JP2000056112A - Three-dimensional diffractive optical element and method of manufacturing the same - Google Patents
Three-dimensional diffractive optical element and method of manufacturing the sameInfo
- Publication number
- JP2000056112A JP2000056112A JP10218934A JP21893498A JP2000056112A JP 2000056112 A JP2000056112 A JP 2000056112A JP 10218934 A JP10218934 A JP 10218934A JP 21893498 A JP21893498 A JP 21893498A JP 2000056112 A JP2000056112 A JP 2000056112A
- Authority
- JP
- Japan
- Prior art keywords
- dimensional
- optical element
- glass
- optical
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/08—Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
- G03H1/0891—Processes or apparatus adapted to convert digital holographic data into a hologram
Landscapes
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Lasers (AREA)
Abstract
(57)【要約】
【課題】 永続的屈折率変化を3次元的に分布させ、高
性能を有する回折光学素子を光学ガラス中に作製するこ
とができる3次元的回折光学素子及びその製造方法を提
供する。
【解決手段】 光学ガラス1への1ナノ秒から1フェム
ト秒のパルス幅を持つ、波長200nmから2000n
mの超短パルスレーザー光11の多光子吸収による永続
的屈折率変化または光学損傷を利用して、前記光学ガラ
ス1中に書き込まれる、3次元的な屈折率分布13とし
ての3次元回折格子2を生成させる。
PROBLEM TO BE SOLVED: To provide a three-dimensional diffractive optical element capable of producing a high-performance diffractive optical element in optical glass by distributing a permanent refractive index change three-dimensionally, and a method of manufacturing the same. provide. SOLUTION: A wavelength of 200 nm to 2000 n having a pulse width of 1 nanosecond to 1 femtosecond to the optical glass 1.
The three-dimensional diffraction grating 2 as a three-dimensional refractive index distribution 13 written in the optical glass 1 by utilizing a permanent refractive index change or optical damage due to multiphoton absorption of the ultrashort pulse laser beam 11 of m Is generated.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、3次元的回折光学
素子及びその製造方法に係り、特に超短パルスレーザー
光加工によるガラス中の3次元的回折光学素子及びその
製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional diffractive optical element and a method for manufacturing the same, and more particularly to a three-dimensional diffractive optical element in glass by ultra-short pulse laser beam processing and a method for manufacturing the same.
【0002】[0002]
【従来の技術】現在、計算機でもって、2次元平面上に
振幅または位相物パターンを描くことにより、回折場に
任意の振幅または強度分布を得ることができる回折光学
素子の利用が進んでいる。この回折光学素子は、今まで
の光学素子にない多様性を有しており、CDのピックア
ップ光学系など様々な方面に応用されている。2. Description of the Related Art At present, diffractive optical elements that can obtain an arbitrary amplitude or intensity distribution in a diffraction field by drawing an amplitude or phase object pattern on a two-dimensional plane with a computer have been used. This diffractive optical element has versatility not found in conventional optical elements, and has been applied to various fields such as a CD pickup optical system.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、そのよ
うな従来の回折光学素子は、全てが2次元平面または曲
面上に展開されているため、その自由度が低い。また、
色収差の補正ができない。さらに、回折効率が低い。ま
た、特定の点と点をつなぐ信号経路を構成することがで
きないなどといった問題があった。However, such conventional diffractive optical elements have a low degree of freedom because they are all developed on a two-dimensional plane or a curved surface. Also,
Chromatic aberration cannot be corrected. Further, the diffraction efficiency is low. There is also a problem that a signal path connecting specific points cannot be formed.
【0004】そして、これら回折光学素子の加工は、平
面または曲線上に限られているために、自ずとその性能
に限界がある。少なくとも、一つの平面上に書かれた回
折光学素子の波長依存性を取り除くことは不可能であ
る。この点、3次元的構造を持つ回折光学素子の場合
は、回折効率100%を達成することは容易である。更
に、3次元の自由度を利用して、色収差を含む様々な収
差の少ない光学素子を作製することができる。[0004] Since the processing of these diffractive optical elements is limited to a plane or a curved line, the performance thereof is naturally limited. At least, it is impossible to remove the wavelength dependence of the diffractive optical element written on one plane. In this regard, in the case of a diffractive optical element having a three-dimensional structure, it is easy to achieve a diffraction efficiency of 100%. Furthermore, various optical elements having little aberration including chromatic aberration can be manufactured by utilizing three-dimensional degrees of freedom.
【0005】電磁エネルギーの空間的な集中は、光加工
の基本であるが、光源に超短パルスレーザー光などを用
い、パワー密度の時間的空間的な集中によって、非線形
効果の利用が可能となる。また、光学ガラス中への超短
レーザーパルス光の照射による永続的屈折率変化を利用
して、光メモリのビットの書き込みや直線導波路の書き
込みの例がすでに報告されている(レーザー研究、第2
6巻第2号、P.150〜154『超短パルスレーザー
によるガラス内部の光誘起屈折率変化』、1998年2
月)。The spatial concentration of electromagnetic energy is the basis of optical processing, but the use of an ultrashort pulse laser beam as a light source and the temporal and spatial concentration of power density makes it possible to use the nonlinear effect. . In addition, examples of writing bits of an optical memory and writing of a linear waveguide using a permanent refractive index change by irradiating an ultrashort laser pulse light into an optical glass have already been reported (Laser Research, 2nd Report).
Vol. 6, No. 2, p. 150-154, "Induced Refractive Index Change Inside Glass by Ultrashort Pulse Laser", 1998.
Month).
【0006】本発明は、このような先行技術を発展さ
せ、永続的屈折率変化を3次元的に分布させ、高性能を
有する回折光学素子を光学ガラス中に作製することがで
きる3次元的回折光学素子及びその製造方法を提供する
ことを目的とする。The present invention is based on the development of such prior art, and provides a three-dimensional diffractive optical element capable of dispersing a permanent refractive index change three-dimensionally and producing a high-performance diffractive optical element in optical glass. An object of the present invention is to provide an optical element and a method for manufacturing the same.
【0007】[0007]
【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕3次元的回折光学素子において、光学ガラスへの
1ナノ秒から1フェムト秒のパルス幅を持つ、波長20
0nmから2000nmの超短パルスレーザー光の多光
子吸収による永続的屈折率変化または光学損傷を利用し
て、前記光学ガラス中に書き込まれる、3次元的な屈折
率分布を有するようにしたものである。According to the present invention, there is provided a three-dimensional diffractive optical element having a pulse width of 1 nanosecond to 1 femtosecond to optical glass. 20
It has a three-dimensional refractive index distribution written in the optical glass by utilizing a permanent refractive index change or optical damage due to multiphoton absorption of an ultrashort pulse laser beam from 0 nm to 2000 nm. .
【0008】〔2〕上記〔1〕記載の3次元的回折光学
素子において、前記光学ガラスは、シリカガラスであ
る。 〔3〕上記〔1〕記載の3次元的回折光学素子におい
て、前記シリカガラスに水素ガスを含有させてなるもの
である。 〔4〕上記〔1〕記載の3次元的回折光学素子におい
て、前記光学ガラスは、耐破損性のソーダガラスであ
る。[2] In the three-dimensional diffractive optical element according to the above [1], the optical glass is silica glass. [3] The three-dimensional diffractive optical element according to [1], wherein the silica glass contains hydrogen gas. [4] In the three-dimensional diffractive optical element according to the above [1], the optical glass is a soda glass having breakage resistance.
【0009】〔5〕上記〔1〕記載の3次元的回折光学
素子において、前記光学ガラスは、光学プラスチックス
である。 〔6〕上記〔5〕記載の3次元的回折光学素子におい
て、前記光学プラスチックスはアクリルである。 〔7〕3次元的回折光学素子の製造方法において、光学
ガラスに、1ナノ秒から1フェムト秒のパルス幅を持
つ、波長200nmから2000nmの超短パルスレー
ザー光を照射し、前記光学ガラスに前記超短パルスレー
ザー光の多光子吸収による永続的屈折率変化または光学
損傷を生じさせ、前記光学ガラス中に書き込まれる、3
次元的な屈折率分布を生成させるようにしたものであ
る。[5] In the three-dimensional diffractive optical element according to [1], the optical glass is an optical plastic. [6] In the three-dimensional diffractive optical element according to the above [5], the optical plastics is acrylic. [7] In the method for manufacturing a three-dimensional diffractive optical element, the optical glass is irradiated with an ultrashort pulse laser beam having a pulse width of 1 nanosecond to 1 femtosecond and having a wavelength of 200 nm to 2000 nm, A permanent refractive index change or optical damage due to multiphoton absorption of the ultrashort pulse laser light is caused, and written into the optical glass.
This is to generate a dimensional refractive index distribution.
【0010】〔8〕上記〔7〕記載の3次元的回折光学
素子の製造方法において、前記超短パルスレーザー光を
走査により、前記光学ガラス中に書き込まれる、3次元
的な屈折率分布を生成させるようにしたものである。[8] In the method for manufacturing a three-dimensional diffractive optical element according to the above [7], a three-dimensional refractive index distribution to be written in the optical glass is generated by scanning the ultrashort pulse laser beam. It is intended to be.
〔9〕上記〔7〕記載の3次元的回折光学素子の製造方
法において、前記3次元的な屈折率分布が、ブラッグ回
折格子である。[9] In the method for manufacturing a three-dimensional diffractive optical element according to the above [7], the three-dimensional refractive index distribution is a Bragg diffraction grating.
【0011】[0011]
【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。本発明は、1ナノ乃至1フェムト秒のパル
ス幅を有し、波長200nm乃至2000nmの超短パ
ルスレーザー光を、シリカガラス、ソーダガラス、アク
リルなどの光学プラスチックスなど、透明な光学ガラス
中に集光し、多光子吸収により永続的屈折率の変化また
は光学損傷を発生させることにより、光学ガラス内にブ
ラッグ回折格子などのような3次元的に屈折率が分布し
ている回折光学素子を作製するものである。Embodiments of the present invention will be described below. The present invention collects ultrashort pulse laser light having a pulse width of 1 nanometer to 1 femtosecond and a wavelength of 200 nm to 2000 nm in a transparent optical glass such as an optical plastic such as silica glass, soda glass, or acrylic. Produces a diffractive optical element having a three-dimensionally distributed refractive index, such as a Bragg diffraction grating, in optical glass by emitting light and causing a permanent refractive index change or optical damage by multiphoton absorption. Things.
【0012】図1は本発明にかかる3次元的回折光学素
子の製造方法を示す模式図である。この図において、1
はバルクとしての光学ガラス、2はその光学ガラス中に
書き込まれる、3次元的な屈折率分布としての3次元回
折格子である。ここでは、1ナノ乃至1フェムト秒のパ
ルス幅を有し、波長200nm乃至2000nmの超短
パルスレーザー光11を集光レンズ12を介して光学ガ
ラス1に照射し、この超短パルスレーザー光11の多光
子吸収による永続的屈折率変化または光学損傷を利用し
て、光学ガラス1中に書き込まれる、3次元的な屈折率
分布13を生成させる。なお、図1において、14はビ
ーム(レンズ)のラスタ走査を示している。FIG. 1 is a schematic view showing a method for manufacturing a three-dimensional diffractive optical element according to the present invention. In this figure, 1
Is a bulk optical glass, and 2 is a three-dimensional diffraction grating written in the optical glass as a three-dimensional refractive index distribution. Here, an ultrashort pulse laser beam 11 having a pulse width of 1 nanometer to 1 femtosecond and having a wavelength of 200 nm to 2000 nm is applied to the optical glass 1 via a condenser lens 12, and the ultrashort pulse laser beam 11 The permanent refractive index change or optical damage due to multiphoton absorption is used to generate a three-dimensional refractive index distribution 13 written in the optical glass 1. In FIG. 1, reference numeral 14 denotes raster scanning of a beam (lens).
【0013】〔実施例1〕シリカガラス中に波長800
nm、0.1ピコ秒、1ミリジュールの増幅されたチタ
ンサファイヤレーザーパルスを集光し、集光点を走査す
ることにより、縦横1mm、3ミクロン周期、奥行き約
30ミクロンの規則的なブラッグ回折格子を作製した。[Example 1] In a silica glass, a wavelength of 800
By focusing the amplified titanium sapphire laser pulse of nm, 0.1 picosecond and 1 millijoule, and scanning the focal point, regular Bragg diffraction of 1 mm length and width, 3 micron period, and about 30 micron depth A lattice was made.
【0014】この実施例では、奥行き方向の走査は行わ
なかったが、奥行き方向に走査すれば、より厚みのある
3次元回折格子の製作が可能になる。また、曲線的な走
査を行えば、レンズの機能を付加することも可能であ
る。このようにして、作製された3次元的回折光学素子
の3次的回折格子2を、図2に示すように、He−Ne
レーザー光21で照射すると、体積型回折格子の特徴で
ある非対称な回折現象を確認することができた。なお、
図2において、22は回折光、23は非回折光である。In this embodiment, the scanning in the depth direction is not performed, but the scanning in the depth direction makes it possible to produce a thicker three-dimensional diffraction grating. If a curved scan is performed, a lens function can be added. The tertiary diffraction grating 2 of the three-dimensional diffractive optical element manufactured in this manner is, as shown in FIG.
When irradiated with the laser beam 21, an asymmetrical diffraction phenomenon, which is a feature of the volume diffraction grating, could be confirmed. In addition,
In FIG. 2, reference numeral 22 denotes diffracted light, and 23 denotes undiffracted light.
【0015】まだ、回折効率は低く、現在のところは数
%であるが、レーザー光強度、書き込み条件、走査の方
法の最適化により、100%の回折効率を達成すること
が原理的に可能である。このように、この実施例によれ
ば、体積型回折格子の特徴である非対称な回折現像と高
い回折効率を得ることができる。Although the diffraction efficiency is still low and is currently several percent, it is possible in principle to achieve a diffraction efficiency of 100% by optimizing the laser beam intensity, writing conditions and scanning method. is there. As described above, according to this embodiment, it is possible to obtain asymmetrical diffraction development and high diffraction efficiency, which are characteristics of the volume diffraction grating.
【0016】現在のところは、回折効率は数%である
が、既に述べているように、多少の工夫によって、10
0%の回折効率を達成することが、可能である。なお、
シリカガラス中に水素ガスを含有させることにより、超
短レーザー光の書き込み感度の向上を図ることができ
る。 〔実施例2〕光学ガラスとして、耐破損性のソータガラ
スの場合は、学術雑誌報告等においても、数ミクロム径
のスポットを多数書き込む例が示されており、それへの
適用も考えられる。At present, the diffraction efficiency is a few percent, but as described above, with a little contrivance, 10%
It is possible to achieve a diffraction efficiency of 0%. In addition,
By including hydrogen gas in silica glass, the writing sensitivity of ultrashort laser light can be improved. [Embodiment 2] In the case of a breaker-resistant sorter glass as an optical glass, an example of writing many spots having a diameter of several michrome is shown in an academic journal report or the like, and application to that is also conceivable.
【0017】〔実施例3〕光学ガラスとして、アクリル
などの光学プラスチックスの場合は、1970年代の学
会報告においても、導波路と体積型回折格子の書き込み
の例が示されており、それへの適用も考えられる。上記
したように、この3次元的回折光学素子の製造方法によ
れば、3次元的な屈折率分布を創り出すことができ、こ
の自由度により、例えば、計算機で設計された任意形状
の3次元ブラッグ回折格子の作製が可能である。換言す
れば、3次元の空間を用いる本発明の回折素子では、こ
の自由度は、3次元空間そのものの自由度を持つ。その
点、レンズの自由度は、表面の曲面、つまり、球面に限
られる。[Embodiment 3] In the case of optical plastics such as acrylic as the optical glass, an example of writing a waveguide and a volume diffraction grating is shown in a report of a conference in the 1970's. Application is also conceivable. As described above, according to the method for manufacturing a three-dimensional diffractive optical element, a three-dimensional refractive index distribution can be created. With this degree of freedom, for example, a three-dimensional Bragg of an arbitrary shape designed by a computer Fabrication of a diffraction grating is possible. In other words, in the diffraction element of the present invention that uses a three-dimensional space, this degree of freedom has the degree of freedom of the three-dimensional space itself. In this respect, the degree of freedom of the lens is limited to a curved surface, that is, a spherical surface.
【0018】本発明の3次元的回折光学素子は、光学機
器分野においては、一般的化学機器、結像装置(カメ
ラ)や、光通信分野においては、光伝送交換装置、波長
多重光通信装置、光計測分野においては、光学干渉計、
生体光計測装置などの広い囲の適用が可能である。ま
た、本発明の3次元的回折光学素子とレンズとの組み合
わせも考えられ、多くの用途が考えられる。例えば、従
来のレンズの中に3次元回折格子を書き込むことも可能
であり、例えば、写真レンズの合焦検出や測光に利用可
能である。更に、2重焦点にすることもできる。The three-dimensional diffractive optical element of the present invention is a general chemical instrument or imaging device (camera) in the field of optical instruments, an optical transmission switching device, a wavelength multiplexing optical communication device in the field of optical communications, In the field of optical measurement, optical interferometers,
A wide range of applications such as a biological light measurement device can be applied. Further, a combination of the three-dimensional diffractive optical element of the present invention and a lens is also conceivable, and many applications are conceivable. For example, a three-dimensional diffraction grating can be written in a conventional lens, and can be used for, for example, focus detection of a photographic lens and photometry. Furthermore, it can be a double focus.
【0019】また、その利用法として、セキュリティ
ー、暗号への応用が考えられる。例えば、小さなガラス
の部分などに、3次元ホログラムで、ID(個人識別番
号)などを書き込んでおくことが可能である。情報容量
は大容量になるので、様々な応用が可能である。なお、
本発明は上記実施例に限定されるものではなく、本発明
の趣旨に基づいて種々の変形が可能であり、これらを本
発明の範囲から排除するものではない。Further, as a usage method, application to security and encryption can be considered. For example, it is possible to write an ID (personal identification number) or the like on a small glass part using a three-dimensional hologram. Since the information capacity is large, various applications are possible. In addition,
The present invention is not limited to the above embodiments, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
【0020】[0020]
【発明の効果】以上、詳細に説明したように、本発明に
よれば、次のような効果を奏することができる。 (A)永続的屈折率変化を3次元的に分布させ、高性能
を有する回折光学素子を光学ガラス中に作製することが
できる。As described above, according to the present invention, the following effects can be obtained. (A) It is possible to produce a high-performance diffractive optical element in optical glass by distributing a permanent refractive index change three-dimensionally.
【0021】(B)3次元的な屈折率分布を創り出すこ
とができ、この自由度により、例えば、計算機で設計さ
れた任意形状の3次元ブラッグ回折格子の作製が可能で
ある。 (C)堆積型回折格子の特徴である非対称な回折現像と
高い回折効率を得ることができる。(B) A three-dimensional refractive index distribution can be created. With this degree of freedom, for example, a three-dimensional Bragg diffraction grating of an arbitrary shape designed by a computer can be manufactured. (C) It is possible to obtain an asymmetrical diffraction development and a high diffraction efficiency, which are characteristics of the stacked diffraction grating.
【図1】本発明にかかる3次元的回折光学素子の製造方
法を示す模式図である。FIG. 1 is a schematic view illustrating a method for manufacturing a three-dimensional diffractive optical element according to the present invention.
【図2】本発明の実施例を示す3次元的回折光学素子の
作用を示す模式図である。FIG. 2 is a schematic diagram illustrating the operation of a three-dimensional diffractive optical element according to an embodiment of the present invention.
1 バルクとしての光学ガラス 2 3次元的な屈折率分布としての3次元回折格子 11 超短パルスレーザー光 12 集光レンズ 13 3次元回折格子(3次元的な屈折率分布) 21 He−Neレーザー光 22 回折光 23 非回折光 Reference Signs List 1 optical glass as bulk 2 three-dimensional diffraction grating as three-dimensional refractive index distribution 11 ultrashort pulse laser beam 12 condenser lens 13 three-dimensional diffraction grating (three-dimensional refractive index distribution) 21 He-Ne laser beam 22 Diffracted light 23 Non-diffracted light
Claims (9)
秒のパルス幅を持つ、波長200nmから2000nm
の超短パルスレーザー光の多光子吸収による永続的屈折
率変化または光学損傷を利用して、前記光学ガラス中に
書き込まれる、3次元的な屈折率分布を有することを特
徴とする3次元的回折光学素子。1. A wavelength of 200 nm to 2000 nm having a pulse width of 1 nanosecond to 1 femtosecond on optical glass.
Three-dimensional diffraction, which has a three-dimensional refractive index distribution written in the optical glass using a permanent refractive index change or optical damage due to multiphoton absorption of ultrashort pulse laser light Optical element.
おいて、前記光学ガラスは、シリカガラスであることを
特徴とする3次元的回折光学素子。2. A three-dimensional diffractive optical element according to claim 1, wherein said optical glass is silica glass.
おいて、前記シリカガラスに水素ガスを含有させてなる
ことを特徴とする3次元的回折光学素子。3. The three-dimensional diffractive optical element according to claim 1, wherein said silica glass contains hydrogen gas.
おいて、前記光学ガラスは、耐破損性のソーダガラスで
あることを特徴とする3次元的回折光学素子。4. The three-dimensional diffractive optical element according to claim 1, wherein the optical glass is a soda glass having a breakage resistance.
おいて、前記光学ガラスは、光学プラスチックスである
ことを特徴とする3次元的回折光学素子。5. The three-dimensional diffractive optical element according to claim 1, wherein the optical glass is an optical plastic.
おいて、前記光学プラスチッスはアクリルであることを
特徴とする3次元的回折光学素子。6. The three-dimensional diffractive optical element according to claim 5, wherein said optical plastic is acrylic.
ムト秒のパルス幅を持つ、波長200nmから2000
nmの超短パルスレーザー光を照射し、(b)前記光学
ガラスに前記超短パルスレーザー光の多光子吸収による
永続的屈折率変化または光学損傷を生じさせ、(c)前
記光学ガラス中に書き込まれる、3次元的な屈折率分布
を生成させることを特徴とする3次元的回折光学素子の
製造方法。7. A method according to claim 1, wherein the optical glass has a pulse width of 1 nanosecond to 1 femtosecond and a wavelength of 200 nm to 2000 nm.
(b) causing a permanent refractive index change or optical damage to the optical glass by multiphoton absorption of the ultrashort pulse laser light, and (c) writing into the optical glass. A method for producing a three-dimensional diffractive optical element, wherein a three-dimensional refractive index distribution is generated.
製造方法において、前記超短パルスレーザー光を走査に
より、前記光学ガラス中に書き込まれる、3次元的な屈
折率分布を生成させることを特徴とする3次元的回折光
学素子の製造方法。8. The method for manufacturing a three-dimensional diffractive optical element according to claim 7, wherein the ultra-short pulse laser beam is scanned to generate a three-dimensional refractive index distribution written in the optical glass. A method for manufacturing a three-dimensional diffractive optical element.
製造方法において、前記3次元的な屈折率分布が、ブラ
ッグ回折格子であることを特徴とする3次元的回折光学
素子の製造方法。9. The method for manufacturing a three-dimensional diffractive optical element according to claim 7, wherein said three-dimensional refractive index distribution is a Bragg diffraction grating. .
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP21893498A JP3433110B2 (en) | 1998-08-03 | 1998-08-03 | Three-dimensional diffractive optical element and method of manufacturing the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP21893498A JP3433110B2 (en) | 1998-08-03 | 1998-08-03 | Three-dimensional diffractive optical element and method of manufacturing the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2000056112A true JP2000056112A (en) | 2000-02-25 |
| JP3433110B2 JP3433110B2 (en) | 2003-08-04 |
Family
ID=16727623
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP21893498A Expired - Fee Related JP3433110B2 (en) | 1998-08-03 | 1998-08-03 | Three-dimensional diffractive optical element and method of manufacturing the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3433110B2 (en) |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001044879A1 (en) * | 1999-12-17 | 2001-06-21 | Japan Science And Technology Corporation | Production method and device for hologram |
| US6347171B1 (en) * | 1999-03-31 | 2002-02-12 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus for forming a diffraction grating |
| JP2002210730A (en) * | 2001-01-19 | 2002-07-30 | Tokyo Instruments Inc | Laser assisted processing method |
| JP2002249607A (en) * | 2001-02-26 | 2002-09-06 | Nitto Denko Corp | Plastic structure |
| JP2003014915A (en) * | 2001-07-03 | 2003-01-15 | Japan Science & Technology Corp | Optical element with Dammann-type grating |
| WO2002016969A3 (en) * | 2000-08-24 | 2003-04-17 | U C Laser Ltd | Intravolume diffractive optical elements |
| US6929886B2 (en) * | 2001-01-02 | 2005-08-16 | U-C-Laser Ltd. | Method and apparatus for the manufacturing of reticles |
| JP2006011121A (en) * | 2004-06-28 | 2006-01-12 | Toppan Printing Co Ltd | Phase shift mask, manufacturing method thereof, and pattern transfer method |
| US6992804B2 (en) * | 2000-10-12 | 2006-01-31 | Holophane | Part made of transparent material and headlight lens for vehicles |
| EP1686412A3 (en) * | 2004-12-03 | 2006-08-16 | Ohara Inc. | Optical component and method of manufacture of optical component |
| JP2007025177A (en) * | 2005-07-15 | 2007-02-01 | Namiki Precision Jewel Co Ltd | Refractive index control type diffractive optical element and manufacturing method thereof |
| JP2007531249A (en) * | 2003-07-18 | 2007-11-01 | ユーシーエルティ リミテッド | Method for correcting critical dimension variations in photomasks |
| JP2013127648A (en) * | 2007-03-09 | 2013-06-27 | Toyo Seikan Group Holdings Ltd | Structural body, method of forming structural body, and device for forming structural body |
| JP2016065940A (en) * | 2014-09-24 | 2016-04-28 | 日本電気硝子株式会社 | Optical imaging member and manufacturing method therefor |
| WO2023080242A1 (en) * | 2021-11-08 | 2023-05-11 | 大学共同利用機関法人自然科学研究機構 | Optical element, optical device, and method for producing optical element |
-
1998
- 1998-08-03 JP JP21893498A patent/JP3433110B2/en not_active Expired - Fee Related
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6347171B1 (en) * | 1999-03-31 | 2002-02-12 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus for forming a diffraction grating |
| US6633419B2 (en) | 1999-12-17 | 2003-10-14 | Japan Science And Technology Corporation | Production method and device for hologram |
| WO2001044879A1 (en) * | 1999-12-17 | 2001-06-21 | Japan Science And Technology Corporation | Production method and device for hologram |
| WO2002016969A3 (en) * | 2000-08-24 | 2003-04-17 | U C Laser Ltd | Intravolume diffractive optical elements |
| US6992804B2 (en) * | 2000-10-12 | 2006-01-31 | Holophane | Part made of transparent material and headlight lens for vehicles |
| US6929886B2 (en) * | 2001-01-02 | 2005-08-16 | U-C-Laser Ltd. | Method and apparatus for the manufacturing of reticles |
| JP2002210730A (en) * | 2001-01-19 | 2002-07-30 | Tokyo Instruments Inc | Laser assisted processing method |
| JP2002249607A (en) * | 2001-02-26 | 2002-09-06 | Nitto Denko Corp | Plastic structure |
| JP2003014915A (en) * | 2001-07-03 | 2003-01-15 | Japan Science & Technology Corp | Optical element with Dammann-type grating |
| JP2007531249A (en) * | 2003-07-18 | 2007-11-01 | ユーシーエルティ リミテッド | Method for correcting critical dimension variations in photomasks |
| JP2006011121A (en) * | 2004-06-28 | 2006-01-12 | Toppan Printing Co Ltd | Phase shift mask, manufacturing method thereof, and pattern transfer method |
| EP1686412A3 (en) * | 2004-12-03 | 2006-08-16 | Ohara Inc. | Optical component and method of manufacture of optical component |
| US7405883B2 (en) | 2004-12-03 | 2008-07-29 | Ohara Inc. | Optical component and method of manufacture of optical component |
| JP2007025177A (en) * | 2005-07-15 | 2007-02-01 | Namiki Precision Jewel Co Ltd | Refractive index control type diffractive optical element and manufacturing method thereof |
| US7672050B2 (en) * | 2005-07-15 | 2010-03-02 | Namiki Semitsu Houseki Kabushiki Kaisha | Refractive index controlled diffractive optical element and its manufacturing method |
| JP2013127648A (en) * | 2007-03-09 | 2013-06-27 | Toyo Seikan Group Holdings Ltd | Structural body, method of forming structural body, and device for forming structural body |
| JP2016065940A (en) * | 2014-09-24 | 2016-04-28 | 日本電気硝子株式会社 | Optical imaging member and manufacturing method therefor |
| WO2023080242A1 (en) * | 2021-11-08 | 2023-05-11 | 大学共同利用機関法人自然科学研究機構 | Optical element, optical device, and method for producing optical element |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3433110B2 (en) | 2003-08-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2000056112A (en) | Three-dimensional diffractive optical element and method of manufacturing the same | |
| Zheludev et al. | Optical superoscillation technologies beyond the diffraction limit | |
| Dakin et al. | Handbook of Optoelectronics: Enabling Technologies (Volume Two) | |
| Courvoisier et al. | Inscription of 3D waveguides in diamond using an ultrafast laser | |
| JP5676349B2 (en) | Optical element | |
| Mauclair et al. | Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials | |
| US9606415B2 (en) | Super-oscillatory lens device | |
| De Tommasi et al. | Biologically enabled sub-diffractive focusing | |
| US6909684B2 (en) | Optical recording medium, holographic recording and/or retrieval method and holographic recording and/or retrieval apparatus | |
| Sales | Smallest focal spot | |
| Martin et al. | Intense Bessel-like beams arising<? A3B2 show [pmg: line-break justify=" yes"/]?> from pyramid-shaped microtips | |
| Salter et al. | Focussing over the edge: adaptive subsurface laser fabrication up to the sample face | |
| US6839191B2 (en) | Optical near-field generating element and optical apparatus including the same | |
| Xu et al. | A Multi‐foci Sparse‐Aperture Metalens | |
| Li et al. | Permanent computer-generated holograms embedded in silica glass by femtosecond laser pulses | |
| Heng et al. | Characterization of light collection through a subwavelength aperture from a point source | |
| Zhang et al. | Focal volume optics for composite structuring in transparent solids | |
| JPH02266332A (en) | Scanning device | |
| CN119045109A (en) | Device and system for generating optical trap array | |
| WO1998053448A1 (en) | Three-dimensional optical memory with fluorescent photosensitive material | |
| Yamaji et al. | Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram | |
| JP2005070490A (en) | Photomask substrate with identification tag, photomask and identification method thereof | |
| Smolyaninov | A far-field optical microscope with nanometre-scale resolution based on in-plane surfaceplasmon imaging | |
| CN113838486B (en) | Coding information writing and interferometry reading method and device for nano-inscribed optical disk | |
| Gu | Confocal readout of three-dimensional data bits recorded by the photorefractive effect under single-photon and two-photon excitation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030513 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090523 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090523 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100523 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120523 Year of fee payment: 9 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
| R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
| R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130523 Year of fee payment: 10 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| LAPS | Cancellation because of no payment of annual fees |