In the apparatus, when a δ estimated value δ ^ is obtained by control calculation, a limiter circuit is provided to limit δ ^ to a set value or less to prevent instability (magnetic flux and torque reduction). However, in this method, when δ ^ is limited by the limiter set value, vector control becomes incomplete, and there is a problem of magnetic flux fluctuation (reduction) and torque reduction. Further, if the synchronous motor is designed to reduce the δ value, there is a problem that the motor becomes large.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、前述
した従来方法における問題を解決し、同期電動機を安定
に運転できる制御装置を得ること、また、これにより過
負荷運転範囲の拡大および電動機の小型化を図ることを
目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems in the conventional method and to obtain a control device capable of operating a synchronous motor stably. It aims at miniaturization of.

【0006】[0006]

【課題を解決するための手段】本発明の制御装置は、負
荷角δの最大値を任意に設定し、磁束とトルク電流条件
より変化するδが前記設定値を超過する場合は、磁束値
とトルク電流値に基づきM軸上の励磁電流Imを制御す
ることにより、負荷角δを所定値以下に抑制すること
で、同期電動機を安定に運転できる。また、δの最大値
を任意に設定できるため、δに関する電動機設計上の制
約を取り除くことができる。
According to the control device of the present invention, the maximum value of the load angle δ is arbitrarily set, and when δ that changes from the magnetic flux and torque current conditions exceeds the set value, the magnetic flux value By controlling the exciting current Im on the M axis based on the torque current value, the load angle δ is suppressed to a predetermined value or less, so that the synchronous motor can be stably operated. In addition, since the maximum value of δ can be set arbitrarily, it is possible to remove restrictions on motor design regarding δ.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0008】図1に、本発明の一実施形態である同期電
動機可変速システムの構成を示す。図1において1は速
度指令発生器、2は速度制御器、3は磁束指令演算器、
4は界磁電流により磁束を制御する界磁指令演算器、5
は電機子電流制御器、6は界磁電流制御器、7はモータ
磁束及び負荷角δを検出する磁束オブザーバ、8,9は
MT軸とdq軸間の座標変換器、10,11はdq軸と
uvw軸間の座標変換器、12,13は電力変換器、1
4は電機子電流検出器、15は界磁電流検出器、16は
電機子電圧検出器、17は同期電動機、18は該同期電
動機17の速度/位置検出器であり、19は本発明によ
り付加したもので、磁束値とトルク電流値に基づき励磁
電流Imを制御することで負荷角δを抑制するδ抑制器
である。次に動作の概要について説明する。まず、同期
電動機17の回転速度は速度/位置検出器18によって
検出され、速度指令発生器1からの速度指令との偏差が
速度制御器2に加えられ、これにより回転速度は該速度
指令に一致するように制御される。そして、前記速度制
御ループの内側には図1に示すように電流制御ループが
設けられ、電機子電流及び界磁電流は、電機子電流検出
器14及び界磁電流検出器15により検出され、電機子
電流と界磁電流の各指令値に一致するように電機子電流
制御器5及び界磁電流制御器6により制御される。MT
座標を用いてベクトル制御を行うためには、負荷角δ及
びM軸上の磁束Φを検出する必要がある。これらは磁束
オブザーバ7において電機子電流と電機子電圧からモー
タ磁束推定値φd,φqを検出し、この磁束推定値を用
いて演算される。演算されたδ推定値は座標変換器8及
び9に用いられる。また、磁束Φは磁束オブザーバ7に
より演算され、磁束指令演算器3の出力と該演算値との
偏差が界磁指令演算器4に加えられ、その出力である界
磁電流指令If*に従い界磁電流が制御される。
FIG. 1 shows a configuration of a synchronous motor variable speed system according to an embodiment of the present invention. In FIG. 1, 1 is a speed command generator, 2 is a speed controller, 3 is a magnetic flux command calculator,
4 is a field command calculator for controlling magnetic flux by a field current, 5
Is an armature current controller, 6 is a field current controller, 7 is a magnetic flux observer for detecting a motor magnetic flux and a load angle δ, 8, 9 are coordinate converters between the MT axis and the dq axis, and 10 and 11 are dq axes. Converters between the axis and the uvw axis, 12 and 13 are power converters, 1
4 is an armature current detector, 15 is a field current detector, 16 is an armature voltage detector, 17 is a synchronous motor, 18 is a speed / position detector of the synchronous motor 17, and 19 is added according to the present invention. This is a δ suppressor that suppresses the load angle δ by controlling the exciting current Im based on the magnetic flux value and the torque current value. Next, an outline of the operation will be described. First, the rotation speed of the synchronous motor 17 is detected by the speed / position detector 18, and a deviation from the speed command from the speed command generator 1 is added to the speed controller 2, whereby the rotation speed matches the speed command. Is controlled. A current control loop is provided inside the speed control loop as shown in FIG. 1, and the armature current and the field current are detected by the armature current detector 14 and the field current detector 15. The armature current controller 5 and the field current controller 6 control the armature current and the field current to match the respective command values. MT
In order to perform vector control using coordinates, it is necessary to detect the load angle δ and the magnetic flux Φ on the M axis. These are detected by the magnetic flux observer 7 from the armature current and the armature voltage to estimate the motor magnetic fluxes φd and φq, and are calculated using the estimated magnetic fluxes. The calculated δ estimation value is used for the coordinate converters 8 and 9. The magnetic flux Φ is calculated by the magnetic flux observer 7, the deviation between the output of the magnetic flux command calculator 3 and the calculated value is added to the field command calculator 4, and the magnetic field Φ is calculated in accordance with the output field current command If *. The current is controlled.

【0009】従来、図1のδ抑制器19が無い場合にお
いては、界磁弱め域でトルクが大きくなると、δは90
度近くまで大きくなる。この時のベクトル図を図3に示
す。図3より、この状態では磁束とd軸(界磁電流)が
ほぼ直交しているため、界磁制御により磁束を十分に制
御できない。このため、トルク変動により磁束が変動し
易く、これによりトルク低下を生じ易い。
Conventionally, when the δ suppressor 19 of FIG. 1 is not provided, δ becomes 90 when the torque increases in the field weakening region.
It grows to near degree. FIG. 3 shows a vector diagram at this time. According to FIG. 3, since the magnetic flux and the d-axis (field current) are substantially orthogonal to each other in this state, the magnetic flux cannot be sufficiently controlled by the field control. For this reason, the magnetic flux tends to fluctuate due to the torque fluctuation, which tends to cause a decrease in torque.

【0010】次に、本発明の特徴部であるδ抑制器19
の動作について説明する。図4に本発明を適用した際の
ベクトル図を示す。本発明の原理は、M軸電流Imを負
に制御することによりδの増加を抑制するものである。
M軸電流Imを流した時のq軸磁束φqの関係式は、
Next, the δ suppressor 19 which is a feature of the present invention is described.
Will be described. FIG. 4 shows a vector diagram when the present invention is applied. The principle of the present invention is to suppress the increase in δ by controlling the M-axis current Im to be negative.
The relational expression of the q-axis magnetic flux φq when the M-axis current Im is applied is:

【0011】[0011]

【数1】 φq=Lqq=Lq(sinδ×Im+cosδ×It)=Φsinδ …(数1) となり、この式より負荷角δは、(1) φ q = L q I q = L q (sin δ × I m + cos δ × I t ) = Φ sin δ (Equation 1)

【0012】[0012]

【数2】 (Equation 2)

【0013】で表わされ、励磁電流Imで負荷角δを操
作できることがわかる。このことに着目し、安定に運転
可能な負荷角δの最大値δ~ を任意に設定し、δがこれ
を超える領域では、前記設定値δ~ とトルク電流検出値
It^及び磁束検出値Φ^より
It can be seen that the load angle δ can be controlled by the exciting current Im. Focusing on this, the maximum value δ ~ of the load angle δ that can be operated stably is set arbitrarily, and in a region where δ exceeds this, the set value δ ~, the torque current detection value It ^, and the magnetic flux detection value Φ ^

【0014】[0014]

【数3】 (Equation 3)

【0015】式で演算される励磁電流Im*(演算値は
負側となる)を流すことでδを安定な設定値δ~ に抑制
することができ、定常的な制御系の安定化が可能とな
る。
By flowing the exciting current Im * calculated by the equation (the calculated value is on the negative side), δ can be suppressed to a stable set value δ ~, and a steady control system can be stabilized. Becomes

【0016】次に、本発明の他の実施形態を図5を用い
て説明する。
Next, another embodiment of the present invention will be described with reference to FIG.

【0017】図において部品番号1〜19は、図1の同
じ番号のものと同一である。図1とは、速度制御器内の
演算処理によりdq軸電流指令が直接出力されており、
制御系の安定化のために磁束値とトルク電流値に基づき
励磁電流Imを制御する代りに、dq軸電流指令に補正
量を加える点が異なる。補正量は励磁電流Imをdqに
座標変換することで簡単に得られ、図1と同様の効果が
得られる。
In the figure, part numbers 1 to 19 are the same as those of FIG. FIG. 1 shows that the dq-axis current command is directly output by the arithmetic processing in the speed controller.
The difference is that a correction amount is added to the dq-axis current command instead of controlling the excitation current Im based on the magnetic flux value and the torque current value for stabilizing the control system. The correction amount can be easily obtained by performing coordinate conversion of the excitation current Im to dq, and the same effect as in FIG. 1 can be obtained.

【0018】次に、本発明の他の実施形態を図6を用い
て説明する。
Next, another embodiment of the present invention will be described with reference to FIG.

【0019】図において部品番号1〜19は、図1の同
じ番号のものと同一である。図1との違いは、磁束値と
トルク電流値に基づき励磁電流Imを制御する代りに、
負荷角δの検出値がδ設定器20において設定された設
定値δ~ を超えた時に、δ設定器の出力であるδ~ と磁
束オブザーバ7の出力であるδ検出値δ^との偏差に基
づき、励磁電流Imを制御する点が異なるが、図1と同
様のδ抑制効果が得られる。
In the drawing, part numbers 1 to 19 are the same as those having the same numbers in FIG. The difference from FIG. 1 is that instead of controlling the excitation current Im based on the magnetic flux value and the torque current value,
When the detected value of the load angle δ exceeds the set value δ ~ set by the δ setting device 20, the deviation between δ ~ which is the output of the δ setting device and the δ detection value δ ^ which is the output of the magnetic flux observer 7 is calculated. Although the difference is that the excitation current Im is controlled based on this, the δ suppression effect similar to that of FIG. 1 can be obtained.

【0020】次に、本発明の他の実施形態を図7を用い
て説明する。
Next, another embodiment of the present invention will be described with reference to FIG.

【0021】図において部品番号1〜20は、図6の同
じ番号のものと同一である。図6との違いは、速度制御
器内の演算処理によりdq軸電流指令が直接出力されて
おり、δ検出値が設定値δ~ を超えた時に、δ設定器の
出力であるδ~ と磁束オブザーバ7の出力であるδ検出
値δ^との偏差に基づき励磁電流Imを制御する代り
に、dq軸電流に補正量を加える点が異なる。補正量は
励磁電流Imをdqに座標変換することで簡単に得ら
れ、図6と同様の効果が得られる。
In the drawing, part numbers 1 to 20 are the same as those having the same numbers in FIG. The difference from FIG. 6 is that the dq-axis current command is directly output by the arithmetic processing in the speed controller, and when the detected δ value exceeds the set value δ ~, the output of the δ setter δ ~ and the magnetic flux The difference is that a correction amount is added to the dq-axis current instead of controlling the excitation current Im based on the deviation from the δ detection value δ ^ which is the output of the observer 7. The correction amount can be easily obtained by performing coordinate conversion of the excitation current Im to dq, and an effect similar to that of FIG.

【0022】[0022]

【発明の効果】以上のように、本発明によれば、負荷角
δを所定値以下に抑制することで、同期電動機を安定に
運転できる。また、δの最大値を任意に制限できるた
め、同期電動機の過負荷範囲を拡大できる。また、δに
関する電動機設計上の制限が無いため、電動機は低コス
トな設計を行うことができる。
As described above, according to the present invention, the synchronous motor can be operated stably by suppressing the load angle δ to a predetermined value or less. Further, since the maximum value of δ can be arbitrarily limited, the overload range of the synchronous motor can be expanded. Further, since there is no restriction on the motor design regarding δ, the motor can be designed at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す同期電動機可変速制
御システムのブロック構成図。
FIG. 1 is a block diagram of a synchronous motor variable speed control system according to an embodiment of the present invention.

【図2】同期電動機の動作を説明するベクトル図(回転
子座標(dq軸)と磁束座標(MT軸)の関係を示す説
明図)。
FIG. 2 is a vector diagram for explaining the operation of the synchronous motor (an explanatory diagram showing a relationship between rotor coordinates (dq axes) and magnetic flux coordinates (MT axes)).

【図3】負荷時の同期電動機のベクトル図。FIG. 3 is a vector diagram of the synchronous motor under load.

【図4】本発明の作用を説明するベクトル図。FIG. 4 is a vector diagram illustrating the operation of the present invention.

【図5】本発明の他の実施形態を示す同期電動機可変速
制御システムのブロック構成図。
FIG. 5 is a block diagram of a synchronous motor variable speed control system according to another embodiment of the present invention.

【図6】本発明の他の実施形態を示す同期電動機可変速
制御システムのブロック構成図。
FIG. 6 is a block diagram of a synchronous motor variable speed control system according to another embodiment of the present invention.

【図7】本発明の他の実施形態を示す同期電動機可変速
制御システムのブロック構成図。
FIG. 7 is a block diagram of a synchronous motor variable speed control system according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

4…界磁指令演算器、17…同期電動機、19…δ抑制
器、20…δ設定器。
4 ... field command calculator, 17 ... synchronous motor, 19 ... delta suppressor, 20 ... delta setting device.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H576 BB10 DD02 DD05 EE01 EE02 GG02 GG04 GG10 HB01 JJ06 JJ25 LL07 LL22 LL24 LL34 LL35 LL41  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H576 BB10 DD02 DD05 EE01 EE02 GG02 GG04 GG10 HB01 JJ06 JJ25 LL07 LL22 LL24 LL34 LL35 LL41

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】同期電動機の電流を座標変換によりトルク
電流成分と励磁電流成分とに変換して制御する、同期電
動機の制御装置において、 負荷角δが所定値以下となるように磁束値とトルク電流
値により演算される値に応じて、前記励磁電流を制御す
ることを特徴とする同期電動機の制御装置。
1. A synchronous motor control device for controlling a synchronous motor by converting a current of the synchronous motor into a torque current component and an exciting current component by coordinate conversion, wherein the magnetic flux value and the torque are controlled so that the load angle δ is equal to or less than a predetermined value. A control device for a synchronous motor, wherein the exciting current is controlled according to a value calculated from a current value.
【請求項2】同期電動機の電流を座標変換により回転磁
極座標軸(d,q軸)のd軸電流成分とq軸電流成分と
に変換して制御する、同期電動機の制御装置において、 負荷角δが所定値以下となるように磁束値とトルク電流
値により演算される値に応じて、d軸電流とq軸電流を
補正制御することを特徴とする同期電動機の制御装置。
2. A synchronous motor control device which converts a current of a synchronous motor into a d-axis current component and a q-axis current component of a rotating magnetic pole coordinate axis (d, q axes) by coordinate conversion and controls the load angle δ. And a d-axis current and a q-axis current that are corrected and controlled in accordance with a value calculated from a magnetic flux value and a torque current value such that is equal to or less than a predetermined value.
【請求項3】同期電動機の電流を座標変換によりトルク
電流成分と励磁電流成分とに変換して制御する、同期電
動機の制御装置において、 負荷角δが所定値以下となるように、該設定値とδ検出
値の偏差に応じて励磁電流を制御することを特徴とする
同期電動機の制御装置。
3. A synchronous motor control device for converting a current of a synchronous motor into a torque current component and an excitation current component by coordinate conversion and controlling the same, wherein the set value is set so that the load angle δ is equal to or less than a predetermined value. A control device for a synchronous motor, wherein an exciting current is controlled in accordance with a deviation between the control current and the δ detection value.
【請求項4】同期電動機の電流を座標変換により回転磁
極座標軸(d,q軸)のd軸電流成分とq軸電流成分と
に変換して制御する、同期電動機の制御装置において、 負荷角δが所定値以下となるように、該設定値とδ検出
値の偏差に応じて、d軸電流とq軸電流を補正制御する
ことを特徴とする同期電動機の制御装置。
4. A synchronous motor control device which converts a current of a synchronous motor into a d-axis current component and a q-axis current component of rotating magnetic pole coordinate axes (d, q axes) by coordinate conversion and controls the load angle δ. And a d-axis current and a q-axis current are corrected and controlled in accordance with a deviation between the set value and the detected δ value so that the value is equal to or less than a predetermined value.
JP21512798A 1998-07-30 1998-07-30 Control device for synchronous motor Expired - Fee Related JP3707251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21512798A JP3707251B2 (en) 1998-07-30 1998-07-30 Control device for synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21512798A JP3707251B2 (en) 1998-07-30 1998-07-30 Control device for synchronous motor

Publications (2)

Publication Number Publication Date
JP2000050697A true JP2000050697A (en) 2000-02-18
JP3707251B2 JP3707251B2 (en) 2005-10-19

Family

ID=16667181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21512798A Expired - Fee Related JP3707251B2 (en) 1998-07-30 1998-07-30 Control device for synchronous motor

Country Status (1)

Country Link
JP (1) JP3707251B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100417004C (en) * 2003-07-23 2008-09-03 松下电器产业株式会社 Motor control equipment and washing machines and dryers using the same
WO2018159103A1 (en) * 2017-03-03 2018-09-07 日本電産株式会社 Motor control method, motor control system, and electric power steering system
WO2018159100A1 (en) * 2017-03-03 2018-09-07 日本電産株式会社 Motor control method, motor control system, and electric power steering system
WO2018159102A1 (en) * 2017-03-03 2018-09-07 日本電産株式会社 Motor control method, motor control system, and electric power steering system
WO2018159099A1 (en) * 2017-03-03 2018-09-07 日本電産株式会社 Motor control method, motor control system, and electric power steering system
WO2018159104A1 (en) * 2017-03-03 2018-09-07 日本電産株式会社 Motor control method, motor control system, and electric power steering system
WO2018159101A1 (en) * 2017-03-03 2018-09-07 日本電産株式会社 Motor control method, motor control system, and electric power steering system
CN112769366A (en) * 2020-12-31 2021-05-07 徐州中矿大传动与自动化有限公司 Method, device and system for controlling excitation converter of electrically excited synchronous motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100417004C (en) * 2003-07-23 2008-09-03 松下电器产业株式会社 Motor control equipment and washing machines and dryers using the same
WO2018159103A1 (en) * 2017-03-03 2018-09-07 日本電産株式会社 Motor control method, motor control system, and electric power steering system
WO2018159100A1 (en) * 2017-03-03 2018-09-07 日本電産株式会社 Motor control method, motor control system, and electric power steering system
WO2018159102A1 (en) * 2017-03-03 2018-09-07 日本電産株式会社 Motor control method, motor control system, and electric power steering system
WO2018159099A1 (en) * 2017-03-03 2018-09-07 日本電産株式会社 Motor control method, motor control system, and electric power steering system
WO2018159104A1 (en) * 2017-03-03 2018-09-07 日本電産株式会社 Motor control method, motor control system, and electric power steering system
WO2018159101A1 (en) * 2017-03-03 2018-09-07 日本電産株式会社 Motor control method, motor control system, and electric power steering system
CN110352556A (en) * 2017-03-03 2019-10-18 日本电产株式会社 Motor control method, motor control system and electric boosting steering system
CN110383672A (en) * 2017-03-03 2019-10-25 日本电产株式会社 Motor control method, motor control system and electric boosting steering system
CN112769366A (en) * 2020-12-31 2021-05-07 徐州中矿大传动与自动化有限公司 Method, device and system for controlling excitation converter of electrically excited synchronous motor
CN112769366B (en) * 2020-12-31 2024-01-09 江苏国传电气有限公司 Method, device and system for controlling excitation current transformer of electric excitation synchronous motor

Also Published As

Publication number Publication date
JP3707251B2 (en) 2005-10-19

Similar Documents

Publication Publication Date Title
US6809492B2 (en) Speed control device for AC electric motor
US6639377B2 (en) Driving device for synchronous motor
JP4284355B2 (en) High response control device for permanent magnet motor
JP5098439B2 (en) Sensorless control device for permanent magnet synchronous motor
GB2357201A (en) Synchronous motor control device and method
JP3674741B2 (en) Control device for permanent magnet synchronous motor
JP3707251B2 (en) Control device for synchronous motor
JP2003219698A (en) Control device for synchronous machine
JP4053511B2 (en) Vector controller for wound field synchronous machine
JP4076348B2 (en) Control device for synchronous machine
JP5648310B2 (en) Synchronous motor control device and synchronous motor control method
JP4238646B2 (en) Speed sensorless vector controller for induction motor
JP7194320B2 (en) motor controller
JP6465477B2 (en) Motor control device, motor control method and program
JP6707050B2 (en) Synchronous motor controller
JP3715276B2 (en) Stepping motor drive device
JP3680605B2 (en) Control device for synchronous motor
JPH11332279A (en) Control device of permanent magnet synchronous motor
JPH11178399A (en) Control method of permanent magnet synchronous motor
JP2856950B2 (en) Control device for synchronous motor
JPH10286000A (en) Control device for synchronous motor
JP2001224195A (en) Control method of permanent magnet synchronous motor
JP2003070293A (en) Control device for permanent magnet synchronous machine
JPH1198891A (en) Induction motor torque control device
JPH04322191A (en) Controller for synchronous motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees