JP2000064023A - Titanium base metallic material having thick film of titanium oxide and its production - Google Patents
Titanium base metallic material having thick film of titanium oxide and its productionInfo
- Publication number
- JP2000064023A JP2000064023A JP23106698A JP23106698A JP2000064023A JP 2000064023 A JP2000064023 A JP 2000064023A JP 23106698 A JP23106698 A JP 23106698A JP 23106698 A JP23106698 A JP 23106698A JP 2000064023 A JP2000064023 A JP 2000064023A
- Authority
- JP
- Japan
- Prior art keywords
- titanium
- oxide film
- metallic material
- thickness
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010936 titanium Substances 0.000 title claims abstract description 33
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 33
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 32
- 239000007769 metal material Substances 0.000 title claims abstract description 22
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 18
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- 239000000463 material Substances 0.000 claims abstract description 29
- 238000010438 heat treatment Methods 0.000 claims abstract description 26
- 230000006698 induction Effects 0.000 claims abstract description 15
- 239000007789 gas Substances 0.000 claims abstract description 9
- 239000011261 inert gas Substances 0.000 claims abstract description 7
- 239000011248 coating agent Substances 0.000 claims description 16
- 238000000576 coating method Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 150000003608 titanium Chemical class 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 7
- 229910001069 Ti alloy Inorganic materials 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000010431 corundum Substances 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001485 argon Chemical class 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電子材料、触媒及
び吸着材などの広範囲の分野において有利に用いられる
チタン酸化物の厚被膜を有するチタン系金属材料及びそ
の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium-based metallic material having a thick film of titanium oxide, which is advantageously used in a wide range of fields such as electronic materials, catalysts and adsorbents, and a method for producing the same.
【0002】[0002]
【従来の技術】チタンやチタン合金からなるチタン系金
属の材料の表面は、常温常圧で、緻密で、且つ非常に薄
いチタン酸化物膜に覆われ、これがチタン系金属材料に
耐食性を付与している。650℃以上の温度では、この
酸化物膜が厚くなるが、膜厚の増加に伴い、被膜が剥離
しやすくなる、チタン系金属材料に密着した酸化物膜を
得るには、適当な電解液中でアノード酸化する方法が知
られている。しかし、この方法でも、得られる酸化物膜
は、膜厚1μmにも満たない干渉膜である。火花放電を
伴う特殊な電解酸化でもその膜厚は8μm程度である。
従って、従来の技術では、チタン酸化物が持つ優れた機
能を充分に発揮する膜厚のチタン酸化物被膜は得られな
い。2. Description of the Related Art The surface of a titanium-based metal material made of titanium or a titanium alloy is covered with a dense and very thin titanium oxide film at room temperature and normal pressure, which imparts corrosion resistance to the titanium-based metal material. ing. At a temperature of 650 ° C. or higher, this oxide film becomes thick, but the film becomes easy to peel off as the film thickness increases. To obtain an oxide film adhered to a titanium-based metal material, a suitable electrolyte solution is used. A method of anodic oxidation is known. However, even with this method, the obtained oxide film is an interference film having a film thickness of less than 1 μm. Even with a special electrolytic oxidation accompanied by spark discharge, the film thickness is about 8 μm.
Therefore, the conventional technique cannot provide a titanium oxide coating film having a thickness sufficient to exhibit the excellent function of titanium oxide.
【0003】[0003]
【発明が解決しようとする課題】本発明は、充分な膜厚
を有し、かつ基材であるチタン系金属材料に強固に密着
した酸化物被膜を有するチタン系金属材料及びその製造
方法を提供することをその課題とする。DISCLOSURE OF THE INVENTION The present invention provides a titanium-based metallic material having a sufficient film thickness and an oxide film firmly adhered to a titanium-based metallic material as a base material, and a method for producing the same. The task is to do.
【0004】[0004]
【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。即ち、本発明によれば、表面の少なくとも一
部に厚さ10〜150μmのチタン酸化物被膜を有する
チタン系金属材料が提供される。また、本発明によれ
ば、チタン酸化物被膜を有するチタン系金属材料の製造
方法において、チタン系金属材料を大気中で加熱して該
材料の表面の少なくとも一部に厚さ5μm以上のチタン
酸化物被膜を形成した後、不活性気体を作動気体とする
高周波誘導熱プラズマで加熱することを特徴とする前記
方法が提供される。The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, according to the present invention, there is provided a titanium-based metal material having a titanium oxide coating having a thickness of 10 to 150 μm on at least a part of the surface. Further, according to the present invention, in the method for producing a titanium-based metal material having a titanium oxide coating, the titanium-based metal material is heated in the atmosphere to oxidize titanium at least 5 μm thick on at least part of the surface of the material. The above method is provided, which comprises heating with a high-frequency induction thermal plasma using an inert gas as a working gas after forming the physical coating.
【0005】[0005]
【発明の実施の形態】本発明で被処理原料として用いる
チタン系金属材料(以下、単に材料とも言う)には、チ
タン及びチタンを主成分とするチタン合金が包含され
る。チタン合金としては、(i)チタンと(ii)アルミ
ニウム、スズ、バナジウム、マンガン等の金属の1種又
は2種との合金が挙げられる。チタン合金中のチタン含
有量は、通常、80重量%以上、好ましくは85重量%
以上である。材料の形状は、特に制約されず、線状、板
状、ブロック状、容器状等の各種の形状であることがで
きる。また、材料表面は、微細凹凸面に形成することが
好ましく、これにより、材料に強固に結合したチタン酸
化物被膜を形成させることができる。この微細凹凸面
は、ブラスト法やケミカルエッチング法等の慣用の方法
により形成し得るが、好ましくはブラスト法が用いられ
る。材料表面に形成する凹凸面の表面粗さは、中心線平
均粗さで、0.1〜50μm、好ましくは0.5〜20
μmである。BEST MODE FOR CARRYING OUT THE INVENTION The titanium-based metallic material (hereinafter, also simply referred to as a material) used as a raw material to be treated in the present invention includes titanium and a titanium alloy containing titanium as a main component. Examples of titanium alloys include alloys of (i) titanium and (ii) one or two metals such as aluminum, tin, vanadium, and manganese. The titanium content in the titanium alloy is usually 80% by weight or more, preferably 85% by weight.
That is all. The shape of the material is not particularly limited and may be various shapes such as a linear shape, a plate shape, a block shape, and a container shape. In addition, the material surface is preferably formed into a fine uneven surface, whereby a titanium oxide film firmly bonded to the material can be formed. This fine uneven surface can be formed by a conventional method such as a blast method or a chemical etching method, but the blast method is preferably used. The surface roughness of the concavo-convex surface formed on the material surface is 0.1 to 50 μm, preferably 0.5 to 20 in terms of center line average roughness.
μm.
【0006】本発明によるチタン酸化物被膜(以下、単
に酸化物被膜とも言う)を有する材料を得るには、先
ず、大気中において被処理原料としてのチタン系金属材
料を加熱する。この場合の加熱温度としては、600〜
1100℃、好ましくは800〜1000℃の温度が用
いられる。このような大気中での加熱により、その材料
表面にはチタン酸化物からなる少なくとも5μm、好ま
しくは10μm以上の厚膜が形成される。加熱温度が前
記範囲より低くなると、酸化物被膜が実用的速度で成長
しなくなり、一方、前記範囲より高くなると、基材であ
るチタン系金属材料とその表面に形成される酸化物被膜
との間の熱膨張差が大きくなるためにその被膜が剥離し
やすくなる。材料表面に形成する酸化物被膜の厚さは、
5〜200μm、好ましくは10〜150μmである。In order to obtain a material having a titanium oxide coating film (hereinafter also simply referred to as an oxide coating film) according to the present invention, first, a titanium-based metallic material as a raw material to be treated is heated in the atmosphere. The heating temperature in this case is 600 to
Temperatures of 1100 ° C, preferably 800-1000 ° C are used. By such heating in the atmosphere, a thick film of titanium oxide of at least 5 μm, preferably 10 μm or more is formed on the surface of the material. If the heating temperature is lower than the above range, the oxide film will not grow at a practical rate, while if it is higher than the range, the temperature will be between the titanium-based metallic material as the base material and the oxide film formed on the surface. Since the difference in thermal expansion between the two becomes large, the coating film easily peels off. The thickness of the oxide film formed on the material surface is
It is 5 to 200 μm, preferably 10 to 150 μm.
【0007】適切な加熱時間は、その温度と目的とする
酸化物被膜の厚さとにより異なるが、0.5から8時間
が望ましい。アノード酸化による干渉膜よりも少し厚い
程度の酸化物被膜の形成は容易であり、その形成のため
の加熱時間が短いでの、加熱温度は前記の範囲内であれ
ば問題はない。酸化物被膜の厚さは加熱時間の長短で調
節可能なことから、一般的には、900℃前後の温度の
使用が好ましい。また、材料を大気下で所定温度まで加
熱する場合に、出来るだけ徐々に昇温することが望まし
い。更に、その加熱後に冷却する場合には、特に注意深
く徐冷する必要がある。これは、材料表面に形成・付着
した酸化物被膜が、急激な温度変化により、剥離してし
まうのを防止するためである。The appropriate heating time depends on the temperature and the thickness of the target oxide film, but is preferably 0.5 to 8 hours. It is easy to form an oxide film that is slightly thicker than the interference film by anodic oxidation, and the heating time for forming the oxide film is short, so there is no problem if the heating temperature is within the above range. Since the thickness of the oxide film can be adjusted by the length of the heating time, it is generally preferable to use a temperature around 900 ° C. Further, when the material is heated to a predetermined temperature in the atmosphere, it is desirable to raise the temperature as gradually as possible. Furthermore, when cooling after heating, it is necessary to perform gradual cooling particularly carefully. This is to prevent the oxide film formed / adhered to the surface of the material from peeling off due to a rapid temperature change.
【0008】前記のようにして得られる表面に酸化物被
膜を有する材料は、次いで、不活性気体を作動気体とす
る高周波誘導熱プラズマで加熱する。高周波誘導熱プラ
ズマの作動気体となる不活性気体としては、周期律表1
8族のいわゆる希ガスが用いられ、通常アルゴンが使用
される。一般的には窒素は不活性気体として取扱れる
が、プラズマ中では活性であり、チタンとは窒化物を形
成するので、本発明での作動気体としては用いられな
い。不活性気体を作動気体とする高周波誘導熱プラズマ
で加熱する際の加熱温度は、800〜1050℃の範囲
が適している。800℃より低い温度では、材料に対す
る酸化物被膜の結合力の向上が少なく、一方、1050
℃より高い温度では、生成した酸化物被膜の分解が生じ
るようになる。これは、酸素を含む大気中で加熱した場
合は、酸化が進行するが、高温で且つ酸素の無いプラズ
マによる加熱では逆に酸化物が分解するためである。前
記高周波誘導熱プラズマによる加熱により、既に大気中
での加熱により材料表面に形成された厚膜の酸化物被膜
が、材料表面に強固に付着するようになる。この酸化物
被膜の厚さは、通常、5〜200μmであり、好ましく
は10〜150μmである。この膜厚は、大気中での加
熱により形成した膜の厚さにほぼ等しく、加熱温度や加
熱時間等により若干減少する。なお、本発明で用いる高
周波誘導熱プラズマ発生装置は従来公知の装置であり、
本発明では、市販装置をそのまま用いることができる。The material having an oxide film on the surface obtained as described above is then heated by a high frequency induction thermal plasma using an inert gas as a working gas. As the inert gas that becomes the working gas of the high frequency induction thermal plasma, the periodic table 1
A so-called noble gas of Group 8 is used, and usually argon is used. Nitrogen is generally handled as an inert gas, but it is not used as a working gas in the present invention because it is active in plasma and forms a nitride with titanium. The heating temperature for heating with high-frequency induction thermal plasma using an inert gas as a working gas is suitably in the range of 800 to 1050 ° C. At temperatures below 800 ° C, there is little improvement in the bond strength of the oxide coating to the material, while 1050
At temperatures higher than 0 ° C, decomposition of the oxide film formed will occur. This is because the oxidation progresses when heated in the atmosphere containing oxygen, but the oxide is decomposed when heated by the high temperature and oxygen-free plasma. Due to the heating by the high frequency induction thermal plasma, the thick oxide film already formed on the material surface by heating in the atmosphere adheres firmly to the material surface. The thickness of the oxide film is usually 5 to 200 μm, preferably 10 to 150 μm. This film thickness is almost equal to the film thickness formed by heating in the air, and slightly decreases depending on the heating temperature, the heating time, and the like. The high-frequency induction thermal plasma generator used in the present invention is a conventionally known device,
In the present invention, a commercially available device can be used as it is.
【0009】本発明において、既に大気中での加熱によ
り材料表面に形成された膜厚の酸化物被膜が、高周波誘
導熱プラズマでの加熱により、該材料に強固に密着する
ように変化する事実は明白に確認されているが、その機
構は確立してはいない。しかし、一般的には、次のよう
に説明できる。急速に10,000℃以上の高温となっ
て膨張する熱プラズマは、大気中での加熱により形成さ
れた膜厚の酸化物被膜を、材料表面に強く押し付けつつ
加熱する。この場合の酸化物被膜と材料表面との境界で
は、酸化物被膜の部分的分解が起こり酸化の程度の低い
酸化物となり、材料表面ではその分解で生成した酸素に
よる酸化が起こり弱く酸化された金属となる。このよう
にして、境界では、金属である基体の材料から被膜であ
る酸化物へと連続的に組成が変わる。すると、酸化物被
膜と材料との熱膨張差による両者の境界での応力も著し
く軽減される。従って、酸化物被膜は該材料に強固に密
着する。In the present invention, the fact that an oxide film having a film thickness already formed on the surface of a material by heating in the atmosphere changes so as to firmly adhere to the material by heating with high frequency induction thermal plasma Although clearly confirmed, its mechanism has not been established. However, in general, it can be explained as follows. The thermal plasma, which rapidly expands to a high temperature of 10,000 ° C. or higher, heats the oxide film having a film thickness formed by heating in the air while pressing it strongly against the material surface. In this case, at the boundary between the oxide film and the material surface, the oxide film is partially decomposed to become an oxide with a low degree of oxidation, and on the material surface, the oxygen generated by the decomposition is oxidized and the weakly oxidized metal is generated. Becomes In this way, at the boundaries, the composition changes continuously from the substrate material, which is a metal, to the oxide, which is a coating. Then, the stress at the boundary between the oxide film and the material due to the difference in thermal expansion between them is significantly reduced. Therefore, the oxide coating firmly adheres to the material.
【0010】[0010]
【実施例】以下に本発明を実施例により、更に詳細・具
体的に説明する。
実施例1
厚さ1mmの市販純チタン板から22mm×22mmに
切り出した片を基板とした。この片面を、#80のコラ
ンダムでブラストして、均一に荒した。この基板4片
を、アセトン中で超音波洗浄し、大気中、電気炉で約1
時間半を要して885℃に加熱し、この温度に6時間保
持した後、炉の蓋を閉めた状態で放冷した。各試料片の
全面は僅かに黄色味を帯びた白色になり、その重量増加
量は162mgから169mgであった。これらの片の
内の1片を、ブラスト処理した面がアルゴンを作動気体
とする高周波誘導熱プラズマに当たるように加熱した。
この時、基板を熱電対が埋められたアルミナ多孔体上に
置き、熱プラズマが当たる基板面の裏に熱電対の測温接
点を接触させ、温度を測定した。用いたプラズマ発生装
置は、日本高周波株式会社製、周波数4MHz、最大出
力20kWの装置である。その作動条件は次のとおりで
ある。作動気体流量:61.2dm3min-1、高周波
誘導コイル中央−ブラスト処理面の間隔すなわち熔射距
離:25cm。高周波誘導コイルに印加する電力を次第
に増加し、基板温度が500℃までは100℃mi
n-1、1,000℃近くでは30℃min-1程度の昇温
速度になるようにした。基板温度約1,000℃を保持
するように印加電力を5分間調節した後、100℃mi
n-1程度で約500℃まで降温させ、以下は自然冷却と
した。EXAMPLES The present invention will be described in more detail and specifically below with reference to Examples. Example 1 A piece cut into a size of 22 mm × 22 mm from a commercially available pure titanium plate having a thickness of 1 mm was used as a substrate. This one side was blasted with # 80 corundum to uniformly roughen it. The four pieces of the substrate are ultrasonically cleaned in acetone, and then about 1 in an electric furnace in the air.
After heating for half an hour to 885 ° C. and maintaining this temperature for 6 hours, the furnace was left to cool with the lid closed. The entire surface of each sample piece became slightly yellowish white, and the weight increase amount was 162 mg to 169 mg. One of these pieces was heated so that the blasted surface was exposed to a high frequency induction thermal plasma with argon as the working gas.
At this time, the substrate was placed on the alumina porous body in which the thermocouple was buried, and the temperature measurement contact of the thermocouple was brought into contact with the back of the substrate surface exposed to thermal plasma to measure the temperature. The plasma generator used is a device manufactured by Japan High Frequency Co., Ltd., having a frequency of 4 MHz and a maximum output of 20 kW. The operating conditions are as follows. Working gas flow rate: 61.2 dm 3 min -1 , the distance between the center of the high frequency induction coil and the blasted surface, that is, the spraying distance: 25 cm. The power applied to the high frequency induction coil is gradually increased to 100 ° C mi until the substrate temperature reaches 500 ° C.
The temperature rising rate was set to about 30 ° C. min −1 near n −1 , 1,000 ° C. After adjusting the applied power for 5 minutes so as to maintain the substrate temperature of about 1,000 ° C., 100 ° C. mi
The temperature was lowered to about 500 ° C. at about n −1 , and the following was natural cooling.
【0011】以上の高周波誘導熱プラズマによる加熱に
より、試料片の全面は青味を帯びた灰色に変わった。試
料片の重量変化は殆どなく、この酸化物被膜の厚さは1
50μmであった。得られた酸化物被膜を有するチタン
の試料片は、これを治貝で締め付け、ダイヤモンドソー
で分割しても、その酸化物被膜が剥離したり、膜に亀裂
を生じなかった。By the above heating by the high frequency induction thermal plasma, the entire surface of the sample piece turned into bluish gray. There is almost no change in the weight of the sample piece, and the thickness of this oxide film is 1
It was 50 μm. The obtained titanium sample piece having an oxide film did not peel off or crack in the film even if it was fastened with a shell and divided with a diamond saw.
【0012】比較例1
比較のため、アルゴン気流中で、実施例1において大気
中、885℃で6時間に加熱した他の1片を加熱処理し
た。この加熱処理は、昇温速度30℃min-1、基板温
度1,000℃で8分間保持し、降温速度30℃min
-1の条件で行った。このアルゴン気流中での加熱でも、
実施例1の高周波誘導熱プラズマによる加熱と同様に、
試料片は青味を帯びた灰色に変わり、その重量変化も殆
ど無かった。しかし、酸化物被膜は、ブラスト処理面で
は一部を残し、ブラスト処理してない裏面では全面がチ
タン基材から剥離した。裏面から剥離した酸化物被膜
は、22mm×22mmの形状を保ち、そのままX線回
折を行なった。その結果、この膜は若干歪んだルチル結
晶より成ると同定された。膜厚は、重量から計算では
0.11mm、マイクロメーターによる計測では0.1
4〜0.17mmであった。Comparative Example 1 For comparison, another piece was heated in the atmosphere of Example 1 in the atmosphere of Example 1 at 885 ° C. for 6 hours in a stream of argon for comparison. In this heat treatment, the temperature rising rate is 30 ° C. min −1 , the substrate temperature is 1,000 ° C., and the temperature is kept for 8 minutes.
It was performed under the condition of -1 . Even with heating in this argon stream,
Similar to the heating by the high frequency induction thermal plasma of Example 1,
The sample piece changed to bluish gray and its weight hardly changed. However, a part of the oxide coating was left on the blast-treated surface, and the entire back surface that had not been blast-treated peeled off from the titanium base material. The oxide film peeled from the back surface kept the shape of 22 mm × 22 mm, and was subjected to X-ray diffraction as it was. As a result, this film was identified as consisting of slightly distorted rutile crystals. The film thickness is 0.11 mm when calculated from the weight, and 0.1 when measured with a micrometer.
It was 4 to 0.17 mm.
【0013】実施例2
市販の厚さ2mmの6重量%アルミニウム−4重量%バ
ナジウム−90重量%チタンからなるチタン合金板から
10.75mm×10.75mmに切り出した片を基板
とした。実施例1と同様に、この片面を#80のコラン
ダムでブラストして、均一に荒した後、アセトン中で超
音波洗浄した。この基板4片を大気中、電気炉で約2時
間半を要して1,000℃に加熱し、この温度で1時間
保持した後、炉の蓋を閉めた状態で放冷した。各試料片
は実施例1と同様に、全面が僅かに黄色味を帯びた白色
になり、その重量増加量は45mgから48mgであっ
た。この基板4片を実施例1と同様に、高周波誘導熱プ
ラズマで加熱した。但し、基板温度1,010から1,
030℃を保持するように印加電力を9分間調節した。
得られた酸化物被膜を有するチタン合金の試料片の外観
は、実施例1と全く同様であった。しかし、試料片の重
量が3〜9mg減少した。被膜の基板への密着性は良好
で、通常の取扱では剥離することはなかった。また、そ
の酸化物被膜の厚さは100μmであった。Example 2 A commercially available piece of a titanium alloy plate having a thickness of 2 mm and made of 6% by weight of aluminum, 4% by weight of vanadium and 90% by weight of titanium was cut into 10.75 mm × 10.75 mm and used as a substrate. As in Example 1, one side was blasted with # 80 corundum to uniformly roughen it and then ultrasonically washed in acetone. The four pieces of the substrate were heated to 1,000 ° C. in the atmosphere in the electric furnace for about two and a half hours, held at this temperature for one hour, and then left to cool with the furnace lid closed. Similar to Example 1, each sample piece had a slightly yellowish white color on the entire surface, and the weight increase amount was 45 mg to 48 mg. The four pieces of the substrate were heated by high frequency induction thermal plasma in the same manner as in Example 1. However, the substrate temperature from 1,010 to 1,
The applied power was adjusted for 9 minutes so as to maintain 030 ° C.
The appearance of the obtained titanium alloy sample piece having an oxide film was exactly the same as that of Example 1. However, the weight of the sample piece was reduced by 3 to 9 mg. The adhesion of the coating to the substrate was good, and it did not peel off during normal handling. The thickness of the oxide film was 100 μm.
【0014】[0014]
【発明の効果】本発明によれば、チタン系金属材料表面
に密着した堅牢且つ緻密な膜厚酸化物被覆が得られる。
特に、10〜150μm程度の厚膜のチタン酸化物被膜
を形成することができる。EFFECTS OF THE INVENTION According to the present invention, a robust and dense oxide coating adhered to the surface of a titanium-based metal material can be obtained.
In particular, a thick titanium oxide film having a thickness of about 10 to 150 μm can be formed.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成11年6月22日(1999.6.2
2)[Submission date] June 22, 1999 (1999.6.2
2)
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【特許請求の範囲】[Claims]
Claims (2)
0μmのチタン酸化物被膜を有するチタン系金属材料。1. A thickness of 10 to 15 on at least a part of the surface.
A titanium-based metal material having a titanium oxide coating of 0 μm.
材料の製造方法において、チタン系金属材料を大気中で
加熱して該材料の表面の少なくとも一部に厚さ5μm以
上のチタン酸化物被膜を形成した後、不活性気体を作動
気体とする高周波誘導熱プラズマで加熱することを特徴
とする前記方法。2. A method for producing a titanium-based metallic material having a titanium oxide coating, wherein the titanium-based metallic material is heated in the atmosphere to form a titanium oxide coating having a thickness of 5 μm or more on at least a part of the surface of the material. After the formation, the method is characterized by heating with high frequency induction thermal plasma using an inert gas as a working gas.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP23106698A JP2972878B1 (en) | 1998-08-18 | 1998-08-18 | Titanium-based metallic material having a thick coating of titanium oxide and method for producing the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP23106698A JP2972878B1 (en) | 1998-08-18 | 1998-08-18 | Titanium-based metallic material having a thick coating of titanium oxide and method for producing the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2972878B1 JP2972878B1 (en) | 1999-11-08 |
| JP2000064023A true JP2000064023A (en) | 2000-02-29 |
Family
ID=16917761
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP23106698A Expired - Lifetime JP2972878B1 (en) | 1998-08-18 | 1998-08-18 | Titanium-based metallic material having a thick coating of titanium oxide and method for producing the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2972878B1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6595653B2 (en) | 2000-08-08 | 2003-07-22 | Seiko Precision Inc. | Light illuminating type switch |
| CN106480387A (en) * | 2016-12-12 | 2017-03-08 | 山东大学 | A kind of method preparing nano-structure bioactive oxide-film in titanium alloy surface |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110158020B (en) * | 2019-04-09 | 2020-04-21 | 山东大学 | A method for preparing nanostructured oxide film by ultrasonic-assisted induction heating |
-
1998
- 1998-08-18 JP JP23106698A patent/JP2972878B1/en not_active Expired - Lifetime
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6595653B2 (en) | 2000-08-08 | 2003-07-22 | Seiko Precision Inc. | Light illuminating type switch |
| CN106480387A (en) * | 2016-12-12 | 2017-03-08 | 山东大学 | A kind of method preparing nano-structure bioactive oxide-film in titanium alloy surface |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2972878B1 (en) | 1999-11-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI276704B (en) | Y2O3 spray-coated member and production method thereof | |
| US5308463A (en) | Preparation of a firm bond between copper layers and aluminum oxide ceramic without use of coupling agents | |
| JP2002527618A (en) | Sputter target / back plate assembly and method of manufacturing the same | |
| JPH0338339B2 (en) | ||
| WO1998003693A1 (en) | Titanium-base decoration member and method for curing the same | |
| JP2972878B1 (en) | Titanium-based metallic material having a thick coating of titanium oxide and method for producing the same | |
| JPH0955575A (en) | Laminate | |
| JP6586540B1 (en) | Bonded body of target material and backing plate, and manufacturing method of bonded body of target material and backing plate | |
| JP4537957B2 (en) | Aluminum material having AlN region on surface and method for producing the same | |
| JPH04157157A (en) | Manufacturing method of artificial diamond coating material | |
| JPH07278804A (en) | Pure ti target for formation of sputtering thin film | |
| JPH1087385A (en) | Metal-ceramic composite substrate and its production | |
| JP3260157B2 (en) | Method for producing diamond-coated member | |
| JPS62202071A (en) | Ion nitriding method for aluminum materials | |
| CN115747604B (en) | A Mo-based high-entropy alloy and its application | |
| JP4032178B2 (en) | Method for manufacturing silicon nitride sprayed film | |
| CN117431515B (en) | Preparation method of hard alloy bionic coating cutter material for processing high-speed railway turnout | |
| JPS6031595B2 (en) | Tuyere manufacturing method | |
| JPH02192483A (en) | Diamond silicon carbide composite | |
| JPH11302846A (en) | Method for manufacturing hard carbon coating member | |
| JPS63207556A (en) | Manufacture of diamond wire | |
| JPH06272062A (en) | Aluminum alloy-coated molybdenum material | |
| RU94004210A (en) | METHOD OF OBTAINING PROTECTIVE COATINGS | |
| JPS62170183A (en) | Tungsten or molybdenum heater which is excellent in acid errosion resistant properties and manufacture of the same | |
| JPH03267358A (en) | Surface treatment of die |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| EXPY | Cancellation because of completion of term |